Notice: This is not a final specification. Notice: This is not a fimits are subject to change. Some parametric limits are subject to change.

MITSUBISHI MICROCOMPUTERS 4282 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

DESCRIPTION

The 4282 Group enables fabrication of 8×7 key matrix and has the followin timers;

- an 8-bit timer which can be used to set each carrier wave and has two reload register
- an 8-bit timer which can be used to auto-control and has a reload register.

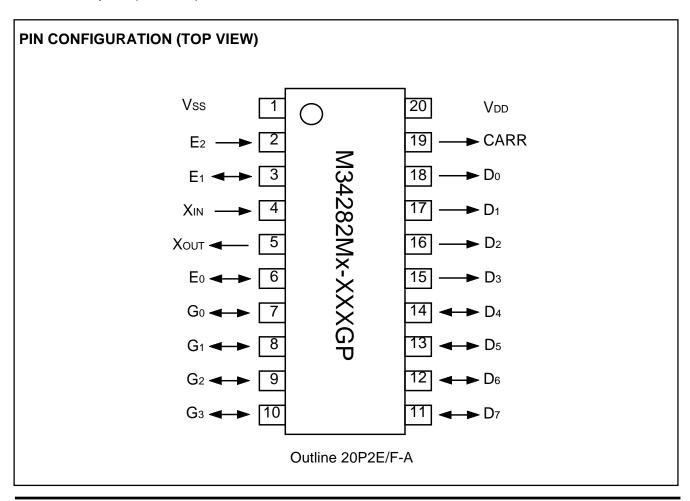
FEATURES

Number of basic instructions	68
Minimum instruction execution time	8.0 μs
(at $f(X_{IN}) = 4.0 \text{ MHz}$, system clock = $f(X_{IN})/8$)	
Supply voltage	18 \/ to 36 \/

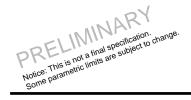
- Subroutine nesting 4 levels

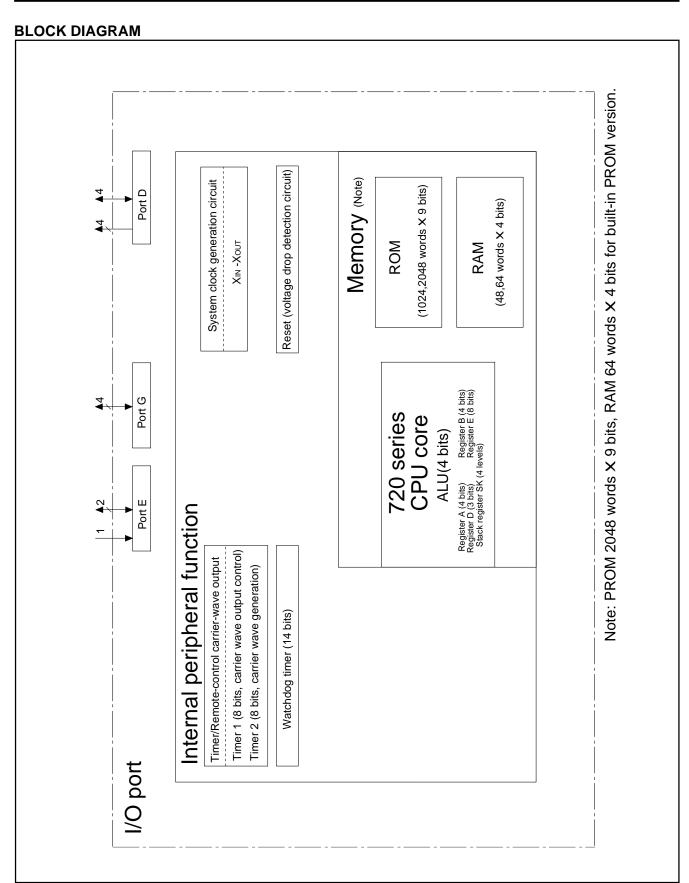
•	Timer
	Timer 1 8-bit timer
	(This has a reload register and carrier wave output auto-control
	function)

Logic operation function (XOR, OR, AND)

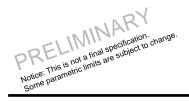

- RAM back-up function
- Key-on wakeup function (ports D4–D7, E0–E2, G0–G3) 11
- Oscillation circuit Ceramic resonance
- · Watchdog timer
- · Power-on reset circuit
- Voltage drop detection circuit Typical:1.50 V (system reset)

APPLICATION


Various remote control transmitters


Product	ROM (PROM) size (× 9 bits)	RAM size (× 4 bits)	Package	ROM type
M34282M1-XXXGP *	1024 words	48 words	20P2E/F-A	Mask ROM
M34282M2-XXXGP *	2048 words	64 words	20P2E/F-A	Mask ROM
M34282E2GP *	2048 words	64 words	20P2E/F-A	One Time PROM

^{*:} Under development (June, 2000)


PERFORMANCE OVERVIEW

Parameter		7	Function			
Number of bas	ic instru	ctions	68			
Minimum instru	uction ex	cecution time	8.0 μ s (f(Xin) = 4.0 MHz, system clock = f(Xin)/8, Vdd = 3 V)			
Memory sizes	ROM	M34282M2/E2	2048 words X 9 bits			
		M34282M1	1024 words X 9 bits			
	RAM	M34282M2/E2	64 words X 4 bits			
		M34282M1	48 words X 4 bits			
Input/Output	Do-D3	Output	Four independent output ports			
ports	D4-D7	I/O	Four independent I/O ports with the pull-down function			
	E0-E2	Input	3-bit input port with the pull-down function			
	E0, E1	Output	2-bit output port (E ₀ , E ₁)			
	G0-G3	I/O	4-bit I/O port with the pull-down function			
	CARR Output		1-bit output port; CMOS output			
Timer	Timer 1		8-bit timer with a reload register			
	Timer 2	2	8-bit timer with two reload registers			
Subroutine nes	sting		4 levels (However, only 3 levels can be used when the TABP p instruction is executed)			
Device structur	re		CMOS silicon gate			
Package			20-pin plastic molded SSOP (20P2E/F-A)			
Operating temp	perature	range	−20 °C to 85 °C			
Supply voltage	!		1.8 V to 3.6 V			
Power	Active i	mode	400 μΑ			
dissipation			$(f(X_{IN}) = 4.0 \text{ MHz}, \text{ system clock} = f(X_{IN})/8, V_{DD} = 3 \text{ V})$			
(typical value)	RAM b	ack-up mode	0.1 μ A (at room temperature, VDD = 3 V)			

PIN DESCRIPTION

Pin	Name	Input/Output	Function
VDD	Power supply	_	Connected to a plus power supply.
Vss	Ground	_	Connected to a 0 V power supply.
XIN	System clock input	Input	I/O pins of the system clock generating circuit. Connect a ceramic resonator between pins XIN and XOUT. The feedback resistor is built-in between pins XIN
Хоит	System clock output	Output	and Xout.
D0-D3	Output port D	Output	Each pin of port D has an independent 1-bit wide output function. The output structure is P-channel open-drain.
D4-D7	I/O port D	I/O	1-bit I/O port. For input use, set the latch of the specified bit to "0." When the built-in pull-down transistor is turned on, the key-on wakeup function using "H" level sense and the pull-down transistor become valid. The output structure is P-channel open-drain.
E0-E2	I/O port E	Output	2-bit (E ₀ , E ₁) output port. The output structure is P-channel open-drain.
		Input	3-bit input port. For input use (E ₀ , E ₁), set the latch of the specified bit to "0." When the built-in pull-down transistor is turned on, the key-on wakeup function using "H" level sense and the pull-down transistor become valid. Port E ₂ has an input-only port and has a key-on wakeup function using "H" level sense and pull-down transistor.
G0-G3	I/O port G	I/O	4-bit I/O port. For input use, set the latch of the specified bit to "0." The output structure is P-channel open-drain. When the built-in pull-down transistor is turned on, the keyon wakeup function using "H" level sense and pull-down transistor become valid.
CARR	Carrier wave output for remote control	Output	Carrier wave output pin for remote control. The output structure is CMOS circuit.

CONNECTIONS OF UNUSED PINS

Pin	Connection
D0-D7	Open or connect to VDD pin (Note 1).
E0, E1	Set the output latch to "1" and open, or
	connect to VDD pin (Note 2).
E ₂	Open or connect to Vss pin.
G0-G3	Set the output latch to "1" and open, or
	connect to VDD pin (Note 2).

Notes 1: Ports D4–D7: Set the bit 2 (PU02) of the pull-down control register PU1 to "0" by software and turn the pull-down transistor OFF.

2: Set the corresponding bits of the pull-down control register PU0 to "0" by software and turn the pull-down transistor OFF.

(Note in order to set the output latch to "1" to make pins open)

- After system is released from reset, a port is in a high-impedance state until the output latch of the port is set to "1" by software. Accordingly, the voltage level of pins is undefined and the excess of the supply current may occur.
- To set the output latch periodically is recommended because the value of output latch may change by noise or a program run away (caused by noise).

(Note when connecting to Vss and VDD)

• Connect the unused pins to Vss or Vpp at the shortest distance and use the thick wire against noise.

PORT FUNCTION

Port	Pin	Input/	Output structure	Control	Control	Control	Remark
	Outp	Output	Output structure	bits	instructions	registers	Nemark
Port D	D0-D3	Output	P-channel open-drain	1 bit	SD		
		(4)			RD		
					CLD		
	D4-D7	I/O			SD	PU1	Pull-down function and
		(4)			RD		key-on wakeup function
					CLD		(programmable)
					SZD		
Port E	Eo	I/O	P-channel open-drain	Output:	OEA	PU0	Pull-down function and
	E1	(2)		2 bits	IAE		key-on wakeup function
				Input:			(programmable)
	E ₂	Input		3 bits	IAE		
		(1)					
Port G	G0-G3	I/O	P-channel open-drain	4 bits	OGA	PU0	Pull-down function and
		(4)			IAG		key-on wakeup function
							(programmable)
Port CARR	CARR	Output	CMOS	1 bit	SCAR		
		(1)			RCAR		

DEFINITION OF CLOCK AND CYCLE

• System clock (STCK)

The system clock is the source clock for controlling this product. It can be selected as shown below whether to use the CCK instruction.

CCK instruction	System clock	Instruction clock
When not using	f(XIN)/8	f(XIN)/32
When using	f(XIN)	f(XIN)/4

• Instruction clock (INSTCK)

The instruction clock is a signal derived by dividing the system clock by 4, and is the basic clock for controlling CPU. The one instruction clock cycle is equivalent to one machine cycle.

· Machine cycle

The machine cycle is the cycle required to execute the instruction.

PORT BLOCK DIAGRAMS

FUNCTION BLOCK OPERATIONS CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-bit data addition, comparison, and bit manipulation.

(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.

Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (Figure 1).

It is unchanged with both A n instruction and AM instruction. The value of A₀ is stored in carry flag CY with the RAR instruction (Figure 2).

Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction.

(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A.

Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).

(4) Register D

Register D is a 3-bit register.

It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 4).

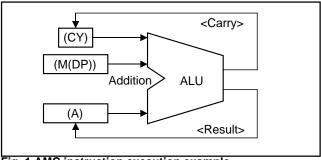


Fig. 1 AMC instruction execution example

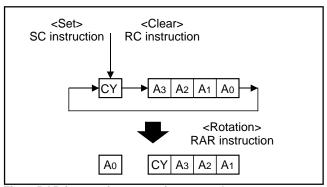


Fig. 2 RAR instruction execution example

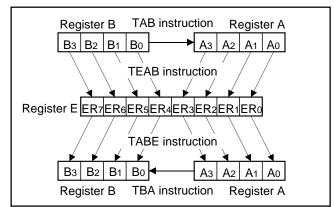


Fig. 3 Registers A, B and register E

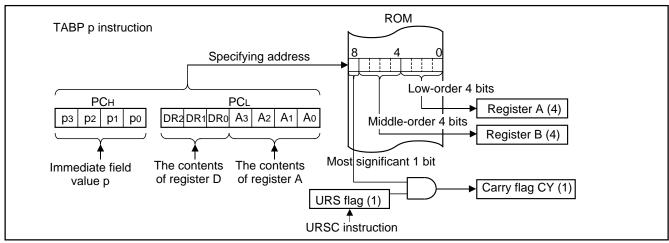


Fig. 4 TABP p instruction execution example

(5) Most significant ROM code reference enable flag (URS)

URS flag controls whether to refer to the contents of the most significant 1 bit (bit 8) of ROM code when executing the TABP p instruction. If URS flag is "0," the contents of the most significant 1 bit of ROM code is not referred even when executing the TABP p instruction. However, if URS flag is "1," the contents of the most significant 1 bit of ROM code is set to flag CY when executing the TABP p instruction (Figure 4). URS flag is "0" after system is released from reset and returned from RAM back-up mode. It can be set to "1" with the URSC instruction, but cannot be cleared to "0."

(6) Stack registers (SKs) and stack pointer (SP)

Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are four identical registers, so that subroutines can be nested up to 4 levels. However, one of stack registers is used when executing a table reference instruction. Accordingly, be careful not to over the stack. The contents of registers SKs are destroyed when 4 levels are exceeded.

The register SK nesting level is pointed automatically by 2-bit stack pointer (SP).

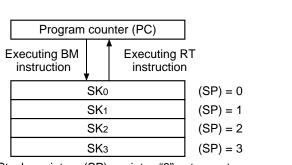

Figure 5 shows the stack registers (SKs) structure.

Figure 6 shows the example of operation at subroutine call.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions.

Note: The 4282 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

Stack pointer (SP) points "3" at reset or returning from RAM back-up mode. It points "0" by executing the first BM instruction, and the contents of program counter is stored in SKo. When the BM instruction is executed after four stack registers are used ((SP) = 3), (SP) = 0 and the contents of SKo is destroyed.

Fig. 5 Stack registers (SKs) structure

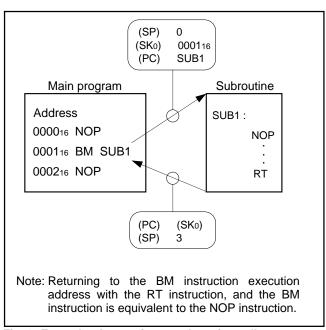


Fig. 6 Example of operation at subroutine call

(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.

Program counter consists of PC_H (most significant bit to bit 7) which specifies to a ROM page and PC_L (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).

Make sure that the PCH does not exceed after the last page of the built-in ROM.

(9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers X and Y. Register X specifies a file and register Y specifies a RAM digit (Figure 8).

Register Y is also used to specify the port D bit position. When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9).

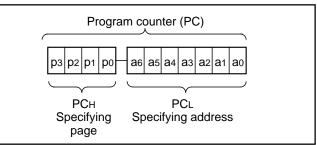


Fig. 7 Program counter (PC) structure

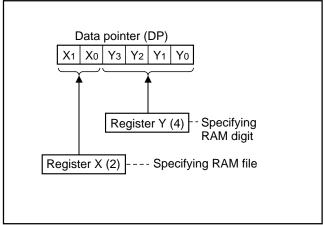


Fig. 8 Data pointer (DP) structure

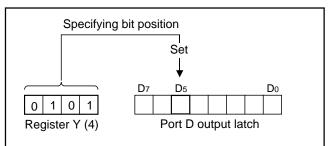


Fig. 9 SD instruction execution example

PROGRAM MEMORY (ROM)

The program memory is a mask ROM. 1 word of ROM is composed of 9 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127).

Table 1 ROM size and pages

Product	ROM size (X 9 bits)	Pages
M34282M2/E2	2048 words	16 (0 to 15)
M34282M1	1024 words	8 (0 to 7)

Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.

ROM pattern of all addresses can be used as data areas with the TABP \mbox{p} instruction.

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers X and Y. Set a value to the data pointer certainly when executing an instruction to access RAM.

Table 2 shows the RAM size. Figure 11 shows the RAM map.

Table 2 RAM size

Product	RAM size
M34282M2/E2	64 words X 4 bits (256 bits)
M34282M1	48 words X 4 bits (128 bits)

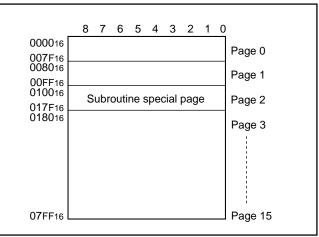


Fig. 10 ROM map of M34282M2/E2

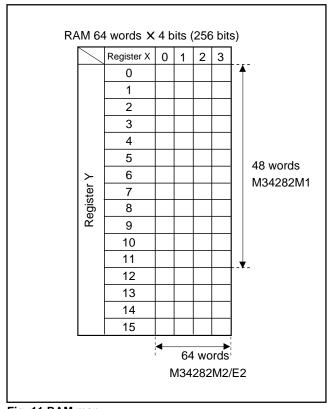


Fig. 11 RAM map

TIMERS

The 4282 Group has the programmable timer.

· Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n+1), a timer 1 underflow flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function).

