

Features and Benefits

Analog Signal Processing Quad Switched Hall Plate / Chopper Stabilized Amplifier Ratiometric Output for A/D Interface Adjustable Output Quiescent Voltage (Voq) Adjustable Sensitivity Adjustable Low-Pass Filter Adjustable Output Driver Configuration Adjustable Clamping Voltage Adjustable Thermal Voq Drift Adjustable Sensitivity Temperature Coefficient (1st & 2nd Order) Adjustable Internal Bias Point

Applications

Linear Position Sensing Rotary Position Sensing Current Sensing

Ordering Information

Part No.	Temperature Suffix	Package Code	Option code
MLX90251	L (-40°C to 150°C)	VA (4 leads)	-
MLX90251	K (-40°C to 85°C)	VA (4 leads)	

1. Functional Diagram

Pin 1 – Vdd (Supply) Pin 2 – Test Pin 3 – Vss (Ground) Pin 4 – Output

2. Description

The MLX90251 is a Programmable Linear Hall Effect sensor IC fabricated utilizing Silicon-CMOS technology. It possesses active error correction circuitry, which virtually eliminates the offset errors normally associated with analog Hall effect devices. All the parameters of the MLX90251 transfer characteristic are fully programmable for even greater versatility.

The Voq (Vout @ B = 0 Gauss), sensitivity, direction of slope, the magnitude of sensitivity drift over temperature (TC $-1^{st} \& 2^{nd}$ order), the clamping level, the thermal Voq drift and the bandwidth, are all programmable.

The ratiometric output voltage is proportional to the supply voltage. When using the supply voltage as a reference for an A/D converter, fluctuations of $\pm 10\%$ in supply voltage will not affect accuracy. When programmed for a conventional sensitivity (with a positive gain), the voltage at the output will increase as a South magnetic field is applied to the branded face of the MLX90251. Conversely, the voltage output will decrease in the presence of a North

magnetic field. The MLX90251 has a very stable thermal compensation for both the sensitivity and the Voq over a broad temperature range.

L

<u>а</u>П

TABLE OF CONTENTS

FE/	ATURES AND BENEFITS
API	PLICATIONS
OR	DERING INFORMATION
1.	FUNCTIONAL DIAGRAM
2.	DESCRIPTION
3.	GLOSSARY OF TERMS
4.	ABSOLUTE MAXIMUM RATINGS
5.	MLX90251 ELECTRICAL SPECIFICATIONS
6.	MLX90251 PROGRAMMABLE FEATURES
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1. INTERNAL BIAS POINT. 6 2. MAIN OSCILLATOR FREQUENCY 6 3. CHOPPING FREQUENCY 6 4. DIDO SPEED 7 5. MULTIPLEXED DAC REFRESH FREQUENCY 7 6. CLAMPING LEVELS. 7 7. THERMAL VOQ DRIFT 7 8. DIAGNOSTIC OUTPUT LEVEL 7 9. FILTER. 7 10. SLOPE 8 11. OUTPUT AMPLIFIER CONFIGURATION 8 12. OUTPUT QUIESCENT VOLTAGE (VOQ) 8 13. ROUGH GAIN 9 14. FINE GAIN 9 15. SENSITIVITY TEMPERATURE COEFFICIENT. 10 16. ID NUMBER 10 17. CRC 11 18. MEMORY MELEXIS LOCK 11
7	19. MEMORY CUSTOMER LOCK
7. 8.	APPLICATION INFORMATION
9.	RELIABILITY INFORMATION 13
10.	ESD PRECAUTIONS
11.	PACKAGE INFORMATION
12.	DISCLAIMER

3. Glossary of Terms

1 mT = 10 Gauss: Magnetic flux density units. Voq = Output Quiescent Voltage i.e. Vout for B = 0 Gauss TC = Sensitivity Temperature Coefficient (in ppm/Deg.C.)

