

MOS INTEGRATED CIRCUIT MC-2222361-X

MCP (MULTI-CHIP PACKAGE) FLASH MEMORY AND SRAM 64M-BIT PAGE MODE FLASH MEMORY AND 8M-BIT SRAM

Description

The MC-22222361-X is a stacked type MCP (Multi-Chip Package) of 67,108,864 bits (4,194,304 words by 16 bits) flash memory and 8,388,608 bits (524,288 words by 16 bits) static RAM.

The MC-22222361-X is packaged in a 85-pin TAPE FBGA .

Features

General Features

- Fast access time : tacc = 80 ns (MAX.) (Vccf = 1.8 V), 85 ns (MAX.) (Vccf = 1.65 V) (Flash Memory), taa = 55 ns (MAX.) (SRAM)
- Supply voltage : -D80X : 1.8 to 2.1 V (Chip) / 2.7 to 3.1 V (I/O) (Flash Memory), 2.7 to 3.1 V (SRAM)
 - -E85X : 1.65 to 1.95 V (Chip) / 2.7 to 3.1 V (I/O) (Flash Memory), 2.7 to 3.1 V (SRAM)
- Output Enable input for easy application
- Wide operating temperature : $T_A = -25$ to $+85^{\circ}C$

Flash Memory Features

- Four bank organization enabling simultaneous execution of program / erase and read
- High-speed read with page mode
- Bank organization : 4 banks (8M bits + 24M bits + 24M bits + 8M bits)
- Memory organization : 4,194,304 words \times 16 bits
- Sector organization : 142 sectors (4K words × 16 sectors, 32K words × 126 sectors) Boot sector allocated to the highest address (sector) and the lowest address (sector)
- 3-state output
- Automatic program
 - Program suspend / resume
- Unlock bypass program
- Automatic erase
 - Chip erase
 - Sector erase (sectors can be combined freely)
 - Erase suspend / resume
- Program / Erase completion detection
 - Detection through data polling and toggle bits
 - Detection through RY (/BY) pin
- Sector group protection
 - Any sector group can be protected
 - Any protected sector group can be temporary unprotected
 - Any sector group can be unprotected
- Sectors can be used for boot application

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with NEC Electronics sales representative for availability and additional information.

The mark **★** shows major revised points.

- Hardware reset and standby using /RESET pin
- Automatic sleep mode
- Boot block sector protect by /WP (ACC) pin
- Extra One Time Protect Sector provided
- Program / erase time
 - Program : 11.0 μs / word (TYP.)
 - Sector erase :
 - Program / erase cycle : 100,000 cycles
 - 0.15 s (TYP.) (4K words sector), 0.5 s (TYP.) (32K words sector)
 - Program / erase cycle : 300,000 cycles
 - 0.5 s (TYP.) (4K words sector), 0.7 s (TYP.) (32K words sector)
- Program / erase cycle : 300,000 cycles (MIN.)

SRAM Features

- Memory organization : 524,288 words \times 16 bits
- Supply current : At operating : 30 mA (MAX.)
 - At standby : 15 μ A (MAX.)
- Two Chip Enable inputs : /CE1s, CE2s
- Byte data control : /LB, /UB
- Low Vcc data retention : 1.5 V (MIN.)

Ordering Information

	Part number	Flash Memory	SRAM	Operating su	pply voltage	Package	Mounted
		Access time	Access time	١	/		Flash Memory
		ns (MAX.)	ns (MAX.)	Chip	I/O		
r	MC-22222361F9-D80X-CD5	80	55	1.8 to 2.1	1.8 to 2.1 2.7 to 3.1 8		μPD29F064115-X
				(Flash	(Flash	TAPE FBGA	
				Memory)	Memory)	(11 × 8)	
				2.7 to 3.1			
				(SRAM)			
	MC-22222361F9-E85X-CD5	85		1.65 to 1.95			
				(Flash			
				Memory)	lemory)		
				2.7 to 3.1			
				(SRAM)			

Bus Operations, COMMANDS, HARDWARE SEQUENCE FLAGS, HARD WARE DATA PROTECTION, READ MODE REGISTER SETTINGS, TIMING CHARTS and FLOW CHARTS for Flash Memory, refer to PAGE MODE FLASH MEMORY, BURST MODE FLASH MEMORY Information (M15451E).

TIMING CHARTS OF SRAM FOR MCP, refer to SRAM AND MOBILE SPECIFIED RAM TIMING CHARTS FOR MCP Information (M15819E).

NEC

Pin Configuration

/xxx indicates active low signal.

85-pin TAPE FBGA (11 × 8)

$\langle \rangle$	$\langle \rangle$				$^{\circ}$	\bigcirc				$\langle \rangle$	$^{\circ}$
($\langle \rangle$		$\langle \rangle$	\bigcirc	$\langle \rangle$	$\langle \rangle$	$\langle \rangle$	$\langle \rangle$		$\langle \rangle$	$\langle \rangle$
	$\langle \rangle$										
		$\langle \rangle$	$\langle \rangle$	\bigcirc	$\langle \rangle$						
	$\langle \rangle$	$\langle \rangle$	$\langle \rangle$	$\langle \rangle$			$\langle \rangle$	$\langle \rangle$	$\langle \rangle$	$\langle \rangle$	
	$\langle \rangle$	$\langle \rangle$	$\langle \rangle$	$\langle \rangle$			$\langle \rangle$	$\langle \rangle$	$\langle \rangle$	$\langle \rangle$	
		$\langle \rangle$	$\langle \rangle$	\bigcirc	$\langle \rangle$						
	$\langle \rangle$	$\langle \rangle$	\bigcirc	\bigcirc	$\langle \rangle$	\bigcirc					
$\langle \rangle$	\bigcirc		$\langle \rangle$	$\langle \rangle$	$\langle \rangle$	$\langle \rangle$	\bigcirc	$\langle \rangle$		$\langle \rangle$	$\langle \rangle$
$\langle \rangle$	$\langle \rangle$	\bigcirc			$\langle \rangle$	\bigcirc				\bigcirc	\bigcirc

	Bottom View													
10	0	0				0	0				0	0		
9	0	0		0	0	0	0	0	0		0	0		
8		0	0	0	0	0	0	0	0	0	0			
7			0	0	0	0	0	0	0	0				
6		0	0	0	0			0	0	0	0			
5		0	0	0	0			0	0	0	0			
4			Ο	Ο	Ο	Ο	Ο	0	0	Ο				
3		0	0	0	0	0	0	0	0	0	0			
2	0	0		0	0	0	0	0	0		0	0		
1	0	0				0	0			0	0	0		
	М	L	Κ	J	Н	G	F	Е	D	С	В	А		

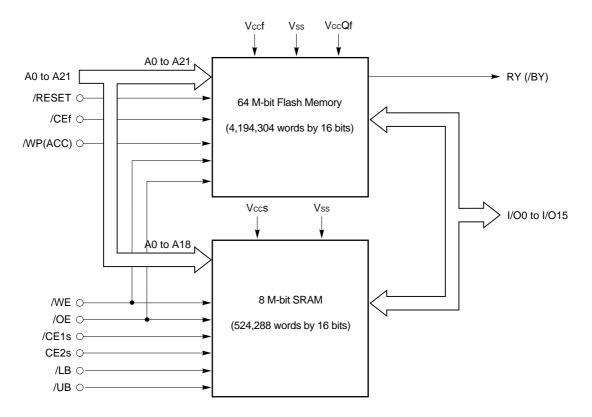
Top View

-	А	В	С	D	E	F	G	Н	J	К	L	М
10	NC	NC				NC	NC				NC	NC
9	NC	NC		A15	A21	NC	A16	Vccs	Vss		NC	NC
8		NC	A11	A12	A13	A14	IC	I/O15	I/07	I/014	NC	
7			A8	A19	A9	A10	I/O6	I/O13	I/O12	I/O5		
6		NC	/WE	CE2s	A20			I/O4	Vccs	VccQf	NC	
5		NC	/WP(ACC)/RESET	RY(/BY)			I/O3	Vccf	I/O11	NC	
4			/LB	/UB	A18	A17	I/O1	I/O9	I/O10	I/O2		
3		NC	A7	A6	A5	A4	Vss	/OE	I/O0	I/08	NC	
2	NC	NC		A3	A2	A1	A0	/CEf	/CE1s		NC	NC
1	NC	NC	NC			NC	NC				NC	NC