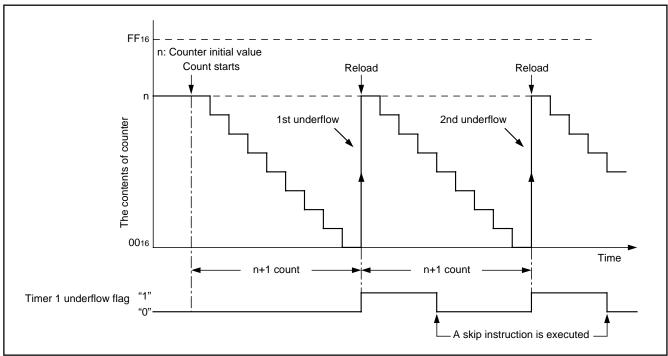


Fig. 12 Auto-reload function

The 4282 Group timer consists of the following circuit.

• Timer 1: 8-bit programmable timer

• Timer 2 : 8-bit programmable timer

These timers can be controlled with the timer control registers V1 and V2.

Each timer function is described below.

Table 3 Function related timer

Circuit	Ctructuro	Count course	Frequency	Use of output signal	Control
Circuit	Structure	Count source	dividing ratio	Use of output signal	register
Timer 1	8-bit programmable	Carrier wave output (CARRY)	1 to 256	Carrier wave output control	V1
	binary down counter	Bit 5 of watchdog timer			
Timer 2	8-bit programmable	• f(XIN)	1 to 256	Carrier wave output	V2
	binary down counter	• f(XIN)/2			
14-bit timer	14-bit fixed frequency	Instruction clock	16384	Watchdog timer	
				Timer 1 count source	

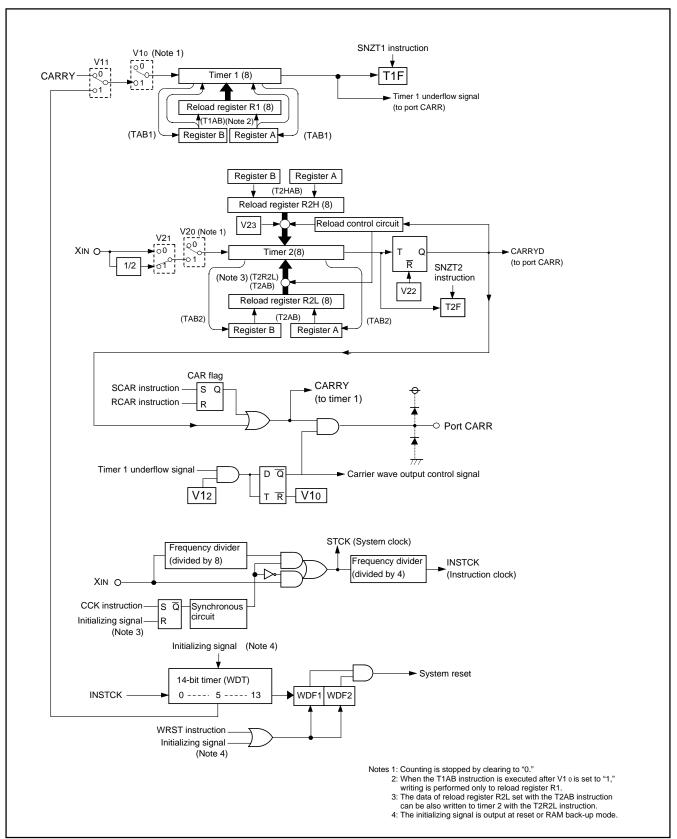


Fig. 13 Timers structure

Table 4 Control registers related to timer

Timer control register V1		at reset : 0002		at RAM back-up : 0002	W
V12	Corrier ways output outp control hit	0	Auto-control output by timer 1 is invalid		
V 12	Carrier wave output auto-control bit	1	Auto-control output by timer 1 is valid		
1/4	Timer 1 count source selection bit	0	Carrier wave outpu	t (CARRY)	
V1 ₁		1	Bit 5 of watchdog to	imer (WDT)	
\/4-	Timer 1 control bit	0	Stop (Timer 1 state	e retained)	
V10		1	Operating		

Timer control register V1		at reset : 00002		at RAM back-up : 00002	W	
V13	Carrier wave "H" interval expansion bit	0	To expand "H" inte	rval is invalid		
V 13	Carrier wave in linterval expansion bit	1	To expand "H" inte	rval is valid (when V22=1 selected)		
\/4-	Consider ways and arction function control his	0	Carrier wave generation function invalid			
V 12	V12 Carrier wave generation function control bit		Carrier wave generation function valid			
1/4			f(XIN)			
V1 ₁	Timer 2 count source selection bit		f(X _{IN})/2			
V/4 Times O control bit		0	Stop (Timer 2 state retained)			
V10	Timer 2 control bit	1	Operating			

Note: "W" represents write enabled.

(1) Control registers related to timer

· Timer control register V1

Register V1 controls the timer 1 count source and autocontrol function of carrier wave output from port CARR by timer 1. Set the contents of this register through register A with the TV1A instruction.

• Timer control register V2

Register V2 controls the timer 2 count source and the carrier wave generation function by timer. Set the contents of this register through register A with the TV2A instruction.

(2) Precautions

Note the following for the use of timers.

- Count source
 - Stop timer 1 counting to change its count source.
- Watchdog timer

Be sure that the timing to execute the WRST instruction in order to operate WDT efficiently.

- · Writing to reload register R1
 - When writing data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.
- · Stop of timer 2

Avoid a timing when timer 2 underflows to stop timer 2.

- · Writing to reload register R2H
 - When writing data to reload register R2H while timer 2 is operating, avoid a timing when timer underflows.
- Timer 2 carrier wave output function
 When to expand "H" interval of carrier wave is valid, set "1"
 or more to reload register R2H.

4282 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(3) Timer 1

Timer 1 is an 8-bit binary down counter with the timer 1 reload register (R1).

When timer is stopped, data can be set simultaneously in timer 1 and the reload register (R1) with the T1AB instruction.

When timer is operating, data can be set to only reload register R1 with the T1AB instruction.

When setting the next count data to reload register R1 at operating, set data before timer 1 underflows.

Timer 1 starts counting after the following process;

- ① set data in timer 1,
- 2 select the count source with the bit 1 of register V1, and3 set the bit 0 of register V1 to "1."

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 underflow flag (T1F) is set to "1," new data is loaded from reload register R1, and count continues (auto-reload function).

When a value set in reload register R1 is n, timer 1 divides the count source signal by n + 1 (n = 0 to 255).

Data can be read from timer 1 to registers A and B. When reading the data, stop the counter and then execute the TAB1 instruction.

(4) Timer 2

Timer 2 is an 8-bit binary down counter with the timer 2 reload registers (R2H and R2L).

Data can be set simultaneously in timer 2 and the reload register (R2L) with the T2AB instruction.

The contents of reload register (R2L) set with the T2AB instruction can be set again to timer 2 with the T2R2L instruction. Data can be set to reload register (R2H) with the T2HAB instruction.

Timer 2 starts counting after the following process;

- ① set data in timer 2,
- 2 select the count source with the bit 1 of register V2, and
- 3 select the valid/invalid of the carrier wave generation function by bit 2 of register V1 (when this function is valid, select the valid/invalid of the carrier wave "H" interval expansion by bit 3), and
- ④ set the bit 0 of register V1 to "1."

When the carrier wave generation function is invalid (V22="0"), the following operation is performed:

Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 underflow flag (T2F) is set to "1," new data is loaded from reload register R2L, and count continues (auto-reload function).

When a value set in reload register R2L is n, timer 2 divides the count source signal by n + 1 (n = 0 to 255).

When the carrier wave generation function is valid (V22="1"), the carrier wave which has the "L" interval set to the reload register R2L and "H" interval set to the reload register R2H can be output.

After the count of the "L" interval of carrier wave is started, timer 2 underflows and the timer 2 underflow flag (T2F) is set to "1". Then, the "H" interval data of carrier wave is reloaded from the reload register R2H, and count continues.

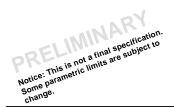
When timer underflows again after auto-reload, the T2F flag is set to "1". And then, the "L" interval data of carrier wave is reloaded from the reload register R2L, and count continues. After that, each timer underflows, data is reloaded from reload register R2H and R2L alternately.

When a value set in reload register R2H is n, "H" interval of carrier wave is as follows;

- When to expand "H" interval is invalid (V2₃ = "0"),
 Count source X (n+1), n = 0 to 255
- When to expand "H" interval is valid (V23 = "1"), Count source X (n+1.5), n = 1 to 255

When a value set in reload register R2L is m, "L" interval of carrier wave is as follows;

Count source X (m+1), m = 0 to 255


Data can be read from timer 2 to registers A and B. When reading the data, stop the counter and then execute the TAB2 instruction.

(5) Timer underflow flags (T1F, T2F)

Timer 1 underflow flag or timer 2 underflow flag is set to "1" when the timer 1 or timer 2 underflows. The state of flags T1F and T2F can be examined with the skip instruction (SNZT1, SNZT2).

Flags T1F and T2F are cleared to "0" when the next instruction is skipped with a skip instruction.

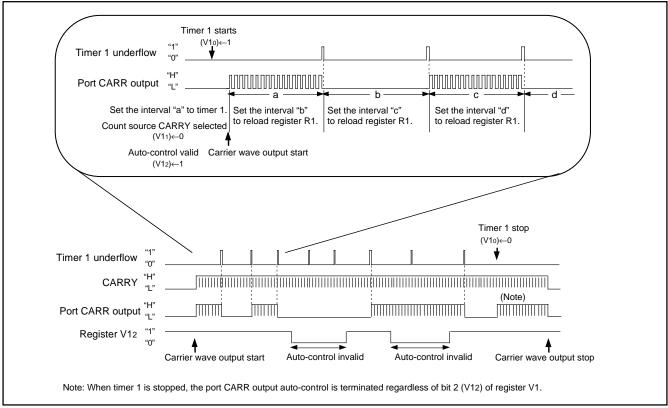
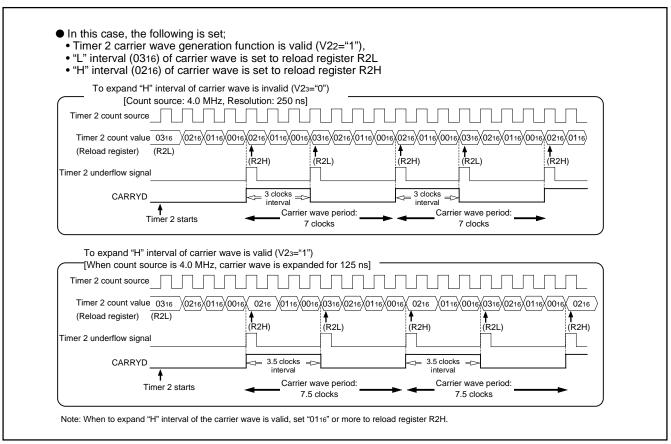
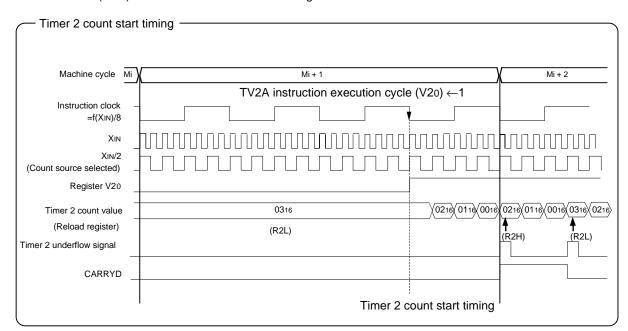
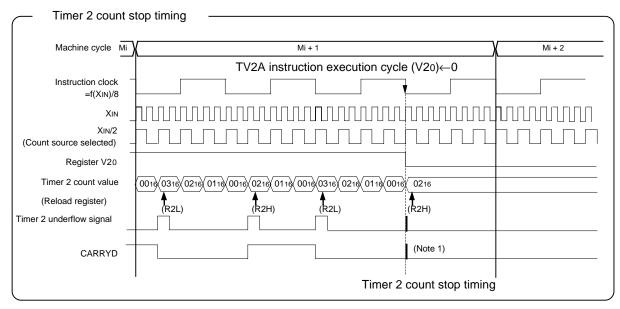
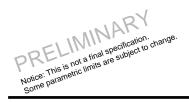


Fig. 14 Port CARR output control by timer 1


Fig. 15 Carrier wave generation example by timer 2

- In this case, the following is set;
 - To expand "H" interval of carrier wave is invalid (V23 = "0"),
 - Timer 2 carrier wave generation function is valid (V22="1"),
 - Count source XIN/2 selected (V21="1"),
 - "L" interval (0316) of carrier wave is set to reload register R2L
 - "H" interval (0216) of carrier wave is set to reload register R2H



Notes 1: When the carrier wave generation function is vaild (V22="1"), avoid a timing when timer 2 underflows to stop timer 2. When the timer 2 count stop occurs at the same timing with the timer 2 underflows, hazard may occur in the carrier wave output waveform.

2: When the timer 2 is stopped during "H" output of carrier wave while the carrier wave generation function is valid, it is stopped after the "H" interval set by reload register R2H is output.

Fig. 16 Timer 2 count start/stop timing

WATCHDOG TIMER

Watchdog timer provides a method to reset and restart the system when a program runs wild. Watchdog timer consists of 14-bit timer (WDT) and watchdog timer flags (WDF1, WDF2).

Watchdog timer downcounts the instruction clock (INSTCK) as the count source immediately after system is released from reset. When the timer WDT count value becomes 000016 and underflow occurs, the WDF1 flag is set to "1." Then, when the WRST instruction is not executed before the timer WDT counts 16383, WDF2 flag is set to "1" and internal reset signal is generated and system reset is performed.

Execute the WRST instruction at period of 16383 machine cycle or less to keep the microcomputer operation normal.

Timer WDT is also used for generation of oscillation stabilization time. When system is returned from reset and from RAM back-up mode by key-input, software starts after the stabilization oscillation time until timer WDT downcounts to 3E0016 elapses.

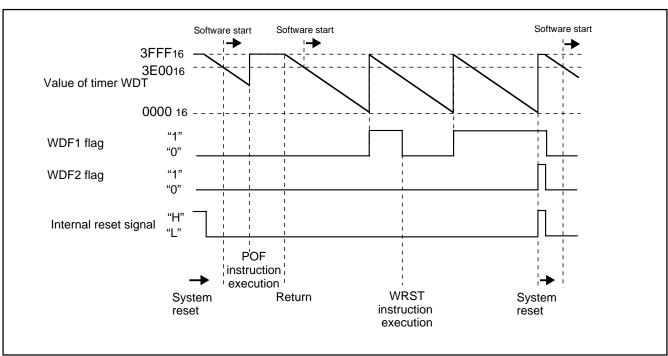


Fig. 17 Watchdog timer function

LOGIC OPERATION FUNCTION

The 4282 Group has the 4-bit logic operation function. The logic operation between the contents of register A and the low-order 4 bits of register E is performed and its result is stored in register A.

Each logic operation can be selected by setting logic operation selection register LO.

Set the contents of this register through register A with the TLOA instruction. The logic operation selected by register LO is executed with the LGOP instruction.

Table 5 shows the logic operation selection register LO.

Table 5 Logic operation selection register LO

Lo	gic operation selection register LO	at reset : 002			at RAM back-up : 002	W	
		L01	_O1 LO0		Logic operation function		
LO ₁		0 0 Exclusive logic OR		Exclusive logic OR	operation (XOR)		
	Logic operation selection bits	0	0 1 OR operation (OR)				
LO ₀		1 0 AND operation (AND		AND operation (ANI	D)		
	1 1 Not available						

Note: "W" represents write enabled.

RESET FUNCTION

The 4282 Group has the power-on reset circuit, though it does not have $\overline{\text{RESET}}$ pin. System reset is performed automatically at power-on, and software starts program from address 0 in page 0

In order to make the built-in power-on reset circuit operate efficiently, set the voltage rising time until VDD=0 to 2.2 V is obtained at power-on 1ms or less.

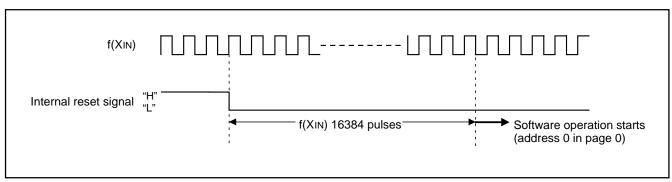


Fig. 18 Reset release timing

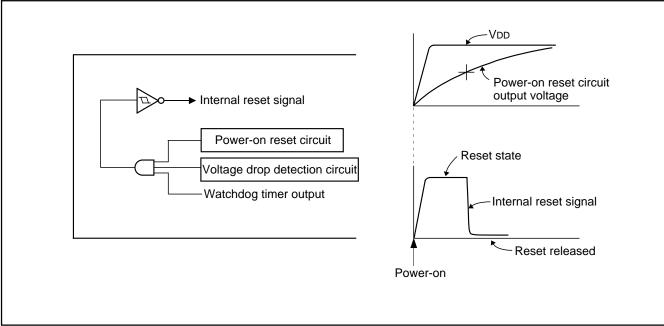
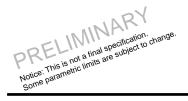



Fig. 19 Power-on reset circuit example

(1) Internal state at reset

Table 6 shows port state at reset, and Figure 20 shows internal state at reset (they are retained after system is released from reset).

