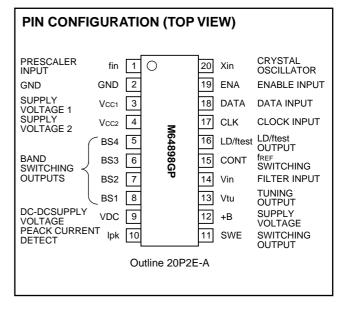
PLL FREQUENCY SYNTHESIZER WITH DC-DC CONVERTER FOR PC

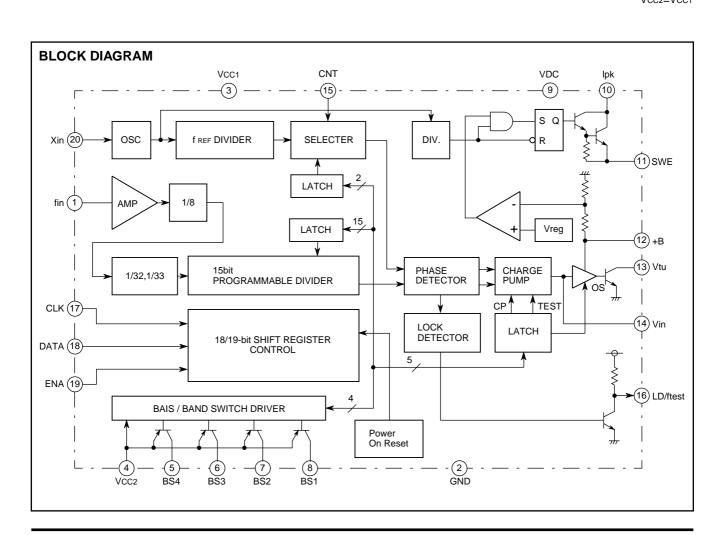
DESCRIPTION

The M64898GP is a semiconductor integrated circuit consisting of PLL frequency synthesizer for TV/VCR /PC.


It contains the prescaler with operating up to 1.3 GHz, 4 band drivers and DC-DC converter for Tuning voltage.

FEATURES

- Built-in DC-DC converter for Tuning voltage
- 4 integrated PNP band drivers (Io=30mA, Vsat=0.2V typ@Vcc1 to 10V)
- Built-in prescaler with input amplifier (max=1.3GHz)
- PLL lock/unlock status display out put (Built-in pull up resistor)
- X'tal 4MHz is used to realize 3 type of tuning steps (Divider ratio 1/512, 1/640, 1/1024)
- Software compatible with M64892/M64893
- Automatick switching of tuning step according to the number of data bits (62.5kHz at 18bits, 32.25kHz at 19bits)
- Built-in Power on reset system
- Small Package(SSOP)


APPLICATION

PC, TV, VCR tuners

RECOMMENDED OPERATING CONDITION

Supply voltage range	Vcc1=4.5 to 5.5V
	Vcc2=Vcc1 to 10V
Rated supply voltage	Vcc1=5V
	Vcc2=Vcc1