Common Pins

Common P	ins	6	Flash Mem	0	ry Pins
A0 to A18	:	Address Inputs	A19 to A21	:	Address Inputs
I/O0 to I/O1	5:	Data Inputs / Outputs	/CEf	:	Chip Enable Input
/OE	:	Output Enable Input	RY (/BY)	:	Ready (Busy) output
/WE	:	Write Enable Input	/RESET	:	Hardware reset Input
Vss	:	Ground	/WP(ACC)	:	Hardware Write Protect (Acceleration) Input
NC Note1	:	No Connection	Vccf	:	Supply Voltage
IC Note2	:	Internal Connection	VccQf	:	Input / Output Supply Voltage

SRAM Pins


/CE1s	: Chip Enable 1 Input
CE2s	: Chip Enable 2 Input
/LB, /UB	: Byte data select Input
Vccs	: Supply Voltage

Notes 1. Some signals can be applied because this pin is not internally connected.

2. Any level (Vss, Vccf, Open) can be applied. Do not change the state during operation.

Remark Refer to Package Drawing for the index mark.

Block Diagram

Bus Operations

0	peration	Fla	ash Me	emory		SRA	M		Common					
		/RESET	/CEf	/WP(ACC)	/CE1s	CE2s	/LB	/UB	/OE	/WE	I/O0 to I/O7	I/O8 to I/O15		
Full Standby		н	Н	×	Н	×	× ×		×	×	High-Z	High-Z		
					×	L								
					×	×	Н	Н						
Output Disable	1	Н	L	×	L	Н	×	×	н	Н	High-Z	High-Z		
Flash Memory														
Word Read Note	e 1	н	L	×		Note	9 2		L	Н	Data Out	Data Out		
Word Write		н	L	×	Note 2			Н	L	Data In	Data In			
Temporary Sec	emporary Sector Group Unprotect		×	×	Note 2				×	×	High-Z or Data In/Out	High-Z or Data In/Out		
Automatic Sleep Mode		н	L	×	Note 2				L	Н	Data Out	Data Out		
Boot Block Sec	ctor Protect	×	×	L	× ×		×	×	×	×	High-Z or Data In/Out	High-Z or Data In/Out		
Accelerated Mo	ode	н	×	VACC	Note 2			×	×	High-Z or Data In/Out	High-Z or Data In/Out			
Hardware Rese	et	L	×	×	×	×	×	×	×	×	High-Z	High-Z		
SRAM														
Word Read			Note	3	L	Н	L	L	L	Н	Data Out	Data Out		
	Lower byte read	-						Н				High-Z		
	Upper byte read						Н	L			High-Z	Data Out		
Word Write			Note	3	L	Н	L	L	×	L	Data In	Data In		
	Lower byte read							Н				High-Z		
	Upper byte read]					Н	L]		High-Z	Data In		

Caution Other operations except for indicated in this table are inhibited.

- **Notes 1.** When $/OE = V_{IL}$, V_{IL} can be applied to /WE. When $/OE = V_{IH}$, a write operation is started. When $/WE = V_{IL}$ and $/OE = V_{IL}$, a write operation is started.
 - 2. SRAM should be Standby.
 - 3. Flash Memory should be Standby or Hardware reset.

Remarks 1. \times : VIH or VIL, H : VIH, L : VIL, VID : 9.0 to 11.0 V, Vacc : 8.5 to 9.5 V

- **2.** Sector group protection and read the product ID are using a command.
- **3.** If an address is held longer than the minimum read cycle time (t_{RC}) in the flash memory read mode, the automatic sleep mode is set.

(1/4)

Sector Organization / Sector Address Table (Flash Memory)

Bank Sector Address Sectors Sector Address Table Organization Address Bank Address Table K words A21 A20 A19 A18 A17 A16 A15 A14 A13 A12 Bank D **3FFFFFH** SA141 3FF000H 3FEFFFH SA140 3FE000H SA139 3FDFFFH 3FD000H SA138 **3FCFFFH** 3FC000H SA137 **3FBFFFH** 3FB000H **3FAFFFH** SA136 3FA000H SA135 3E9EEEH 3F9000H 3F8FFFH SA134 3F8000H 3F7FFFH SA133 х х х 3F0000H **3EFFFFH** SA132 Х х х 3E8000H SA131 3F7FFFH х х х 3E0000H SA130 3DFFFFH х х х 3D8000H 3D7FFFF SA129 х х х 3D0000H 3CFFFFH 3C8000H SA128 х х х SA127 3C7FFFH х х Х 3C0000H SA126 3B7FFFH х х Х 3B8000H 3B7FFFH SA125 х Х х 3B0000H SA124 **3AFFFFH** х х х 3A8000H SA123 3A7FFFH х х х 3A0000H 39FFFFH SA122 х х х 398000H 397FFFH 390000H SA121 Х х Х SA120 38FFFFH х х х 388000H SA119 387FFFH х х х 380000H Bank C 37FFFFH SA118 х х х 378000H 377FFFH SA117 Х х х 370000H SA116 36FFFFH х х х 368000H 367FFFH SA115 х х х 360000H 35FFFFH SA114 х х х 358000H 357FFFH 350000H SA113 х х х SA112 34FFFFH х х х 348000H SA111 347FFFH х х х 340000H 33FFFFH SA110 х х х 338000H 337FFFH 330000H SA109 х х х SA108 32FFFFH х х х 328000H 327FFFH SA107 х х х 320000H 31FFFFH 318000H SA106 Х Х Х

(2/4)

