Laser-diode driver / controller

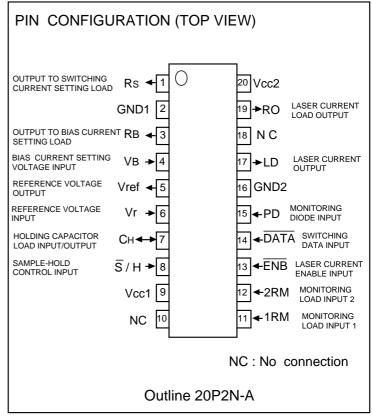
DESCRIPTION

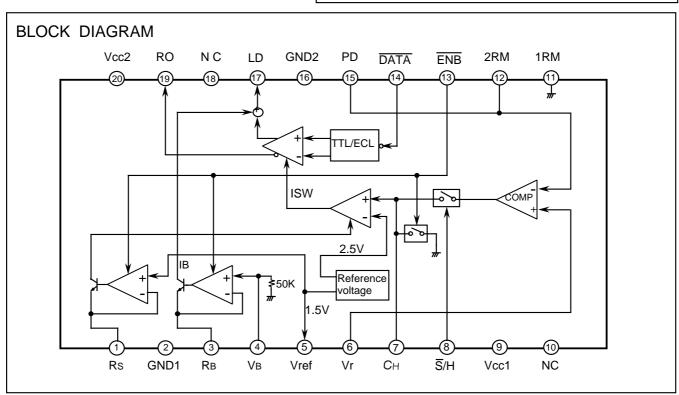
The M61880FP is a semiconductor laser-diode driver/controller. Its functions are the driving and laser power control of a specific type(Mitsubishi's N-type laser)of semiconductor laser diode,in which the anode of a semiconductor laser diode is connected in stem structure to the cathode of a monitoring photodiode.

The IC has a laser drive current output pin of sink type and is capable of driving a laser diode on a maximum bias current of 40mA and a maximum switching current of 100 mA, which is switching at a rate of 200Mbps.

Since the M61880FP has a built in sample-hold circuit, it is possible to realize an internal APC* system that requires no external device for laser power control.

*: Automatic Power Control


FEATURES


- Built-in sample-hold circuit for internal APC function Hold error voltage is less than 1% for 1µs(C=0.047µF)
- High speed switching 200Mbps
- Large driving current 100mA (max)
- Capable of setting bias current (40mA max)
- 5V single power supply

APPLICATION

Semiconductor laser-diode applied equipment

- Laser beam printer(LBP)
- Plain Paper Copier(PPC)

MITSUBISHI < DIGITAL ASSP >

M61880FP

Laser-diode driver / controller

FUNCTIONS

The M61880 is a semiconductor laser-diode driver/controller. Its functions are the driving and laser power control of a specific type (Mitsubishi's N type laser) of semiconductor laser diode , in which the anode of a semiconductor laser diode (LD) is connected in stem structure to the cathode of a monitoring photodiode (PD).

The functions to drive LD and to control laser power are carried out by connecting an external capacitor to the CH pin and applying a reference voltage to the Vr pin.

The PD current generated by LD illumination flows through the resistor connected between 1RM and 2RM, thereby gen-

erating a potential difference (Vm). Vm is compared with the voltage applied to the Vr pin. If Vm < Vr , a constant current is sourced through the CH pin so that the external capacitor is charged. If Vm > Vr , a constant current sinks through the CH pin to discharge the external capacitor.

The above operation occurs when the \overline{S}/H input is "L" and \overline{DATA} = "L" (sample). When the \overline{S}/H input is "H", the CH pin is maintained at high impedance state (hold), irrespective of the state of Vm, Vr, and \overline{DATA} input.

The LD drive current is made up of the switching current, lsw, which is controlled by the DATA input, and IB, which is the bias current to LD independent of the state of the DATA input.

