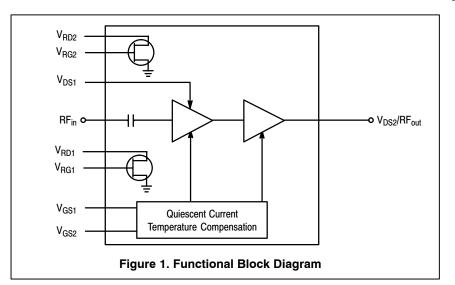
Freescale Semiconductor

Technical Data

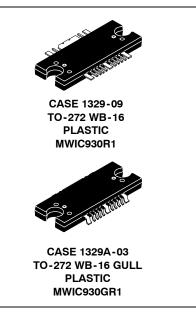
RF LDMOS Wideband Integrated Power Amplifiers

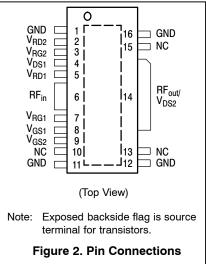

The MWIC930 wideband integrated circuit is designed for CDMA and GSM/GSM EDGE applications. It uses Freescale's newest High Voltage (26 to 28 Volts) LDMOS IC technology and integrates a multi-stage structure. Its wideband On-Chip integral matching circuitry makes it usable from 790 to 1000 MHz. The linearity performances cover all modulations for cellular applications: GSM, GSM EDGE, TDMA, N-CDMA and W-CDMA.

Final Application

Typical Performance @ P1dB: V_{DD} = 26 Volts, I_{DQ1} = 90 mA, I_{DQ2} = 240 mA, P_{out} = 30 Watts P1dB, Full Frequency Band (921-960 MHz) Power Gain — 30 dB
 Power Added Efficiency — 45%

Driver Application


- Typical Single-Carrier N-CDMA Performance: $V_{DD} = 27$ Volts, $I_{DQ1} = 90$ mA, $I_{DQ2} = 240$ mA, $P_{out} = 5$ Watts Avg., Full Frequency Band (865-894 MHz), IS -95 (Pilot, Sync, Paging, Traffic Codes 8 Through 13), Channel Bandwidth = 1.2288 MHz. Peak/Avg. = 9.8 dB @ 0.01% Probability on CCDF. Power Gain — 31 dB Power Added Efficiency — 21%
 - ACPR @ 750 kHz Offset -52 dBc @ 30 kHz Bandwidth
- Capable of Handling 5:1 VSWR, @ 26 Vdc, 921 MHz, 30 Watts CW Output Power
- Characterized with Series Equivalent Large Signal Impedance Parameters
- On-Chip Matching (50 Ohm Input, DC Blocked, >4 Ohm Output)
- Integrated Quiescent Current Temperature Compensation with Enable/Disable Function
- On Chip Current Mirror g_m Reference FET for Self Biasing Application ⁽¹⁾
- Integrated ESD Protection
- Also Available in Gull Wing for Surface Mount
- In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.



MWIC930 Rev. 2, 12/2004

746-960 MHz, 30 W, 26-28 V SINGLE N-CDMA, GSM/GSM EDGE RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIERS

 Refer to AN1987/D, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to <u>http://www.freescale.com/rf</u>. Select Documentation/Application Notes - AN1987.

© Freescale Semiconductor, Inc., 2004. All rights reserved.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate-Source Voltage	V _{GS}	-0.5, +15	Vdc
Storage Temperature Range	T _{stg}	-65 to +175	°C
Operating Junction Temperature	TJ	175	°C

Table 2. Thermal Characteristics

	Characteristic	Symbol	Value ⁽¹⁾	Unit
Thermal Resistance, Junction to C	Case	$R_{ extsf{ heta}JC}$		°C/W
GSM Application	Stage 1, 26 Vdc, I _{DQ} = 90 mA		5.9	
$(P_{out} = 30 \text{ W CW})$	Stage 2, 26 Vdc, I _{DQ} = 240 mA		1.4	
GSM EDGE Application	Stage 1, 27 Vdc, I _{DQ} = 90 mA		6.5	
$(P_{out} = 15 \text{ W CW})$	Stage 2, 27 Vdc, I _{DQ} = 240 mA		1.7	
CDMA Application	Stage 1, 27 Vdc, I _{DQ} = 90 mA		6.5	
(P _{out} = 5 W CW)	Stage 2, 27 Vdc, I _{DQ} = 240 mA		1.8	