Bank	Sector	Address	Sectors					or Add	lress T	able			
	Organization		Address		Bank Address TableA21A20A19			• · -					.
Bank C	K words 32	317FFFH	SA105	A21	A20	A19 0	A18 0	A17 0	A16 1	A15 0	A14 x	A13 x	A12 x
Dank O	32	310000H 30FFFFH	SA104	1	1	0	0	0	0	1			
-	-	308000H				-	-	-	-		x	x	х
	32	307FFFH 300000H	SA103	1	1	0	0	0	0	0	х	х	х
	32	2FFFFFH 2F8000H	SA102	1	0	1	1	1	1	1	х	х	х
	32	2F7FFFH 2F0000H	SA101	1	0	1	1	1	1	0	х	х	х
	32	2EFFFFH 2E8000H	SA100	1	0	1	1	1	0	1	х	х	х
	32	2E7FFFH 2E0000H	SA99	1	0	1	1	1	0	0	х	х	х
	32	2DFFFFH 2D8000H	SA98	1	0	1	1	0	1	1	х	х	х
İ	32	2D7FFFH 2D0000H	SA97	1	0	1	1	0	1	0	х	х	х
İ	32	2CFFFFH 2C8000H	SA96	1	0	1	1	0	0	1	х	х	х
	32	2C7FFFH 2C0000H	SA95	1	0	1	1	0	0	0	х	х	х
	32	2BFFFFH 2B8000H	SA94	1	0	1	0	1	1	1	х	х	х
	32	2B7FFFH	SA93	1	0	1	0	1	1	0	х	х	х
	32	2B0000H 2AFFFFH	SA92	1	0	1	0	1	0	1	х	х	х
ł	32	2A8000H 2A7FFFH	SA91	1	0	1	0	1	0	0	х	х	х
ł	32	2A0000H 29FFFFH	SA90	1	0	1	0	0	1	1	х	х	х
	32	298000H 297FFFH	SA89	1	0	1	0	0	1	0	х	х	х
ł	32	290000H 28FFFFH 288000H	SA88	1	0	1	0	0	0	1	х	х	х
	32	287FFFH 280000H	SA87	1	0	1	0	0	0	0	х	х	х
	32	27FFFFH 278000H	SA86	1	0	0	1	1	1	1	х	х	х
	32	277FFFH	SA85	1	0	0	1	1	1	0	х	х	х
	32	270000H 26FFFFH	SA84	1	0	0	1	1	0	1	х	х	х
	32	268000H 267FFFH	SA83	1	0	0	1	1	0	0	х	х	х
1	32	260000H 25FFFFH	SA82	1	0	0	1	0	1	1	х	х	х
ł	32	258000H 257FFFH	SA81	1	0	0	1	0	1	0	х	х	х
	32	250000H 24FFFFH	SA80	1	0	0	1	0	0	1	х	х	x
	32	248000H 247FFFH	SA79	1	0	0	1	0	0	0	x	x	x
	32	240000H 23FFFFH	SA78	1	0	0	0	1	1	1	x	x	х
	32	238000H 237FFFH	SA77	1	0	0	0	1	1	0	х	х	х
ł	32	230000H 22FFFFH	SA76	1	0	0	0	1	0	1	х	x	x
ł	32	228000H 227FFFH	SA75	1	0	0	0	1	0	0	x	x	x
	32	220000H 21FFFFH	SA74	1	0	0	0	0	1	1	x	x	x
	32	218000H 217FFFH	SA73	1	0	0	0	0	1	0	х	х	x
ł	32	210000H 20FFFFH	SA72	1	0	0	0	0	0	1	x	x	x
	32	208000H 207FFFH	SA71	1	0	0	0	0	0	0	x	x	x
	52	200000H	0.011		Ŭ	5	5	5	5	Ĵ	Â	Â	

Bank	Sector	Address	Sectors	D .		T · ·		or Add	lress T	able			
	Organization K words		Address	Bank / A21	Address A20	Table	A18	A17	A16	A15	A14	A13	A12
Bank B	32	1FFFFFH 1E8000H	SA70	0	1	1	1	1	1	1	X X	x	X
ł	32	1F8000H 1F7FFFH 1F0000H	SA69	0	1	1	1	1	1	0	x	x	x
ľ	32	1EFFFFH 1E8000H	SA68	0	1	1	1	1	0	1	х	х	х
	32	1E7FFFH 1E0000H	SA67	0	1	1	1	1	0	0	х	х	х
	32	1DFFFFH 1D8000H	SA66	0	1	1	1	0	1	1	х	х	х
	32	1D7FFFH 1D0000H 1CFFFFH	SA65 SA64	0	1	1	1	0	1	0	x	x	X
	32	1C8000H	SA64 SA63	0	1	1	1	0	0	0	x x	x x	x x
	32	1C0000H 1BFFFFH	SA62	0	1	1	0	1	1	1	x	x	x
	32	1B8000H 1B7FFFH	SA61	0	1	1	0	1	1	0	x	x	x
	32	1B0000H 1AFFFFH	SA60	0	1	1	0	1	0	1	x	x	x
	32	1A8000H 1A7FFFH	SA59	0	1	1	0	1	0	0	x	x	x
	32	1A0000H 19FFFFH 198000H	SA58	0	1	1	0	0	1	1	x	x	x
	32	197FFFH 190000H	SA57	0	1	1	0	0	1	0	x	x	х
t	32	18FFFFH 188000H	SA56	0	1	1	0	0	0	1	х	х	х
Ī	32	187FFFH 180000H	SA55	0	1	1	0	0	0	0	х	х	х
Į	32	17FFFFH 178000H	SA54	0	1	0	1	1	1	1	х	х	х
	32	177FFFH 170000H	SA53	0	1	0	1	1	1	0	x	x	х
	32	16FFFFH 168000H 167FFFH	SA52 SA51	0	1	0	1	1	0	1	x x	x x	x x
ł	32	167FFFH 160000H 15FFFFH	SA51 SA50	0	1	0	1	0	1	1	x	x	x
ł	32	158000H 157FFFH	SA49	0	1	0	1	0	1	0	x	×	^ x
	32	150000H 14FFFFH	SA48	0	1	0	1	0	0	1	x	x	x
	32	148000H 147FFFH	SA47	0	1	0	1	0	0	0	x	x	x
	32	140000H 13FFFFH 138000H	SA46	0	1	0	0	1	1	1	x	x	x
ł	32	137FFFH 130000H	SA45	0	1	0	0	1	1	0	x	x	x
	32	12FFFFH 128000H	SA44	0	1	0	0	1	0	1	х	x	x
ļ	32	127FFFH 120000H	SA43	0	1	0	0	1	0	0	х	х	х
	32	11FFFFH 118000H	SA42	0	1	0	0	0	1	1	х	х	х
ļ	32	117FFFH 110000H	SA41	0	1	0	0	0	1	0	х	х	х
	32	10FFFFH 108000H	SA40	0	1	0	0	0	0	1	x	x	x
	32	107FFFH 100000H	SA39	0	1	0	0	0	0	0	x	x	X
	32	0FFFFFH 0F8000H 0F7FFFH	SA38 SA37	0	0	1	1	1	1	1	x	x x	x
ł	32	0F7FFFH 0F0000H 0EFFFFH	SA37 SA36	0	0	1	1	1	0	1	x x	x	x
	32	0EFFFFH 0E8000H 0E7FFFH	SA36 SA35	0	0	1	1	1	0	0	x	x	x
	52	0E0000H	0,100	Ŭ	Ŭ				Ĵ	Ĵ	^	^	