PIN DESCRIPTIONS

Pin	Name	Description
LD	Laser current output	Connect to cathode on semiconductor laser diode.
PD	Monitoring diode input	Connect to anode on monitoring photodiode.
Rs	Switching current Set load output	Connect a load resistor between this pin and GND for the setting of current (lsw) to be switched.
Rв	Bias current Set load output	Connect a load resistor between this pin and GND for the setting of bias current (IB). Leave this pin open if IB is not used.
VB	Bias current setting voltage input	Bias current (IB) is set by applying a voltage at this pin. Leave this pin open if IB is not used.
DATA	Switching data input	If this pin is "L" ,a current of Isw+IB flows through laser diode, if "H" , current IB flows.
1RM,2RM	For monitoring Load input	A load resistor is connected between pins 1RM and 2RM for conversion of current generated by monitoring photodiode into changes in voltage. (2RM pin connects to GND in the IC.)
ENB	Laser current enable input	If this pin is "H" all current source circuits are turned off.
RO	Laser current load output	Connect a laser current load resistor between this pin and Vcc.
S/H	Sample hold control input	If this pin is "L" ,sampling (APC) occurs, if "H" ,holding (switching).
Сн	Holding capacitor load input/output	Connect a holding capacitor between this pin and GND. Inside the M61880 this pin connects to the output of the sample-hold circuit and the current source input for lsw.
Vref	Reference voltage output	Internal reference voltage (1.5Vtyp.) output pin of M61880.
Vr	Reference voltage input	A reference voltage is applied to this pin to operate the comparator in the sample-hold circuit. Connect this pin to the Vref pin if the internal reference voltage of the M61880 is to be used.
Vcc1	Power supply pin 1	Power supply to internal analog circuits. Connect to a positive power source(+5V).
Vcc2	Power supply pin 2	Power supply to internal digital circuits. Connect to a positive power source(+5V).
GND1	GND pin 1	GND for internal analog circuits.
GND2	GND pin 2	GND for internal digital circuits.

Laser-diode driver / controller

OPERATION

1.Laser Drive Currents Setting Method

Laser Drive Current=Isw(switching current)+IB(bias current) at switching mode

(1)Isw(Switching Current)

First it is necessary to decide the center value(Isw0) of maximum switching current Isw(max).Isw0 is depend on Rs (load for switching current setting) by the following equation.

equation.
(a)
$$[sw0 \ [mA]] = 30 \ X \frac{Vref(1.5V) \ [V]}{Rs \ [k]}$$

(b) When switching current is center value(Isw0), it is necessary to set up Rm (load resistor for monitor of photodiode current) as follows:

VM(voltage across resistor Rm) = Vr (reference voltage) at this condition CH pin voltage =2.5V.

When CH pin voltage < 2.5V , Isw <Isw0 When CH pin voltage > 2.5V , Isw >Isw0

(CH pin voltage changes from 2V to 3V at APC mode)

(c) The usable range of ISW at APC mode

That is 20 ~180% of Isw0 accurately.

(2) IB(Bias Current)

Bias current (IB) is set by RB (resistor for the setting of bias current) and VB (voltage for the setting of bias current).

2. Switching Operation

If $\overline{DATA} = "L"$, the LD drive current is Isw+IB if $\overline{DATA} = "H"$, IB.

3.ENB input

When the laser drive current is controlled by the \overline{DATA} input, the M61880's internal current source is maintained turned on. In contrast, the control by \overline{ENB} is turning on and off at the current source. If \overline{ENB} = "L" the current source turns on; if \overline{ENB} = "H" off.

When $\overline{\text{ENB}}$ = "H" the CH pin is compulsorily fixed to "L" in order to discharge the capacitor connected to the CH pin.

4.Internal Reset Function

The M61880 has a reset circuit built in for the protection of laser from an excessive current flowing at the moment of power on. The internal current source goes off in the range Vcc < 3.5V(typ.), and the CH pin is compulsorily fixed to "L" at the same time.

5.RO Pin

A load resistor for laser drive current is connected to the RO pin, through which a current almost equal to Isw flows in.

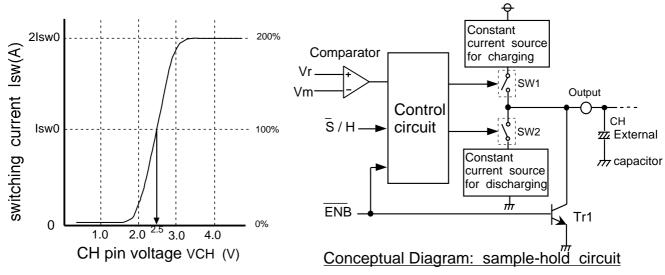
The load resistor is connected between the RO pin and Vcc to reduce power dissipated in the IC.

Due to reasons related to the operation of circuits, the voltage at this pin should be 2.5V or higher.

