
Quint 2-Input AND/NAND Gate

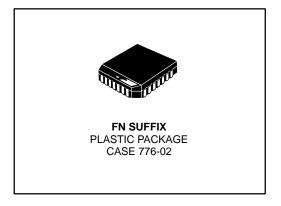
The MC10E/100E104 is a quint 2-input AND/NAND gate. The function output F is the OR of all five AND gate outputs, while F is the NOR. The Q outputs need not be terminated if only the F outputs are to be used.

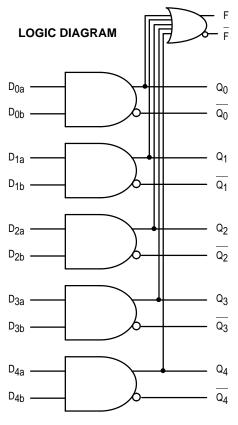
- 600ps Max. Propagation Delay
- OR/NOR Function Outputs
- Extended 100E VEE Range of 4.2V to 5.46V
- 75kΩ Input Pulldown Resistors

Pinout: 28-Lead PLCC (Top View)

 * All VCC and VCCO pins are tied together on the die.

PIN NAMES


Pin	Function							
$D_{0a} - D_{4b}$ $Q_0 - Q_4$	Data Inputs AND Outputs							
$\frac{Q_0}{Q_0} - \frac{Q_4}{Q_4}$	NAND Outputs							
<u>F</u>	OR Output							
F	NOR Output							


FUNCTION OUTPUTS

$$F = (D_{0a} \bullet D_{0b}) + (D_{1a} \bullet D_{1b}) + (D_{2a} \bullet D_{2b}) + (D_{3a} \bullet D_{3b}) + (D_{4a} \bullet D_{4b})$$

MC10E104 MC100E104

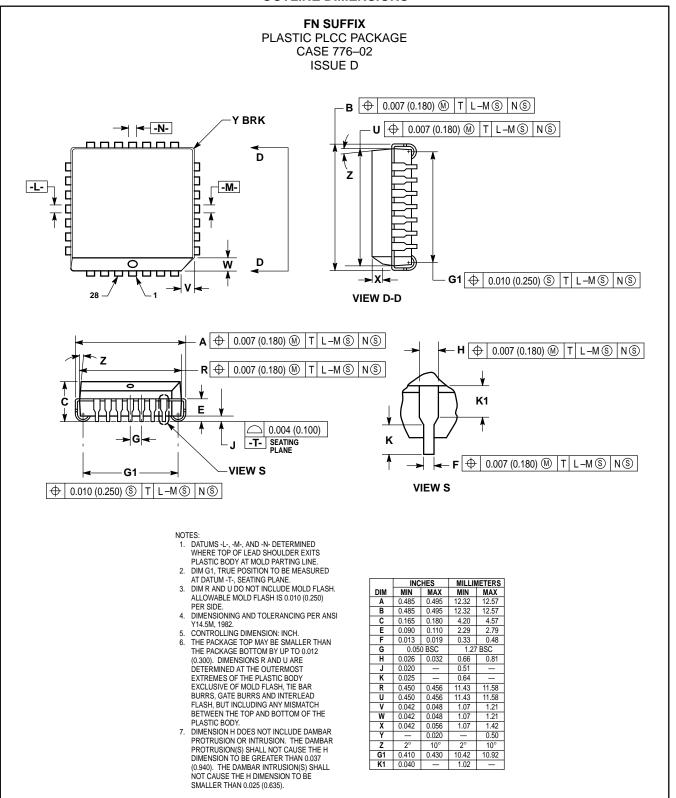
QUINT 2-INPUT AND/NAND GATE

12/93

REV 2

DC CHARACTERISTICS ($V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$; $V_{CC} = V_{CCO} = GND$)

		0°C		25°C			85°C					
Symbol	Characteristic	min	typ	max	min	typ	max	min	typ	max	Unit	Condition
lіН	Input HIGH Current			200			200			200	μΑ	
IEE	Power Supply Current										mA	
	10E		38	46		38	46		38	46		
	100E		38	46		38	46		44	53		


AC CHARACTERISTICS ($V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$; $V_{CC} = V_{CCO} = GND$)

		0°C		25°C			85°C					
Symbol	Characteristic	min	typ	max	min	typ	max	min	typ	max	Unit	Condition
tPLH	Propagation Delay to Output										ps	
tPHL	D to Q	225	385	600	225	385	600	225	385	600		
	D to F	500	725	1000	500	725	1000	500	725	1000		
tSKEW	Within-Device Skew										ps	
D to Q			75			75			75			1
t _r	Rise/Fall Times										ps	
t _f	20 - 80%	1										
	Q	275	425	700	275	425	700	275	425	700		
	F	300	475	700	300	475	700	300	475	700		

^{1.} Within-device skew is defined as identical transitions on similar paths through a device.

MOTOROLA 2–2

OUTLINE DIMENSIONS

MC10E104 MC100E104

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights or others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 INTERNET: http://Design_NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