1

PLL FREQUENCY SYNTHESIZER WITH DC-DC CONVERTER FOR PC

DESCRIPTION OF PIN

Pin No.	Symbol	Pin name	Function		
1	fin	Prescaler input	Input for the VCO frequency.		
2	GND	GND	Ground to 0V.		
3	Vcc1	Power supply voltage 1	Power supply voltage terminal. 5.0V±0.5V		
4	VCC2	Power supply voltage 2	Power supply for band switching, Vcc1 to 10V		
5	BS4		DND open collector method is used		
6	BS3	Band switching	PNP open collector method is used. When the band switching data is "H", the output is ON.		
7	BS2	outputs	When it is "L", the output is OFF.		
8	BS1		When it is E, the output is OFF.		
9	VDC	DC-DC power supply voltage	DC-DC power supply voltage terminal. 5.0V±0.5V		
10	Ink	Peack current	When potential difference with VDC terminal becomes more than 0.33V by current		
10	lpk	detect	limiting detector of DC-DC converter, the listing rises with off.		
11	SWE	Switching output	DC-DC converter oscillator output.		
12	+B	Power supply	Power supply voltage for turning voltage.		
12	*5	voltage	rower supply voltage for turning voltage.		
13	Vtu	Tuning output	This supplies the tuning voltage.		
			This is the output terminal for the LPF input and charge pump output. When the phase		
		Filter input (Charge pump output)	of the programmable divider output (f 1/N) is ahead compared to the reference		
14	Vin		frequency (fREF), the "source" current state becomes active.		
			If it is behind, the "sink" current becomes active.		
			If the phases are the same, the high impedance state becomes active.		
45			Lock detector output. When loop of phase locked loop locked it, it rises with "H" level in "L" level or unlock.		
15	LD/ftest	Lock detect /Test port	In control byte data input, the programmabule freq. divider output and reference freq.		
			output is selected by the test mode.		
			Set up reference frequency divider ratio.		
16	CONT	free Switchi	In "L" level, set it up in 1/640(19Bit) in setting "opening" in 1/1024(19Bit) or 1/512		
			(18Bit).		
17	CLOCK	Clock input	Data is read into the shift register when the clock signal falls.		
18	DATA	Data input	Input for band SW and programmable freq. divider set up.		
			This is normally at a "L". When this is at "H", data and clock signals are received. Data		
19	ENABLE	Enable input	is read into the latch when the enable signal after the 18th signal of the clock signal		
			falls or when the 19th pulse of the clock signal falls.		
20	X in	This is connected to the crystal oscillator.	4.0MHz crystal oscillator is connected.		

ABSOLUTE MAXIMUM RATINGS (Ta=-20°C to +75°C, unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc1	Supply voltage 1	Pin3	6.0	V
Vcc2	Supply voltage 2	Pin4	10.8	V
Vı	Input voltage	Not to exceed Vcc1	6.0	V
Vo	Output voltage	free output	6.0	V
\/	Voltage applied when		10.8	V
VBSOFF	the band output is OFF		10.6	\ \ \
IBSON	Band output current	per 1 band output circuit	40.0	mA
4	ON the time when the	40mA per 1 band output circuit	40	
tbson	band output is ON	3circuits are pn at same time,	10	sec
Pd	Power dissipation	Ta=75°C	255	mW
Topr	Operating temperature		-20 to +75	°C
Tstg	Storage temperature		-40 to +125	°C

PLL FREQUENCY SYNTHESIZER WITH DC-DC CONVERTER FOR PC

RECOMMENDED OPERATING CONDITIONS (Ta=-20°C to +75°C, unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc1	Supply voltage 1	Pin3	4.5 to 5.5	V
Vcc2	Supply voltage 2	Pin4	Vcc1 to 10.0	V
fopr1	Operating frequency (1)	Crystal oscillation circuit	4.0	V
fopr2	Operating frequency (2)		80 to 1300	MHz
		Normally 1 circuit is on. 2 circuits on at the		
IBDL	Band output current 5 to 8	same time is max. It is prohibited to have	0 to 30	mA
		3 or more circuits turned on at the same time.		

ELECTRICAL CHARACTERISTICS (Ta=-20°C to +75°C, unless otherwise noted, Vcc1=5.0V, Vcc2=9.0V)

Symbol		Parameter	Test pin	Test conditions	Limits			Unit
Symbol		Parameter	lest pin	rest conditions	Min.	Тур.	Max.	Unit
VIH		"H" input voltage	17 to 19		3.0	_	Vcc1+0.3	V
VIL1		"L" input voltage	15		-	_	0.4	V
VIL2]	"L" input voltage	17 to 19		-	_	1.5	V
Іін	Input terminals	"H" input current	17 to 19	Vcc1=5.5V, Vi=4.0V	-	_	10	μΑ
IIL1	Cililias	"L" input current	15	Vcc1=5.5V, Vi=0V	-	-50	-80	μΑ
lıL2		"L" input current	17, 19	Vcc1=5.5V, Vi=0.5V	-	-6	-10	μΑ
IIL3		"L" input current	18	Vcc1=5.5V, Vi=0.5V	-	-18	-30	μΑ
Voн	Lock	"H" output voltage	16	Vcc1=5.5V	5.0	_	-	V
Vol	output	"L" output voltage	16	Vcc1=5.5V	-	0.3	0.5	V
VBS	David	Output voltage	5 to 8	Vcc2=9V, Io=-30mA	11.6	11.8	-	V
lolk1	Band SW	Leak current	5 to 8	Vcc2=9V, Band SW is OFF Vo=0V	-	_	-10	μΑ
VtoH	Tuning	Output voltage "H"	13	+B=31V	30.5	_	-	V
VtoL	output	Output voltage "L"	13	+B=31V	_	0.2	0.4	V
Ісро	Charge	"H" output current	14	Vcc1=5.0V, Vo=2.5V	_	±270	±370	μΑ
IcpLK	pump	Leak current	14	Vcc1=5.0V, Vo=2.5V	_	_	±50	nA
Icc1	Supply cur	rent 1	3	Vcc1=5.5V	_	20	30	mA
ICC2A		4 circuits OFF	4	Vcc2=9V	_	_	0.3	mA
Ісс2в	Supply current 2	1 circuits ON, Output open	4	Vcc2=9V	-	4.0	6.0	mA
Icc2c		Output current 30mA	4	Vcc2=9V, Io=-30mA	-	34.0	36.0	mA
DC-DC Co	nverter					'		
ICCdc	Supply current (action)		9	Vcc1=5.5V	_	1.3	3.0	mA
Vdo	Output voltage		12	Vcc1=5.5V	28	31	35	V
fosc	OSC frequ	ency	11	Vcc1=5.5V	-	571	-	kHz
Vipk	Current lim	it detect voltage	10	Vcc1=5.5V	-	330	-	mV