4. Absolute Maximum Ratings

Supply Voltage, VDD (overvoltage)	24 V
Supply Voltage, V _{DD} (operating)	6.5 V
Reverse Voltage Protection (100 ms max)	-24 V
Output Voltage	24 V
Reverse Output Voltage	-0.74
Output Current, Iout	25 mA
Operating Temperature Range, TA	-40°C to 150°C
Storage Temperature Range, Ts	-55°C to 165°C
Magnetic Flux Density	Infinite

Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

5. MLX90251 Elect DC Operating Parameters T	5. MLX90251 Electrical Specifications C Operating Parameters T_A as specified by the Temperature suffix (L : -40°C to 150°C – K : -40°C to 5° C) V = 5 V (unless attempting specified)							
Parameter $P_{\text{DD}} = 5 \text{ V}$ (unless our	Symbol	Test Conditions	Min	Тур	Max	Units		
Nominal Supply Voltage	Vddnom		-	5	5-	V		
Supply Voltage	Vdd	(operating - full accuracy)	4.5	5-	5.5	V		
Supply Voltage	Vddred	(operating - reduced accuracy)	4	-	6.0	V		
Max Supply Voltage	Vddmax	(overvoltage protection)	24	-	-	V		
Reverse Supply Voltage	Vddrev	(permanent)	- 14.5	-	-	V		
Nominal Supply Current	Iddnom	Vdd = Vddnom	4.0	6.0	8.0	mA		
Supply Current	ldd 🗸	Vdd = 4.5 … 5.5 V	3.0	-	9.0	mA		
Supply Current	Iddred	Vdd = 4.0 … 6.0 V	2.0	-	10.0	mA		
Reverse Supply Current	Iddrev	Vdd = Vddrev	-65		-40	V		
Short Circuit Supply Current	Iddshort1	Vdd = Vddnom	20		30	mA		
		Out shorted to Gnd / Vddnom						
		Permanent						
Short Circuit Supply Current	Iddshort2	Vdd < 6 V	25		35	mA		
		Out shorted to Vdd						
		Permanent						
Output Voltage Swing	Voutpd	Pull Down Load – no clamping	1		98	%Vdd		
		(to Ground)						
Output Voltage Swing	Voutpd	Pull Up Load – no clamping	2		99	%Vdd		
		(to Vddnom)						
Output Short-Circuit Current	loutsc	Vdd = Vddnom	15		25	mA		
		Output shorted to Gnd / Vddnom						
		Permanent						
Power-on Delay	Тро				5	ms		

6. MLX90251 Programmable Features

6.1. Internal Bias Point

The Internal Bias Point (AGND) can be adjusted by changing the corresponding 10 bits code. The parameter has similar effect to the Voq (or Offset) adjust. It allows actually a shift of the whole Voq adjust window in the range -100 %Vdd...200%Vdd.

In other words, the MLX90251 can provide the right transfer characteristic even with a strictly unipolar magnetic span (virtual Voq).

This parameter is adjusted by Melexis depending on the customer application requirements.

6.2. Main Oscillator Frequency

The oscillator frequency of the MLX90251 (with minimal gain setting) can be adjusted in the range 0.7MHz...1.3MHz thanks to a 4 bits code. This oscillator frequency FCKADJ will be adjusted by Melexis at 1.1MHz if the customer application does not require any other value.

The oscillator frequency is automatically linked to the requested sensitivity of the device especially the Rough Gain parameter (RG – see section 6.13).

6.3. Chopping Frequency

The refresh frequency of the chopper stabilized stage (dynamic offset cancellation) is adjusted through the parameter CKANA (2 bits). This frequency is actually a division of the main frequency (see section 6.2): the ratio 1, 2, 4 and 8 are available.

Rough Gain	ain Chopping Cho		Chopping	Chopping
(RG)	frequency for	frequency for	frequency for	frequency for
	CKANA = 0	CKANA = 1 CKANA = 2		CKANA = 3
03	1100 kHz	550 kHz	275 kHz	137 kHz
47	550 kHz	275 kHz	137 kHz	69 kHz
811	275 kHz	137 kHz	69 kHz	34 kHz
1215	137 kHz	69 kHz	34 kHz	17 kHz

The refresh frequency of the output of the MLX90251 is directly linked to the chopping frequency

Rough	Refresh	Refresh	Refresh	Refresh
Gain	frequency for	frequency for	frequency for	frequency for
(RG)	CKANA = 0	CKANA = 1	CKANA = 2	CKANA = 3
03	275 kHz	137 kHz	69 kHz	34 kHz
47	137 kHz	69 kHz	34 kHz	17 kHz
811	69 kHz	34 kHz	17 kHz	8.6 kHz
1215	34 kHz	17 kHz	8.6 kHz	4.3 kHz

The chopping frequency is adjusted by Melexis based on the customer application requirements. There is a trade-off between impulse response time (or bandwidth) and accuracy.

