GENERAL INFORMATION

KDI/Triangle's switched line digital phase shifters are controllable by binary logic. If a 360° phase shifter having sixteen discrete steps is required, then four logic lines are employed. The smallest phase increment will be 22.5°. This type of phase is illustrated below.

DESCRIPTION

Two advantages of the switched line phase shifter, Series DP, over the digitally controlled analog phase shifter, Series $Q Q$, are faster switching speed, and less change with temperature. The disadvantage is that phase increments smaller than 5.63° are impractical, while the digitally controlled analog device can have increments as small as 0.088° (12 bits) and maintain monotonicity.

ELECTRICAL SPECIFICATIONS

All performance characteristics, especially insertion loss, can be improved over narrower frequency bands.

GENERAL SPECIFICATIONS

Frequency Coverage:	$0.25-5.1 \mathrm{GHz}$
RF Impediance:	50 Ohms.
D.C. Requirements:	+5 volts at 70 mA , and -5 volts at 70 mA per bit. For each logic line at logic $0,+70 \mathrm{~mA}$ drawn from the +5 V supply and 10 mA from the -5 V supply. For each logic line at logic, $1-70 \mathrm{~mA}$ is drawn from the 5 V supply and 10 mA from the +5 V supply
RF Power:	200 mW average, 10 watts peak.
Temperature Information:	Operating temperature from $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Switching Speed:	The switching speed of all models in 500 nanoseconds (750 nanoseconds including storage and delay time). Any model can be switched in 15 nanoseconds (35 nanosec. including storage and delay time) if required. However, the insertion loss will increase by 30%. If 15 nanoseconds is required add-1 to the model no. (e.g. DP-51-1)
Connectors:	SMA (Mating multipin connector is supplied with each unit; ITT Cannon MDB1-9SSL or equiv.)

POWER LOGIC PIN CONNECTIONS

PIN *	FUNCTION
$1-6$	Logic Inputs
7	GND
8	$+5 V D C$
9	$-5 V D C$

[^0]

MECHANICAL OUTLINES

Outline	$\begin{gathered} \text { A } \\ \text { in } \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathrm{B} \\ \text { in } \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \text { C } \\ \text { in } \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \text { D } \\ \text { in } \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \text { in } \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathrm{F} \\ \text { in } \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathrm{G} \\ \text { in } \\ {[\mathrm{mm}]} \end{gathered}$
1	$\begin{gathered} 9.50 \\ {[241,3]} \end{gathered}$	$\begin{gathered} 3.50 \\ {[88,9]} \end{gathered}$	$\begin{gathered} 9.250 \\ {[235,0]} \\ \hline \end{gathered}$	$\begin{gathered} 3.300 \\ {[83,82]} \end{gathered}$	$\begin{aligned} & 0.093 \\ & {[2,36]} \end{aligned}$	$\begin{gathered} 0.12 \\ {[3.051} \end{gathered}$	$\begin{aligned} & 0.10 \\ & {[2,5]} \end{aligned}$
2	$\begin{gathered} 6.50 \\ {[165,1]} \end{gathered}$	$\begin{aligned} & 3.00 \\ & {[76,2]} \end{aligned}$	$\begin{gathered} 6.250 \\ {[158,8]} \end{gathered}$	$\begin{gathered} 2.800 \\ {[71,12]} \end{gathered}$	$\begin{aligned} & 0.093 \\ & {[2,36]} \end{aligned}$	$\begin{gathered} 0.12 \\ {[3,05]} \end{gathered}$	$\begin{aligned} & 0.10 \\ & {[2,5]} \end{aligned}$
3	$\begin{gathered} 5.50 \\ {[139,7]} \end{gathered}$	$\begin{gathered} 2.75 \\ {[69,85]} \end{gathered}$	$\begin{gathered} 5.250 \\ {[133,4]} \end{gathered}$	$\begin{aligned} & 2.550 \\ & {[64,8]} \end{aligned}$	$\begin{aligned} & 0.093 \\ & {[2,36]} \end{aligned}$	$\begin{gathered} 0.12 \\ {[3,05]} \end{gathered}$	$\begin{aligned} & 0.10 \\ & {[2,5]} \end{aligned}$
4	$\begin{gathered} 6.25 \\ {[158,8]} \\ \hline \end{gathered}$	$\begin{gathered} 5.00 \\ {[127,0]} \\ \hline \end{gathered}$	$\begin{gathered} 5.75 \\ {[146,1]} \\ \hline \end{gathered}$	$\begin{gathered} 4.50 \\ {[114,3]} \end{gathered}$	$\begin{aligned} & 0.156 \\ & {[3,96]} \end{aligned}$	$\begin{gathered} 0.25 \\ {[6,35]} \\ \hline \end{gathered}$	$\begin{gathered} 0.25 \\ {[6,35]} \\ \hline \end{gathered}$
5	$\begin{gathered} 5.00 \\ {[127,0]} \\ \hline \end{gathered}$	$\begin{gathered} 2.75 \\ {[69,85]} \end{gathered}$	$\begin{gathered} 4.700 \\ {[119,4]} \\ \hline \end{gathered}$	$\begin{aligned} & 2.450 \\ & {[62,2]} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.093 \\ & {[2,36]} \end{aligned}$	$\begin{gathered} 0.12 \\ {[3,05]} \end{gathered}$	$\begin{aligned} & \hline 0.10 \\ & {[2,5]} \end{aligned}$
6	$\begin{gathered} 3.50 \\ {[88,9]} \\ \hline \end{gathered}$	$\begin{gathered} 1.00 \\ {[2,54]} \end{gathered}$	$\begin{gathered} 3.300 \\ {[83,82]} \end{gathered}$	$\begin{aligned} & 0.800 \\ & {[20,3]} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.093 \\ & {[2,36]} \end{aligned}$	$\begin{gathered} 0.12 \\ {[3,05]} \end{gathered}$	$\begin{aligned} & 0.10 \\ & {[2,5]} \\ & \hline \end{aligned}$
7	$\begin{gathered} 5.50 \\ {[139,7]} \end{gathered}$	$\begin{gathered} 3.00 \\ {[76,2]} \end{gathered}$	$\begin{gathered} 5.00 \\ {[127,0]} \end{gathered}$	$\begin{gathered} 3.00 \\ {[76,2]} \end{gathered}$	$\begin{aligned} & 0.156 \\ & {[3,96]} \end{aligned}$	$\begin{gathered} 0.18 \\ {[4,57]} \end{gathered}$	$\begin{gathered} 0.18 \\ {[4,57]} \end{gathered}$

ELECTRICAL PERFORMANCE

${ }^{*}$ Total phase shift, $360^{\circ} \quad * * T o t a l ~ p h a s e ~ s h i f t, ~ 180 ~ \% ~$

[^0]: *PIN 1 is least significant bit.