Table 3. ESD Protection Characteristics

Test Conditions	Class
Human Body Model	1 (Minimum)
Machine Model	M3 (Minimum)
Charge Device Model	C2 (Minimum)

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD 22-A113D, IPC/JEDEC J-STD-020C	3	260	°C
Table 5. Electrical Characteristics ($T_c = 25^{\circ}C$, unless otherwise not	ted)		

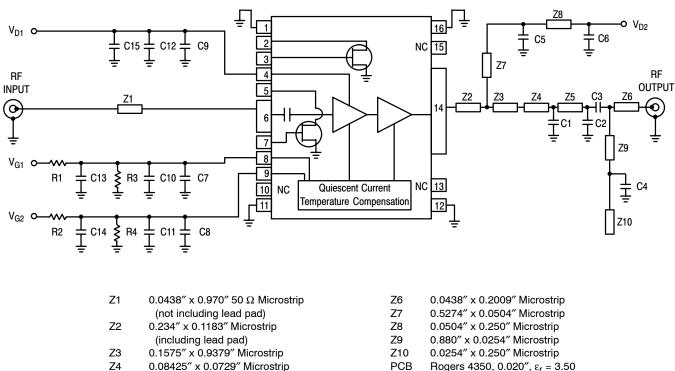
		Characteristic	Symbol	Min	Тур	Max	Unit
--	--	----------------	--------	-----	-----	-----	------

Functional Tests (In Freescale Test Fixture, 50 ohm system) V_{DD} = 27 Vdc, I_{DQ1} = 90 mA, I_{DQ2} = 240 mA, P_{out} = 5 W Avg. N-CDMA, f = 880 MHz, Single-Carrier N-CDMA, 1.2288 MHz Channel Bandwidth Carrier. ACPR measured in 30 kHz Bandwidth @ ±750 MHz Offset. Peak/Avg. = 9.8 dB @ 0.01% Probability on CCDF

Power Gain	G _{ps}	28	31	_	dB
Power Added Efficiency	PAE	18	21	_	%
Input Return Loss (f = 880 MHz)	IRL	_	-12	-9	dB
Adjacent Channel Power Ratio	ACPR	_	-52	-48	dBc

 $\textbf{Typical Performances} (In \ Freescale \ Test \ Fixture) \ V_{DD} = 26 \ Vdc, \ I_{DQ1} = 90 \ mA, \ I_{DQ2} = 240 \ mA, \ 840 \ MHz < Frequency < 920 \ MHz$

Quiescent Current Accuracy over Temperature ⁽²⁾ Stage 1 with 33.2 kΩ Gate Feed Resistors (-30 to 115°C) Stage 2 with 47.5 kΩ Gate Feed Resistors (-30 to 115°C)	∆l _{1QT} ∆l _{2QT}	_	±2.5 ±2.5	_	%
Gain Flatness in 80 MHz Bandwidth @ P _{out} = 5 W CW	G _F		0.3		dB
Deviation from Linear Phase in 80 MHz Bandwidth @ Pout = 5 W CW	Φ		0.6		0
Delay @ P _{out} = 5 W CW Including Output Matching	Delay	—	3	—	ns
Part-to-Part Phase Variation @ Pout = 5 W CW	$\Delta \Phi$	—	±15	—	0


 Refer to AN1955/D, Thermal Measurement Methodology of RF Power Amplifiers. Go to <u>http://www.freescale.com/rf</u>. Select Documentation/Application Notes - AN1955.

2. Refer to AN1977/D, *Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family.* Go to <u>http://www.freescale.com/rf</u>. Select Documentation/Application Notes - AN1977.

