

General Description

The MAX9971/MAX9972 four-channel, ultra-low-power, pin-electronics ICs include, for each channel, a threelevel pin driver, a window comparator, a passive load, and force-and-sense Kelvin-switched parametric measurement unit (PMU) connections. The driver features a -2.2V to +5.2V voltage range, includes high-impedance and active-termination (3rd-level drive) modes, and is highly linear even at low voltage swings. The window comparator features 500MHz equivalent input bandwidth and programmable output voltage levels. The passive load provides pullup and pulldown voltages to the device-under-test (DUT).

Two grade versions are available, A grade and B grade. The A-grade version provides tight gain and offset matching for the driver and comparator, allowing reference levels to be shared across multiple channels. It also provides tighter tolerance of the load resistance values. The B-grade version is for system designs that incorporate independent reference levels for each channel.

Low-leakage, high-impedance, and terminate controls are operational configurations that are programmed through a 3-wire, low-voltage, CMOS-compatible serial interface. High-speed PMU switching is realized through dedicated digital control inputs.

These devices are available in an 80-pin. 12mm x 12mm body, 1.0mm pitch TQFP with an exposed 6mm x 6mm die pad on the bottom of the package (MAX9972), and the top of the package (MAX9971), for efficient heat removal. The MAX9971/MAX9972 are specified to operate over the 0°C to +70°C commercial temperature range, and feature a die temperature monitor output.

Applications

NAND Flash Testers

DRAM Probe Testers

Low-Cost Mixed-Signal/System-on-Chip (SOC)

Active Burn-In Systems

Structural Testers

Features

♦ Small Footprint—Four Channels in 0.3in²

♦ Low-Power Dissipation: 325mW/Channel Typical

♦ High Speed: 300Mbps at 3V_{P-P}

♦ -2.2V to +5.2V Operating Range

♦ Active Termination (3rd-Level Drive)

♦ Integrated PMU Switches

♦ Passive Load

♦ Low-Leak Mode: 20nA max

♦ Low Gain and Offset Error

♦ Lead-Free Package Available

Pin Configurations appear at end of data sheet.

Ordering Information and Selector Guide

PART	ACCURACY GRADE	PIN-PACKAGE	PKG CODE	HEAT EXTRACTION
MAX9971ACCS*	А	80 TQFP-IDP†	_	Тор
MAX9971BCCS*	В	80 TQFP-IDP†	_	Тор
MAX9972ACCS*	А	80 TQFP-EP††	C80E-4	Bottom
MAX9972BCCS	В	80 TQFP-EP††	C80E-4	Bottom

^{*}Future product—contact factory for availability.

Note: All devices are specified over the 0°C to +70°C operating temperature range.

All versions available in both leaded and lead-free packaging. Specify lead-free by adding the "+" symbol at the end of the part number when ordering.

[†]IDP = Inverted die pad.

^{††}EP = Exposed paddle.

ABSOLUTE MAXIMUM RATINGS

V _{DD} to GND	0.3V to +9.4V
Vss to GND	
V _{DD} to V _{SS}	+15.7V
V _L to GND	0.3V to +5V
V _{DD} to GND	0.3V to +9.4V
DHV_, DTV_, DLV_, DATA_, RCV_, LDV_,	
DUT_ to GND	Vss to VDD
CHV_, CLV_, CMPH_, CMPL_, COMPHI,	
COMPLO to GND	Vss to VDD
FORCE_, SENSE_, PMU_ to GND	V _{SS} to V _{DD}
LD, DIN, SCLK, CS to GND	0.3V to +5V