Consequently, the maximum resistance, RO(max.), of load resistor RO is:

RO(max.) [] =
$$\frac{Vcc(min.) -2.5 [V]}{Isw(max.) [mA]}$$

where Isw(max.) is the maximum of Isw. If, for example, Vcc(min.)=4.75V and Isw(max.)=100mA, RO(max.)=22. Accordingly, if the resistance of RS is selected so as to gain maximum Isw of 100mA, RO should be 22 at the maximum.


6.Sample-Hold Circuit

(1) Circuit Operation Overview

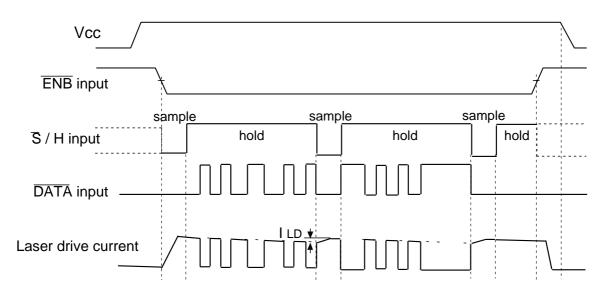
The following is an overview of the operation of the samplehold circuit contained in the M61880.

The PD current generated by LD illumination flows through the resistor connected between 1RM and 2RM, thereby generating a potential difference(Vm). Vm is compared with the voltage applied to the Vr pin. If Vm < Vr , a constant current is sourced through the CH pin so that the external capacitor is charged. If Vm > Vr , a constant current sinks through the CH pin to discharge the external capacitor. This operation occurs when the S/H input is "L" and $\overline{\text{DATA}}$ = "L" (sample).

When the S/H input is "H" , the CH pin is maintained at high impedance state(hold), irrespective of the state of Vm, Vr, and $\overline{\text{DATA}}$ input.

Laser-diode driver / controller

FUNCTION TABLE


Input			Switch condition		Tr1	Output			
ENB	S/H	DATA	Vm,Vr	SW1	SW2] '''	Catput		
Н	Х	Х	Х	OFF	OFF	ON	Fixed to "L"		
L	Н	Х	Х	OFF	OFF	OFF	High impedance state (hold)		
		Н	Х	OFF	OFF	OFF	High impedance state (hold)		
L	L	ı	Vm < Vr	ON	OFF	OFF	Constant current sourcing (sample)		
		Vm > Vr	OFF	ON	OFF	Constant current sinking (sample)			

X: Don't care

(2) APC Timing Chart

The following diagram is an APC timing chart, operation of which is based on sample hold control signals.

Note that in the example it is assumed that the leak current occurring at the CH pin under hold condition flows into the M61880 (in the positive direction).

An example of APC Timing Chart

7. Vcc and GND Pins

Pins related to the power supply function are Vcc1, Vcc2, GND1, and GND2. The role of these pins in terms of the internal circuits are as follows.

Vcc1, GND1: connected to analog circuits

Vcc2, GND2: connected to digital circuits

In practical wiring, the following should be noted.

- (1) Secure as much a width as possible for conductors and avoid lengthy wiring.
- (2) Allocate electrolytic capacitors for stable voltage near Vcc1 and GND1.
- (3) Allocate by-pass capacitors near Vcc2 and GND2.

Notes on the Wiring for Peripheral Components

Lay out peripheral components necessary for the M61880 to operate in closest possible proximity to the M61880.

Calculation Method for Power Dissipation

The approximate power dissipation, P, of the M61880FP is determined by the following equation.

 $P = Icc \times Vcc + I(RO) \times V(RO) + I(LD) \times V(LD)$ where

V(RO):voltage at RO pin

V(LD): voltage at LD pin

I(RO): load current at RO pin

I(LD): load current at LD pin

If, for example, Vcc = 5.25V, V(RO) = V(LD) = 2.5V, and I(RO)

= I(LD) = 100mA, power dissipation at times of turning laser on and off will be as follows.