(continued)

Characteristic	Symbol	Min	Тур	Max	Unit
Typical GSM/GSM EDGE Performances (In Freescale GSM/GSM EDGE T	Test Fixture, 5	50 ohm syster	m) V _{DD} = 27 \	/dc, I _{DQ1} = 90) mA, I _{DQ2} =

240 mA, 921 MHz <frequency<960 mhz<="" th=""><th></th><th></th><th></th><th></th><th></th></frequency<960>					
Output Power, 1dB Compression Point	P1dB	—	30	—	W
Power Gain @ P _{out} = 30 W CW	G _{ps}	—	30	—	dB
Power Added Efficiency @ P _{out} = 30 W CW	PAE	—	45	—	%
Input Return Loss @ P _{out} = 30 W CW	IRL	—	-12	—	dB
Intermodulation Distortion (15 W, 2-Tone, 100 kHz Tone Spacing)	IMD	—	-30	—	dBc
Intermodulation Distortion (1 W, 2-Tone, 100 kHz Tone Spacing)	IMD backoff	—	-45	—	dBc
Gain Flatness in a 40 MHz Bandwidth @ P _{out} = 30 W CW	G _F	—	0.3	—	dB
Deviation from Linear Phase in a 40 MHz Bandwidth @ $\mathrm{P}_{\mathrm{out}}$ = 30 W CW	Φ	—	0.6	—	0

'n
ĺ

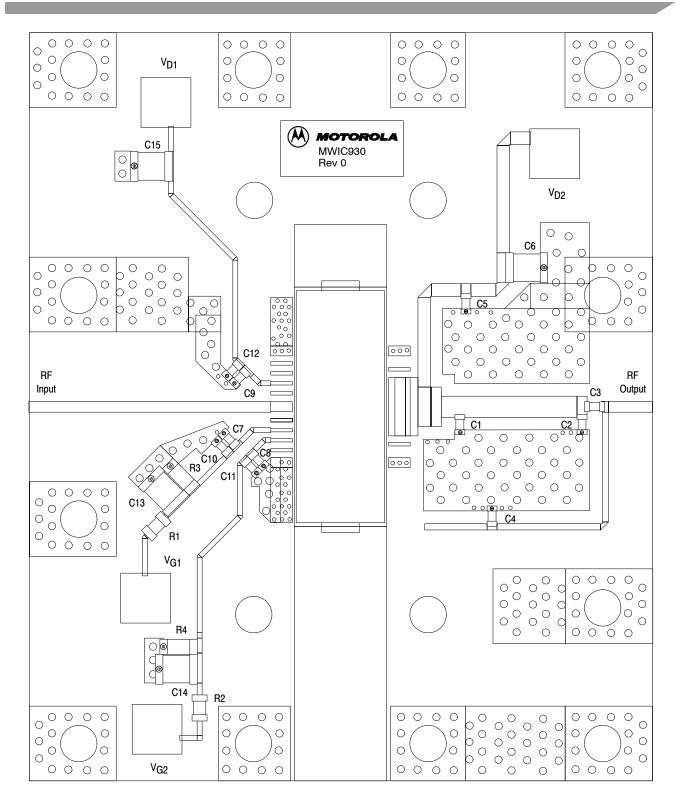
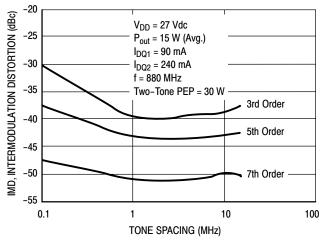

Z5 0.08425" x 0.5111" Microstrip PCB Rogers 4350, 0.020", $\epsilon_r = 3.50$

Figure 3. MWIC930R1(GR1) Test Fixture Schematic

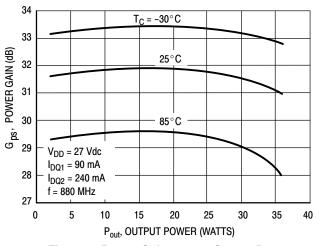
Table 6, MWIC930B1/GB1) Test Fixture Component Designations and Values
	rest intare component besignations and values

Part	Description	Part Number	Manufacturer
*C1	15 pF High Q Capacitor	ATC600S150JW	ATC
*C2	6.8 pF High Q Capacitor - GSM Fixture 8.2 pF High Q Capacitor - CDMA Fixture	ATC600S6R8CW ATC600S8R2CW	ATC
*C3	5.6 pF High Q Capacitor	ATC600S5R6CW	ATC
*C4, C5, C7, C8, C9	47 pF High Q Capacitors	ATC600S470JW	ATC
C6, C13, C14, C15	1 μF Chip Capacitors	GRM42-2X7R105K050AL	Murata
C10, C11, C12	10 nF Chip Capacitors	C0603C103J5R	Kemet
R1, R2	1 kΩ, 1/8 W Chip Resistors	RM73B2AT102J	KOA Speer
R3, R4	1 MΩ, 1/4 W Chip Resistors	RM73B2BT105J	KOA Speer

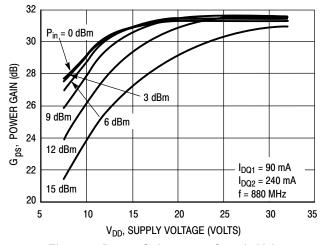
* For output matching and bypass purposes, it is strongly recommended to use these exact capacitors.