DUT_, CMPH_, CMPL_ Short-Circuit Duration	Continuous
DHV_, DLV_, DTV_ to Each Other	Vss to VDD
CHV_, CLV_ to DUT	Vss to VDD
DOUT to GND	0.3V to +5V
TEMP Short-Circuit Duration	Continuous
Continuous Power Dissipation ($T_A = +70$ °C)	
80-Pin TQFP-EP (derate 35.7mW/°C above +7	'0°C)2857mW
Storage Temperature Range	-65°C to +150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD EN LOW = LOAD EN HIGH = 0, T_J = +75°C.$ All temperature coefficients measured at T_J = +50°C to +100°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIO	NS	MIN	TYP	MAX	UNITS
DRIVER (all specifications apply	when DUT_	= DHV_, DUT_ = DTV_, or	DUT_ = DLV_)	•			
DC CHARACTERISTICS							
Voltage Range				-2.2		+5.2	V
Gain		Measured at 0 and 3V	A grade	0.995	1	1.005	\/\/
Gain		ivieasured at 0 and 3v	B grade	0.95		1.05	V/V
Gain Temperature Coefficient					50		ppm/°C
Offset		$V_{DHV} = 2V$, $V_{DLV} = 0$,	A grade			±7	mV
Oliset		$V_{DTV} = 1V$	B grade			±100	IIIV
Offset Temperature Coefficient					±250		μV/°C
Power-Supply Rejection Ratio	PSRR	V _{DD} , V _{SS} independently variange	aried over full			18	mV/V
Maximum DC Drive Current	I _{DUT} _			±40		±90	mA
DC Output Resistance		$I_{DUT} = \pm 10$ mA (Note 2)		48.5	49.5	50.5	Ω
DC Output Resistance Variation		I_{DUT} = -40mA to +40mA				2.5	Ω
		DHV to DLV and DTV: V _{DLV} = V _{DTV} = +1.5V, V _{DHV} = -2.2V, +5.2V				5	
DC Crosstalk		DLV to DHV and DTV: V _{DHV} = V _{DTV} = +1.5V, V _{DLV} = -2.2V, +5.2V				5	mV
		DTV to DHV and DLV: V _{DHV} = V _{DLV} = +1.5V, V _{DTV} = -2.2V, +5.2V				5	
Linearity Error		0 to 3V (Note 3)				±5	mV
Linearity Error		Full range (Note 4)				±15	mV

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD EN LOW = LOAD EN HIGH = 0, T_J = +75°C.$ All temperature coefficients measured at $T_J = +50°C$ to +100°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	COI	MIN	TYP	MAX	UNITS		
AC CHARACTERISTICS (Note 5)	I.	ı		L				
Dynamic Output Current		(Note 1)		40			mA	
Drive-Mode Overshoot, Undershoot, and Preshoot		200mV to 4V _{P-P} sw	ing (Note 6)		5% +10		mV	
Tarres Mada Crailea		V _{DHV} = V _{DTV} = 1	V, V _{DLV} _ = 0		25		\ /	
Term-Mode Spike		$V_{DLV} = V_{DTV} = 0$, V _{DHV} _ = 1V		25		mV	
High Impodence Made Child		$V_{DLV} = -1.0V, V_{DH}$	_{IV_} = 0		25		mV	
High-Impedance-Mode Spike		$V_{DLV} = 0$, $V_{DHV} =$	= 1V		25		IIIV	
Prop Delay, Data to Output					2		ns	
Prop-Delay Temperature Coefficient					10		ps/°C	
Prop-Delay Match, tLH vs. tHL					30		ps	
Prop-Delay Skew, Drivers Within Package					150		ps	
Prop-Delay Change vs. Pulse	Relative to ² pulse	Relative to 12.5ns	3V _{P-P} , 40MHz, PW = 4ns to 21ns		20			
Width		pulse	1V _{P-P} , 40MHz, PW = 2.5ns to 23.5ns		90		ps	
Prop-Delay Change vs. Common- Mode Voltage		$1V_{P-P}$, $V_{DLV} = 0$ to $V_{DLV} = 1V$	3V, relative to delay at		80		ps	
Prop Delay, Data to High Impedance		V _{DHV} = +1.5V, V _D directions	LV_{\perp} = -1.5V, both		1.8		ns	
Prop Delay, Data to Term		$V_{DHV} = +1.5V, V_{D}$ both directions	LV_ = -1.5V, V _{DTV} _ = 0,		1.6		ns	
Minimum Voltage Swing		(Note 7)			25		mV	
		$V_{DHV} = 0.2V, V_{DLV}$	y_ = 0, 20% to 80%		0.7			
		V _{DHV} = 1V, V _{DLV}	= 0, 20% to 80%		0.7			
		$V_{DHV} = 3V, V_{DLV}$	= 0, 10% to 90%	1.5	2.0	2.5		
Rise/Fall Time		$V_{DHV} = 4V, V_{DLV}$ $R_{L} = 500\Omega, 10\% \text{ to}$			2.6		ns	
		$V_{DHV} = 5V, V_{DLV}$ $R_{L} = 500\Omega, 10\% \text{ to}$			3.4			
Rise/Fall-Time Matching		$V_{DHV} = 1V \text{ to } 5V$			±5		%	
		200mV, V _{DHV} = 0.	2V, V _{DLV} = 0		1.8			
Minimum Pulse Width (Note 8)		1V, V _{DHV} = 1V, V _D	DLV_ = 0		2.4		ns	
		3V, V _{DHV} = 3V, V _D	DLV_ = 0		3.3			