(1) Laser ON (DATA = "L" and Icc = 55mA)

 $PON = 55 \times 5.25 + 0 + 100 \times 2.5 = 538.8 (mW)$

(2) Laser OFF (DATA = "H" and Icc = 55mA)

POFF = $55 \times 5.25 + 0 + 100 \times 2.5 = 538.8 (mW)$

MITSUBISHI < DIGITAL ASSP >

M61880FP

Laser-diode driver / controller

ABSOLUTE MAXIMUM RATINGS (Ta = -20 ~ 70°C unless otherwise noted)

Symbol	Par	ameter	Conditions	Ratings	Unit
Vcc	Supply voltage			-0.3 ~ +5.5	V
Vı	Input voltage	Сн, Vr		-0.3 ~ +Vcc	V
VI	Input voltage	DATA, ENB, S/H		-0.3 ~ +Vcc	V
Vo	Output voltage RO			-0.3 ~ +Vcc]
Isw	Switching currer	it		120	mA
lв	Bias current			50	mA
Pd	Power dissipatio	n	Measured being mounted Ta = 25°C(Note)	980	mW
Tstg	Storage tempera	ature		-60 ~ +150	°C

Note: For operation above 25°C, derating of 9.8mW/°C is necessary.

RECOMMENDED OPERATIONAL CONDITIONS (Ta = -20 ~ 70°C unless otherwise noted)

Symbol	Parameter		Unit			
Symbol	i didilietei		Тур.	Max.	Offic	
Vcc	Supply voltage	4.75	5.0	5.25	V	
Isw	Switching current			100	mΑ	
lв	Bias current			40	mΑ	
Topr	Operating ambient temperature	-20		70	°C	

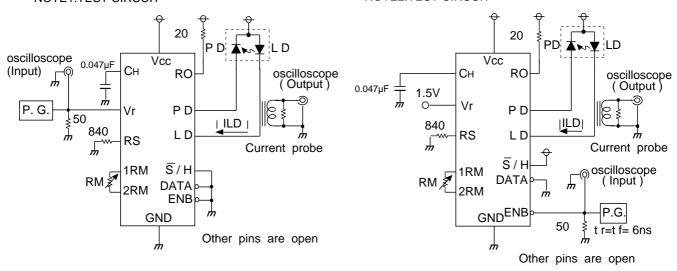
Note: Isw + IB 100mA

ELECTRICAL CHARACTERISTICS (Ta = -20 ~ 70°C, Vcc = 5V±5% unless otherwise noted)

Symbol	Parameter		Test conditions		Limits			Unit
Cyrribor			rest conditions		Min.	Тур.	Max.	01111
VIH	"H" Input voltage	DATA, ENB, S/H		2.0			V	
VIL	"L" Input voltage	DATA, ENB, S/H					0.8	V
Vr	Reference voltage input	Vr			0.35		2.0	V
	Reference	Vref	lo = ±10μA		1.4	1.5	1.6	V
Vref	voltage	Temperature	Ta = -20 ~ 25°C			0.1		mV/°C
	output	coefficient	Ta = 25 ~ 70°C			-0.1		111177
VLD	Operating voltage range	LD			2.5		Vcc	V
Vı	Maximum effective voltage	Сн			2.7	3.0		V
Voн	"H" output voltage	Сн	ENB= "L" ,loL= (-0.6mA)		Vcc-1.6			V
Vol	"L" output voltage	Сн	ENB= "L" ,IoH= (0.6mA)				0.6	V
			VI = 2.7V			20	μΑ	
lı .	Input current	DATA,ENB	VI = 0.4V	-0.2			mA	
Isw	Switching current	LD	CH=3.5V,Rs=1.2k ,VLD=3V			75		mA
lв	Bias current (Note)	LD	VB=1.5V,RB=70 ,VLD=3V			20		mA
lcg	Load charging current	Сн	ENB= "L" ,Vo=(0.6 -	ENB= "L" ,Vo=(0.6 ~ Vcc-1.6V)		-1.0	-0.66	mA
ldg	Load discharge current	Сн	ENB= "L" ,Vo=(0.6	- Vcc-1.6V)	0.66	1.0		mA
loz	Output current under off condition	Сн	Vo=2.0 ~ 3.0V, Hold condition		-0.5		+0.5	μΑ
LOFF	Output current under off	-	ENB= "L" ,DATA= "I	ENB= "L" ,DATA= "H" ,Isw=50mA			50	μΑ
	condition	LD	ENB= "H" ,DATA= "L" ,Isw=50mA				50	μA
Icc	Supply current		Vcc=5.25V, <u>ENB</u> =0V, Cн=3.5V,Vв=1.4V	DATA=0V		43	63	mA
	очррну синен		Isw=75mA,IB=25mA RO=LD=5.0v	DATA=4.5V		43	63	''''

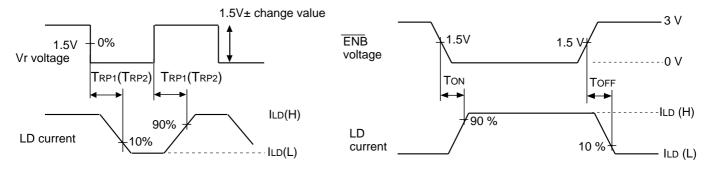
^{*}Typical values are gained under conditions of Ta=25°C and Vcc=5V.