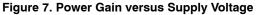


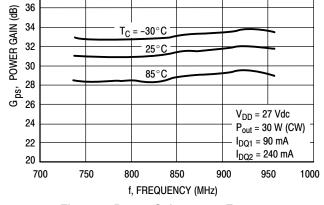
Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the Freescale Semiconductor signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have no impact on form, fit or function of the current product.

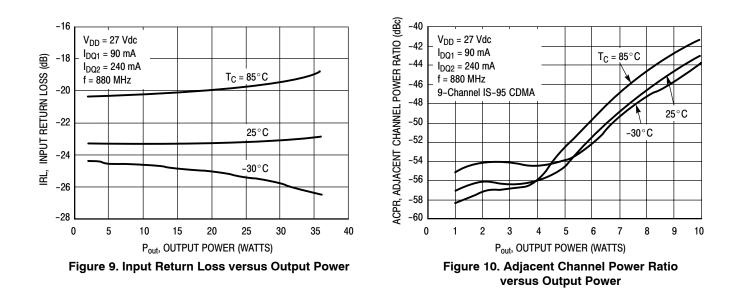

Figure 4. MWIC930R1(GR1) Test Circuit Component Layout

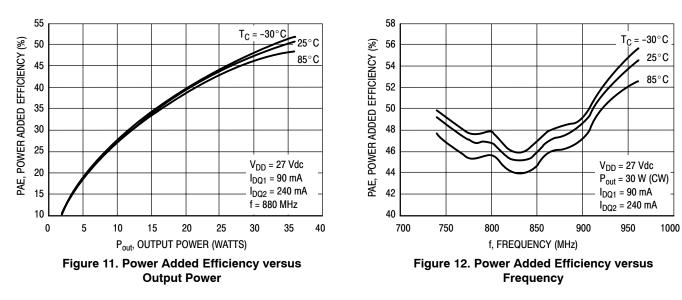
TYPICAL CHARACTERISTICS

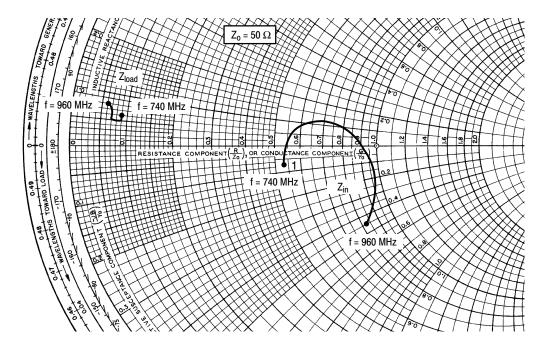

40 38



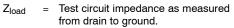








TYPICAL CHARACTERISTICS



 V_{DD} = 27 Vdc, I_{DQ1} = 90 mA, I_{DQ2} = 240 mA, P_{out} = 5 W Avg.

f MHz	Z _{in} Ω	Z_{load}
740	26.61 - j3.68	4.28 + j2.99
760	26.88 - j0.53	4.37 + j2.91
780	28.22 + j2.21	4.39 + j2.79
800	30.57 + j4.31	4.34 + j2.64
820	33.79 + j5.53	4.21 + j2.54
840	37.83 + j5.30	4.06 + j2.52
860	41.92 + j3.42	3.90 + j2.58
880	45.58 - j0.40	3.73 + j2.70
900	47.77 - j5.84	3.59 + j2.93
920	47.83 - j12.15	3.43 + j3.17
940	45.55 - j18.05	3.28 + j3.44
960	41.58 - j22.64	3.13 + j3.75

 Z_{in} = Device input impedance as measured from RF input to ground.