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD EN LOW = LOAD EN HIGH = 0, T_J = +75°C.$ All temperature coefficients measured at T_J = +50°C to +100°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITION	S	MIN	TYP	MAX	UNITS
COMPARATOR (Note 9)	•	<u> </u>					•
DC CHARACTERISTICS (driver	n high-imped	lance mode)					
Input Voltage Range				-2.2		+5.2	V
Differential Input Voltage		V _{DUT_} - V _{CHV_} , V _{DUT_} - V _{CL}	V_	-7.4		+7.4	V
Hysteresis		$V_{CHV} = V_{CLV} = 1.5V$			8		mV
Input Offset Voltage		VDUT - 1 5V	A grade			±10	mV
Input Onset voltage		V _{DUT} _ = 1.5V	B grade			±100	IIIV
Input Offset Temperature Coefficient					25		μV/°C
Common-Mode Rejection Ratio	CMRR	V _{DUT} = 0 and 3V		60			dB
		V _{DUT} = 1.5V				±5	.,
Linearity Error (Note 10)		V _{DUT} _ = -2.2V, +5.2V				±10	mV
Power-Supply Rejection Ratio	PSRR	V _{DUT} = 1.5V, supplies indevaried over full range	ependently			5	mV/V
AC CHARACTERISTICS (Note 1	1)						I.
Equivalent Input Bandwidth		Terminated (Note 12)			500		MHz
Equivalent Input Bandwidth		High impedance (Note 13)			300		IVIIIZ
Propagation Delay					3.9		ns
Prop-Delay Temperature Coefficient					4		ps/°C
Prop-Delay Match, tLH to tHL					120		ps
Prop-Delay Skew, Comparators Within Package		Same edges (LH and HL)			200		ps
Prop-Delay Dispersions vs.		0 to 4.9V			20		
Common-Mode Voltage (Note 14)		-1.9V to +4.9V			30		ps
Prop-Delay Dispersions vs. Overdrive		$V_{CHV} = V_{CLV} = 0.1V \text{ to } 0.9$ $V_{DUT} = 1V_{PP}, \text{ tr} = \text{tr} = 500$ 90% relative to timing at 509	Ops, 10% to		220		ps
Prop-Delay Dispersions vs. Pulse Width		2ns to 23ns pulse width, relapulse width	ative to 12.5ns		±60		ps
Prop-Delay Dispersions vs. Slew Rate		0.5V/ns to 2V/ns			50		ps

