

HP PA-8000 CLOCK SOURCE

FEATURES

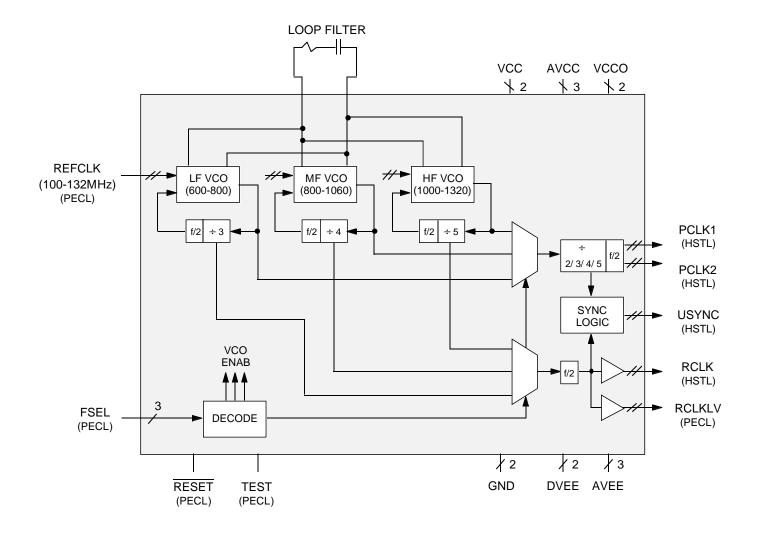
- 3.3V, -1.9V power supples
- Differential LVPECL clock input
- **■** Differential HSTL/LVPECL outputs
- Compatible with HP PA-8000 microprocessors
- Low-jitter source for all PA-8000 required timing signals
- Available in 44-pin MQUAD package

PIN CONFIGURATION

DESCRIPTION

Micrel-Synergy's SY89801A PLL based clock generator provides, in a single chip, all the necessary clocks for Hewlett-Packard's PA-8000 Microprocessor.

Utilizing Micrel-Synergy's advanced PLL technology, the SY89801A accepts a Positive-ECL (PECL) reference clock input at 100MHz-132MHz, and provides precisely aligned, ultra-low-jitter ratios of frequencies necessary for the operation of the processor. In addition, the SY89801A provides the "USYNC" synchronizing signals as required by the PA-8000. The frequency ratios are 1:1, 4:3, 3:2, 5:3 and 2:1.


To facilitate direct interfacing to the PA-8000, the SY89801A operates across +3.3 volt and -1.9 volt supplies. The processor clock (PCLK), runway clock (RCLK), and USYNC outputs are HSTL-compatible. Additionally, there is a PECL-compatible runway clock output (RCLKLV). The SY89801A requires only a simple external series-RC loop filter.

Coupling Micrel-Synergy's advanced PLL technology with our proprietary ASSET bipolar process has produced a Timing Generator IC which meets the stringent requirements of the PA-8000 μP, while setting a new standard for performance and flexibility.

PIN NAMES

Pin	Function
REF_CLK, REF_CLK	Differential Input Ref. Clock
FILP, FILN	Filter Pins (Positive & Negative)
VCCA, VEEA	Analog Vcc, VEE
RST	Master Reset
FSEL2-0	LVPECL Frequency Select Pins
USYNC, USYNC	Diff. HSTL Sync Signal for PA-8000
PCLK1-2, PCLK1-2	Diff. HSTL Processor Clock Signal
RCLK, RCLK	Diff. HSTL Runway Clock Signal
RCLKLV, RCLKLV	Diff. LVPECL Clock Signal

BLOCK DIAGRAM

3.3V DC ELECTRICAL CHARACTERISTICS

 $VCC = VCCA = 3.3V \pm 10\%$; VEEA = VEE = -1.9V

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
Vcc	Power Supply Voltage	3.0		3.6	٧	VEE = −1.9V
Icc	Power Supply Current (Vcc)	_	250	321	mA	

PECL DC ELECTRICAL CHARACTERISTICS

 $VCC = 3.3V \pm 10\%$; VEE = -1.9V

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
Voн	Output HIGH Voltage	Vcc - 1.075		Vcc - 0.830	>	
Vol	Output LOW Voltage	Vcc - 1.860	_	Vcc - 1.570	٧	
VIH	Input HIGH Voltage	Vcc - 1.165	_	Vcc - 0.880	V	
VIL	Input LOW Voltage	Vcc - 1.810		Vcc – 1.475	V	
Vвв	PECL Threshold	_	Vcc - 1.35	_	V	