Note: This parameter indicates the conversion characteristics of the input voltage and output current. In actual use, Isw and IB shall be within the range specified as limits in the recommended operating conditions.


Laser-diode driver / controller

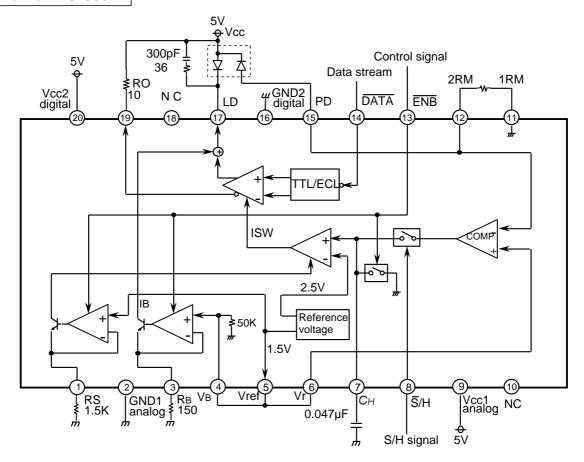
SWITCHING CHARACTERISTICS (Ta=25°C,Vcc=5V)

Cymbol	Parameter	Test pin		Test condition	Limits			Unit
Symbol		Input	Output	Test condition	Min.	Тур.	Max.	
fop	Operating frequency					100		Mbps
tRP1	Circuit response time1	Vr voltage	LD current	ILD=50mA, Rs=840 , CH=0.047µF APC adjustment; RM=adjustment(CH=2.5V) Vr=1.5V± 0.5% (Note1)		1		μS
tRP2	Circuit response time2	Vr voltage	LD current	ILD=50mA, Rs=840 , CH=0.047µF APC adjustment; RM=adjustment(CH=2.5V) Vr=1.5V± 2.5% (Note1)		3		μS
ton	Circuit ON time	ENB voltage	LD current	ILD(H)=50mA (Note2)			350	μS
toff	Circuit OFF time	ENB voltage	LD current	ILD(H)=50mA (Note2)			5	μS

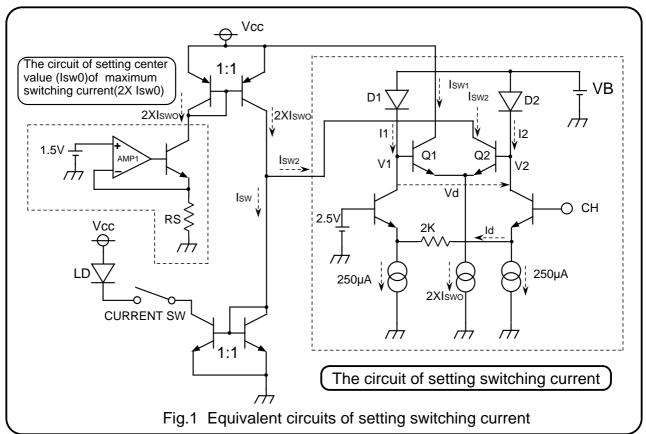

NOTE1:TEST CIRCUIT

NOTE2:TEST CIRCUIT

TIMING CHARTS


TIMING CHARTS

Laser-diode driver / controller


APPLICATION EXAMPLE

LD driver M61880FP

Laser-diode driver / controller

Explanation for setting Laser switching current

1. The circuit of setting center value(Isw0) of maximum switching current

The setting center value(Isw0) of maximum switching current, 2 X Isw0,set up Rs (load for switching current setting). Isw0 (the value that is initialized) is

Isw0[mA]=30 x
$$\frac{Vref(1.5V)[V]}{RS[k]}$$
 --- (1)

2. The circuit of setting switching current

When V is a difference voltage of between CHpin and 2.5V,Id is

$$Id = \frac{V}{2K}$$
 ---- (2)

So I1 and I2 is as follows

$$\begin{pmatrix}
11=250\mu\text{A-Id} \\
12=250\mu\text{A+Id}
\end{pmatrix}$$
(3)