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD EN LOW = LOAD EN HIGH = 0, T_J = +75°C.$ All temperature coefficients measured at $T_J = +50°C$ to +100°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDIT	TIONS	MIN	TYP	MAX	UNITS
LOGIC OUTPUTS							
Reference Voltages COMPHI and COMPLO		(Note 15)		0		+3.6	V
Output High Voltage Offset		I _{OUT} = 0mA, relative to V _{COMPHI} = 1V	COMPHI at			±50	mV
Output Low Voltage Offset		I _{OUT} = 0mA, relative to V _{COMPLO} = 0V	COMPLO at			±50	mV
Output Resistance		I _{CHV} = I _{CLV} = ±10mA	4	40	50	60	Ω
Current Limit					25		mA
Rise/Fall Time		20% to 80%, $V_{CHV} = 1$ load = T-line, 50Ω , > 1			0.7		ns
PASSIVE LOAD							
DC CHARACTERISTICS (R _{DUT_2}	2 10M Ω)						
LDV_ Voltage Range				-2.2		+5.2	V
Gain				0.99		1.01	V/V
Gain Temperature Coefficient					0.02		%/°C
Offset						±100	mV
Offset Temperature Coefficient					0.02		mV/°C
Power-Supply Rejection Ratio	PSRR				10		mV/V
Output Resistance		$I_{DUT} = \pm 0.2 \text{mA},$	A grade	7.125	7.5	7.875	kΩ
Tolerance—High Value		$V_{LDV} = 1.5V$	B grade	4.200	6.0	7.875	N32
Output Resistance		$I_{DUT} = \pm 0.1 \text{mA},$	A grade	1.90	2.0	2.10	kΩ
Tolerance—Low Value		$V_{LDV} = 1.5V$	B grade	1.05	1.5	2.10	N32
Switch Resistance Variation		Relative to 1.5V	0 to 3V		±10		%
Switch resistance variation		Theialive to 1.5v	Full range		±30		/0
Maximum Output Current		$V_{LDV} = -2V$, $V_{DUT} = -4$	+5V		±4		mA
(Note 16)		$V_{LDV} = +5V, V_{DUT} =$	-2V		±4		ША
Linearity Error, Full Range		Measured at -2.2V, +1. (Note 16)	5V, and +5.2V			±25	mV
AC CHARACTERISTICS				•			
Settling Time, LDV_ to Output		V _{LDV} = -2V to +5V ste (Note 17)	p, $R_{DUT} = 100k\Omega$		0.5		μs
Output Transient Response		V _{LDV} = +1.5V, V _{DUT} wave at 1MHz, R _{DUT} =			20		ns

ELECTRICAL CHARACTERISTICS (continued)

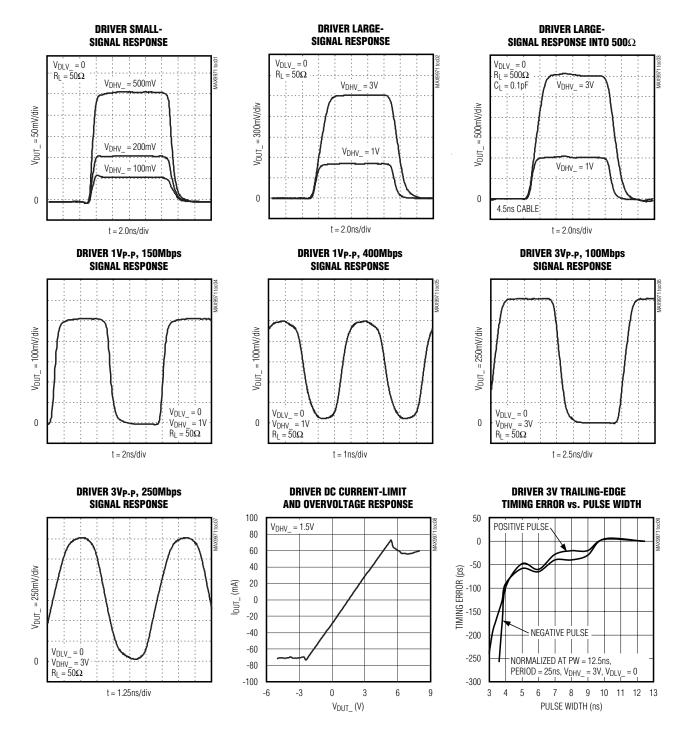
 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD EN LOW = LOAD EN HIGH = 0, T_J = +75°C.$ All temperature coefficients measured at $T_J = +50°C$ to +100°C, unless otherwise noted.) (Note 1)