The typical values are at Vcc1=5.0V, Vcc2=9.0V, Ta=+25°C.

PLL FREQUENCY SYNTHESIZER WITH DC-DC CONVERTER FOR PC

SWITCHING CHARACTERISTICS (Ta=-20°C to +75°C, unless otherwise noted, Vcc1=5.0V, Vcc2=9.0V)

Symbol	Parameter	Test pin Test conditions Limits		Test conditions			Unit	
Syllibol	Falametei	rest pin	rest conditions		Min.	Тур.	Max.	Offic
fopr	Prescaler operating frequency	Proceedor operating frequency	Vcc1=4.5 to 5.5V		80	_	1300	MHz
ТОРІ	Tresource operating frequency		Vin=Vinmin to V	inmax			1000	171112
			Vcc1=4.5	80 to 100MHz	-24	_	4	
Vin	Operating input voltage	1		100 to 950MHz	-27	_	4	dBm
			to 5.5V	950 to 1300MHz	-15	-	4	
tpwc	Clock pulse width	17	Vcc1=4.5 to 5.5V		1	-	_	μs
tsu (D)	Data setup time	18	Vcc1=4.5 to 5.5V		2	_	_	μs
tH (D)	Data hold time	18	Vcc1=4.5 to 5.5V		1	-	_	μs
tsu (E)	Enable setup time	18	Vcc1=4.5 to 5.5V		3	_	_	μs
tH (E)	Enable hold time	18	Vcc1=4.5 to 5.5V		3	-	_	μs
tint	Enable data interval time	19, 18	Vcc1=4.5 to 5.5V		1	-	_	μs
tr	Rise time	17, 18, 19	Vcc1=4.5 to 5.5V		_	-	1	μs
tf	Fall time	17, 18, 19	Vcc1=4.5 to 5.5V		_	_	1	μs
tBT	Next enable prohibit time	19	Vcc1=4.5 to 5.5V		5	_	_	μs
tBCL	Next clock prohibit time	17, 19	Vcc1=4.5 to 5.5V		5	_	_	μs

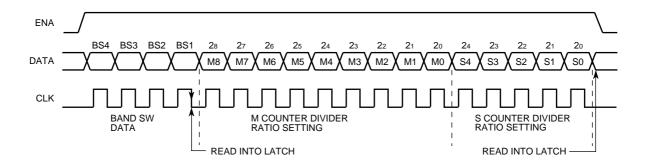
PLL FREQUENCY SYNTHESIZER WITH DC-DC CONVERTER FOR PC

METHOD OF SETTING DATA

The programmable divider ratio uses 15bits. Setting up the band switching output uses 4bits.

The test mode data uses 8bits. The total bits used is 27bits. Data is read in when the enable signal is "H" and the clock signal falls.

The band switching data is read in at the 4th pulse of the clock signal. The programmable counter data is read into the latch by the fall of the enable signal after the 18th pulse of the clock signal or the fall of the 19th pulse of the clock signal. When the enable signal goes to "L" before the 18th pulse of the enable signal, only the band SW data is updated and other data is ignored.