(4/4)	
-------	--

Bank	Sector	Address	Sectors Sector Address Table										
	Organization K words		Address	Bank / A21	Address A20	a Table A19	A18	A17	A16	A15	A14	A13	A12
Bank B	32	0DFFFFH 0D8000H	SA34	0	0	1	1	0	1	1	X X	x	x
-	32	0D7FFFH 0D0000H	SA33	0	0	1	1	0	1	0	x	x	x
	32	0CFFFFH 0C8000H	SA32	0	0	1	1	0	0	1	х	х	х
	32	0C7FFFH 0C0000H	SA31	0	0	1	1	0	0	0	х	х	х
	32	0BFFFFH 0B8000H	SA30	0	0	1	0	1	1	1	х	х	х
	32	0B7FFFH 0B0000H	SA29	0	0	1	0	1	1	0	х	х	х
	32	0AFFFFH 0A8000H	SA28	0	0	1	0	1	0	1	х	х	х
	32	0A7FFFH 0A0000H	SA27	0	0	1	0	1	0	0	х	х	х
	32	09FFFFH 098000H	SA26	0	0	1	0	0	1	1	х	х	х
	32	097FFFH 090000H	SA25	0	0	1	0	0	1	0	х	х	х
	32	08FFFFH 088000H	SA24	0	0	1	0	0	0	1	х	х	х
	32	087FFFH 080000H	SA23	0	0	1	0	0	0	0	х	х	х
Bank A	32	07FFFFH 078000H	SA22	0	0	0	1	1	1	1	х	х	х
	32	077FFFH 070000H	SA21	0	0	0	1	1	1	0	х	х	х
-	32	06FFFFH 068000H	SA20	0	0	0	1	1	0	1	х	х	х
-	32	067FFFH 060000H	SA19	0	0	0	1	1	0	0	x	х	х
-	32	05FFFFH 058000H	SA18	0	0	0	1	0	1	1	x	х	х
-	32	057FFFH 050000H	SA17	0	0	0	1	0	1	0	x	х	х
-	32	04FFFFH 048000H	SA16	0	0	0	1	0	0	1	x	x	X
-	32	047FFFH 040000H	SA15	0	0	0	1	0	0	0	x	x	x
	32	03FFFFH 038000H 037FFFH	SA14	0	0	0	0	1	1		x	x	X
	-	030000H	SA13	-	0			1		0	x	x	X
-	32	02FFFFH 028000H	SA12	0	0	0	0	1	0	1	x	x	X
-		027FFFH 020000H	SA11	-	-	0	0		-	-	x	x	X
F	32	01FFFFH 018000H 017FFFH	SA10	0	0	0	0	0	1	1	x	x	x
F		017FFFH 010000H 00FFFFH	SA9 SA8	0	0	0	0	0	0	0	x	x	X
F	32	00FFFFH 008000H 007FFFH	SA8 SA7	0	0	0	0	0	0	0	x 1	x 1	x 1
ł	4	007FFFH 007000H 006FFFH	SA7 SA6	0	0	0	0	0	0	0	1	1	0
ł	4	006000H 005FFFH	SA6 SA5	0	0	0	0	0	0	0	1	0	1
ŀ	4	005000H 004FFFH	SA3	0	0	0	0	0	0	0	1	0	0
ŀ	4	004FFFH 004000H 003FFFH	SA4 SA3	0	0	0	0	0	0	0	0	1	1
ŀ	4	003000H 002FFFH	SA3 SA2	0	0	0	0	0	0	0	0	1	0
ŀ	4	002000H 001FFFH	SA2 SA1	0	0	0	0	0	0	0	0	0	1
ŀ	4	001000H 000FFFH	SA1 SA0	0	0	0	0	0	0	0	0	0	0
	4	000FFFH 000000H	SAU	U	U	U	U	U	U	U	U	U	0

Sector Group Address Table (Flash Memory)

												(1/2)
Sector group	A21	A20	A19	A18	A17	A16	A15	A14	A13	A12	Size	Sector
SGA0	0	0	0	0	0	0	0	0	0	0	4K words (1 Sector)	SA0
SGA1	0	0	0	0	0	0	0	0	0	1	4K words (1 Sector)	SA1
SGA2	0	0	0	0	0	0	0	0	1	0	4K words (1 Sector)	SA2
SGA3	0	0	0	0	0	0	0	0	1	1	4K words (1 Sector)	SA3
SGA4	0	0	0	0	0	0	0	1	0	0	4K words (1 Sector)	SA4
SGA5	0	0	0	0	0	0	0	1	0	1	4K words (1 Sector)	SA5
SGA6	0	0	0	0	0	0	0	1	1	0	4K words (1 Sector)	SA6
SGA7	0	0	0	0	0	0	0	1	1	1	4K words (1 Sector)	SA7
SGA8	0	0	0	0	0	0	1	×	×	×	96K words (3 Sectors)	SA8 to SA10
						1	0					
						1	1					
SGA9	0	0	0	0	1	×	×	×	×	×	128K words (4 Sectors)	SA11 to SA14
SGA10	0	0	0	1	0	×	×	×	×	×	128K words (4 Sectors)	SA15 to SA18
SGA11	0	0	0	1	1	×	×	×	×	×	128K words (4 Sectors)	SA19 to SA22
SGA12	0	0	1	0	0	×	×	×	×	×	128K words (4 Sectors)	SA23 to SA26
SGA13	0	0	1	0	1	×	×	×	×	×	128K words (4 Sectors)	SA27 to SA30
SGA14	0	0	1	1	0	×	×	×	×	×	128K words (4 Sectors)	SA31 to SA34
SGA15	0	0	1	1	1	×	×	×	×	×	128K words (4 Sectors)	SA35 to SA38
SGA16	0	1	0	0	0	×	×	×	×	×	128K words (4 Sectors)	SA39 to SA42
SGA17	0	1	0	0	1	×	×	×	×	×	128K words (4 Sectors)	SA43 to SA46
SGA18	0	1	0	1	0	×	×	×	×	×	128K words (4 Sectors)	SA47 to SA50
SGA19	0	1	0	1	1	×	×	×	×	×	128K words (4 Sectors)	SA51 to SA54
SGA20	0	1	1	0	0	×	×	×	×	×	128K words (4 Sectors)	SA55 to SA58
SGA21	0	1	1	0	1	×	×	×	×	×	128K words (4 Sectors)	SA59 to SA62
SGA22	0	1	1	1	0	×	×	×	×	×	128K words (4 Sectors)	SA63 to SA66
SGA23	0	1	1	1	1	×	×	×	×	×	128K words (4 Sectors)	SA67 to SA70

Remark ×: VIH or VIL

												(2/2)
Sector group	A21	A20	A19	A18	A17	A16	A15	A14	A13	A12	Size	Sector
SGA24	1	0	0	0	0	×	×	×	×	×	128K words (4 Sectors)	SA71 to SA74
SGA25	1	0	0	0	1	×	×	×	×	×	128K words (4 Sectors)	SA75 to SA78
SGA26	1	0	0	1	0	×	×	×	×	×	128K words (4 Sectors)	SA79 to SA82
SGA27	1	0	0	1	1	×	×	×	×	×	128K words (4 Sectors)	SA83 to SA86
SGA28	1	0	1	0	0	×	×	×	×	×	128K words (4 Sectors)	SA87 to SA90
SGA29	1	0	1	0	1	×	×	×	×	×	128K words (4 Sectors)	SA91 to SA94
SGA30	1	0	1	1	0	×	×	×	×	×	128K words (4 Sectors)	SA95 to SA98
SGA31	1	0	1	1	1	×	×	×	×	×	128K words (4 Sectors)	SA99 to SA102
SGA32	1	1	0	0	0	×	×	×	×	×	128K words (4 Sectors)	SA103 to SA106
SGA33	1	1	0	0	1	×	×	×	×	×	128K words (4 Sectors)	SA107 to SA110
SGA34	1	1	0	1	0	×	×	×	×	×	128K words (4 Sectors)	SA111 to SA114
SGA35	1	1	0	1	1	×	×	×	×	×	128K words (4 Sectors)	SA115 to SA118
SGA36	1	1	1	0	0	×	×	×	×	×	128K words (4 Sectors)	SA119 to SA122
SGA37	1	1	1	0	1	×	×	×	×	×	128K words (4 Sectors)	SA123 to SA126
SGA38	1	1	1	1	0	×	×	×	×	×	128K words (4 Sectors)	SA127 to SA130
SGA39	1	1	1	1	1	0	0	×	×	×	96K words (3 Sectors)	SA131 to SA133
						0	1					
						1	0					
SGA40	1	1	1	1	1	1	1	0	0	0	4K words (1 Sector)	SA134
SGA41	1	1	1	1	1	1	1	0	0	1	4K words (1 Sector)	SA135
SGA42	1	1	1	1	1	1	1	0	1	0	4K words (1 Sector)	SA136
SGA43	1	1	1	1	1	1	1	0	1	1	4K words (1 Sector)	SA137
SGA44	1	1	1	1	1	1	1	1	0	0	4K words (1 Sector)	SA138
SGA45	1	1	1	1	1	1	1	1	0	1	4K words (1 Sector)	SA139
SGA46	1	1	1	1	1	1	1	1	1	0	4K words (1 Sector)	SA140
SGA47	1	1	1	1	1	1	1	1	1	1	4K words (1 Sector)	SA141