HSTL DC ELECTRICAL CHARACTERISTICS

 $VCC = 3.3V \pm 10\%$; VEE = -1.9V

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
Vон	Output HIGH Voltage	Vcc - 2.3		Vcc - 2.1	V	
Vol	Output LOW Voltage	Vcc - 3.1	_	Vcc - 2.9	V	

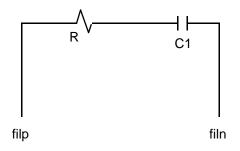
AC ELECTRICAL CHARACTERISTICS(1)

 $VCC = 3.3V \pm 10\%$; VEE = -1.9V

		TA = 0°C		TA = +25°C		TA = +70°C						
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
fvco	Maximum VCO Frequency	1320		_	1320	_	_	1320	_	_	MHz	
fMAX	Maximum PCLK Output Frequency Maximum RCLK Output Frequency	264 132	_	_	264 132	_	_	264 132	_	_	MHz MHz	
tskew ⁽²⁾	PCLK to PCLK RCLK to RCLKLV PCLK to RCLK PCLK (neg.) to USYNC	_ _ _	_ _ _	±50 ±100 ±100 ±500	_ _ _	_ _ _	±50 ±100 ±100 ±500	_ _ _ _	_ _ _	±50 ±100 ±100 ±500	ps ps ps ps	Measured at differential crossover
tpe	Phase Error RCLK to REF_CLK	_	_	±250	_	_	±250	_	_	±250	ps	
tj ⁽²⁾	Output Jitter	-50	_	+50	-50	_	+50	-50	_	+50	ps	Peak to Peak, Cycle to Cycle
tdc ⁽²⁾	Output Duty Cycle	49	_	51	49	_	51	49	_	51	%	
tr (2)	Rise/Fall Times (20% to 80%)	100	_	800	100	_	800	100	_	800	ps	

NOTES

- 1. All HSTL outputs terminated into 50 ohms in parallel with 3pf to GND.
- 2. tskew, tj, tdc, tr and tf are specified by HP for the PA-8000. This is our best information as of the date of this document.


APPLICATIONS INFORMATION

The following table lists the various PCLK and RCLK ratios supported by the SY89801A and the corresponding PCLK, RCLK, FB and VCO frequencies. The table is arranged in order of increasing PCLK:RCLK ratio. The table was designed to balance several constraints:

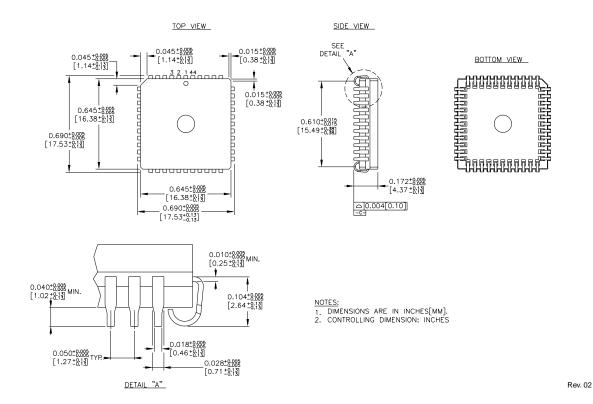
- 2.5:1 VCO frequency range
- Maximum system frequency of 120MHz plus 10% margin
- Maximum output frequency of 264MHz

FSEL <2:0>	PCLK:RCLK	fPCLK (MHz)	fRCLK (MHz)	VCO ÷ ratios VCO/P:VCO/R	fVCO (MHz)
000	1:1	100-132	100-132	8:8	800-1056
001	4:3	133.3-176	100-132	6:8	800-1056
010	3:2	150-198	100-132	4:6	600-792
011	5:3	166.7-220	100-132	6:10	1000-1320
100	2:1	200-264	100-132	4:8	800-1056
101	1:1	100-132	100-132	6:6	600-792
110	1:1	100-132	100-132	10:10	1000-1320
111	n/a	n/a	n/a	n/a	n/a

LOOP FILTER COMPONENT SELECTION

 $R = 500\Omega \pm 10\%$

 $C1 = 1000pF \pm 10\%$


PRODUCT ORDERING CODE

Ordering Code	Package Type	Operating Range
SY89801AMC	M44-1	Commercial
SY89801AMCA(1)	M44-1	Commercial

NOTES:

1. "A" denotes enhanced 200MHz testing.

44 LEAD MLCC (M44-1)

MICREL-SYNERGY 3250 SCOTT BOULEVARD SANTA CLARA CA 95054 USA

TEL + 1 (408) 980-9191 FAX + 1 (408) 914-7878 WEB http://www.micrel.com

This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.

© 2000 Micrel Incorporated