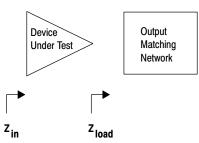
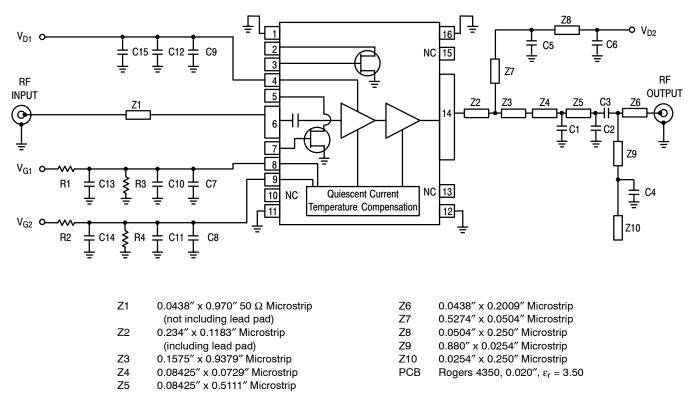



Figure 13. Series Equivalent Input and Load Impedance

DRIVER/PRE-DRIVER PERFORMANCE

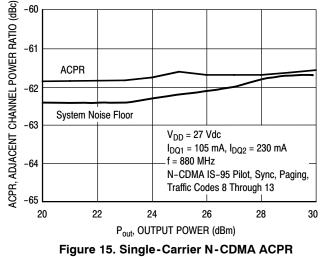
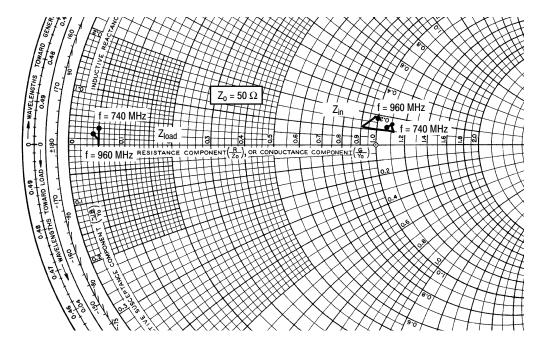

Figure 14. MWIC930R1(GR1) Test Fixture Schematic — Alternate Characterization for Driver/Pre-Driver Performance

Table 7. MWIC930R1(GR1) Test Fixture Component Designations and Values — Alternate Characterization for Driver/Pre-Driver Performance


Part	Description	Part Number	Manufacturer
*C1	12 pF High Q Capacitor	ATC600S120JW	ATC
*C2	8.2 pF High Q Capacitor - CDMA Fixture	ATC600S8R2CW	ATC
*C3	5.6 pF High Q Capacitor	ATC600S5R6CW	ATC
*C4, C5, C7, C8, C9	47 pF High Q Capacitors	ATC600S470JW	ATC
C6, C13, C14, C15	1 μF Chip Capacitors	GRM42-2X7R105K050AL	Murata
C10, C11, C12	10 nF Chip Capacitors	C0603C103J5R	Kemet
R1, R2	1 kΩ, 1/8 W Chip Resistors	RM73B2AT102J	KOA Speer
R3, R4	1 MΩ, 1/4 W Chip Resistors	RM73B2BT105J	KOA Speer

* For output matching and bypass purposes, it is strongly recommended to use these exact capacitors.

TYPICAL CHARACTERISTICS DRIVER/PRE-DRIVER PERFORMANCE

versus Output Power

 V_{DD} = 27 Vdc, I_{DQ1} = 105 mA, I_{DQ2} = 230 mA, P_{out} = 5 W Avg.

f MHz	Z _{in} Ω	Z_{load}
740	53.944 + j6.745	2.535 + j1.662
760	54.452 + j7.112	2.602 + j1.080
780	55.006 + j7.440	2.688 + j0.548
800	55.549 + j7.656	2.659 + j0.064
820	55.604 + j7.855	2.615 + j0.329
840	55.190 + j7.835	2.568 + j0.450
860	55.110 + j7.410	2.494 + j0.620
880	55.752 + j4.763	2.444 + j0.650
900	45.606 + j5.832	2.440 + j0.689
920	49.206 + j9.284	2.134 + j0.930
940	49.939 + j9.030	2.155 + j0.835
960	50.088 + j8.752	2.095 + j1.235

 Z_{in} = Device input impedance as measured from RF input to ground.