Force Switch Resistance VFORCE_ = 1.5V, IPMU_ = ±10mA 25	PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Force Switch Resistance VFORCE_ = 1.5V, IPMU_ = ±10mA 25	PMU SWITCHES (FORCE_, SENS	SE_, PMU_)		•			•
VPMU_ = 6.2V, VFORCE_ set to make FORCE_ = 30mA PVPMU_ = 3.2V, VFORCE_ set to make FORCE_ = 30mA PVPMU_ = 3.2V, VFORCE_ set to make FORCE_ = -30mA PVPMU_ = -3.2V, VFORCE_ set to make FORCE_ = -30mA PVPMU_ = 3.2V, VFORCE_ set to make FORCE_ = -30mA PVPMU_ = 3.2V, VFORCE_ set to make PVPMU_ = 3.2V, VFORCE_ set to make PVPMU_ = 3.3V, VFORCE_ set to make FVPMU_ = 3.3V, VFORCE_ set to make PVPMU_ = 3.2V, VFORCE_ set to make PVPMU_	Voltage Range			-2.2		+5.2	V
Force Switch Compliance Force = 30mA	Force Switch Resistance		VFORCE_ = 1.5V, IPMU_ = ±10mA			40	Ω
VPMU_ = -3.2V, VFORCE_ set to make IFORCE_ = -30mA 25	Force Switch Compliance			25			m ^
Full range	Force Switch Compliance			25			mA
Full range	Force Switch Resistance		0 to 3V		±10		0/
Relative to 1.3V, full range	Variation (Note 18)		Full range		±30		%
Variation Helative to 1.3V, full range ±30 % PMU_ Capacitance Force-and-sense switches open 5 pF FORCE_ Capacitance 5 pF SENSE_ Capacitance 0.2 pF FORCE_ External Capacitance Allowable external capacitance 2 nF FORCE_ External Capacitance 1 nF FORCE_ and SENSE_ Switching Connect or disconnect 10 µs PMU_ Leakage FORCE EN_ = SENSE EN_ = 0, VFORCE = VSENSE = -2.2V to +5.2V ±0.5 ±5 nA TOTAL FUNCTION DUT_ Leakage, High-Impedance Mode VOUT_ = +5.2V, VOUT_ = -2.2V, VOUT	Sense Switch Resistance			700	1000	1300	Ω
FORCE_Capacitance S	Sense Switch Resistance Variation		Relative to 1.3V, full range		±30		%
SENSE_Capacitance	PMU_ Capacitance		Force-and-sense switches open		5		рF
Allowable external capacitance Allowable external capacitance 2	FORCE_ Capacitance				5		рF
SENSE_External Capacitance Allowable external capacitance 1	SENSE_ Capacitance				0.2		pF
Connect or disconnect 10	FORCE_ External Capacitance		Allowable external capacitance		2		nF
Connect of disconnect 10	SENSE_ External Capacitance		Allowable external capacitance		1		nF
TOTAL FUNCTION DUT_ Leakage, High-Impedance Mode Leakage, Low-Leakage Mode Leakage, Recovery Time Combined Capacitance $V_{FORCE} = V_{SENSE} = -2.2V \text{ to } +5.2V$ $V_{FORCE} = V_{SENSE} = -2.2V \text{ to } +5.2V$ $V_{FORCE} = V_{SENSE} = -2.2V \text{ to } +5.2V$ $V_{FORCE} = V_{SENSE} = -2.2V \text{ to } +5.2V$ $V_{DUT} = V_{DUT} = -2.2V$ $V_{DUT} = -2.2V$ $V_{DUT} = -2.2V$ $V_{CLV} = V_{CHV} = +5.2V$ $V_{CLV} = V_{CHV} = +5.2V$ $V_{DUT} = -2.2V$ $V_{DUT} = $	FORCE_ and SENSE_ Switching Speed		Connect or disconnect		10		μs
DUT_ Load switches open, $V_{DUT_{-}} = +5.2V$, $V_{CLV_{-}} = V_{CHV_{-}} = -2.2V$, $V_{CLV_{-}} = V_{CHV_{-}} = -2.2V$, $V_{CLV_{-}} = V_{CHV_{-}} = +5.2V$, full range 2 μ A Leakage, Low-Leakage Mode Full range ± 1 ± 20 nA Low-Leakage Recovery Time (Note 19) 10 μ s Combined Capacitance Term mode 2 μ s High-impedance mode 5 μ s Load Resistance (Note 20) 1 μ s	PMU_ Leakage				±0.5	±5	nA
Leakage, High-Impedance Mode	TOTAL FUNCTION		,	I.			I.
Leakage, High-Impedance Mode	DUT_						
	Leakage, High-Impedance Mode		V _{DUT} = +5.2V, V _{CLV} = V _{CHV} = -2.2V, V _{DUT} = -2.2V,			2	μΑ
	Leakage, Low-Leakage Mode		Full range		±1	±20	nA
Combined Capacitance High-impedance mode 5 Load Resistance (Note 20) 1 GΩ	Low-Leakage Recovery Time		(Note 19)		10		μs
High-impedance mode 5 Load Resistance (Note 20) 1 GΩ			Term mode		2		[
	Compined Capacitance		High-impedance mode		5		p⊦
Load Capacitance (Note 20) 12 nF	Load Resistance		(Note 20)		1		GΩ
	Load Capacitance		(Note 20)		12		nF