The contents of timers, registers, flags and RAM except shown in Figure 20 are undefined, so set the initial value to them.

Program counter (PC)
Address 0 in page 0 is set to program counter.
• Power down flag (P)
• Timer 1 underflow flag (T1F)
• Timer 2 underflow flag (T2F)
• Timer control register V10 0 0 0
• Timer control register V20 0 0 0
Port CARR output flag (CAR)
Pull-down control register PU0
Pull-down control register PU1
Logic operation selection register LO
Most significant ROM code reference enable flag (URS)
• Carry flag (CY)
• Register A
• Register B
• Register X
• Register Y
• Stack pointer (SP)

Fig. 20 Internal state at reset

Table 6 Port state at reset

Name	State at reset					
D0-D3	High impedance state					
D4-D7	High impedance state (Pull-down transistor OFF)					
G ₀ –G ₃	High impedance state (Pull-down transistor OFF)					
E0, E1	High impedance state (Pull-down transistor OFF)					
CARR	"L" output					

Note: The contents of all output latch is initialized to "0."

VOLTAGE DROP DETECTION CIRCUIT

The built-in voltage drop detection circuit is designed to detect a drop in voltage at operating and to reset the microcomputer if the supply voltage drops below the specified value (Typ. 1.50 V) or less.

The voltage drop detection circuit is stopped and power dissipation is reduced in the RAM back-up mode with the initialized CPU stopped.

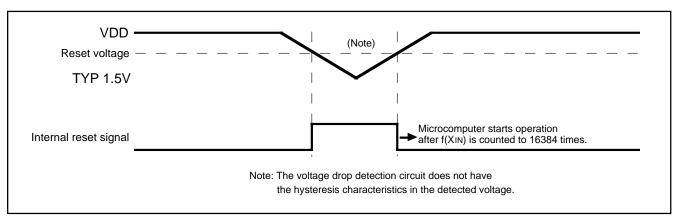


Fig. 21 Voltage drop detection circuit operation waveform

4282 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

RAM BACK-UP MODE

The 4282 Group has the RAM back-up mode.

When the POF instruction is executed, system enters the RAM back-up state.

As oscillation stops retaining RAM, the functions and states of reset circuit at RAM back-up mode, power dissipation can be reduced without losing the contents of RAM. Table 7 shows the function and states retained at RAM back-up. Figure 22 shows the state transition.

(1) Warm start condition

When the external wakeup signal is input after the system enters the RAM back-up state by executing the POF instruction, the CPU starts executing the software from address 0 in page 0. In this case, the P flag is "1."

(2) Cold start condition

The CPU starts executing the software from address 0 in page 0 when any of the following conditions is satisfied .

- reset by power-on reset circuit is performed
- reset by watchdog timer is performed
- reset by voltage drop detection circuit is performed In this case, the P flag is "0."

(3) Identification of the start condition

Warm start (return from the RAM back-up state) or cold start (return from the normal reset state) can be identified by examining the state of the power down flag (P) with the SNZP instruction.

Table 7 Functions and states retained at RAM back-up

Function	RAM back-up
Program counter (PC), registers A, B,	×
carry flag (CY), stack pointer (SP) (Note 2)	^
Contents of RAM	0
Port CARR	×
Ports D ₀ –D ₇	0
Ports E ₀ , E ₁	0
Port G	0
Timer control registers V1, V2	×
Pull-down control registers PU0, PU1	0
Logic operation selection register LO	×
Timer 1 function, Timer 2 function	×
Timer underflow flags (T1F, T2F)	×
Watchdog timer (WDT)	×
Watchdog timer flags (WDF1, WDF2)	×
Most significant ROM code reference enable flag (URS)	×

Notes 1: "O" represents that the function can be retained, and "X" represents that the function is initialized.

Registers and flags other than the above are undefined at RAM back-up, and set an initial value after returning.

2:The stack pointer (SP) points the level of the stack register and is initialized to "112" at RAM back-up.

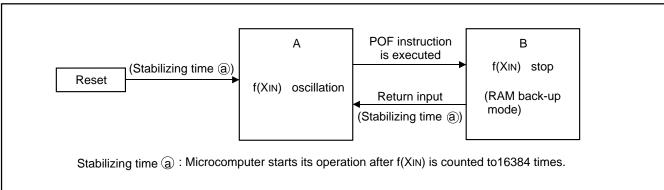


Fig. 22 State transition

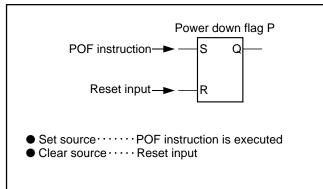


Fig. 23 Set source and clear source of the P flag

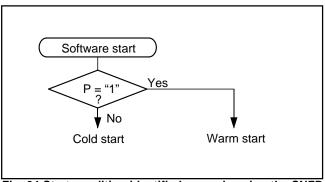
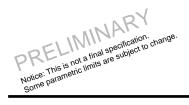



Fig. 24 Start condition identified example using the SNZP instruction

(4) Return signal

An external wakeup signal is used to return from the RAM back-up mode. Table 8 shows the return condition for each return source.

Table 8 Return source and return condition

. Return source	Return condition	Remarks
Ports D4-D7	Return by an external "H" level	Only key-on wakeup function of the port whose pull-down transistor is
	input.	turned ON by register PU1 is valid.
Ports E ₀ , E ₁ , G	Return by an external "H" level	Only key-on wakeup function of the port whose pull-down transistor is
	input.	turned ON by register PU0 is valid.
Ports E ₂	Return by an external "H" level	Key-on wakeup function is always valid.
	input.	

(5) Pull-down control register

Registers PU0 and PU1 are 4-bit registers and control the ON/OFF of pull-down transistor and key-on wakeup function for ports E_0 , E_1 , G and ports D_4 – D_7 .

Set the contents of register PU0 or PU1 through register A with the TPU0A or TPU1A instruction, respectively.

Table 9 Pull-down control registers

Pull-down control register PU0		at	reset: 00002	at RAM back-up : state retained	W
PU03	Ports G ₂ , G ₃ pull-down transistor control	0	Pull-down transisto	r OFF, key-on wakeup invalid	
P 003	bit	1 Pull-down transistor ON, key-on wakeup valid			
PU0 ₂	Ports G ₀ , G ₁ pull-down transistor control	0 Pull-down transistor OFF, key-on wakeup invalid			
P 0 0 2	bit	1 Pull-down transistor ON, key-on wakeup valid			
PU0 ₁	Dort C. will down transister control hit	0	Pull-down transisto	r OFF, key-on wakeup invalid	
P 001	Port E ₁ pull-down transistor control bit	1 Pull-down transistor ON, key-on wakeup valid			
PU00 Port Eo pull-down transistor control bit		0	Pull-down transisto	r OFF, key-on wakeup invalid	
F 000	Port E ₀ pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid		

	Pull-down control register PU1	at reset : 00002		at RAM back-up : state retained	W	
PU13	Port D- null down transister central hit	0	Pull-down transisto	r OFF, key-on wakeup invalid		
PU13	Port D ₇ pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid			
PU12	DIA Dart Darull dans transistan acatral bit		Pull-down transistor OFF, key-on wakeup invalid			
PU 12	Port D ₆ pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid			
PU1 ₁	DIM. Dest D. well design transistes as atral hit		Pull-down transistor OFF, key-on wakeup invalid			
	PU11 Port D ₅ pull-down transistor control bit		Pull-down transistor ON, key-on wakeup valid			
PU10	Port D4 pull-down transistor control bit	0	Pull-down transistor OFF, key-on wakeup invalid			
-010		1	Pull-down transistor ON, key-on wakeup valid			

Note: "W" represents write enabled.

CLOCK CONTROL

The clock control circuit consists of the following circuits.

- · System clock generating circuit
- · Control circuit to stop the clock oscillation
- · Control circuit to return from the RAM back-up state

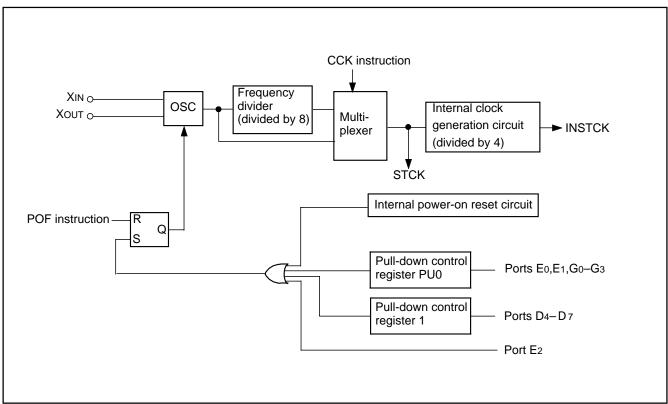


Fig. 25 Clock control circuit structure

System clock signal $f(X_{IN})$ is obtained by externally connecting a ceramic resonator. Connect this external circuit to pins X_{IN} and X_{OUT} at the shortest distance as shown Figure 26.

A feedback resistor is built-in between XIN pin and XOUT pin.

ROM ORDERING METHOD

Please submit the information described below when ordering Mask ROM.

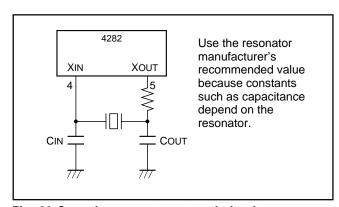
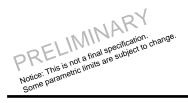



Fig. 26 Ceramic resonator external circuit

LIST OF PRECAUTIONS

Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- connect a bypass capacitor (approx. 0.01 μF) between pins Vpd and Vss at the shortest distance,
- · equalize its wiring in width and length, and
- use the thickest wire.

In the One Time PROM version, port E2 is also used as VPP pin. Connect this pin to Vss through the resistor about 5 k Ω which is assigned to E2/VPP pin as close as possible at the shortest distance.

2 Notes on unused pins

(Note in order to set the output latch to "0" to make pins open)

- After system is released from reset, a port is in a highimpedance state until the output latch of the port is set to "0" by software.
 - Accordingly, the voltage level of pins is undefined and the excess of the supply current may occur.
- To set the output latch periodically is recommended because the value of output latch may change by noise or a program run away (caused by noise).

(Note when connecting to Vss and VDD)

 Connect the unused pins to Vss and VDD at the shortest distance and use the thick wire against noise.

3 Timer


- Count source
 - Stop timer 1 counting to change its count source.
- · Watchdog timer
 - Be sure that the timing to execute the WRST instruction in order to operate WDT efficiently.
- Writing to reload register R1
 - When writing data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.
- Stop of timer 2
 - Avoid a timing when timer 2 underflows to stop timer 2.
- · Writing to reload register R2H
 - When writing data to reload register R2H while timer 2 is operating, avoid a timing when timer underflows.
- Timer 2 carrier wave output function
 - When to expand "H" interval of carrier wave is valid, set "1" or more to reload register R2H.

Program counter

Make sure that the program counter does not specify after the last page of the built-in ROM.

4282 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

INSTRUCTIONS

The 4282 Group has the 68 instructions. Each instruction is described as follows;

- (1) List of instruction function
- (2) Machine instructions (index by alphabet)
- (3) Machine instructions (index by function)
- (4) Instruction code table

SYMBOL

The symbols shown below are used in the following list of instruction function and the machine instructions.

Symbol	Contents	Symbol	Contents
Α	Register A (4 bits)	D	Port D (8 bits)
В	Register B (4 bits)	E	Port E (3 bits)
DR	Register D (3 bits)	G	Port G (4 bits)
ER	Register E (8 bits)	CARR	Port CARR (1 bit)
V1	Timer control register V1 (3 bits)	CAR	CAR flag (1 bit)
V2	Timer control register V2 (4 bits)		
PU0	Pull-down control register PU0 (4 bits)	x	Hexadecimal variable
PU1	Pull-down control register PU1 (4 bits)	у	Hexadecimal variable
LO	Logic operation selection register LO (2 bits)	р	Hexadecimal variable
		n	Hexadecimal constant which represents the
x	Register X (2 bits)		immediate value
Υ	Register Y (4 bits)	j	Hexadecimal constant which represents the
DP	Data pointer (6 bits)		immediate value
	(It consists of registers X and Y)	A3A2A1A0	Binary notation of hexadecimal variable A
PC	Program counter (11 bits)		(same for others)
РСн	High-order 4 bits of program counter		
PC∟	Low-order 7 bits of program counter	\leftarrow	Direction of data movement
sĸ	Stack register (11 bits X 4)	\leftrightarrow	Data exchange between a register and memory
SP	Stack pointer (2 bits)	?	Decision of state shown before "?"
CY	Carry flag	()	Contents of registers and memories
R1	Timer 1 reload register	_	Negate, Flag unchanged after executing
T1	Timer 1		instruction
T1F	Timer 1 underflow flag	M(DP)	RAM address pointed by the data pointer
R2H	Timer 2 reload register	а	Label indicating address a6 a5 a4 a3 a2 a1 a0
R2L	Timer 2 reload register	р, а	Label indicating address a6 a5 a4 a3 a2 a1 a0
T2	Timer 2		in page p ₃ p ₂ p ₁ p ₀
T2F	Timer 2 underflow flag	С	Hex. number C + Hex. number x (also same for
WDT	Watchdog timer	+	others)
WDF1	Watchdog timer flag 1	x	
WDF2	Watchdog timer flag 2		
URS	Most significant ROM code reference enable flag		
Р	Power down flag		
STCK	System clock		
INSTCK	Instruction clock		

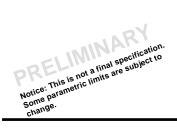
Note: The 4282 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

LIST OF INSTRUCTION FUNCTION

Grouping	Mnemonic	Function	Page	Grouping	Mnemonic	Function	Page
	TAB	(A) ← (B)	38		LA n	(A) ← n	31
	TD 4	(5)	40			n = 0 to 15	
	ТВА	(B) ← (A)	40		TABP p	(SP) ← (SP) + 1	39
fer	TAY	$(A) \leftarrow (Y)$	40		ТАВЕР	$(SK(SP)) \leftarrow (PC)$	39
rans		() ()				(PCH) ← p p=0 to 15	
ter t	TYA	$(Y) \leftarrow (A)$	42			$(PCL) \leftarrow (DR_2 – DR_0, A_3 – A_0)$	
Register to register transfer	TEAD	(ED. ED.) . (D)	4.4			When URS=0	
\$	TEAB	$(ER_7-ER_4) \leftarrow (B)$ $(ER_3-ER_0) \leftarrow (A)$	41			(B) \leftarrow (ROM(PC))7 to 4 (A) \leftarrow (ROM(PC))3 to 0	
ister		(LIG LIG) ((r)				When URS=1	
Reg	TABE	$(B) \leftarrow (ER7-ER4)$	39			$(CY) \leftarrow (ROM(PC))_8$	
		$(A) \leftarrow (ER_3 – ER_0)$				$(B) \leftarrow (ROM(PC))7 \text{ to } 4$	
	TDA	$(DR_2-DR_0) \leftarrow (A_2-A_0)$	40			$(A) \leftarrow (ROM(PC))3 \text{ to } 0$ $(PC) \leftarrow (SK(SP))$	
	IDA		40			$(SP) \leftarrow (SR(SP))$	
	LXY x, y	$(X) \leftarrow x, x = 0 \text{ to } 3$	31				
ses		$(Y) \leftarrow y, y = 0 \text{ to } 15$		ion	AM	$(A) \leftarrow (A) + (M(DP))$	27
RAM addresses	INY	$(Y) \leftarrow (Y) + 1$	31	Arithmetic operation	AMC	$(A) \leftarrow (A) + (M(DP)) + (CY)$	27
M ac		(1) (1) 1	01	ic op	/ livio	$(CY) \leftarrow Carry$	
RA	DEY	$(Y) \leftarrow (Y) - 1$	30	met			
	T. 1. 1. 1	(4) (4(55))		Arith	A n	$(A) \leftarrow (A) + n$	27
	TAM j	$(A) \leftarrow (M(DP))$ $(X) \leftarrow (X) EXOR(j)$	40	,		n = 0 to 15	
		j = 0 to 3			sc	(CY) ← 1	35
	XAM j	$(A) \longleftrightarrow (M(DP))$	43		RC	(CY) ← 0	33
		$(X) \leftarrow (X) \text{ EXOR}(j)$ j = 0 to 3			SZC	(CY) = 0 ?	37
					020	(0.)	0.
	XAMD j	$(A) \longleftrightarrow (M(DP))$	43		СМА	$(A) \leftarrow (\overline{A})$	30
ster		$(X) \leftarrow (X) \text{ EXOR(j)}$			DAD	. (0)/	22
rans		$j = 0 \text{ to } 3$ $(Y) \leftarrow (Y) - 1$			RAR	$\rightarrow \boxed{\text{CY}} \rightarrow \boxed{\text{A}_3\text{A}_2\text{A}_1\text{A}_0}$	33
RAM to register transfer					LGOP	Logic operation	31
regis	XAMI j	$(A) \longleftrightarrow (M(DP))$	43			instruction	
A to		$(X) \leftarrow (X) \text{ EXOR}(j)$				XOR, OR, AND	
RAN		$j = 0 \text{ to } 3$ $(Y) \leftarrow (Y) + 1$			SB j	(Mj(DP)) ← 1	34
					,	j = 0 to 3	
				_			
				Bit operation	RB j	$(Mj(DP)) \leftarrow 0$	33
				pera		j = 0 to 3	
				Bit c	SZB j	(Mj(DP)) = 0 ?	37
						j = 0 to 3	