 $\textbf{Remark} \ \ \times : V_{\text{IH}} \text{ or } V_{\text{IL}}$

Product ID Code (Flash Memory)

Product ID Code									Code o	utput							
	I/O15	I/O14	I/O13	I/O12	I/011	I/O10	I/O9	I/O8	I/07	I/O6	I/O5	I/04	I/O3	I/O2	I/01	I/O0	HEX
Manufacturer code	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0010H
Device code	0	0	1	0	0	0	1	0	0	0	0	1	1	1	0	0	221CH
Sector group protection	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0001H ^{Note}

Note If 0001H is output, the sector group is protected. If 0000H is output, the sector group is unprotected.

Command Sequence (Flash Memory)

Command sequence	Bus	1st bus	Cycle	2nd bu	s Cycle	3rd bus	s Cycle	4th bus	s Cycle	5th bus	s Cycle	6th bus	Cycle
	Cycle	Address	Data	Address	Data	Address	Data	Address	Data	Address	Data	Address	Data
Read / Reset Note1	1	×××Н	F0H	RA	RD	-	-	_	-	_	-	-	_
Read / Reset Note1	3	555H	AAH	2AAH	55H	555H	F0H	RA	RD	-	-	_	_
Program	4	555H	AAH	2AAH	55H	555H	A0H	PA	PD	-	_	-	-
Program Suspend Note 2	1	BA	B0H	-	-	-	-	_	-	-	-	_	-
Program Resume Note 3	1	BA	30H	-	-	-	-	_	-	-	-	_	-
Chip Erase	6	555H	AAH	2AAH	55H	555H	80H	555H	AAH	2AAH	55H	555H	10H
Sector Erase	6	555H	AAH	2AAH	55H	555H	80H	555H	AAH	2AAH	55H	SA	30H
Sector Erase Suspend Note 4, 5	1	BA	B0H	-	-	-	-	_	-	_	-	_	-
Sector Erase Resume Note 4, 6	1	BA	30H	-	-	-	-	-	I	-	-	-	-
Unlock Bypass Set	3	555H	AAH	2AAH	55H	555H	20H	-	I	-	-	-	-
Unlock Bypass Program Note 7	2	×××H	A0H	PA	PD	-	Ι	-	I	_	-	-	-
Unlock Bypass Chip Erase Note 7	2	×××Н	80H	×××H	10H	-	I	-	I	-	-	-	-
Unlock Bypass Sector Erase Note 7	2	×ххН	80H	SA	30H	-	١	-	١	-	I	-	-
Unlock Bypass Reset Note 7	2	×××Н	90H	×ххН	00H ^{Note11}	-	I	-	I	-	I	-	-
Product ID / Sector Group Protection	3	555H	AAH	2AAH	55H	(BA)	90H	IA	ID	-	-	-	-
Information / Read Mode Register						555H							
Information													
Sector Group Protection Note 8	4	×××H	60H	SPA	60H	SPA	40H	SPA	SD	-	-	-	-
Sector Group Unprotect Note 9	4	×××Н	60H	SUA	60H	SUA	40H	SUA	SD	_	-	-	-
Extra One Time Protect Sector Entry	3	555H	AAH	2AAH	55H	555H	88H	_	-	-	_	_	-
Extra One Time Protect Sector Reset ^{Note 10}	4	555H	AAH	2AAH	55H	555H	90H	xxxH	00H	-	-	-	-
Extra One Time Protect Sector Program ^{Note 10}	4	555H	AAH	2AAH	55H	555H	A0H	PA	PD	-	-	-	-
Extra One Time Protect Sector Erase ^{Note 10}	6	555H	AAH	2AAH	55H	555H	80H	555H	AAH	2AAH	55H	EOTPSA	30H
Extra One Time Protect Sector Protection ^{Note 10}	4	×××H	60H	EOTPSA	60H	EOTPSA	40H	EOTPSA	SD	-	Ι	-	-
Read Mode Register Set	3	555H	AAH	2AAH	55H	REGD	COH	_	-	_	_	_	_

Notes 1. Both these read / reset commands reset the device to the read mode.

2. Programming is suspended if B0H is input to the bank address being programmed to in a program operation.

- **3.** Programming is resumed if 30H is input to the bank address being suspended to in a program-suspend operation.
- 4. If automatic erase resume and suspend are repeated at intervals of less than 100 μ s, since it will become suspend operation, without starting automatic erase, the erase operation may not be correctly completed.
- 5. Erasure is suspended if B0H is input to the bank address being erased in a sector erase operation.
- **6.** Erasure is resumed if 30H is input to the bank address being suspended in a sector-erase-suspend operation.
- 7. Valid only in the unlock bypass mode.
- 8. Valid only when /RESET = VID (except in the Extra One Time Protect Sector mode).
- 9. The command sequence that protects a sector group is excluded.
- **10.** Valid only in the Extra One Time Protect Sector mode.
- **11.** This command can be used even if this data is F0H.

Remarks 1. The system should generate the following address pattern:

555H or 2AAH (A10 to A0)

- **2.** RA : Read address
 - RD : Read data
 - IA : Address input as follows

Information	A21 to A12	A11 to A4	A3 to A0
Manufacturer code	Bank address	Don't care	0000
Device code	Bank address	Don't care	0001
Sector group protection information	Sector group address	Don't care	0010
Read mode register information	Bank address	Don't care	0100

ID : Code output. For the manufacture code, device code and sector group protection information, refer to the Product ID code (Flash Memory). For read mode register information, refer to PAGE MODE FLASH MEMORY, BURST MODE FLASH MEMORY Information (M15451E).

- PA : Program address
- PD : Program data
- SA : Erase sector address. The sector to be erased is selected by the combination of A21 to A12. Refer to the Sector Organization / Sector Address Table (Flash Memory).
- BA : Bank address. Refer to the Sector Organization / Sector Address Table (Flash Memory).
- SPA : Sector group address to be protected or protection-verified. Set the sector group address (SGA) and (A6, A3, A2, A1, A0) = (VIL, VIL, VIL, VIL, VIL, VIL).
 Sector group protection can be set for each sector group address. For details, refer to

PAGE MODE FLASH MEMORY, BURST MODE FLASH MEMORY Information (M15451E).

Refer to the Sector Group Address Table (Flash Memory) for the sector group address.

SUA : Sector group address to be unprotected or unprotection-verified. Set the sector group address (SGA) and (A6, A3, A2, A1, A0) = (VIH, VIL, VIL, VIL, VIL).

Sector group unprotect is performed for all sector group using a single command, however, unprotect verification must be performed for each sector group address. For details, refer to PAGE MODE FLASH MEMORY, BURST MODE FLASH MEMORY Information (M15451E).

Refer to the Sector Group Address Table (Flash Memory) for the sector group address.