6.4. DIDO Speed

The DIDO is the first amplifier of the analog signal processing chain. It is a part of the chopper amplifier. The parameter SLOW (1 bit) can be used to select its speed and therefore its accuracy. It contributes to the accuracy (thermal drift, noise) of the whole IC.

6.5. Multiplexed DAC Refresh Frequency

The DAC controlling the internal bias, the Voq and the clamping levels is actually multiplexed. The refresh rate of the DAC can be fixed by using the 2 bits code of CKDAC. The refresh rate is automatically linked to the main oscillator frequency.

CKDAC	Main Oscillator	DAC Refresh	Hold Time
	Frequency	Frequency	
0	(1100/kHz)	137 kHz	1.8 μs
1	550 kHz 🗸	69 kHz	3.6 µs
2	275 kHz	34 kHz	7.3 μs
3	137 kHz	17 kHz	14.5 μs

It will be adjusted at Melexis in order to meet the optimal thermal drift requirement.

6.6. Clamping Levels

The output swing of the MLX90251 can be clamped between 2 independent levels called the clamping levels. The minimum (resp. maximum) value is referred as Clamp Lo (resp. Clamp Hi).

The parameters controlling those levels are CLAMPLOW and CLAMPHIGH and they are both 10 bits code. The programming range is 0 to 100%Vdd for both levels with a resolution of ca. 5 mV.

6.7. Thermal Voq Drift

The thermal Voq drift parameter is a 4 bits code allowing an improvement of the accuracy of the transfer characteristic over temperature. This parameter is fixed by Melexis during the tri-temp test of the part.

6.8. Diagnostic Output Level

The MLX90251 memory content is secured through a CRC. This self-diagnostic feature brings the output in a defined range. To get rid of the output load influence, this fault-level (FAULTLEV) can be fixed to either Gnd (to be used with pull-down load) or Vdd (to be used with pull-up load).

This parameter is programmed in the application itself.

6.9. Filter

The MLX90251 includes 2 programmable filters placed in the chopper stages and in the fine gain stages. Those 2 filters are controlled through a 4 bits code.

The code 0 corresponds to minimum filtering i.e. maximum speed (impulse response time) but maximum noise.

The code 15 provides the maximum filtering i.e. minimum speed and minimum noise on the output.

The code is fixed in the application.

It is important to notice that the noise is also linked to the gain settings and therefore, the filter option

needs to be used accordingly to meet the best performances.

The table below shows the output noise (in mVrms) Vs. the filter setting for given RG and FG settings.

Rough	Fine	Filter	Filter	Filter	Filter	Filter	Filter	Fitter	Filter
Gain	Gain	0	2	4	6	8	10 🧹	12	14
0	0	0.83	0.58	0.41	0.39	0.79	0.60	0.35	0.28
0	1023	2.29	1.47	0.76	0.74	1.89 🧹	1.52	0.46	0.43
3	0	1.60	1.10	0.88	0.78	1.56	1.08	0.49	0.48
3	1023	4.03	3.00	2.03	1.79	4.02	2.86	1.02	1.01
4	0	0.99	0.78	0.49	0.50	1.02	0.65	0.33	0.35
4	1023	2.39	1.92	1.19 \	1.Q0	2.56	1.63	0.60	0.60
7	0	2.91	1.93	1.39	1,27	2.91	1.93	0.76	0.79
7	1023	7.55	4.99	3.90	3.17	7.44	4.99	1.82	1.75
8	0	1.31	0.91	0.72	0.59	1.40	0.90	0.40	0.39
8	1023	3.56	2.54	1.62	1.41	3.66	2.41	0.78	0.84
11	0	4.55	2.96	2.20	1.78	4.55	2.95	1.18	1.10
11	1023	\11.75	\ \7.66	5.57	4.82	11.74	7.68	2.78	2.65
12	0	2.12	1.41	1.00	0.90	2.25	1.36	0.61	0.53
12	1023	5\58	3.75	2.28	2.14	5.60	3.14	1.24	1.15
15	0	7.89	5.01	3.88	3.15	7.92	5.00	1.79	1.71
15	1023	20.37	13.01	9.90	8.08	20.47	12.91	4.48	4.36

6.10. Slope

The slope of the MLX90251 transfer characteristic can be fixed (parameter INVERTSLOPE) to accommodate application requirements and/or the magnet polarity. The slope is inverted in the first stage of the IC i.e. where the Hall signal is generated.