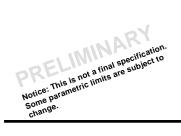
4282 Group

Grouping	Mnemonic	Function	Page		Grouping	Mnemonic	Function	Page
	SEAM	(A) = (M(DP))?	36			TV1A	$(V12-V10) \leftarrow (A2-A0)$	42
Comparison operation	SEA n	(A) = n ? n = 0 to 15	35			TAB1	(B) \leftarrow (T17–T14) (A) \leftarrow (T13–T10)	39
u	B a	(PCL) ← a6-a0 (PCH) ← p	27 28			T1AB	at timer 1 stop (V10=0): $(R17-R14) \leftarrow (B)$ $(T17-T14) \leftarrow (B)$	37
Branch operation	ВА а	(PCL) ← a6-a0 (PCL) ← (a6-a4, A3-A0)	28				$(R13-R10) \leftarrow (A)$ $(T13-T10) \leftarrow (A)$ at timer 1 operating (V10=1):	
Branc	BLA p, a	(PCH) ← p (PCL) ← (a6–a4, A3–A0)	28				$(R17-R14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$	
	ВМа	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow 2$ $(PCL) \leftarrow a6-a0$	28	_		SNZT1	(T1F) = 1? After skipping the next instruction $(T1F) \leftarrow 0$	36
ation	BML p, a	(SP) ← (SP) + 1	29			TV2A	(V23−V20) ← (A3−A0)	42
Subroutine operation		$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p p = 0 \text{ to } 15$ $(PCL) \leftarrow a_6-a_0$				TAB2	(B) ← (T27–T24) (A) ← (T23–T20)	39
Subro	BMLA p,	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p p = 0 \text{ to } 15$ $(PCL) \leftarrow (a6-a4, A3-A0)$	29		Timer operation	Т2АВ	$(R2L_7-R2L_4) \leftarrow (B)$ $(T2_7-T2_4) \leftarrow (B)$ $(R2L_3-R2L_0) \leftarrow (A)$ $(T2_3-T2_0) \leftarrow (A)$	38
operation	RT	(PC) ← (SK(SP)) (SP) ← (SP) − 1	34			Т2НАВ	$(R2H_7-R2H_4) \leftarrow (B)$ $(R2H_3-R2H_0) \leftarrow (A)$	38
Return oper	RTS	(PC) ← (SK(SP)) (SP) ← (SP) – 1	34			T2R2L	$(T27-T24) \leftarrow (R2L7-R2L4)$ $(T27-T24) \leftarrow (R2L3-R2L0)$	38
						SNZT2	(T2F) = 1 ? After skipping the next instruction (T2F) ← 0	36

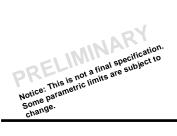


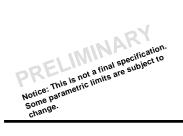
LIST OF INSTRUCTION FUNCTION (CONTINUED)

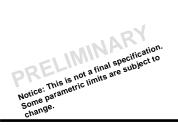
LIST OF INSTRUCTION FUNCTION (CONTINU								
Grouping	Mnemonic	Function	Page					
	CLD RD	$(D) \leftarrow 0$ $(D(Y)) \leftarrow 0$	29 34					
		(Y) = 0 to 7						
ration	SD	$(D(Y)) \leftarrow 1$ (Y) = 0 to 7	35					
Input/Output operation	SZD	(D(Y)) = 0? (Y) = 4 to 7	37					
Input/O	OEA	$(E_1,E_0) \leftarrow (A_1,A_0)$	32					
	IAE	$(A_2-A_0) \leftarrow (E_2-E_0)$	30					
	OGA	(G) ← (A)	32					
	IAG	(A) ← (G)	30					
wave eration	SCAR	(CAR) ← 1	35					
Carrier wave control operation	RCAR	(CAR) ← 0	33					
	NOP	(PC) ← (PC) + 1	32					
	POF	RAM back-up	32					
	SNZP	(P) = 1 ?	36					
ration	ССК	STCK changes to f(XIN)	29					
Other opera	TLOA	$(LO_1,LO_0) \leftarrow (A_1,A_0)$	41					
Othe	URSC	(URS) ← 1	42					
	TPU0A	$(PU03-PU00) \leftarrow (A3-A0)$	41					
	TPU1A	(PU13−PU10) ← (A3−A0)	41					
	WRST	(WDF1) ← 0	43					

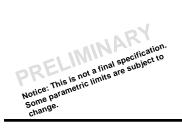


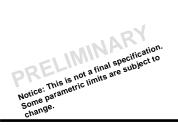
MACHINE INSTRUCTIONS (INDEX BY ALPHABET)

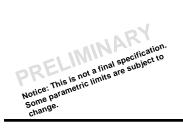

Δ n (Add n	and accumulator)					
Instrunction code	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
oodo	0 1 0 1 0 13 02 11 10 2	0 A n 16	1	1	-	Overflow = 0
Operation:	$(A) \leftarrow (A) + n$ n = 0 to 15		Grouping: Description	register A. The conterchanged. Skips the r	value n in nts of carr	the immediate field to y flag CY remains un- ction when there is no t of operation.
AM (Add ad	ccumulator and Memory)					
Instrunction code	D8 D0 0 0 0 0 0 1 0 1 0 2	0 0 A 46	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	_	-
Operation:	$(A) \leftarrow (A) + (M(DP))$		Grouping: Description	Stores the	contents o	f M(DP) to register A. egister A. The contents ins unchanged.
Instrunction	accumulator, Memory and Carry) D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
code		0 0 B ₁₆	1	1	0/1	-
Operation:	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$		Grouping: Description		contents of ster A. Sto	f M(DP) and carry flag res the result in regis- Y.
B a (Branch	n to address a)					
Instrunction	D8 D0 1 1 a6 a5 a4 a3 a2 a1 a0	1 8 a 16	Number of words	Number of cycles	Flag CY	Skip condition
	2		1	1	-	-
Operation:	(PCL) ← a6-a0		Grouping: Description	Branch ope	hin a page	: Branches to address e.

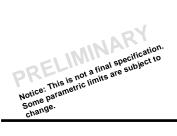

BΔ a (Bran	ch to address a + Accumulator)					
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition
code		0 0 1	words	cycles	- 3	
	1 1 26 25 24 23 22 21 20	1 8 2	2	2	_	-
		' +a ^a 16	Grouping:	Branch ope	eration	
Operation:	(PCL) ← a6–a4, A3–A0		Description	(a ₆ a ₅ a ₄ A ing the low	3 A2 A1 A0) v-order 4 b	: Branches to address determined by replac- bits of the address a in th register A.
BL p, a (Br	anch Long to address a in page p)					
Instrunction	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
0000		16	2	2	-	-
	1 1 a6 a5 a4 a3 a2 a1 a0 ₂	$\begin{bmatrix} 1 & 8 \\ +a \end{bmatrix}$ a $\begin{bmatrix} 16 \end{bmatrix}$	Grouping:	Branch ope	eration	
Operation:	(PCH) ← (P)			: Branch out	of a page	: Branches to address
	(PCL) ← a6-a0			a in page p		
			Note:	p is 0 to 7 p is 0 to 15		
DIAn o/E	Propob Long to address a in page	2)				
Instrunction	Branch Long to address a in page D8 D0	J)	Number of	Number of	Flor CV	Ckin condition
code			words	cycles	Flag CY	Skip condition
0000		0 1 0 16	2	2	_	-
	1 1 a6 a5 a4 p3 p2 p1 p0 ₂	$\begin{bmatrix} 1 & 8 & p \\ +a & p \end{bmatrix}_{16}$	Grouping:	Branch ope	eration	
Operation:	$(PCH) \leftarrow (P)$		Description	: Branch wit	hin a page	: Branches to address
	(PCL) ← (a6-a4, A3-A0)			•		determined by replac-
				page p with		oits of the address a in
			Note:	p is 0 to 7	-	
				p is 0 to 15	for M342	82M2/E2.
RM a (Bran	ch and Mark to address a in page	2)				
Instrunction	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 a6 a5 a4 a3 a2 a1 a0 ₂	1 a a ₁₆	1	1	_	_
Operation:	$(SK(SP)) \leftarrow (PC)$		Grouping:	Subroutine	call opera	ation
орегинот.	$(SP) \leftarrow (SP) + 1$					in page 2 : Calls the
	(PCH) ← 2			subroutine	at address	s a in page 2.
	(PCL) ← a6–a0					

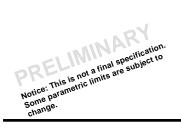

	Branch and Mark Long to address a in	r pago p)		N	EL 201	01.1
Instrunction code	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 1 1 1 p3 p2 p1 p0 2	0 7 p 16	2	2	-	_
	1 0 a6 a5 a4 a3 a2 a1 a0 ₂	1 a a ₁₆	0	Cubacutica		4:
Oneretien	(SK(SD)) ((DC)		Grouping:	Subroutine		เนอก Calls the subroutine ส
Operation:	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$		Description	address a		Calls the subroutine of
	(OF) ← (OF) + 1 (PCH) ← p		Note:	p is 0 to 7		2M1.
	(PCL) ← a6–a0			p is 0 to 15		•
	(Branch and Mark Long to address a	in page p)		1	1	
Instrunction code	D8 D0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 5 0	Number of words	Number of cycles	Flag CY	Skip condition
		16	2	2	-	-
	1 0 a6 a5 a4 p3 p2 p1 p0 ₂	1 a p 16	Grouping:	Subroutine	call opera	ution
Operation:	$(SK(SP)) \leftarrow (PC)$					Calls the subroutine a
•	(SP) ← (SP) + 1			address (a	16 a 5 a 4 A 3	A ₂ A ₁ A ₀) determine
	$(PCH) \leftarrow p$				•	order 4 bits of addres
	(PCL) ← (a6–a4, A3–A0)		Nata	a in page p	_	
			Note:	p is 0 to 7 p is 0 to 15		
· · · · · · · · · · · · · · · · · · ·	ige system Clock to f(XIN))					
Instrunction code	D8 D0 0 1 0 1 1 0 0 1 _	0 5 9	Number of words	Number of cycles	Flag CY	Skip condition
oodo		0 5 9 16	1	1	-	_
Operation:	Change to STCK = f(XIN)		Grouping:	Other oper	ation	
				: Changes s	ystem cloc xecute this	ck (STCK) from f(XIN)/s s instruction at addres
CLD (CLea	r port D)					
Instrunction code	D8 D0 0 0 0 0 1 0 0 0 1	0 1 1	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	-	-
Operation:	(D) ← 1		Grouping:	Input/Outp	ut operatio	n
					-	nigh-impedance state

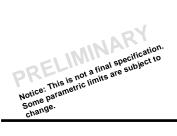

CMA (CoM	plement of Accumulator)					
Instrunction	D8 Do		Number of	Number of	Flag CY	Skip condition
code		0 1 C ₁₆	words 1	cycles 1	_	_
Operation:	$(A) \leftarrow \overline{(A)}$		Grouping:	Arithmetic	_	
			Description			mplement for register
				A's conten	ts in regist	er A.
DEY (DEcre	ement register Y)					
Instrunction	D8 D0	0 1 7	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	_	(Y) = 15
Operation:	$(Y) \leftarrow (Y) - 1$		Grouping:	RAM addre	esses	
			Description			contents of register Y. action, when the con-
						15, the next instruction
				is skipped.		
IAE (Input A	Accumulator from port E)					
Instrunction code	D8 D0 0 0 1 0 1 0 1 1 0	0 5 6	Number of words	Number of cycles	Flag CY	Skip condition
0000		0 5 6 16	1	1	-	-
Operation:	(A2−A0) ← (E2−E0)		Grouping:	Input/Outp		
			Description		the conten	ts of port E to register
				A.		
	Accumulator from port G)		1	1		
Instrunction code	D8 D0 0 0 1 0 1 0 0 0	0 2 8	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	_	-
Operation:	$(A) \leftarrow (G)$		Grouping:	Input/Outp	ut operatio	n
			Description	: Transfers t A.	the conten	ts of port G to register


INY (INcre	ment register Y)					
Instrunction	D8 D0		Number of words	Number of	Flag CY	Skip condition
code		0 1 3 16	1	cycles 1	_	(Y) = 0
Operation:	$(Y) \leftarrow (Y) + 1$		Grouping:	RAM addre	esses	
•				: Adds 1 to t	he conten	ts of register Y. As a re-
						then the contents of
				register y skipped.	is 0, th	e next instruction is
				зкіррец.		
LA n (Load	n in Accumulator)					
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition
code	0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 B n 16	words	cycles		
		1	1	_	Continuous description	
Operation:	(A) ← n		Grouping:	Arithmetic	operation	
·	n = 0 to 15		Description	: Loads the	value n in	the immediate field to
				register A.		
						ctions are continuously
						d, only the first LA in- uted and other LA
						d continuously are
				skipped.		,
LGOP (Lo	Gic OPeration between accumulator	and register E)	<u> </u>			
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition
code	0 0 1 0 0 0 0 0 1	0 4 1	words	cycles		·
		16	1	1	_	_
Operation:	Logic operation XOR, OR, AND		Grouping:	Arithmetic	operation	
			Description		-	operation selected by
						ection register LO be-
						ts of register A and es the result in register
				A.	and store	ss the result in register
	Load register X and Y with x and y)					
Instrunction code	D8 D0 0 1 1 x1 x0 y3 y2 y1 y0 2	0 C y 16	Number of words	Number of cycles	Flag CY	Skip condition
	2	+X ⁹ 16	1	1	_	Continuous description
Operation:	$(X) \leftarrow x, x = 0 \text{ to } 3$		Grouping:	RAM addre	esses	
	$(Y) \leftarrow y, y = 0 \text{ to } 15$		Description			the immediate field to
						alue y in the immediate
					_	When the LXY instruc-
						y coded and executed, astruction is executed
				-		actions coded continu-
				ously are s		
			1			

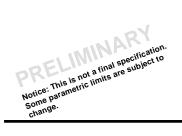

NOP (No O	Peration)					
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition
code	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}_2$	0 0 0 16	words	cycles		
			1	1	_	<u>-</u>
Operation:	(PC) ← (PC) + 1		Grouping:	Other oper		
			Description	: No operati	on	
OEA (Outpu	ut port E from Accumulator)					
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition
code		0 8 4	words	cycles	J	
		16	1	1	_	_
Operation:	$(E1, E0) \leftarrow (A1, A0)$		Grouping:	Input/Outp	ut operatio	 n
•						of register A to port E.
	ut port G from Accumulator)				I I	
Instrunction code	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
code	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0 8 0 16	1	1	_	_
Oneretien	(C) (A)					
Operation:	$(G) \leftarrow (A)$		Grouping:	Input/Outp		n of register A to port G.
			Docoription.	· Outputo til	o contonto	or register / t to port C.
POF (Powe	r OFf1)					
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 2	0 0 D ₁₆	words 1	cycles 1	_	
			Į.	I	_	<u>-</u>
Operation:	RAM back-up		Grouping:	Other oper		
			Description	: Puts the sy	stem in RA	AM back-up state.


RAR (Rotat	e Accumulator Right)					
Instrunction code	D8 D0 0 0 0 1 1 1 0 1	0 1 D 16	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	0/1	_
Operation:	→CY → A3A2A1A0		Grouping: Description		oit of the co	ontents of register A in- of carry flag CY to the
				right.	oonionio	or early mag or to the
RB j (Reset	t Bit)					
Instrunction code	D8 D0 0 0 1 0 1 1 j1 j0 2	0 4 C 16	Number of words	Number of cycles	Flag CY	Skip condition
			1	1	-	_
Operation:	$(Mj(DP)) \leftarrow 0$		Grouping:	Bit operation		
	j = 0 to 3		Description			its of bit j (bit specified e immediate field) of
RC (Reset (Instrunction code	Carry flag) D8 D0 0 0 0 0 0 0 1 1 0 0 2	0 0 6 16	Number of words	Number of cycles	Flag CY	Skip condition
			'	l l	0	
Operation:	(CY) ← 0		Grouping: Description	Arithmetic: Clears (0)		g CY.
RCAR (Res	set CAR flag)					
Instrunction code	D8 D0 0 1 0 0 0 1 1 0 0	0 8 6	Number of words	Number of cycles	Flag CY	Skip condition
		0 0 0 16	1	1	-	-
Operation:	(CAR) ← 0		Grouping: Description	Carrier way : Clears (0)		operation RR output flag.