Z_{load} = Test circuit impedance as measured from drain to ground.

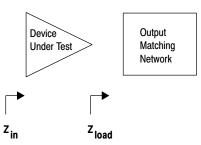
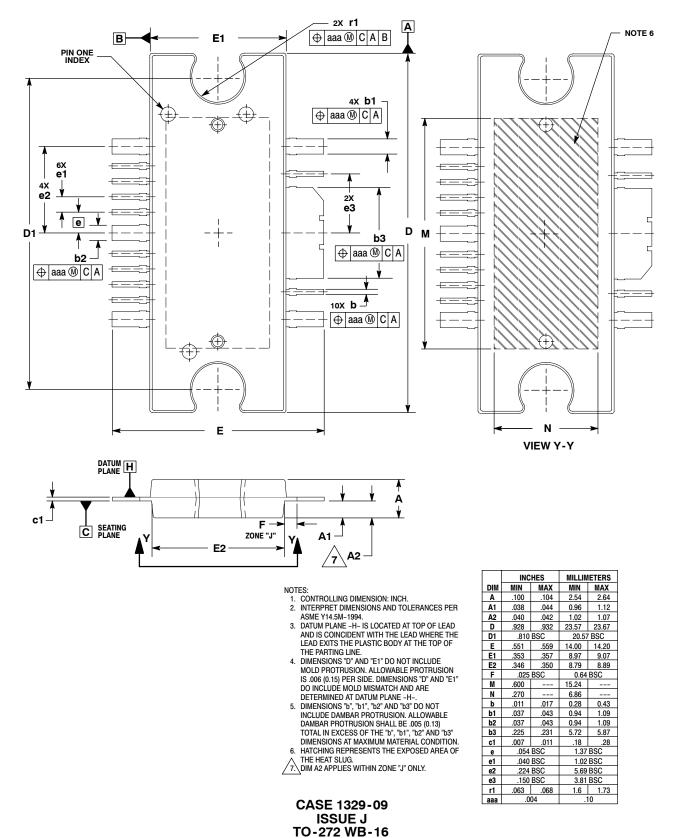
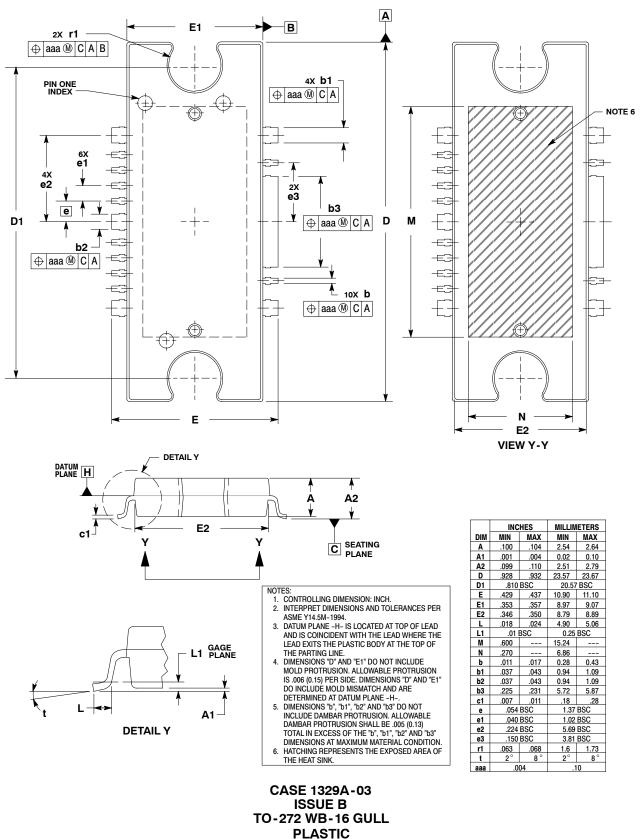



Figure 16. Series Equivalent Input and Load Impedance — Alternate Characterization for Driver/Pre-Driver Performance


NOTES

NOTES

PACKAGE DIMENSIONS

PLASTIC MWIC930R1

MWIC930GR1

RF Device Data

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of. directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2004. All rights reserved.