6.11. Output Amplifier Configuration

The output buffer configuration can be selected to tune the response time of the amplifier itself, to accommodate any capacitive load and also to improve the saturation voltage (output swing).

MODE	Maximum Output Current (Isc)	Capacitive Load	Response Time for 20%/80%	Vsat with $5k\Omega$ load to opposite supply
0	25 mA	Cl < 100nF	4 μs	0.75%Vdd
1	6mA	Cl < 47nF	15µs	1.5%Vdd
2	25 mA	Cl > 150nF	= Isc / Cl	0.75%Vdd
3	6mA	Cl > 33nF	= Isc / Cl	1.5%Vdd

6.12. Output Quiescent Voltage (Voq)

The Voq can be adjusted with a 10 bits resolution in the window allowed by the AGND setting (see section 6.1).

The Voq is adjusted in the customer application through the parameter OFFSET. It actually fixes the offset of the output transfer characteristic.

6.13. Rough Gain

The sensitivity of the MLX90251 is controlled through several parameters linked to dedicated internal amplification stages.

One of those is the rough gain setting (parameter RG) that provides a 4 bits adjust.

١٢

As described above, the refresh frequency is adapted automatically to the RG setting to match the chopper gain-bandwidth product.

The RG affects both stages (DIDO / DTS) of the chopper amplifier. The table below shows the chopper amplifier gain Vs. the parameter RG.

RG	DIDO Gain	DTS Gain	Total
00 (00 00)	16	1.0	16
01 (00 01)	16	/1.5	24
02 (00 10)	\16))\	233	37
03 (00 11)	16	4.0	64
04 (01 00)	39\\	1.0	39
05 (01 01)	39 🗁	1.5	59
06 (01 10)	39	2.33	91
07 (01 11)	39	4.0	156
08 (10 00)	82	1.0	82
09 (10 01)	82	1.5	123
10 (10 10)	82	2.33	191
11 (10 11)	82	4.0	328
12 (11 00)	205	1.0	205
13 (11 01)	205	1.5	308
14 (11 10)	205	2.33	477
15 (11 11)	205	4.0	820

6.14. Fine Gain

The sensitivity of the MLX90251 is controlled through several parameters linked to dedicated internal amplification stages.

One of those is the fine tuning gain stage (parameter FG) that provides a 10 bits adjust. The gain range of FG is within 1.0...2.5.

The RG and FG parameters are adjusted in the application to fix the sensitivity (gain) of the output transfer characteristic.

Note also that the bit INVERTSLOPE (see section 6.10) can be used to fix the "sign" of the sensitivity.

The following chart shows the sensitivity that can be reached by adjusting both RG and FG.

6.15. Sensitivity Temperature Coefficient

Since the flux density for the magnet used in the application (e.g. SmCo, NdFeB, ferrite,...) will have typically a negative temperature coefficient (the strength decreases if the temperature increases), the IC sensitivity needs to compensate this effect.

Therefore, the sensitivity temperature coefficient is programmed by Melexis (thanks to a tri-temp test on 100% of the parts) to compensate the temperature behaviour of the whole system used around the Hall sensor (i.e. magnet, airgap variations, mechanical variations,...).

To allow an optimal compensation, the sensitivity temperature coefficient is adjusted through a set of 3 parameters: TCW (selection of a window/range of TC – 3 bits), TC (1^{st} order compensation – 5 bits) and TC2ND (2^{nd} order compensation – 6 bits).

The programming accuracy for the TC of the sensitivity is \pm 100 ppm/Deg.C.

However, for the budget error of the whole system, the compensation mismatch (system Vs. IC) tolerance has to be taken into account.

6.16. ID Number

For traceability purpose, Melexis will program a unique ID number for each IC. Actually, per lot number (present on the IC marking), the wafer number, the X and Y coordinates will be stored in the memory. There are still some locations left in the Melexis area.

However, 64 bits are also available for the customer to add a serial number of the product,...

6.17. CRC

The EEPROM content is secured thanks to a CRC validation system (3 bits).

Note:

In addition to the global CRC, each bit of the EEPROM is meant to be full redundant i.e. each bit is written in 3 separate cells and a "majority voting" is applied. The 64 ID bits available for the customer are not redundant.

6.18. Memory Melexis Lock

The part of the memory programmed by Melexis is locked through the bit MLXLOCK in order to prevent any data changes in this area.