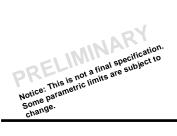

RD (Reset	port D specified by register Y)						
Instrunction	D8 D0	0 1 4 4	Number of words	Number of cycles	Flag CY	Skip condition	
		16	1	1	_	-	
Operation:	(D(Y)) ← 0		Grouping:	Input/Outp	ut operation	n	
	However, (Y) = 0 to 7		Description	: Clears (0) ister Y (hig		oort D specified by reg	
RT (ReTurn	from subroutine)						
Instrunction code	D8 D0	0 4 4 4	Number of words	Number of cycles	Flag CY	Skip condition	
		16	1	2	_	_	
Operation:	(SP) ← (SP) − 1		Grouping:	Return ope	eration		
	$(PC) \leftarrow (SK(SP))$		Description	: Returns for called the		outine to the routine	
RTS (ReTu Instrunction code	rn form subroutine and Skip) D8	0 4 5 16	Number of words	Number of cycles	Flag CY	Skip condition	
			1	2	_	Skip at uncondition	
Operation:	$(SP) \leftarrow (SP) - 1$ $(PC) \leftarrow (SK(SP))$		Grouping: Return operation Description: Returns from subroutine to the rout called the subroutine, and skips the next struction at uncondition.				
SB j (Set B	it)						
Instrunction	D8 D0	0 5 0	Number of words	Number of cycles	Flag CY	Skip condition	
		0 5 C +j 16	1		Flag CY	Skip condition	


SC (Set Ca	arry flag)					
Instrunction	D8 Do		Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 0 1 1 1 2	0 0 7	words	cycles		
	-		1	1	1	_
Operation:	(CY) ← 1		Grouping:	Arithmetic	operation	
			Description	: Sets (1) to	carry flag	CY.
SCAR (Set	CAR flag)		1			
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition
code	0 1 0 0 0 0 1 1 1 2	0 8 7	words	cycles		
	2	10	1	1	_	_
Operation:	(CAR) ← 1		Grouping:	Carrier wa	ve control	oneration
operation.						R output flag (CAR).
				. 00.0 (1) 10	po 0,	t catput hag (er ii t).
SD (Set po	rt D specified by register Y)					
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 0 1 0 1	0 1 5	words	cycles		
			1	1	_	_
Operation:	(D(Y)) ← 1		Grouping:	Input/Outp	ut operatio	n
	(Y) = 0 to 7		Description	: Sets (1) to	a bit of po	rt D specified by regis
				ter Y.		
(21)						
	p Equal, Accumulator with immediate	e data n)		Man 1	FI. OX	
Instrunction	D8 Do		Number of words	Number of cycles	Flag CY	Skip condition
code		0 2 5	2	2	_	(A) = n, n = 0 to 15
						(A) = 11, 11 = 0 to 15
	0 1 0 1 1 n3 n2 n1 n0 2	0 B n 16	Grouping:	Compariso	on operatio	n
Operation:	(A) = n ?					uction when the cor
-	n = 0 to 15			tents of re	gister A is	equal to the value n i
				the immed	iate field.	

SEAM (Skip	Equal, Accumulator with Memory)					
Instrunction code	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 0 0 1 1 0 2	0 2 6 16	1	1	-	(A) = (M(DP))
Operation:	(A) = (M(DP)) ?		Grouping:	Compariso	n operatio	n
			Description	: Skips the	next instr	uction when the con-
				tents of reg M(DP).	jister A is e	qual to the contents of
SNZP (Skip	if Non Zero condition of Power down	n flag)				
Instrunction	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 0 0 1 1 1	0 0 3 16	1	1	_	(P) = 1
Operation:	(P) = 1 ?		Grouping:	Other oper	ation	
operation.	(,, -, -, -, -, -, -, -, -, -, -, -, -, -		Description	: Skips the n	ext instruc	tion when P flag is "1". remains unchanged.
SNZT1 (Ski	p if Non Zero condition of Timer 1 un	derflow flag)				
Instrunction code	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
coue	0 0 1 0 0 0 0 1 0	0 4 2 16	1	1	-	(T1F) = 1
Operation:	(T1F) = 1 ?		Grouping:	Timer oper	ation	
	After skipping, (T1F) ← 0		Description	: Skips the tents of T1	next instr F flag is "1	uction when the con- ." (0) to T1F flag.
SNZT2 (Ski	p if Non Zero condition of Timer 2 ine	errupt request f	flag)			
Instrunction code	D8 D0 0 0 1 0 1 0 0 1 0	0 5 2	Number of words	Number of cycles	Flag CY	Skip condition
0000		0 5 2 16	1	1	-	(T2F) = 1
Operation:	$(T2F) = 1$? After skipping, $(T2F) \leftarrow 0$		Grouping: Description	tents of T2	next instr F flag is "1	uction when the con- ." (0) to T2F flag.
			l			

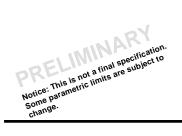


SZB j (Skip	o if Zero, Bit)					
Instrunction code	D8 D0 0 0 0 1 0 0 0 j1 j0 0	0 2 j ₁₆	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 0 0 0 1 10	0 2 j ₁₆	1	1	-	(Mj(DP)) = 0 j = 0 to 3
Operation:	(Mj(DP)) = 0 ?		Grouping:	Bit operation	on	,
-	j = 0 to 3		Description	•		uction when the con-
						cified by the value j in of M(DP) is "0."
SZC (Skip	if Zero, Carry flag)					
Instrunction code	D8 D0	0 2 F	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	_	(CY) = 0
Operation:	(CY) = 0 ?		Grouping:	Arithmetic	operation	
			Description	: Skips the tents of ca		uction when the con- is "0."
<u>. </u>	if Zero, port D specified by register Y	<u>(</u>)				
Instrunction code	D8 D0 0 0 1 0 0 1 0 0	0 2 4	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 0 1 0 1 1	0 2 B ₁₆	2	2	_	(D(Y)) = 0 (Y) = 4 to 7
Operation:	(D(Y)) = 0?		Grouping:	Input/Outp	ut operatio	n
	(Y) = 4 to 7		Description	: Skips the r D specified		ction when a bit of porter Y is "0."
T1AB (Trai	nsfer data to timer 1 and register R1	from Accumula	tor and reg	ister B)		
Instrunction code	D8 D0 0 0 1 1 1 1 1 2	0 4 7	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	-	_
Operation:	at timer 1 stop (V10=0)		Grouping:	Timer oper		
	$(R17-R14) \leftarrow (B), (R13-R10) \leftarrow (A)$ $(T17-T14) \leftarrow (B), (T13-T10) \leftarrow (A)$ at timer 1 operating $(V10=1)$ $(R17-R14) \leftarrow (B), (R13-R10) \leftarrow (A)$		Description	tents of re and reload At timer 1	gister A an register R operating of register	e o), transfers the cond register B to timer 11.(V10 = 1), transfers the A and register B to re

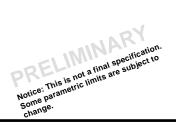


4282 Group

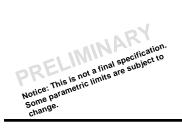
T2AB (Tran	sfer data to timer 2 and register R2	L from Accumula	ator and re	gister B)		
Instrunction code	D8 D0 0 1 0 0 0 1 0 0 0	0 8 8 46	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	_	
Operation:	$(R2L7-R2L4) \leftarrow (B)$		Grouping:	Timer oper	ation	
	$(R2L3-R2L0) \leftarrow (A)$		Description	: Transfers t	he conten	ts of registers A and B
	$(T27\text{-}T24) \leftarrow (B)$			to timer 2 a	and timer 2	reload register R2L.
	$(T23-T20) \leftarrow (A)$					
	ansfer data to register R2H Accumu	lator from regist	· ·	I		
Instrunction code	D8 D0 D0 1 0 0 1 2	0 8 9 16	Number of words	Number of cycles	Flag CY	Skip condition
		110	1	1	_	
Operation:	$(R2H7-R2H4) \leftarrow (B)$		Grouping:	Timer oper	ation	
	$(R2H3-R2H0) \leftarrow (A)$		Description	: Transfers	the conte	nts of register A and
				register B t	o reload re	egister R2H.
T2R2L (Tra	nsfer data to timer 2 from register R	(2L)				
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition
code	0 0 1 0 1 0 0 1 1	0 5 3	words	cycles		
		10	1	1	-	_
0	(TO- TO)			<u>-</u> .	··	
Operation:	$(T27-T24) \leftarrow (R2L7-R2L4)$ $(T22-T24) \leftarrow (R2L2-R2L4)$		Grouping:	Timer oper		nto of volcod register
	$(T23-T20) \leftarrow (R2L3-R2L0)$		Description	R2L to time		nts of reload register
				KZL 10 time	2 1 ∠.	
TAR (Trans	fer data to Accumulator from registe	or B)				
Instrunction	D8 Do	<i>i D)</i>	Number of	Number of	Flag CY	Skip condition
code			words	cycles	riag C1	Skip Condition
code	0 0 0 0 1 1 1 1 0 2	0 1 E ₁₆	1	1	_	
			'			
Operation:	$(A) \leftarrow (B)$		Grouping:	Register to	register tr	ansfer
•						ts of register B to reg-
				ister A.		

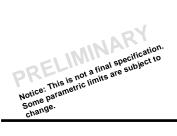


IAB1 (Iran	sfer data to Accumulator and register B from timer	1)			
Instrunction code	D8 D0 0 0 1 0 1 0 1 1 1 0 0 5 7	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	_
Operation:	(B) ← (T17–T14)	Grouping:	Timer oper	ation	
	(A) ← (T13–T10)		Transfers ters A and		its of timer 1 to regis-
TAB2 (Tran	sfer data to Accumulator and register B from timer	<u> </u> 2)			
Instrunction code	D8 D0	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 1 0 0 0 0 0 2	1	1	-	-
Operation:	(B) ← (T27–T24)	Grouping:	Timer oper	ation	
	(A) ← (T23–T20)				its of timer 2 to regis-
			ters A and	В.	
TABE (Tran Instrunction code	sfer data to Accumulator and register B from regist D8 D0 0 0 1 0 1 0 2 A	er E) Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 0 1 0 1 0 2	1	1	_	-
Operation:	$(B) \leftarrow (ER7-ER4)$ $(A) \leftarrow (ER3-ER0)$	Grouping: Description:	Register to Transfers t isters A and	he content	ansfer ts of register E to reg-
TABP p (Tra	ansfer data to Accumulator and register B from Pro	gram memo	ory in page	p)	
Instrunction	ansfer data to Accumulator and register B from Pro	gram memo	ory in page Number of cycles	' ' 	Skip condition
Instrunction		Number of	Number of		Skip condition
Instrunction code		Number of words	Number of cycles	Flag CY - 0/1	
TABP p (Trainstrunction code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words 1 Grouping: Description: Transfers bits A when URS ROM pattern fied by regist	Number of cycles 3 Arithmetic s 7 to 4 to reflag is cleared in address (ers A and D i	Flag CY	d bits 3 to 0 to registe hese bits 7 to 0 are th DRo A3 A2 A1 Ao) spec
Instrunction code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words 1 Grouping: Description: Transfers bits A when URS ROM pattern fied by regist Transfers bits	Number of cycles 3 Arithmetic s 7 to 4 to reflag is cleared in address (ers A and D i 8 of ROM pate	Flag CY	



4282 Group


nsfer data to Accumulator from Mem	nory)				
D8 D0		Number of	Number of	Flag CY	Skip condition
0 0 1 1 0 0 1 1 1 0	$\begin{array}{c c} 0 & 6 & \stackrel{4}{\downarrow}_{j} \\ \end{array}_{16}$	1	1	_	_
$ (A) \leftarrow (M(DP)) $ $ (X) \leftarrow (X)EXOR(j) $ $ j = 0 \text{ to } 3 $		Grouping: Description	: After trans register A, performed j in the imr	ferring the , an exclu between re mediate fie	
fer data to Accumulator from registe	er Y)	I			
D8 D0 0 0 0 0 1 1 1 1 1 1 2	0 1 F ₁₆	Number of words	Number of cycles	Flag CY	Skip condition
		I	l	_	
$(A) \leftarrow (Y)$		Grouping: Description			ansfer s of register Y to regis-
sfer data to register B from Accumula	ator)	•			
D8 D0 0 0 0 0 0 1 1 1 0 2	0 0 E 16	Number of words	Number of cycles	Flag CY	Skip condition
2		1	1	_	
(B) ← (A)					ansfer s of register A to regis-
sfer data to register D from Accumul	ator)	ı			
D8 D0	0 2 9	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
(DR2−DR0) ← (A2−A0)		Grouping: Description			
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c } \hline Da & Do & Do & Ad & Ad & Do & Ad & Do & Ad & Do & D$	


TEAB (Trai	nsfer data to register E from Accumu	ulator and regist	er B)			
Instrunction code	D8 D0	Ο 1 Δ	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	-	-
Operation:	(ER7–ER4) ← (B)		Grouping:	Register to	register tr	ansfer
	(ER3–ER0) ← (A)		Description	: Transfers register B t		nts of register A and E.
TLOA (Trai	nsfer data to register LO from Accum	nulator)				
Instrunction	D8 D0 0 0 1 0 1 1 0 0 0 0 2	0 5 8 16	Number of words	Number of cycles	Flag CY	Skip condition
	2	16	1	1	-	-
Operation:	(LO1, LO0) ← (A1, A0)		Grouping:	Other oper	ation	
					he content	s of register A to logic gister LO.
TPU0A (Trainstrunction code	ansfer data to register PU0 from Acc	eumulator)	Number of words	Number of cycles	Flag CY	Skip condition
Operation:	(PU03–PU00) ← (A3–A0)		Grouping: Description	Other oper : Transfers to up control	the conten	ts of register A to pull- JO.
TPU1A (Tra	ansfer data to register PU1 from Acc	cumulator)				
Instrunction code	D8 D0 0 1 0 0 0 1 1 1 0 0	0 8 E	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	-	_
Operation:	(PU13–PU10) ← (A3–A0)		Grouping: Description	Other oper : Transfers to up control	the conten	ts of register A to pull- J1.

TV1A (Tran	sfer data to register V1 from Accumu	lator)				
Instrunction	D8 D0 0 0 1 0 1 0 1 1 1 1	0 5 B	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	-	-
Operation:	(V12−V10) ← (A2−A0)		Grouping:	Timer oper	ation	
			Description	: Transfers ti ter V1.	he content:	s of register A to regis-
TV2A (Tran	sfer data to register V2 from Accumu	lator)				
Instrunction code	D8 D0 0 0 1 0 1 1 0 1 0 2	0 5 A 16	Number of words	Number of cycles	Flag CY	Skip condition
		0 3 7 16	1	1	_	-
Operation:	$(V23-V20) \leftarrow (A3-A0)$		Grouping:	Timer oper		
			Description	: Transfers t ter V2.	he content:	s of register A to regis-
TYA (Trans	fer data to regiser Y from Accumulato	or)				
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 0 0	0 0 C ₁₆	words 1	cycles 1	-	_
Operation:	$(Y) \leftarrow (A)$		Grouping:	Register to	register tr	anefer
				_		s of register A to regis-
	s Upper ROM Code reference enable	flag)				
Instrunction code	D8 D0 0 1 0 0 0 0 0 1 0 2	0 8 2 16	Number of words	Number of cycles	Flag CY	Skip condition
	2		1	1	_	_
Operation:	(URS) ← 1		Grouping: Description:	Other opera: Sets the m ence enabl	ost signific	cant ROM code refer- S) to "1."