- EOTPSA: Extra One Time Protect Sector area addresses. These addresses are 000000H to 007FFFH.
- SD : Data for verifying whether sector groups read from the address specified by SPA, SUA, EOTPSA are protected or unprotected.
- REGD : Read mode register information. Description for setting, refer to PAGE MODE FLASH MEMORY, BURST MODE FLASH MEMORY Information (M15451E).
- 3. The sector group address is don't care except when a program / erase address or read address are selected.
- 4. For the operation of bus, refer to PAGE MODE FLASH MEMORY, BURST MODE FLASH MEMORY Information (M15451E).
- **5.** \times of address bit indicates VIH or VIL.

Electrical Specifications

Before turning on power, input Vss \pm 0.2 V to the /RESET pin until Vccf \geq Vccf (MIN.) and keep that state for 200 μ s.

Parameter	Symbol		Condition	Rating	Unit
Supply voltage	Vccf	with respect	to Vss	-0.5 to +2.4	V
	Vccs			-0.5 ^{Note 1} to +3.3	
Input / Output supply voltage	VccQf	with respect to Vss with respect /WP(ACC), /RESET		-0.5 to +4.0	V
nput / Output voltage	VT	with respect	/WP(ACC), /RESET	-0.5 ^{Note 2} to +13.0	V
		to Vss	except /WP(ACC), /RESET	–0.5 ^{Note 1} to VccQf + 0.4 (3.3 V MAX.), –0.5 ^{Note 1} to Vccs + 0.4 (3.3 V MAX.)	
Ambient operation temperature	TA			-25 to +85	°C
Storage temperature	Tstg			-55 to +125	°C
	Tbias	at bias		-25 to +85	

Absolute Maximum Ratings

Notes 1. -1.5 V (MIN.) (pulse width \leq 30 ns)

2. -2.0 V (MIN.) (pulse width $\leq 20 \text{ ns}$)

Caution Exposing the device to stress above those listed in Absolute Maximum Rating could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Parameter	Symbol	Test condition	MIN.	TYP.	MAX.	Unit
Supply voltage	Vccf	-D80X	1.8		2.1	V
		-E85X	1.65		1.95	
	Vccs		2.7		3.1	
Input / Output supply voltage	VccQf		2.7		3.1	V
High level input voltage	Vih		2.4		VccQf +0.4,	V
					Vccs +0.4	
	Vid	High voltage is applied (/RESET)	9.0		11.0	V
Low level input voltage	VIL		-0.3 ^{Note}		+0.5	V
Accelerated programming voltage	VACC	High voltage is applied	8.5		9.5	V
Ambient operating temperature	TA		-25		+85	°C

Note -1.0 V (MIN.) (pulse width = 20 ns)

DC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)

	Parameter	Symbol	Test condition		-D80X		Unit
				MIN.	TYP.	MAX.	
High lev	vel output voltage	Vон	Iон = -0.1 mA	VccQf-0.1			V
Low lev	el output voltage	Vol	IoL = 0.1 mA			0.1	V
Input le	akage current	ILI1	V _{IN} = V _{SS} to V _{CC} Qf, V _{CC} Qf = V _{CC} Qf (MAX.)			1.0	μA
	High voltage is applied	IL12	/RESET = 11.0 V			35	1
I/O leak	age current	Ilo	V _{I/O} = Vss to VccQf, VccQf = VccQf (MAX.)			1.0	μA
Power supply	Read	Icc1	/CEf = VіL, /OE = Vін, Cycle = 5 MHz, Іоит = 0 mA		10	20	mA
urrent P	Program, Erase	Icc2	/CEf = V _{IL} , /OE = V _{IH} , Automatic programming / erase			35	mA
	Standby	Іссз	Vccf = Vccf (MAX.), /OE = VIL, /CEf = /RESET = /WP(ACC) = VccQf ± 0.3 V		15	25	μA
	Standby / Reset	Icc4	Vccf = Vccf (MAX.), /RESET = Vss ± 0.2 V		15	25	μA
	Automatic sleep mode	Icc5	V_{IH} = V _{CC} Qf ± 0.2 V, V_{IL} = V _{SS} ± 0.2 V		15	25	μA
	Read during programming	Icc6	$V_{\text{IH}} = V_{\text{CC}}Qf \pm 0.2 \text{ V}, \text{ VIL} = V_{\text{SS}} \pm 0.2 \text{ V}$			55	mA
	Read during erasing	Icc7	V_{IH} = $V_{CC}Qf \pm 0.2$ V, V_{IL} = $V_{SS} \pm 0.2$ V			55	mA
	Programming during suspend	Ісся	/CEf = VIL, /OE = VIH, Automatic programming during suspend			35	mA
	Accelerated	IACC	/WP (ACC) pin		5	10	mA
	programming		Vccf		15	35	1
Low Vcc	f lock-out voltage ^{Note}	νικο		1.0			V

Note When Vccf is equal to or lower than VLKO, the device ignores all write cycles. Refer to PAGE MODE FLASH MEMORY, BURST MODE FLASH MEMORY Information (M15451E).

Remark VIN : Input voltage, VI/O : Input / Output voltage

	Parameter	Symbol	Test condition		-E85X		Unit
		-		MIN.	TYP.	MAX.	
High lev	vel output voltage	Vон	Iон = -0.1 mA	VccQf-0.1			V
Low lev	el output voltage	Vol	IoL = 0.1 mA			0.1	V
Input le	akage current	ILI1	V _{IN} = V _{SS} to V _{CC} Qf, V _{CC} Qf = V _{CC} Qf (MAX.)			1.0	μA
	High voltage is applied	ILI2	/RESET = 11.0 V			35	
I/O leak	kage current	Ιιο	V _{I/O} = V _{SS} to V _{CC} Qf, V _{CC} Qf = V _{CC} Qf (MAX.)			1.0	μA
Power	Read	Icc1	/CEf = VIL, /OE = VIH, Cycle = 5 MHz,		8	15	mA
supply			lout = 0 mA				
current	Program, Erase	Icc2	$/CEf = V_{IL}, /OE = V_{IH},$			25	mA
			Automatic programming / erase				
	Standby	Іссз	Vccf = Vccf (MAX.), /OE = VIL, /CEf = /RESET =		15	25	μA
			/WP(ACC) = $V_{CC}Qf \pm 0.3 V$				
	Standby / Reset	Icc4	Vccf = Vccf (MAX.), /RESET = Vss \pm 0.2 V		15	25	μA
	Automatic sleep mode	Icc5	V_{IH} = $V_{CC}Qf \pm 0.2$ V, V_{IL} = $V_{SS} \pm 0.2$ V		15	25	μA
	Read during programming	Icc6	V_{IH} = $V_{CC}Qf \pm 0.2$ V, V_{IL} = $V_{SS} \pm 0.2$ V			40	mA
	Read during erasing	Icc7	V_{IH} = V _{CC} Qf ± 0.2 V, V_{IL} = V _{SS} ± 0.2 V			40	mA
	Programming	Icc8	/CEf = VIL, /OE = VIH,			25	mA
	during suspend		Automatic programming during suspend				
	Accelerated	IACC	/WP (ACC) pin		5	10	mA
	programming		Vccf		12	25]
Low Vc	of lock-out voltage ^{Note}	Vlko		1.0			V

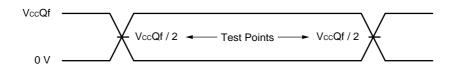
Note When Vccf is equal to or lower than VLKO, the device ignores all write cycles. Refer to PAGE MODE FLASH MEMORY, BURST MODE FLASH MEMORY Information (M15451E).