The MLXLOCK protects the following Melexis settings: AGND, FCKADJ, SLOW, CKANA, CKDAC, DRIFT, TCW, TC, TC2ND

However, the following settings are still accessible: OFFSET, RG, FG, INVERTSLOPE, CLAMPLOW, CLAMPHIGH, FILTER, MODE, CRC, FAULTLEVEL

6.19. Memory Customer Lock

The whole memory is locked through the bit MEMLOCK in order to prevent any data changes after the final calibration in the application.

Note:

The MLX90251 can be unlocked if the Pin 2 (Test) is accessible and set in the right configuration. In normal operating condition, Pin 2 is tied to the ground internally. However, for EMI immunity, the Pin 2 will be tied to the ground externally too (i.e. Pins 2 and 3 shorted).

7. MLX90251 Programming Tool

The MLX90251 can be programmed by using the PTC-03 programmer and the dedicated evaluation software to load and program the parts in the application. The programming of the parts is done only through the functional pins of the IC i.e. Vdd (Supply), Vss (Gnd) and Out (Output).

The "cockpit" of the programming software is shown on Page 12.

Note:

The MLX90251 programming is done through the output pin with the supply voltage raised up to 9 V. It should be notice that any connected components must also withstand this voltage excursion.

MLX90251 Programmable Linear Hall Effect Sensor

Melexis 90251Cx Programming tool								_ 🗆 X
Melexis Area	Customer Area			Solver				
MLX_Lock	Mem_Lock		Г		Dev	ice A	Devi	ce B
Offset Voltage (B=0)	Offset Voltage (B=0)	0	0	Linear Setup	Target	Result	Target	Result
Offset drift [4]		μ	<u>u</u>	Position 1	0	?	0	? V
Temperature Compensation (TC)	Clamping levels	0	0		0	?	0	? %Vdd
TC Window [3]	Clamping low [10]	0	0	Position 2	0	?	0	? ∨
TC (5) 0	Sensitivity (gain)				0	?	0	? %Vdd
TC 2nd Order [6] 0	Rough gain [4]	0	0	Clamping Set	up Target	Result	Target	Result
Time Generator	Fine Gain [10]	0	0	LowLevel	0	?	0	? V
Uscilator adjust[4] U U	Inverted slope [1]	U	U		0	?	0	? %Vdd
CKANACH [2] 0 0	Output Driver	0	Π	High Level	0	?	0	? ∨
SLOW [1] 0 0			P		0	?	0	? %Vdd
	Filter select [4]	0	0		1: Read C	urrent setting	IS	
ID 0 × 0	EEprom Fault level			1	<u>2</u> : Evaluata	e on position	1	
Wafer 0 Y 0	High level [1]	0	0		3: Evaluate	e on position	2	15 <u>A</u> uto
				<u>4</u> : Che	ck position 5: Program	n + memlock	Program	
Read EEprom Measure Vout by RAM ?	Program EEprom Measure	Vout by EEpre	2 / m		E			

8. Application Information

Multilayers surface mount capacitors recommended. *Readback diagnostic use only. Pin2

is not for programming device. For best results tie to Vss.

Recommended Wiring

9. Reliability Information

Melexis devices are classified and qualified regarding suitability for infrared, vapor phase and wave soldering with usual (63/37 SnPb-) solder (melting point at 183degC). The following test methods are applied:

IPC/JEDEC J-STD-020A (issue April 1999)

Moisture/Reflow Sensitivity Classification For Nonhermetic Solid State Surface Mount Devices CECC00802 (issue 1994) Standard Method For The Specification of Surface Mounting Components (SMDs) of Assessed Quality MIL 883 Method 2003 / JEDEC-STD-22 Test Method B102 Solderability

For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis.

The application of Wave Soldering for SMD's is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board.

For more information on manufacturability/solderability see quality page at our website: http://www.melexis.com/

10. ESD Precautions

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

11. Package Information

12. Disclaimer

Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically hot recommended without additional processing by Melexis for each application.

The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury. property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis' rendering of technical or other services. © 2002 Melexis NV. All rights reserved.

> For the latest version of this document, go to our website at: www.melexis.com

Or for additional information contact Melexis Direct:

Europe and Japan: All other locations: Phone: +32 13 67 04 95 Phone: +1 603 223 2362 E-mail: sales_europe@melexis.com E-mail: sales_usa@melexis.com

• • • • • • • • • • • •