WRST (Wa	tchdog timer ReSeT)					
Instrunction	D8 D0		Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 1 1 2	0 0 F ₁₆	words 1	cycles 1	_	_
Operation:	(WDF1) ← 0		Grouping:	Other oper	ation	
			Description	: Initializes t	he watchd	og timer flag (WDF1).
XAM j (eXd	change Accumulator and Memory dat	ta)				
Instrunction	D8 D0	0 6 j 40	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 1 1 0 0 0 1 1 10	0 0 J 16	1	1	_	_
Operation:	$(A) \longleftrightarrow (M(DP))$		Grouping:	RAM to reg	gister trans	sfer
	$(X) \leftarrow (X)EXOR(j)$ j = 0 to 3		Description	with the co OR operat ter X and t	ntents of r ion is perf he value j	ne contents of M(DP) egister A, an exclusive ormed between regis- in the immediate field, in register X.
XAMD j (e)	Kchange Accumulator and Memory da	ata and Decren	nent registe	er Y and sk	ip)	
Instrunction code	D8 D0 0 0 1 1 0 1 1 j1 j0 2	0 6 C 16	Number of words	Number of cycles	Flag CY	Skip condition
		L +j 16	1	1	_	(Y) = 15
Operation:	$ \begin{aligned} &(A) \longleftrightarrow (M(DP)) \\ &(X) \longleftrightarrow (X)EXOR(j) \\ &j = 0 \text{ to } 3 \\ &(Y) \longleftrightarrow (Y) - 1 \end{aligned} $		Grouping: Description	with the co OR operat ter X and the and stores Subtracts As a resul	anging the ntents of raise performance is performance in the result of subtrains the result of subtrains the result of subtrains and result and	fer e contents of M(DP) egister A, an exclusive ormed between regis- in the immediate field, in register X. contents of register Y. action, when the con- 15, the next instruction
XAMI j (eX	change Accumulator and Memory da	ta and Increme	nt register	Y and skip)	
Instrunction code	D8 D0 0 0 1 1 0 1 0 j1 j0 2	0 6 8 +1 16	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	_	(Y) = 0
Operation:	$ \begin{aligned} &(A) \longleftrightarrow (M(DP)) \\ &(X) \longleftrightarrow (X)EXOR(j) \\ &j = 0 \text{ to } 3 \\ &(Y) \longleftrightarrow (Y) + 1 \end{aligned} $		Grouping: Description	with the co OR operat ter X and the and stores Adds 1 to the sult of add	anging the ntents of raion is performed by the value jubble the result the content dition, w	e contents of M(DP) egister A, an exclusive ormed between regis- in the immediate field, in register X. s of register Y. As a re- hen the contents of e next instruction is

MACHINE INSTRUCTIONS (INDEX BY FUNCTION)

Paramete	r					Ir	nstru	ıctio	n co	de				er of	er of	
Type of instructions	Mnemonic	D8	D7	D ₆	D ₅	D4	Dз	D2	D ₁	D ₀		adeo otati	oimal on	Number of words	Number of cycles	Function
miou dodonio	TAB	0	0	0	0	1	1	1	1	0	0	1	Е	1	1	(A) ← (B)
ē	ТВА	0	0	0	0	0	1	1	1	0	0	0	Ε	1	1	(B) ← (A)
transf	TAY	0	0	0	0	1	1	1	1	1	0	1	F	1	1	$(A) \leftarrow (Y)$
egister	TYA	0	0	0	0	0	1	1	0	0	0	0	С	1	1	(Y) ← (A)
Register to register transfer	TEAB	0	0	0	0	1	1	0	1	0	0	1	Α	1	1	$(ER_7-ER_4) \leftarrow (B) \; (ER_3-ER_0) \leftarrow (A)$
Regis	TABE	0	0	0	1	0	1	0	1	0	0	2	Α	1	1	$(B) \leftarrow (ER7-ER4) (A) \leftarrow (ER3-ER0)$
	TDA	0	0	0	1	0	1	0	0	1	0	2	9	1	1	$(DR_2-DR_0) \leftarrow (A_2-A_0)$
	LXY x, y	0	1	1	X 1	X 0	уз	y 2	y 1	yo	0	C +x	-	1		$(X) \leftarrow x, x = 0 \text{ to } 3$ $(Y) \leftarrow y, y = 0 \text{ to } 15$
RAM addresses	INY	0	0	0	0	1	0	0	1	1	0	1	3	1	1	(Y) ← (Y) + 1
RA RA	DEY	0	0	0	0	1	0	1	1	1	0	1	7	1	1	$(Y) \leftarrow (Y) - 1$
	TAM j	0	0	1	1	0	0	1	j1	jo	0	6	4 +j	1		$(A) \leftarrow (M(DP))$ $(X) \leftarrow (X) EXOR(j)$ j = 0 to 3
ansfer	XAM j	0	0	1	1	0	0	0	j1	jo	0	6	j	1		$(A) \longleftrightarrow (M(DP))$ $(X) \longleftrightarrow (X) EXOR(j)$ $j = 0 \text{ to } 3$
RAM to register transfer	XAMD j	0	0	1	1	0	1	1	j1	jo	0	6	C +j	1		$(A) \leftarrow \rightarrow (M(DP))$ $(X) \leftarrow (X) EXOR(j)$ $j = 0 \text{ to } 3$ $(Y) \leftarrow (Y) - 1$
	XAMI j	0	0	1	1	0	1	0	j1	jo	0	6	8 +j	1		$(A) \leftarrow \rightarrow (M(DP))$ $(X) \leftarrow (X) EXOR(j)$ $j = 0 \text{ to } 3$ $(Y) \leftarrow (Y) + 1$

4282 Group

Skip condition	Carry flag CY	Detailed description
-	-	Transfers the contents of register B to register A.
-	_	Transfers the contents of register A to register B.
-	_	Transfers the contents of register Y to register A.
-	_	Transfers the contents of register A to register Y.
-	_	Transfers the contents of registers A and B to register E.
-	_	Transfers the contents of register E to registers A and B.
-	_	Transfers the contents of register A to register D.
Continuous description	-	Loads the value x in the immediate field to register X, and the value y in the immediate field to register Y.
		When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.
(Y) = 0	-	Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped.
(Y) = 15	-	Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped.
-	-	After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
-	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
(Y) = 15	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped.
(Y) = 0	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped.

MACHINE INSTRUCTIONS (CONTINUED)

Parameter						lı	nstru							jo ,	Jo "	
Type of instructions	Mnemonic	D8	D ₇	D ₆	D ₅	D4	Дз	D ₂	D ₁	D ₀		adec otatio	imal on	Number of words	Number of cycles	Function
	LA n	0	1	0	1	1	nз	n ₂	N1	n o	0	В	n	1	1	(A) ← n n = 0 to 15
	TABP p	0	1	0	0	1	рз	p2	p1	po	0	9	p	1	3	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$ $(PCH) \leftarrow p, p=0 \text{ to } 7 \text{ (Note)}$ $(PCL) \leftarrow (DR_2-DR_0, A_3-A_0)$ When URS=0, $(B) \leftarrow (ROM(PC))7 \text{ to } 4$ $(A) \leftarrow (ROM(PC))3 \text{ to } 0$ When URS=1, $(CY) \leftarrow (ROM(PC))8$ $(B) \leftarrow (ROM(PC))7 \text{ to } 4$ $(A) \leftarrow (ROM(PC))3 \text{ to } 0$ $(SP) \leftarrow (SP) - 1$ $(PC) \leftarrow (SK(SP))$
tion	AM	0	0	0	0	0	1	0	1	0	0	0	Α	1	1	$(A) \leftarrow (A) + (M(DP))$
Arithmetic operation	AMC	0	0	0	0	0	1	0	1	1	0	0	В	1	1	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$
Arithr	A n	0	1	0	1	0	nз	n ₂	n ₁	no	0	Α	n	1	1	$(A) \leftarrow (A) + n$ n = 0 to 15
	sc	0	0	0	0	0	0	1	1	1	0	0	7	1	1	(CY) ← 1
	RC	0	0	0	0	0	0	1	1	0	0	0	6	1	1	(CY) ← 0
	szc	0	0	0	1	0	1	1	1	1	0	2	F	1	1	(CY) = 0 ?
	СМА	0	0	0	0	1	1	1	0	0	0	1	С	1	1	$(A) \leftarrow (\overline{A})$
	RAR	0	0	0	0	1	1	1	0	1	0	1	D	1	1	CY → A3A2A1A0
	LGOP	0	0	1	0	0	0	0	0	1	0	4	1	1	1	Logic operation instruction XOR, OR, AND

Note: p is 0 to 7 for M34282M1, p is 0 to 15 for M34282M2/E2.

Skip condition	Carry flag CY	Detailed description
Continuous description	_	Loads the value n in the immediate field to register A. When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped.
-	0/1	instruction is executed).
		(One of stack is used when the TABP p instruction is executed.)
-	_	Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.
-	0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
Overflow = 0	_	Adds the value n in the immediate field to register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation.
-	1	Sets (1) to carry flag CY.
-	0	Clears (0) to carry flag CY.
(CY) = 0	_	Skips the next instruction when the contents of carry flag CY is "0."
_	-	Stores the one's complement for register A's contents in register A.
_	0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.
_	_	Executes the logic operation selected by logic operation selection register LO between the contents of register A and register E, and stores the result in register A.

MACHINE INSTRUCTIONS (CONTINUED)

Parameter						lı	nstru	ıctio	n co	de				o t	o o o	
Type of instructions	Mnemonic	D8	D7	D ₆	D ₅	D4	D ₃	D ₂	D ₁	D ₀		radec otati		Number of words	Number of cycles	Function
	SB j	0	0	1	0	1	1	1	j1	jo	0	5	C +j	1	1	(Mj(DP)) ← 1 j = 0 to 3
Bit operation	RB j	0	0	1	0	0	1	1	j1	jo	0	4	C +j	1	1	$(Mj(DP)) \leftarrow 0$ j = 0 to 3
Bit o	SZB j	0	0	0	1	0	0	0	j1	jo	0	2	j	1	1	(Mj(DP)) = 0 ? j = 0 to 3
Ē	SEAM	0	0	0	1	0	0	1	1	0	0	2	6	1	1	(A) = (M(DP)) ?
Comparison operation	SEA n	0	0	0	1	0	0	1	0	1	0	2	5	2	2	(A) = n ? n = 0 to 15
ပိ		0	1	0	1	1	пз	n ₂	n1	no	0	В	n			
	Ва	1	1	a 6	a 5	a 4	аз	a 2	a 1	a 0	1	8 +a	а	1	1	(PCL) ← a6-a0
	BL p, a	0	0	0	1	1	рз	p ₂	p 1	p ₀	0	3	p	2	2	(PCH) ← p (PCL) ← a6-a0
ration		1	1	a 6	a 5	a 4	a 3	a 2	a1	a 0	1	8 +a	а			(Note)
Branch operation	ВА а	0	0	0	0	0	0	0	0	1	0	0	1	2	2	(PCL) ← (a6–a4, A3–A0)
Bra		1	1	a 6	a 5	a 4	a 3	a 2	a1	a 0	1	8 +a	а			
	BLA p, a	0	0	0	0	1	0	0	0	0	0	1	0	2	2	(РСн) ← р (РС∟) ← (a6−a4, A3−A0)
		1	1	a 6	a 5	a4	рз	p ₂	p 1	p ₀	1	8 +a	р			(Note)

Note: p is 0 to 7 for M34282M1, p is 0 to 15 for M34282M2/E2.

Skip condition	Carry flag CY	Detailed description
-	-	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
-	_	Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
(Mj(DP)) = 0 j = 0 to 3	_	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of M(DP) is "0."
(A) = (M(DP))	-	Skips the next instruction when the contents of register A is equal to the contents of M(DP).
(A) = n n = 0 to 15	_	Skips the next instruction when the contents of register A is equal to the value n in the immediate field.
_	-	Branch within a page : Branches to address a in the identical page.
_	_	Branch out of a page : Branches to address a in page p.
_	_	Branch within a page: Branches to address (a ₆ a ₅ a ₄ A ₃ A ₂ A ₁ A ₀) determined by replacing the low-order 4 bits of the address a in the identical page with register A.
-	_	Branch out of a page: Branches to address (a ₆ a ₅ a ₄ A ₃ A ₂ A ₁ A ₀) determined by replacing the low-order 4 bits of the address a in page p with register A.

MACHINE INSTRUCTIONS (CONTINUED)

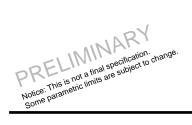
_							nstru							±	- 5	
Parameter	Mnemonic											_		Number of words	Number of cycles	Function
Type of instructions		D8	D7	D ₆	D ₅	D4	Дз	D ₂	D ₁	D ₀	Hexa no	tati		Z N	n S	
	ВМ а	1	0	a 6	a 5	a 4	a 3	a 2	a ₁	a ₀	1	а	а	1	1	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$ $(PCH) \leftarrow 2$ $(PCL) \leftarrow a_{6}-a_{0}$
eration	BML p, a	0	0	1	1	1	рз	p ₂	p 1	p ₀	0	7	р	2	2	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$ $(PCH) \leftarrow p$
Subroutine operation		1	0	a 6	a 5	a 4	a 3	a 2	a1	a 0	1	а	а			(Note) ← a6−a0
Suk	BMLA p, a	0	0	1	0	1	0	0	0	0	0	5	0	2	2	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$
		1	0	a 6	a 5	a 4	рз	p ₂	p ₁	p ₀	1	а	р			(PC _H) ← p (PC _L) ← (a ₆ –a ₄ , A ₃ –A ₀) (Note)
eration	RT	0	0	1	0	0	0	1	0	0	0	4	4	1	2	$(SP) \leftarrow (SP) - 1$ $(PC) \leftarrow (SK(SP))$
Return operation	RTS	0	0	1	0	0	0	1	0	1	0	4	5	1	2	$(SP) \leftarrow (SP) - 1$ $(PC) \leftarrow (SK(SP))$
	T1AB	0	0	1	0	0	0	1	1	1	0	4	7	1	1	at timer 1 stop (V10=0) $(R17-R14) \leftarrow (B), (R13-R10) \leftarrow (A)$ $(T17-T14) \leftarrow (B), (T13-T10) \leftarrow (A)$ at timer 1 operating (V10=1) $(R17-R14) \leftarrow (B), (R13-R10) \leftarrow (A)$
u	TAB1	0	0	1	0	1	0	1	1	1	0	5	7	1	1	(B) ← (T17–T14) (A) ← (T13–T10)
peratic	TV1A	0	0	1	0	1	1	0	1	1	0	5	В	1	1	$(V12-V10) \leftarrow (A2-A0)$
Timer operation	SNZT1	0	0	1	0	0	0	0	1	0	0	4	2	1	1	(T1F) = 1? After skipping the next instruction $(T1F) \leftarrow 0$
	T2AB	0	1	0	0	0	1	0	0	0	0	8	8	1	1	$(R2L7-R2L4) \leftarrow (B)$ $(R2L3-R2L0) \leftarrow (A)$ $(T27-T24) \leftarrow (B)$, $(T23-T20) \leftarrow (A)$

Note: p is 0 to 7 for M34282M1, and p is 0 to 15 for M34282M2/E2.

Skip condition	Carry flag CY	Detailed description
_	_	Call the subroutine in page 2 : Calls the subroutine at address a in page 2.
-	_	Call the subroutine : Calls the subroutine at address a in page p.
_	_	Call the subroutine: Calls the subroutine at address (as as a4 A3 A2 A1 A0) determined by replacing the low-order 4 bits of address a in page p with register A.
-	_	Returns from subroutine to the routine called the subroutine.
Skip at uncondition	_	Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition.
_	_	At timer 1 stop (V10 = 0), transfers the contents of register A and register B to timer 1 and reload register R1. At timer 1 operating (V10 = 1), transfers the contents of register A and register B to reload register R1.
-	_	Transfers the contents of timer 1 to registers A and B.
_	-	
		Transfers the contents of register A to registers V1.
(T1F) = 1	-	Olima the mantingtonation when the contents of TAE (1) is "4".
		Skips the next instruction when the contents of T1F flag is "1." After skipping, clears (0) to T1F flag.
_	_	Transfers the contents of register A and register B to timer 2 and reload register R2L.

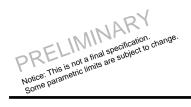
MACHINE INSTRUCTIONS (CONTINUED)

Parameter						lı	nstru	ıctio	n co	de				er of Is	ır of	
Type of instructions	Mnemonic	D8	D7	D ₆	D ₅	D4	Dз	D ₂	D ₁	D ₀	Hex	adec tati		Number of words	Number of cycles	Function
	TAB2	0	0	1	0	0	0	0	0	0	0	4	0	1	1	$(B) \leftarrow (T27-T24), (A) \leftarrow (T23-T20)$
	TV2A	0	0	1	0	1	1	0	1	0	0	5	Α	1	1	(V23−V20) ← (A3−A0)
Timer operation	SNZT2	0	0	1	0	1	0	0	1	0	0	5	2	1	1	(T2F) = 1? After skipping the next instruction $(T2F) \leftarrow 0$
Timer	Т2НАВ	0	1	0	0	0	1	0	0	1	0	8	9	1	1	$(R2H_7-R2H_4) \leftarrow (B)$ $(R2H_3-R2H_0) \leftarrow (A)$
	T2R2L	0	0	1	0	1	0	0	1	1	0	5	3	1	1	(T27–T24) ← (R2L7–R2L4) (T23–T20) ← (R2L3–R2L0)
rion	SCAR	0	1	0	0	0	0	1	1	1	0	8	7	1	1	(CAR) ← 1
Carrier wave control operation	RCAR	0	1	0	0	0	0	1	1	0	0	8	6	1	1	(CAR) ← 0
	CLD	0	0	0	0	1	0	0	0	1	0	1	1	1	1	(D) ← 0
	RD	0	0	0	0	1	0	1	0	0	0	1	4	1	1	$(D(Y)) \leftarrow 0$ $(Y) = 0 \text{ to } 7$
	SD	0	0	0	0	1	0	1	0	1	0	1	5	1	1	(D(Y)) ← 1 (Y) = 0 to 7
<u></u>	SZD	0	0	0	1	0	0	1	0	0	0	2	4	2	2	(D(Y)) = 0 ?
peratic		0	0	0	1	0	1	0	1	1	0	2	В			(Y) = 4 to 7
Input/Output operation	OEA	0	1	0	0	0	0	1	0	0	0	8	4	1	1	(E1, E0) ← (A1, A0)
	IAE	0	0	1	0	1	0	1	1	0	0	5	6	1	1	$(A_2-A_0) \leftarrow (E_2-E_0)$
	OGA	0	1	0	0	0	0	0	0	0	0	8	0	1	1	$(G) \leftarrow (A)$
	IAG	0	0	0	1	0	1	0	0	0	0	2	8	1	1	$(A) \leftarrow (G)$



4282 Group

		,
Skip condition	Carry flag CY	Detailed description
_	_	Transfers the contents of timer 2 to registers A and B.
-	_	Transfers the contents of register A to registers V2.
(T2F) = 1	_	Skips the next instruction when the contents of T2F flag is "1." After skipping, clears (0) to T2F flag.
-	_	Transfers the contents of register A and register B to reload register R2H.
-	_	Transfers the contents of reload register R2L to timer 2.
-	_	Sets (1) to port CARR output flag (CAR).
-	_	Clears (0) to port CARR output flag (CAR).
_	_	Clears (0) to port D (high-impedance state).
_	_	Clears (0) to a bit of port D specified by register Y (high-impedance state).
_	_	Sets (1) to a bit of port D specified by register Y.
(D(Y)) = 0 (Y) = 4 to 7	_	Skips the next instruction when a bit of port D specified by register Y is "0."
_	_	Outputs the contents of register A to port E.
_	_	Transfers the contents of port E to register A.
_	_	Outputs the contents of register A to port G.
_	_	Transfers the contents of port G to register A.


