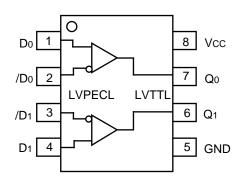
3.3V DUAL DIFFERENTIAL LVPECL-to-LVTTL TRANSLATOR

ClockWorks™ SY10ELT23L SY100ELT23L

FEATURES


- 3.3V power supply
- 2.0ns typical propagation delay
- <500ps typical output-to-output skew
- **■** Differential LVPECL inputs
- 24mA LVTTL outputs
- **■** Flow-through pinouts
- Available in 8-pin SOIC package

DESCRIPTION

The SY10/100ELT23L are dual differential LVPECL-to-LVTTL translators with +3.3V power supply. Because LVPECL (Low Voltage Positive ECL) levels are used, only +3.3V and ground are required. The small outline 8-lead SOIC package and the low skew, dual gate design of the ELT23L makes it ideal for applications which require the translation of a clock and a data signal.

The ELT23L is available in both ECL standards: the 10ELT is compatible with positive ECL 10H logic levels, while the 100ELT is compatible with positive ECL 100K logic levels.

PIN CONFIGURATION/BLOCK DIAGRAM

PIN NAMES

Pin	Function
Qn	LVTTL Outputs
Dn	Differential LVPECL Inputs
Vcc	+3.3V Supply
GND	Ground

Rev.: G Amendment: 0 Issue Date: July 2000

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Paramter	Value	Unit
Vcc	Power Supply Voltage	-0.5 to +3.8	V
Vı	PECL Input Voltage	0V to Vcc+0.5	V
Vo	Voltage Applied to Output at HIGH State	-0.5 to Vcc	V
lo	Current Applied to Output at LOW State	Twice the Rated IoL	mA
Tstore	Storage Temperature	-65 to +150	°C
Tamb	Operating Temperature	-40 to +85	°C

TRUTH TABLE

D	D	Q
L	Н	L
Н	L	Н
Open	Open	L

NOTE:

 Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to ABSOLUTE MAXIMUM RATING conditions for extended periods may affect device reliability.

LVTTL DC ELECTRICAL CHARACTERISTICS

 $VCC = +3.3V \pm 5\%$

		TA = -40°C		TA = 0°C		TA = +25°C		TA = +85°C			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit	Condition
Vон	Output HIGH Voltage	2.0	_	2.0	_	2.0	_	2.0	_	٧	Iон = -3.0mA
Vol	Output LOW Voltage	_	0.5	_	0.5	_	0.5	_	0.5	٧	IOL = 24mA
Icc	Power Supply Current	_	30	_	30	_	30	_	30	mA	
los	Output Short Circuit Current	-80	-240	-80	-240	-80	-240	-80	-240	mA	Vout = 0V

LVPECL DC ELECTRICAL CHARACTERISTICS

 $VCC = +3.3V \pm 5\%$

		TA = -40°C		TA = 0°C			TA = +25°C			TA = +85°C				
Symbol	Parameter	Min.	Тур.	Max.	Unit									
Iн	Input HIGH Current	_	_	150	_	_	150	_		150	_		150	μΑ
lıL	Input LOW Current	0.5	_	_	0.5	_	_	0.5	_	_	0.5	_	_	μΑ
VCMR	Common Mode Range	1.5	_	Vcc	V									
VPP	Minimum Peak-to-Peak Input ⁽¹⁾	200	_	_	200	_	_	200	_	_	200	_	_	mV
VIH	Input HIGH Voltage ⁽²⁾ 10ELT 100ELT	2070 2135		2410 2420	2130 2135	_	2460 2420	2170 2135	_	2490 2420	2130 2135	_	2565 2420	mV
VIL	Input LOW Voltage ⁽²⁾ 10ELT 100ELT	1350 1490		1800 1825	1350 1490	_	1820 1825	1350 1490		1820 1825	1350 1490		1820 1825	mV

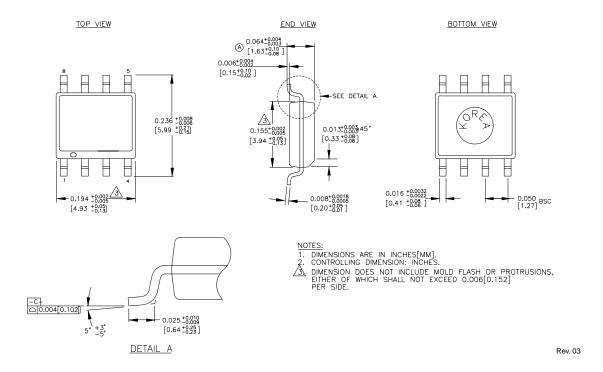
NOTES:

- 1. 200mV input guarantees full logic at output.
- 2. These values are for Vcc = 3.3V. Level Specifications will vary 1:1 with Vcc.

AC ELECTRICAL CHARACTERISTICS

 $VCC = +3.3V \pm 5\%$

		TA = -	-40°C	Ta =	0°C	TA =	+25°C	TA = +85°C			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit	Condition
tPLH tPHL	Propagation Delay	1.5	2.5	1.5	2.5	1.5	2.5	1.5	2.5	ns	CL = 20pF
tskpp	Part-to-Part Skew ^(1,4)	_	0.5	_	0.5	_	0.5	_	0.5	ns	CL = 20pF
tskew++	Within-Device Skew ^(2,4)	_	0.3	_	0.3	_	0.3	_	0.3	ns	CL = 20pF
tskew	Within-Device Skew ^(3,4)	_	0.3	_	0.3	_	0.3	_	0.3	ns	CL = 20pF
tr tf	Output Rise/Fall Time 1.0V to 2.0V	0.5	1.0	0.5	1.0	0.5	1.0	0.5	1.0	ns	CL = 20pF
fMAX	Maximum Input Frequency ^(5,6)	160	_	160	_	160	_	160	_	MHz	CL = 20pF


NOTES:

- 1. Device-to-Device Skew considering HIGH-to-HIGH transitions at common Vcc level.
- 2. Within-Device Skew considering HIGH-to-HIGH transitions at common Vcc level.
- 3. Within-Device Skew considering LOW-to-LOW transitions at common Vcc level.
- 4. All skew parameters are guaranteed but not tested.
- 5. Frequency at which output levels will meet a 0.8V to 2.0V minimum swing.
- 6. The fMAX value is specified as the minimum guaranteed maximum frequency. Actual operational maximum frequency may be greater.

PRODUCT ORDERING CODE

Ordering Code	Package Type	Operating Range	Vcc Range (V)
SY10ELT23LZC	Z8-1	Commercial	+3.3 ±5%
SY10ELT23LZCTR	Z8-1	Commercial	+3.3 ±5%
SY100ELT23LZC	Z8-1	Commercial	+3.3 ±5%
SY100ELT23LZCTR	Z8-1	Commercial	+3.3 ±5%

8 LEAD SOIC .150" WIDE (Z8-1)

MICREL-SYNERGY 3250 SCOTT BOULEVARD SANTA CLARA CA 95054 USA

TEL + 1 (408) 980-9191 FAX + 1 (408) 914-7878 WEB http://www.micrel.com

This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.

© 2000 Micrel Incorporated