Remark VIN : Input voltage, VI/O : Input / Output voltage

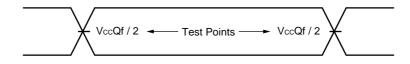
SRAM

Parameter	Symbol	Test condition	MIN.	TYP.	MAX.	Unit
High level output voltage	Vон	Iон = -0.1 mA	Vccs-0.1			V
Low level output voltage	Vol	lo∟ = 0.1 mA			0.1	V
Input leakage current	lu	$V_{IN} = 0 V \text{ to } V_{CC}s$	-1.0		+1.0	μA
I/O leakage current	Ilo	$V_{\rm I/O}$ = 0 V to V_{\rm CCS}, /CE1s = V_{\rm IH} or CE2s = V_{\rm IL} or /WE = V_{\rm IL} or /OE = V_{\rm IH}	-1.0		+1.0	μA
Power supply current	ICCA1	/CE1s = VIL, CE2s = VIH, II/O = 0 mA, Minimum cycle time		-	30	mA
	ICCA2	/CE1s = VIL, CE2s = VIH, II/0 = 0 mA, Cycle time = ∞		-	5	
	Іссаз	/CE1s ≤ 0.2 V, CE2s ≥ Vccs – 0.2 V, VıL ≤ 0.2 V, VıH ≥ Vccs – 0.2 V, Iı/o = 0 mA, Cycle time = 1 μ s		-	6	
Standby supply current	lsв	/CE1s = VIH or CE2s = VIL or /LB = /UB = VIH		_	0.6	mA
	ISB1	/CE1s \ge Vccs - 0.2 V, CE2s \ge Vccs - 0.2 V		1.0	15	μA
	ISB2	CE2s ≤ 0.2 V		1.0	15	
	Isb3	/LB = /UB \geq Vccs $-$ 0.2 V, /CE1s \leq 0.2 V, CE2s \geq Vccs $-$ 0.2 V		1.0	15	

Remarks 1. VIN : Input voltage, VI/O : Input / Output voltage


2. This DC Characteristic is in common regardless of product classification.

AC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)

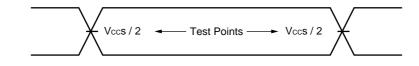

AC Test Conditions

[Flash Memory]

Input Waveform (Rise and Fall Time ≤ 5 ns)

Output Waveform

Output Load


1 TTL + 30 pF

[SRAM]

Input Waveform (Rise and Fall Time ≤ 5 ns)

Output Waveform

Output Load

1 TTL + 30 pF

/CEf, /CE1s, CE2s Timing

Parameter	Symbol	Test Condition	MIN.	TYP.	MAX.	Unit	Note
/CEf, /CE1s, CE2s recover time	tccr		0			ns	

Read Cycle (Flash Memory)

Pa	arameter	Symbol	-D8	30X	-E8	35X	Unit	Note
		MIN.	MAX.	MIN.	MAX.			
Read cycle time		trc	80		85		ns	
Address access time		tacc		80		85	ns	1
Page read cycle		t PRC	30		30		ns	
Page address access	s time	t PACC		30		30	ns	1
/CEf access time	/CEf access time			80		85	ns	2
/OE access time		toe		25		25	ns	
Output disable time		t DF		25		25	ns	
Output hold time		tон	0		0		ns	
/RESET pulse width		trp	500		500		ns	
/RESET hold time be	/RESET hold time before read		50		50		ns	
/RESET low	ET low At automatic mode			20		20	μs	
to read mode Except automatic mode				500		500	ns	
/OE low level time fro	tоен	20		20		ns		

Notes 1. /CEf = /OE = VIL

2. /OE = VIL

 $\label{eq:result} \begin{tabular}{c} \begin{tabular}{c} Remark & t_{DF} \end{tabular} is the time from inactivation of /CEf or /OE to high impedance state output. \end{tabular}$

Write Cycle (Program /Erase) (Flash Memory)

(1/2)

Par	ametei	r –	Symbol		-D80X			-E85X		Unit	Note
				MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
Write cycle time			twc	80			85			ns	
Address setup time (/WE to address)			tas	0			0			ns	
Address setup time (/CEf to address)		tas	0			0			ns		
Address hold time (/WE to address)		tан	45			45			ns		
Address hold time (/CE1	to add	lress)	tан	45			45			ns	
Input data setup time			tos	45			45			ns	
Input data hold time			tон	0			0			ns	
/OE hold time Read			tоен	0			0			ns	
Toggle	Toggle bit, Data polling			10			10				
Read recovery time before	ore wri	te (/OE to /CEf)	t GHEL	0			0			ns	
Read recovery time before	ore wri	te (/OE to /WE)	t GHWL	0			0			ns	
/WE setup time (/CEf to	/WE)		tws	0			0			ns	
/CEf setup time (/WE to	/CEf)		tcs	0			0			ns	
/WE hold time (/CEf to /	WE)		twн	0			0			ns	
/CEf hold time (/WE to /	CEf)		tсн	0			0			ns	
Write pulse width			twp	35			35			ns	
/CEf pulse width			tср	35			35			ns	
Write pulse width high			twpн	30			30			ns	
/CEf pulse width high			tсрн	30			30			ns	
Word programming ope	ration	time	twpg		11	200		11	200	μs	
Chip programming oper	ation ti	me	tcpg		47	840		47	840	s	
Sector erase operation	time	4K words sector	t ser		0.15	1.0		0.15	1.0	s	1,2
		32K words sector			0.5	1.5		0.5	1.5		
		4K words sector			0.5	3.0		0.5	3.0		1,3
		32K words sector			0.7	5.0		0.7	5.0		
Chip erase operation tin	ne		t CER		65.4	205		65.4	205	s	1,2
					96.2	678		96.2	678		1,3
Accelerated programming	ng time	9	t accpg		7	150		7	150	μs	
Program / Erase cycle				300,000			300,000			cycle	
Vccf setup time		tvcs	200			200			μs		
RY (/BY) recovery time		tяв	0			0			ns		
/RESET pulse width			t RP	500			500			ns	
/RESET high-voltage (V _{ID}) hold time		t RRB	20			20			μs		
from high of RY(/BY) wh	nen se	ctor group is									
temporarily unprotect											
/RESET hold time			tкн	50			50			ns	

Notes 1. The preprogramming time prior to the erase operation is not included.

- 2. Program / erase cycle : 100,000 cycles
- 3. Program / erase cycle : 300,000 cycles

Write Cycle (Program / Erase) (Flash Memory)

(2/2)

Parameter	Symbol		-D80X			-E85X		Unit	Note
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
From completion of automatic program / erase to	teoe			80			85	ns	
data output time									
RY (/BY) delay time from valid program or erase	t BUSY			80			85	ns	
operation									
Address setup time to /OE low in toggle bit	taso	15			15			ns	
Address hold time to /CEf or /OE high in toggle bit	tант	0			0			ns	
/CEf pulse width high for toggle bit	tсерн	20			20			ns	
/OE pulse width high for toggle bit	t oeph	20			20			ns	
Voltage transition time	tvlht	4			4			μs	1
Rise time to VID (/RESET)	tvidr	500			500			ns	
Rise time to V _{ACC} (/WP(ACC))	t vaccr	500			500			ns	
Erase timeout time	t ⊤ow	50			50			μs	2
Erase suspend transition time	tspd			20			20	μs	2

Notes 1. Sector group protection only.