		D ₇											40	== =:	
Р			D ₆	D ₅	D4	Дз	D ₂	D1	D ₀	Hex	adec tatio	imal on	Number of words	Number of cycles	Function
	0	0	0	0	0	0	0	0	0	0	0	0	1	1	(PC) ← (PC) + 1
F	0	0	0	0	0	1	1	0	1	0	0	D	1	1	RAM back-up
ZP	0	0	0	0	0	0	0	1	1	0	0	3	1	1	(P) = 1 ?
К	0	0	1	0	1	1	0	0	1	0	5	9	1	1	STCK changes to f(XIN)
DA (0	0	1	0	1	1	0	0	0	0	5	8	1	1	$(LO_1, LO_0) \leftarrow (A_1, A_0)$
sc	0	1	0	0	0	0	0	1	0	0	8	2	1	1	(URS) ← 1
U0A	0	1	0	0	0	1	1	1	1	0	8	F	1	1	(PU03−PU0₀) ← (A3−A₀)
U1A	0	1	0	0	0	1	1	1	0	0	8	Е	1	1	(PU13−PU10) ← (A3−A0)
RST	0	0	0	0	0	1	1	1	1	0	0	F	1	1	(WDF1) ← 0
	ZP	ZP 0 C 0 DA 0 SC 0 JOA 0 J1A 0	ZP 0 0 0 C 0 0 DA 0 0 SC 0 1 JOA 0 1	ZP 0 0 0 0 C 0 0 1 DA 0 0 1 SC 0 1 0 JOA 0 1 0	ZP 0 0 0 0 0 C 0 0 1 0 DA 0 1 0 0 SC 0 1 0 0 JOA 0 1 0 0 JIA 0 1 0 0	ZP 0 0 0 0 0 0 C 0 0 1 0 1 DA 0 1 0 0 0 JUA 0 1 0 0 0 JUA 0 1 0 0 0	ZP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ZP	ZP	ZP	ZP 0 0 0 0 0 0 0 0 1 1 0 C 0 0 0 1 0 0 1 1 0 0 1 0 DA 0 0 1 0 1 1 0 </td <td>ZP 0 0 0 0 0 0 0 0 1 1 1 0 0 C 0 0 1 0 1 1 0 0 1 0 5 DA 0 0 1 0 1 1 0<!--</td--><td>ZP 0 0 0 0 0 0 0 1 1 0 0 3 X 0 0 1 0 1 1 0 0 1 0 5 9 DA 0 0 1 0 1 1 0<!--</td--><td>ZP 0 0 0 0 0 0 0 0 1 1 0 0 3 1 X 0 0 1 0 1 1 0 0 1 0 5 9 1 DA 0 0 1 0<!--</td--><td>ZP 0 0 0 0 0 0 0 0 1 1 0 0 3 1 1 X 0 0 1 0 1 1 0 0 1 0 5 9 1 1 DA 0 0 1 0<!--</td--></td></td></td></td>	ZP 0 0 0 0 0 0 0 0 1 1 1 0 0 C 0 0 1 0 1 1 0 0 1 0 5 DA 0 0 1 0 1 1 0 </td <td>ZP 0 0 0 0 0 0 0 1 1 0 0 3 X 0 0 1 0 1 1 0 0 1 0 5 9 DA 0 0 1 0 1 1 0<!--</td--><td>ZP 0 0 0 0 0 0 0 0 1 1 0 0 3 1 X 0 0 1 0 1 1 0 0 1 0 5 9 1 DA 0 0 1 0<!--</td--><td>ZP 0 0 0 0 0 0 0 0 1 1 0 0 3 1 1 X 0 0 1 0 1 1 0 0 1 0 5 9 1 1 DA 0 0 1 0<!--</td--></td></td></td>	ZP 0 0 0 0 0 0 0 1 1 0 0 3 X 0 0 1 0 1 1 0 0 1 0 5 9 DA 0 0 1 0 1 1 0 </td <td>ZP 0 0 0 0 0 0 0 0 1 1 0 0 3 1 X 0 0 1 0 1 1 0 0 1 0 5 9 1 DA 0 0 1 0<!--</td--><td>ZP 0 0 0 0 0 0 0 0 1 1 0 0 3 1 1 X 0 0 1 0 1 1 0 0 1 0 5 9 1 1 DA 0 0 1 0<!--</td--></td></td>	ZP 0 0 0 0 0 0 0 0 1 1 0 0 3 1 X 0 0 1 0 1 1 0 0 1 0 5 9 1 DA 0 0 1 0 </td <td>ZP 0 0 0 0 0 0 0 0 1 1 0 0 3 1 1 X 0 0 1 0 1 1 0 0 1 0 5 9 1 1 DA 0 0 1 0<!--</td--></td>	ZP 0 0 0 0 0 0 0 0 1 1 0 0 3 1 1 X 0 0 1 0 1 1 0 0 1 0 5 9 1 1 DA 0 0 1 0 </td

Skip condition	Carry flag CY	Detailed description
-	-	No operation
_	-	Puts the system in RAM back-up state.
(P) = 1	_	Skips the next instruction when P flag is "1." After skipping, P flag remains unchanged.
-	_	System clock (STCK) changes to f(XIN) from f(XIN)/8. Execute this CCK instruction at address 0 in page 0.
-	_	Transfers the contents of register A to the logic operation selection register LO.
-	-	Sets the most significant ROM code reference enable flag (URS) to "1."
-	_	Transfers the contents of register A to register PU0.
-	-	Transfers the contents of register A to register PU1.
-	_	Initializes the watchdog timer flag (WDF1).

INSTRUCTION CODE TABLE

					10									_					
	08-D4	00000	00001	00010	00011	00100	00101	00110	00111	01000	01001	01010	01011	01100	01101	01110	01111	10000 10111	11000 11111
D3- D0	Hex.	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10–17	18–1F
0000	0	NOP	BLA	SZB 0	BL	TAB2	BMLA	XAM 0	BML	OGA	TABP 0	A 0	LA 0	LXY 0,0	LXY 1,0	LXY 2,0	LXY 3,0	вм	В
0001	1	ВА	CLD	SZB 1	BL	LGOP	_	XAM 1	BML	_	TABP 1	A 1	LA 1	LXY 0,1	LXY 1,1	LXY 2,1	LXY 3,1	ВМ	В
0010	2			SZB 2	BL	SNZT1	SNZT2	XAM 2	BML	URSC	TABP 2	A 2	LA 2	LXY 0,2	LXY 1,2	LXY 2,2	LXY 3,2	ВМ	В
0011	3	SNZP	INY	SZB 3	BL	1	T2R2L	XAM 3	BML	-	TABP 3	A 3	LA 3	LXY 0,3	LXY 1,3	LXY 2,3	LXY 3,3	ВМ	В
0100	4		RD	SZD	BL	RT	_	TAM 0	BML	OEA	TABP 4	A 4	LA 4	LXY 0,4	LXY 1,4	LXY 2,4	LXY 3,4	ВМ	В
0101	5	_	SD	SEAn	BL	RTS	_	TAM 1	BML	_	TABP 5	A 5	LA 5	LXY 0,5	LXY 1,5	LXY 2,5	LXY 3,5	ВМ	В
0110	6	RC		SEAM	BL	1	IAE	TAM 2	BML	RCAR	TABP 6	A 6	LA 6	LXY 0,6	LXY 1,6	LXY 2,6	LXY 3,6	ВМ	В
0111	7	sc	DEY	_	BL	T1AB	TAB1	TAM 3	BML	SCAR	TABP 7	A 7	LA 7	LXY 0,7	LXY 1,7	LXY 2,7	LXY 3,7	ВМ	В
1000	8	_	_	IAG	BL*	_	TLOA	XAMI 0	BML*	T2AB	TABP 8*	A 8	LA 8	LXY 0,8	LXY 1,8	LXY 2,8	LXY 3,8	ВМ	В
1001	9	_	_	TDA	BL*	_	сск	XAMI 1	BML*	T2HAB	TABP 9*	A 9	LA 9	LXY 0,9	LXY 1,9	LXY 2,9	LXY 3,9	ВМ	В
1010	Α	AM	TEAB	TABE	BL*	_	TV2A	XAMI 2	BML*	_	TABP 10*	A 10	LA 10	LXY 0,10	LXY 1,10	LXY 2,10	LXY 3,10	ВМ	В
1011	В	AMC		_	BL*	_	TV1A	XAMI 3	BML*	_	TABP 11*	A 11	LA 11	LXY 011	LXY 1,11	LXY 2,11	LXY 3,11	ВМ	В
1100	C	TYA	СМА	_	BL*	RB 0	SB 0	XAMD 0	BML*	_	TABP 12*	A 12	LA 12	LXY 0,12	LXY 1,12	LXY 2,12	LXY 3,12	ВМ	В
1101	D	POF	RAR	_	BL*	RB 1	SB 1	XAMD 1	BML*	_	TABP 13*	A 13	LA 13	LXY 0,13	LXY 1,13	LXY 2,13	LXY 3,13	ВМ	В
1110	Е	ТВА	TAB	_	BL*	RB 2	SB 2	XAMD 2	BML*	TPU1A	TABP 14*	A 14	LA 14	LXY 0,14	LXY 1,14	LXY 2,14	LXY 3,14	ВМ	В
1111	F	WRST	TAY	SZC	BL*	RB 3	SB 3	XAMD 3	BML*	TPU0A	TABP 15*	A 15	LA 15	LXY 0,15	LXY 1,15	LXY 2,15	LXY 3,15	ВМ	В

The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-order 4 bits of the machine language code, and D8–D4 show the high-order 5 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use the code marked "–."

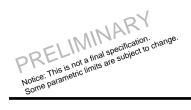
The codes for the second word of a two-word instruction are described below.

	Т	The second word										
BL	1	1 a a a	aaaa									
BML	1	0 a a a	aaaa									
BA	1	1 a a a	aaaa									
BLA	1	1 a a a	рррр									
BMLA	1	0 a a a	рррр									
SEA	0	1011	nnnn									
SZD	0	0010	1011									

* cannot be used in the M34282M1.

REGISTER STRUCTURE

	Timer control register V1	at	t reset : 0002	at RAM back-up : 0002	W				
V12	Carrier ways autout auto control hit	0	Auto-control output	t by timer 1 is invalid					
V 12	Carrier wave output auto-control bit	1	Auto-control output	Auto-control output by timer 1 is valid					
1/4.	Timer 1 count course calcution hit	0	Carrier wave output	it (CARRY)					
V1 ₁	Timer 1 count source selection bit	1	Bit 5 of watchdog ti	imer (WDT)					
\/4-	Timer 1 central hit	0	Stop (Timer 1 state	e retained)					
V10	Timer 1 control bit	1	Operating						


	Timer control register V1	at	reset: 00002	at RAM back-up : 00002	W				
V13	Carrier ways "H" interval expansion bit	0	To expand "H" interval is invalid						
V 13	Carrier wave "H" interval expansion bit	1	To expand "H" inte	To expand "H" interval is valid (when V22=1 selected)					
\/4-	Coming ways apparetian function control his	0	Carrier wave generation function invalid						
V12	Carrier wave generation function control bit	1	Carrier wave gener	ration function valid					
V1 ₁	Times 2 count course calestian hit	0	f(XIN)						
V I 1	Timer 2 count source selection bit	1	f(Xin)/2						
\/4-	Timer 2 control bit	0	Stop (Timer 2 state	e retained)					
V10	Timer 2 Control bit	1	Operating						

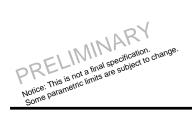
Lo	gic operation selection register LO		а	t reset : 002	at RAM back-up : 002	W			
		LO ₁	LO ₀		Logic operation function				
LO ₁		0	0	Exclusive logic OR	operation (XOR)				
	Logic operation selection bits	0	1	OR operation (OR)					
LO ₀		1	0	AND operation (AND)					
		1	1	Not available					

Pull-down control register PU0		at reset : 00002		at RAM back-up : state retained	W
PU03	Ports G ₂ , G ₃ pull-down transistor control	0	0 Pull-down transistor OFF, key-on wakeup invalid		
P 003	bit	1	1 Pull-down transistor ON, key-on wakeup valid		
PU02	Ports G ₀ , G ₁ pull-down transistor control	0	Pull-down transistor OFF, key-on wakeup invalid		
PU02	bit		Pull-down transisto	r ON, key-on wakeup valid	
BUO B A F WALL A SALE A LINE		0	Pull-down transistor OFF, key-on wakeup invalid		
PU0 ₁	Port E ₁ pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid		
DIJO. Dant E. maill danna tarangistan as atasi bit		0	Pull-down transistor OFF, key-on wakeup invalid		
PU0₀	Port E ₀ pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid		

Pull-down control register PU1		at reset : 00002		at RAM back-up : state retained W		
PU13 Port D ₇ pull-down transistor control bit		0	Pull-down transistor OFF, key-on wakeup invalid			
		1	Pull-down transistor ON, key-on wakeup valid			
PU12 Port D6 pull-down transistor control bit		0	Pull-down transistor OFF, key-on wakeup invalid			
F 0 12	Port D ₆ pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid			
PU1 ₁	Port Dr. pull down transistor control bit	0	Pull-down transistor OFF, key-on wakeup invalid			
PUII	Port D ₅ pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid			
PU10	Port D. pull down transister central hit	0	Pull-down transisto	r OFF, key-on wakeup invalid		
FU10	Port D4 pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid			

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vdd	Supply voltage		-0.3 to 5	V
Vı	Input voltage		-0.3 to VDD+0.3	V
Vo	Output voltage		-0.3 to VDD+0.3	V
Pd	Power dissipation	Ta = 25 °C	300	mW
Topr	Operating temperature range		-20 to 85	°C
Tstg	Storage temperature range		-40 to 125	°C


RECOMMENDED OPERATING CONDITIONS

(Ta = -20 °C to 85 °C, VDD = 1.8 V to 3.6 V, unless otherwise noted)

Cumbal	Symbol Parameter		Conditions	Limits			Unit
Symbol			Conditions	Min.	Тур.	Max.	Onit
Vdd	Supply voltage			1.8		3.6	V
VRAM	RAM back-up voltage (at	RAM back-up mode)		1.1		3.6	V
Vss	Supply voltage				0		V
Vін	"H" level input voltage Po	rts D4–D7, E, G	VDD = 3.0 V	0.7Vdd		VDD	V
Vін	"H" level input voltage XIN	1	VDD = 3.0 V	0.8Vpd		VDD	V
VIL	"L" level input voltage Po	rts D4–D7, E, G	VDD = 3.0 V	0		0.2VDD	V
VIL	"L" level input voltage XIN		VDD = 3.0 V	0		0.2Vdd	V
Іон(peak)	"H" level peak output curr	rent Ports D, E ₁ , G	VDD = 3.0 V			-4	mA
loн(peak)	"H" level peak output curr	rent Port Eo	VDD = 3.0 V			-24	mA
Іон(peak)	"H" level peak output current CARR		VDD = 3.0 V			-20	mA
loL(peak)	"L" level peak output current CARR		VDD = 3.0 V			4	mA
Iон(avg)	"H" level average output	current Ports D, E ₁ , G	VDD = 3.0 V			-2	mA
Iон(avg)	"H" level average output	current Port Eo	VDD = 3.0 V			-12	mA
Iон(avg)	"H" level average output	current CARR	VDD = 3.0 V			-10	mA
lo _L (avg)	"L" level average output of	current CARR	VDD = 3.0 V			2	mA
f(XIN)	System clock frequency	when STCK = f(XIN)/8 selected	Ceramic resonance			4	MHz
		when STCK = f(XIN) selected	Ceramic resonance			500	kHz
VDET	Voltage drop detection circuit detection voltage			1.10		1.80	V
			Ta=25 °C	1.40	1.50	1.56	1
TDET	Voltage drop detection circuit low voltage determination time		When supply voltage passes		0.2	1.2	ms
			the detected voltage at ±50V/s.				
TPON	Power-on reset circuit va	lid power source rising time	VDD = 0 to 2.2 V			1	ms

Note: The average output current ratings are the average current value during 100 ms.