D1,D2,Q1 and Q2 construct a Gilbert circuit. The relation of I1,I2,Isw1, Isw2 and Isw0 is

$$\frac{11}{12} = \frac{1\text{sw}2}{1\text{sw}1}$$
 (4)

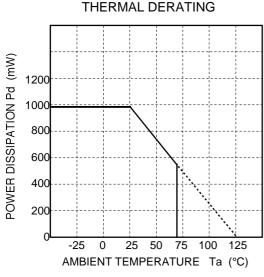
So Isw2 is

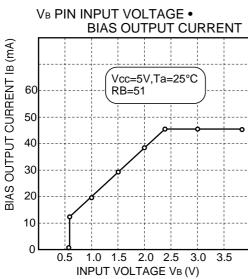
$$lsw2=2 \cdot lsw0 \times \frac{l1}{l1+l2} - \cdots (6)$$

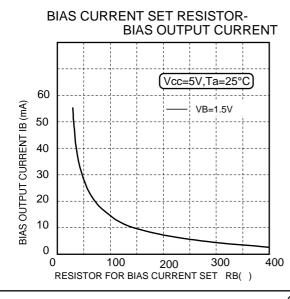
Isw is as follows

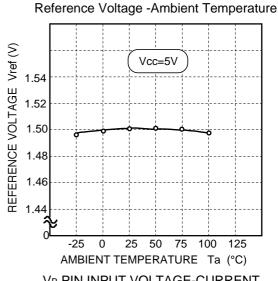
Next the relation between Isw and V would be introduced .

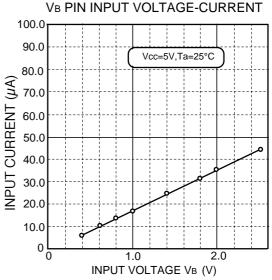
Isw is able to solve with (6), (7),(3) and (2)equation.

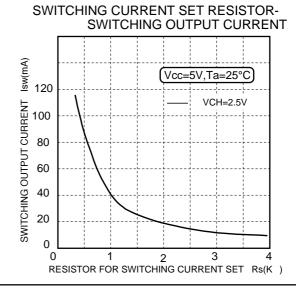

$$lsw=2 \cdot lsw0(\frac{l2}{l1+l2}) - (8)$$

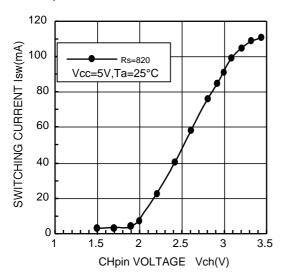

Isw=Isw0(1+
$$\frac{Id}{250\mu A}$$
) ----- (9)

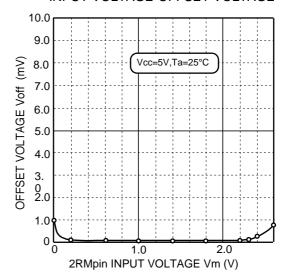

Isw=Isw0(1+
$$\frac{V/2K}{250\mu A}$$
)---- (10)


Laser-diode driver / controller


TYPICAL CHARACTERISTICS

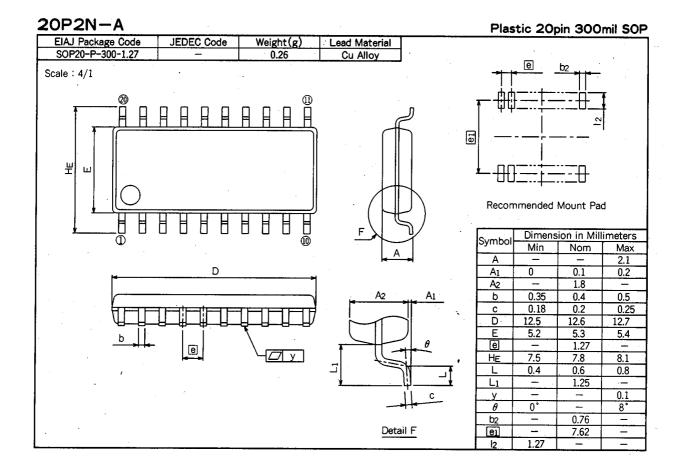






Laser-diode driver / controller

CHpin VOLTAGE - SWITCHING CURRENT



APC COMPARATOR INPUT VOLTAGE-OFFSET VOLTAGE

Laser-diode driver / controller

PACKAGE OUTLINE