2. Table only.

Write operation (Program / Erase) Performance (Flash Memory)

Parameter	Descriptio	on	MIN.	TYP.	MAX.	Unit	Note
Sector erase time	The preprogramming time	4K words sector		0.15	1.0	S	1
	prior to the erase	32K words sector		0.5	1.5		
	operation is not included.	4K words sector		0.5	3.0		2
		32K words sector		0.7	5.0		
Chip erase time	The preprogramming time p	rior to		65.4	205	s	1
	the erase operation is not in	cluded.		96.2	678		2
Word programming time	Excludes system-level overh	ead		11	200	μs	
Chip programming time	Excludes system-level overh		47	840	s		
Accelerated programming time	Excludes system-level overh		7	150	μs		
Program / Erase cycle			300,000			cycle	

Notes 1. Program / erase cycle : 100,000 cycles

2. Program / erase cycle : 300,000 cycles

★ Read Cycle (SRAM)

NEC

Parameter	Symbol	MIN.	MAX.	Unit	Note
Read cycle time	trc	55		ns	
Address access time	taa		55	ns	1
/CE1s access time	tco1		55	ns	
CE2s access time	tco2		55	ns	
/OE to output valid	toe		30	ns	
/LB, /UB to output valid	tва		55	ns	
Output hold from address change	tон	5		ns	
/CE1s to output in Low-Z	t ∟z1	5		ns	2
CE2s to output in Low-Z	t∟z2	5		ns	
/OE to output in Low-Z	to∟z	0		ns	
/LB, /UB to output in Low-Z	t _{BLZ}	5		ns	
/CE1s to output in High-Z	t _{HZ1}		20	ns	
CE2s to output in High-Z	tHZ2		20	ns	
/OE to output in High-Z	tонz		20	ns]
/LB, /UB to output in High-Z	tвнz		20	ns	

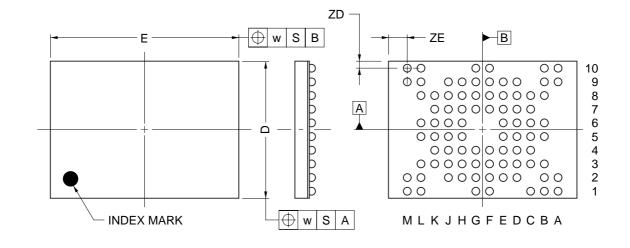
Notes 1. The output load is 1TTL + 30 pF.

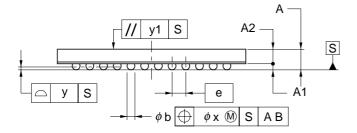
2. The output load is 1TTL + 5 pF.

* Write Cycle (SRAM)

Parameter	Symbol	MIN.	MAX.	Unit	Note
Write cycle time	twc	55		ns	
/CE1s to end of write	tcw1	50		ns	
CE2s to end of write	tcw2	50		ns	
/LB, /UB to end of write	tвw	50		ns	
Address valid to end of write	taw	50		ns	
Address setup time	tas	0		ns	
Write pulse width	twp	45		ns	
Write recovery time	twr	0		ns	
Data valid to end of write	tow	25		ns	
Data hold time	tон	0		ns	
/WE to output in High-Z	twнz		20	ns	1
Output active from end of write	tow	5		ns	

Note 1. The output load is 1TTL + 5 pF.


Low Vcc Data Retention Characteristics (T_A = -25 to +85°C) (SRAM)


Parameter	Symbol	Test Condition	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VCCDR1	/CE1s \geq Vccs - 0.2 V, CE2s \geq Vccs - 0.2 V	1.5		3.1	V
	VCCDR2	CE2s ≤ 0.2 V	1.5		3.1	
	VCCDR3	$/LB = /UB \ge Vccs - 0.2 V,$	1.5		3.1	
		/CE1s \leq 0.2 V, CE2s \geq Vccs $-$ 0.2 V				
Data retention supply current	ICCDR1	$V_{CC}s$ = 1.5 V, /CE1s \ge $V_{CC}s$ – 0.2 V,		0.5	6.0	μA
		$CE2s \geq V ccs - 0.2 \ V$				
	ICCDR2	$V_{CC}s$ = 1.5 V, CE2s \leq 0.2 V		0.5	6.0	
	ICCDR3	V_{CCS} = 1.5 V, /LB = /UB \ge V_{CCS} – 0.2 V,		0.5	6.0	
		/CE1s \leq 0.2 V, CE2s \geq Vccs – 0.2 V				
Chip deselection to data retention mode	t CDR		0			ns
Operation recovery time	tR		t_{RC} Note			ns

Note trc : Read cycle time

Package Drawing

85-PIN TAPE FBGA (11x8)

ITEM	MILLIMETERS
D	8.00±0.10
E	11.00±0.10
w	0.20
е	0.80
А	1.11±0.10
A1	0.27±0.05
A2	0.84
b	0.45±0.05
х	0.08
у	0.10
y1	0.20
ZD	0.40
ZE	1.10
	P85F9-80-CD5

Recommended Soldering Conditions

Please consult with our sales offices for soldering conditions of the MC-22222361-X.

Type of Surface Mount Device

MC-22222361F9-CD5 : 85-pin TAPE FBGA (11 \times 8)

Related Documents

Document Name	Document Number
PAGE MODE FLASH MEMORY, BURST MODE FLASH MEMORY Information	M15451E
SRAM AND MOBILE SPECIFIED RAM TIMING CHARTS FOR MCP Information	M15819E

Revision History

Edition/	Pa	ige	Type of	Location	Description
Date	This	Previous	revision		(Previous edition \rightarrow This edition)
	edition	edition			
3rd edition/	p.2	p.2	Modification	Mounted Flash Memory	μ PD29F064115-Y $\rightarrow \mu$ PD29F064115-X
Sep. 2002	p.3	p.3	Addition	Pin Configuration	Figures of top view and bottom view
	p.13	p.13	Modification	Command Sequence (Flash Memory)	Remark 2: SPA, SUA
	p.16	p.16	Modification	DC Characteristics (SRAM)	ISB1, ISB2, ISB3 (TYP.): TBD $ ightarrow$ 1.0 μ A
			Addition		Remark 2
	p.18	p.18	Addition	Read Cycle (Flash Memory)	Тоен
	pp.19, 20	pp.19, 20	Modification	Accelerated programming time (MAX.)	$TBD ightarrow 150\ \mu s$
	p.23	p.23	Modification	Package Drawing	Preliminary version
					ightarrow Standard version
4th edition/	pp.1, 2	pp.1, 2	Modification	General Features,	SRAM Access time (MAX.):
Nov. 2002				Ordering Information	70 ns $ ightarrow$ 55 ns
	p.21	p.21	Modification	Read Cycle (SRAM)	t _{RC} (MIN.): 70 ns $ ightarrow$ 55 ns
					taa, tco1, tco2, tba (MAX.): 70 ns $ ightarrow$ 55 ns
					toe (MAX.): 35 ns $ ightarrow$ 30 ns
					tнz1, tнz2, tонz, tвнz (MAX.): 25 ns $ ightarrow$ 20 ns
				Write Cycle (SRAM)	twc (MIN.): 70 ns $ ightarrow$ 55 ns
					tcw1, tcw2, tbw, tAw (MIN.): 55 ns $ ightarrow$ 50 ns
					twp (MIN.): 50 ns $ ightarrow$ 45 ns
					tow (MIN.): 30 ns $ ightarrow$ 25 ns
					twnz (MAX.): 25 ns $ ightarrow$ 20 ns

[MEMO]

NOTES FOR CMOS DEVICES

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

- The information in this document is current as of November, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
 property rights of third parties by or arising from the use of NEC Electronics products listed in this document
 or any other liability arising from the use of such NEC Electronics products. No license, express, implied or
 otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or
 others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact NEC Electronics sales representative in advance to determine NEC Electronics's willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

M8E 02.11