ELECTRICAL CHARACTERISTICS

(Ta = -20 °C to 85 °C, V_{DD} = 3 V, unless otherwise noted)

Symbol	Parameter	Test conditions		l lmi4		
Symbol		rest conditions	Min.	Тур.	Max.	Unit
Vol	"L" level output voltage Port CARR	IoL = 2 mA			0.9	V
Vol	"L" level output voltage Хоит	IoL = 0.2 mA			0.9	V
Vон	"H" level output voltage Ports D, E1, G	Iон = −2 mA	2.1			V
Vон	"H" level output voltage Port Eo	Iон = −12 mA	1.5			V
Vон	"H" level output voltage CARR	Iон = −10 mA	1.0			V
Vон	"H" level output voltage Хоот	Iон = −0.2 mA	2.1			V
lıL	"L" level input current Ports D4-D7, E, G	Vı = Vss			-1	μΑ
Іін	"H" level input current Ports Eo, E1	VI = VDD			1	μΑ
		Pull-down transistor in off-state				
loz	Output current at off-state Ports D, E ₀ , E ₁ , G	Vo = Vss			-1	μΑ
Idd	Supply current (when operating)	f(XIN) = 4.0 MHz		400	800	μΑ
		f(XIN) = 500 kHz		250	500	μΑ
	Supply current (at RAM back-up)			1	3	μΑ
		Ta = 25 °C		0.1	0.5	μΑ
Rрн	Pull-down resistor value Ports D4-D7, E, G	VDD = 3 V, VI = 3 V	75	150	300	kΩ
Rosc	Feedback resistor value between XIN-XOUT		700		3200	kΩ

BASIC TIMING DIAGRAM

Parameter	Machine cycle Pin name	Mi		M	i+1	
System clock	STCK					
Ports D, E, G output	D ₀ –D ₇ ,E ₀ ,E ₁ G ₀ –G ₃	X				X
Ports D, E, G input	D4-D7 E0-E2 G0-G3		X			

BUILT-IN PROM VERSION

In addition to the mask ROM versions, the 4282 Group has the One Time PROM versions whose PROMs can only be written to and not be erased.

The built-in PROM version has functions similar to those of the mask ROM versions, but it has PROM mode that enables writing to built-in PROM.

Table 10 shows the product of built-in PROM version. Figure 27 and 28 show the pin configurations of built-in PROM versions. The One Time PROM version has pin-compatibility with the mask ROM version.

Table 10 Product of built-in PROM version

Product	PROM size	RAM size	Package	ROM type	
1 Toddet	(X 9 bits)	(X 4 bits)	1 ackage	NOW type	
M34282E2GP	2048 words	64 words	20P2E/F-A	One Time PROM [shipped in blank]	

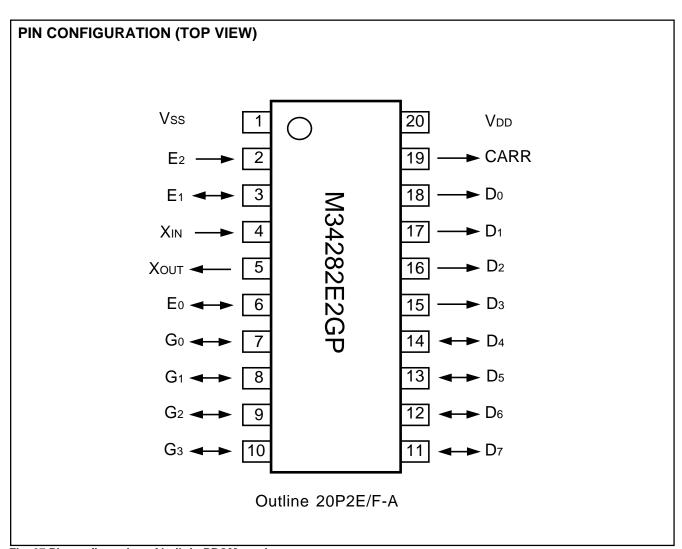


Fig. 27 Pin configuration of built-in PROM version

(1) PROM mode (serial input/output)

The M34282E2GP has a PROM mode in addition to a normal operation mode. It has a function to serially input/output the command codes, addresses, and data required for operation (e.g., read and program) on the built-in PROM using only a few pins. This mode can be selected by setting pins SDA (serial data input/output), SCLK (serial clock input), PGM and VPP to "H" after connecting wires as shown in Figure 28 and powering on the VDD pin, and then applying 12.5V to the VPP pin.

In the PROM mode, three types of software commands (read, program, and program verify) can be used. Clock-synchronous serial I/O is used, beginning from the LSB (LSB first). Rrefer to the "Mitsubishi Microcomputer Development Support Tools" Hompage (http://www.tool-spt.mesc.co.jp/index_e.htm). about the serial programmer for the Mitsubishi single-chip microcomputers.

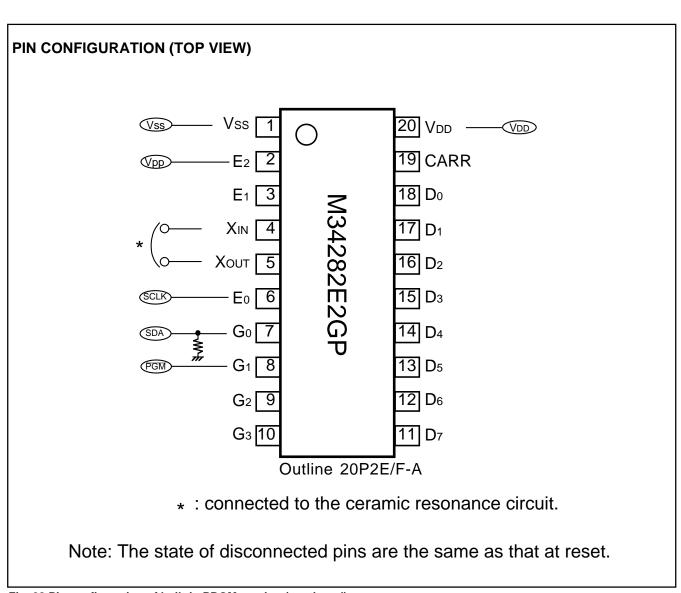


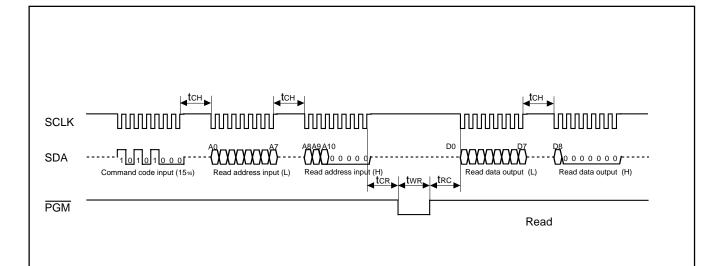

Fig. 28 Pin configuration of built-in PROM version (continued)

(2) Functional outline

In the PROM mode, data is transferred with the clock-synchronous serial input/output. The input data is read through the SDA pin into the internal circuit synchronously with the rising edge of the serial clock pulse. The output data is output from the SDA pin synchronously with the falling edge of the serial clock pulse. Data is transferred in units of 8 bits.

In the first transfer, the command code is input. Then, address input or data input/output is performed according to the contents of the command code. Table 11 shows the software command used in the PROM mode. The following explains each software command.

Table 11 Software command


Number of transfer	First command	Cocond	Third	Fourth
Command	code input	Second	Inira	Fourth
Read	1516	Read address L (input)	Read address H (input)	Read data L (output)
Program	2516	Program address L (input)	Program address H (input)	Program data L (input)
Program verify	3516	Program address L (input)	Program address H (input)	Program data L (input)

Number of transfer	F:44b	Civalle	Cayanth	
Command	Fifth	Sixth	Seventh	
Read	Read data H (output)			
Program	Program data H (input)			
Program verify	Program data H (input)	Verify data L (output)	Verify data H (output)	

(3) Read

Input the command code 15 $_{16}$ in the first transfer. Proceed and input the low-order 8 bits and the high-order 8 bits of the address and pull the \overline{PGM} pin to "L." When this is done, the contents of input address is read and stored into the internal data latch.

When the PGM pin is released back to "H" and serial clock is input to the SCLK pin, the low-order 8 bits and high-order 8 bits of read data which have been stored into the data latch, are serially output from the SDA pin.

Note: When outputting the read data, the SDA pin is switched for output at the first falling of the serial clock. The SDA pin is placed in the high-impedance state during the th_(C-E) period after the last rising edge of the serial clock (at the 16th bit).

Fig. 29 Timing at reading

(4) Program

Input command code 25₁₆ in the first transfer. Proceed and input the low-order 8 bits and high-order 8 bits of the address and the low-order 8 bits and high-order 8 bits of program data,

and pull the $\overline{\text{PGM}}$ pin to "L." When this is done, the program data is programmed to the specified address.

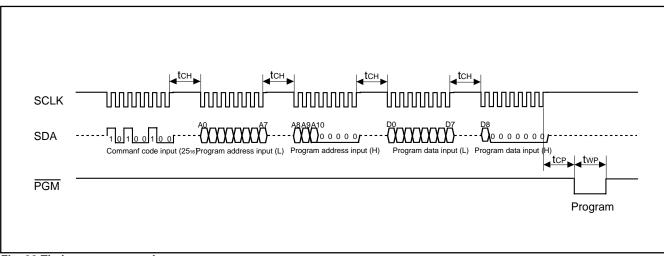


Fig. 30 Timing at programming

(5) Program verify

Input command code 3516 in the first transfer. Proceed and input the low-order 8 bits and high-order 8 bits of the address and the low-order 8 bits and high-order 8 bits of program data, and pull the \overline{PGM} pin to "L." When this is done, the program data is programmed to the specified address. Then, when the \overline{PGM} pin is pulled to "L" again after it is released back to "H," the address programmed with the program command is read

and verified and stored into the internal data latch. When the PGM pin is released back to "H" and serial clock is input to the SCLK pin, the verify data that has been stored into the data latch is serially output from the SDA pin.

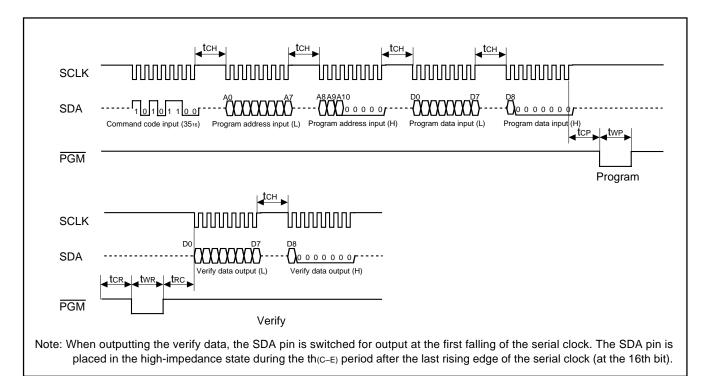
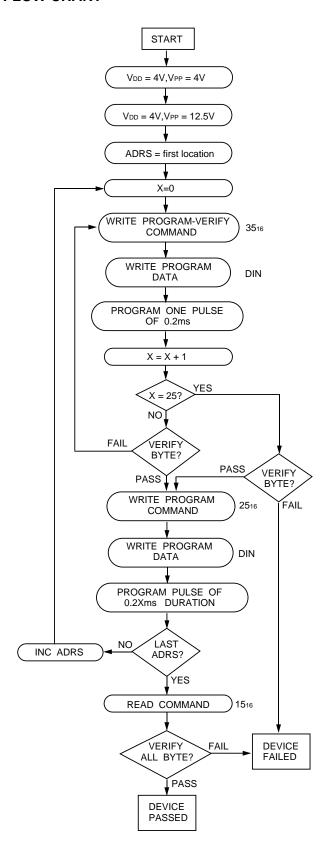
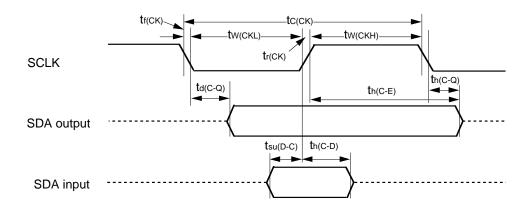



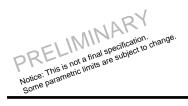
Fig. 31 Timing at program verifying

PROGRAM ALGORITHM FLOW CHART



TIMING REQUIREMENT CONDITION AND SWITCHING CHARACTERISTICS $(Ta = 25 \, ^{\circ}C, \, V_{DD} = 4.0 \, V, \, V_{PP} = 12.5 \, V)$

Symbol	Parameter	Limits		Unit	
Symbol	raiailletei	Min.	Max.	Oill	
tсн	Serial transfer width time	2.0		μs	
tcr	Read wait time after transfer	2.0		μs	
twr	Read pulse width	500		ns	
trc	Transfer wait time after read	2.0		μs	
tcp	Program wait time after transfer	2.0		μs	
twp	Program pulse width	0.19	0.21	ms	
towp	Added program pulse width	0.19	5.25	ms	
tc(ck)	SCLK input cycle time	1.0		μs	
tw(ckh)	SCLK "H" pulse width	450		ns	
tw(ckl)	SCLK "L" pulse width	450		ns	
tr(CK)	SCLK rising time	40		ns	
tf(CK)	SCLK falling time	40		ns	
td(C-Q)	SDA output delay time	0	180	ns	
th(C-Q)	SDA output hold time	0		ns	
th(C-E)	SDA output hold time (only for 16th bit)	100		ns	
tsu(D-C)	SDA input set-up time	60		ns	
th(C-D)	SDA input hold time	180		ns	


TIMING DIAGRAM

Measurement condition

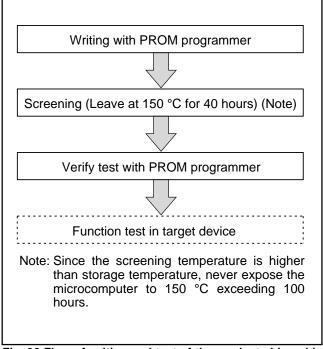
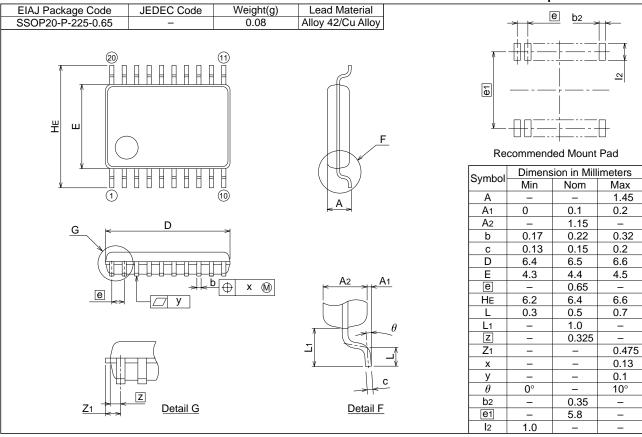
Output timing voltage: VOL = 0.8 V, VOH = 2.0 V Input timing voltage: VIL = 0.2 VDD, VIH = 0.8 VDD

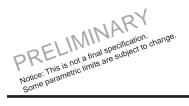
4282 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(6) Notes on handling

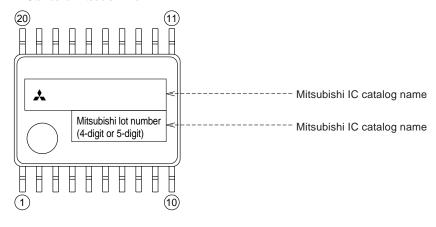
- A high-voltage is used for writing. Take care that overvoltage is not applied. Take care especially at turning on the power.
- ② For the One Time PROM version, Mitsubishi Electric corp. does not perform PROM writing test and screening in the assembly process and following processes. In order to improve reliability after writing, performing writing and test according to the flow shown in Figure 32 before using is recommended.

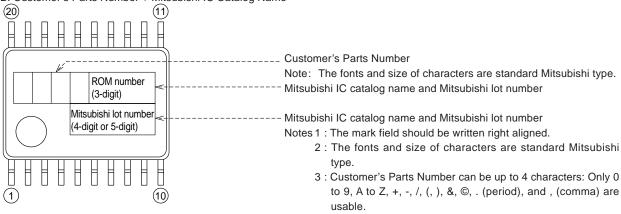

Fig. 32 Flow of writing and test of the product shipped in blank

PACKAGE OUTLINE

20P2E/F-A Plastic 20pin 225mil SSOP



20P2E/F-A (20-PIN SSOP) MARK SPECIFICATION FORM


Mitsubishi IC catalog name	

Please choose one of the marking types below (A, B), and enter the Mitsubishi IC catalog name and the special mark (if needed).

A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishi IC Catalog Name

MITSUBISHI MICROCOMPUTERS

4282 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.

 Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts or circuit application examples
- contained in these materials.
- contained in these materials.

 All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.

 Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

 The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.

- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the
- approved destination.

 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

 Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

REVISION DESCRIPTION LIST 4282 GROUP DATA SHEET

Rev. No.	Revision Description	Rev. date
1.0	First Edition	000619
		7220.0