Automatic judgment facility comes being it, and, as for Shift resister, CONT terminal rises by 18/19 bits at the time of "L". At the time of data of 18 bits, M9 bit of Programable divider is done reset of, and it is established in reference frequency divider ratio 1/512.

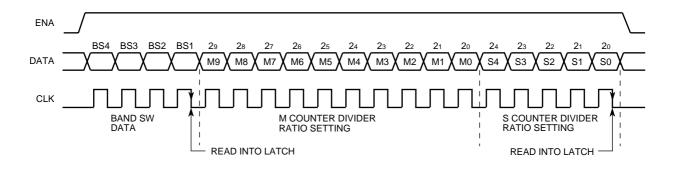
At the time of 19 bits, reference frequency divider ratio is established in 1/1024.

When reference frequency divider ratio was established in 1/640 by 19 bits at the time of "opening" CONT terminal, and it became "L" before 19 pulse enable signal, only band SW data are renewed, and other data are ignored.

(1) Transfer of the 18th bit data (CONT terminal is "L")

Data is latched by the fall of the enable signal after the 18th clock signal. At this time, the divider of the 1/512 of the reference frequency is used.

(2) Transfer of the 19th bit data (CONT terminal is "L" or "open")


The data is latched at the 19th pulse of the clock signal.

Reference frequency divider ratio is established in 1/1024 in case of "L" CONT terminal at this time.

Reference frequency divider ratio is established in 1/640 in case of "opening" CONT terminal.

Invalid the clock signal after 19th pulse.

Notice) When CONT terminal is "L", to change reference frequency, set up as ENA in "L" after 19th pulse of clock signal by all means.

PLL FREQUENCY SYNTHESIZER WITH DC-DC CONVERTER FOR PC

HOW TO SET THE DIVIDING RATIO OF THE PROGRAMMABLE DIVIDER

(1) Transfer of the 18th bit data (CONT terminal is "L")

Total divider N is given by the following formulas in addition to the prescaler used in the previous stage.

N=8 • (32M+S) M : 9 bit main counter divider

S:5 bit swallow counter divider

The M and S counters are binary the possible ranges of divider are as follows.

32≤M≤511

0≤S≤31

Therefore, the range of divider N is 8,192 to 131,064.

The tuning frequency fvco is given in the following equations.

 $fvco=fref \times N$

=7.8125×8×(32M+S)

 $=62.5\times(32M+S)$ [kHz]

Therefore, the tuning frequency range is 64MHz to 1023.9375MHz.

(2) Transfer of the 19th bit data (CONT terminal is "L")

Total divider N is given by the following formulas in addition to the prescaler used in the previous stage.

N=8 • (32M+S) M: 10 bit main counter divider

S:5 bit swallow counter divider

The M and S counters are binary the possible ranges of divider are as follows.

32≤M≤1023

0≤S≤31

Therefore, the range of divider N is 8,192 to 262,136.

The tuning frequency fvco is given in the following equations.

 $fvco=fref \times N$

=3.90625×8×(32M+S)

=31.25×(32M+S) [kHz]

Therefore, the tuning frequency range is 32MHz to 1023.96875 MHz.

(3) Transfer of the 19th bit data (CONT terminal is "open")

Total divider N is given by the following formulas in addition to the prescaler used in the previous stage.

N=8 • (32M+S) M : 10 bit main counter divider

S: 5 bit swallow counter divider

The M and S counters are binary the possible ranges of divider are as follows.

32≤M≤1023

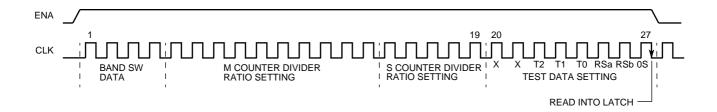
0≤S≤31

Therefore, the range of divider N is 8,192 to 262,136.

The tuning frequency fvco is given in the following equations.

 $fvco=fref \times N$

=6.25×8×(32M+S)


=50.0×(32M+S) [kHz]

But, the tuning frequency range is 51.2MHz to 1300MHz from the maxmum prescaler operating frequency.

TEST MODE DATA SET UP METHOD

The data for the test mode uses 20 to 27bits. Data is latched when the 27th clock signal falls.

(1) When transferring 3-wire 27 bit data

(2) Test Mode Bit Set Up

X :Random, 0 or 1.normal "0"

T0, T1,&T2 :Set up test modes

RSa, Rsa :Set the frequency divider of the reference

frequency

OS :Set up the tuning amplifier

PLL FREQUENCY SYNTHESIZER WITH DC-DC CONVERTER FOR PC

Setting up for the test mode

T2	T1	T0	Charge pump	12 pin output	Mode
0	0	Χ	Normal operation	LD	Normal operation
0	1	Χ	High impedance	LD	Test mode
1	1	0	Sink	LD	Test mode
1	1	1	Source	LD	Test mode
1	0	0	High impedance	fref	Test mode
1	0	1	High impedance	f1/N	Test mode

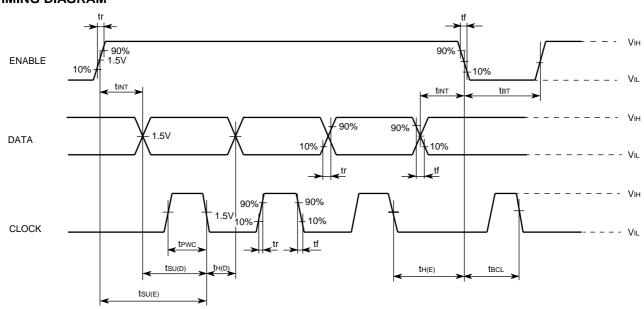
Set up for the reference Frequency divider ratio

RSa	RSb	Divider ratio
1	1	1/512
0	1	1/1024
Х	0	1/640

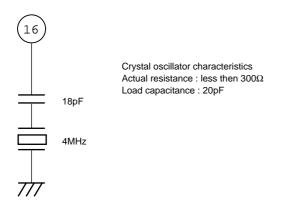
Set up the tuning amplifier

OS	Tuning voltage output	Mode
0	ON	Normal
1	OFF	Test

Power on reset operation (Initial state the power is turned ON)

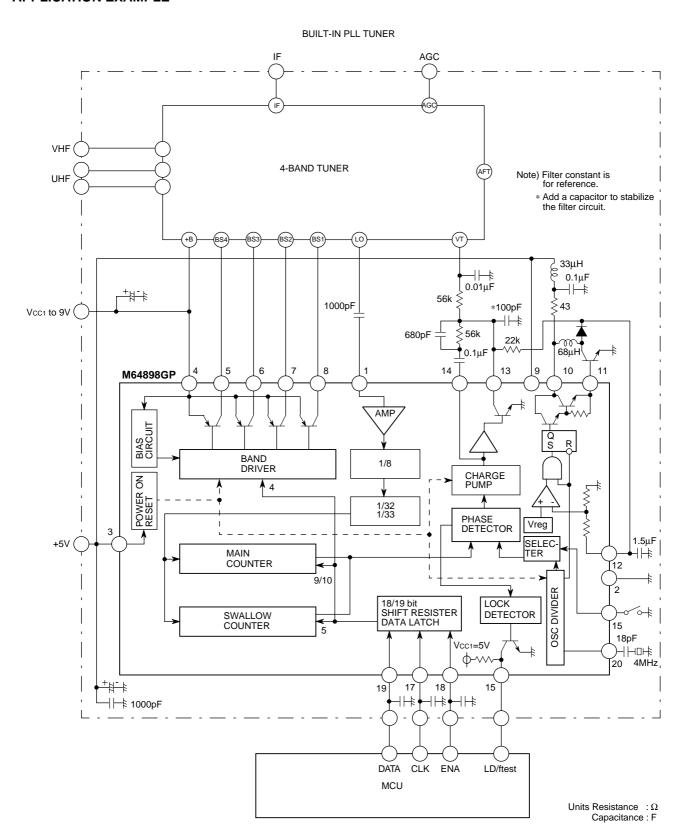

BS4 to BS1 : OFF

Charge pump : High impedance


 $\begin{array}{lll} \text{Tuning amplifier} & : \text{OFF} \\ \text{Charge pump current} & : 270 \mu \text{A} * \\ \text{Frequency divider ratio} & : 1/1024 \\ \text{Lock detect} & : \text{H} \\ \end{array}$

 \ast Charge pump current is replaced by $70\mu A$ when locks it by automatic change facility.

TIMING DIAGRAM



CRYSTAL OSCILLATOR CONNECTION DIAGRAM

PLL FREQUENCY SYNTHESIZER WITH DC-DC CONVERTER FOR PC

APPLICATION EXAMPLE