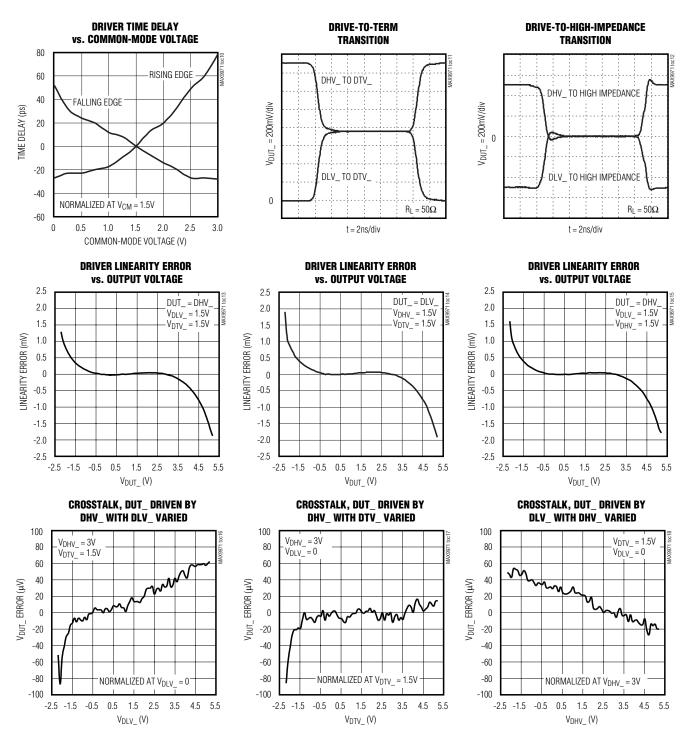
ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +8V, V_{SS} = -5V, V_L = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD \ EN \ LOW = LOAD \ EN \ HIGH = 0, T_J = +75^{\circ}C. \ All temperature coefficients measured at T_J = +50^{\circ}C \ to +100^{\circ}C, unless otherwise noted.) (Note 1)$

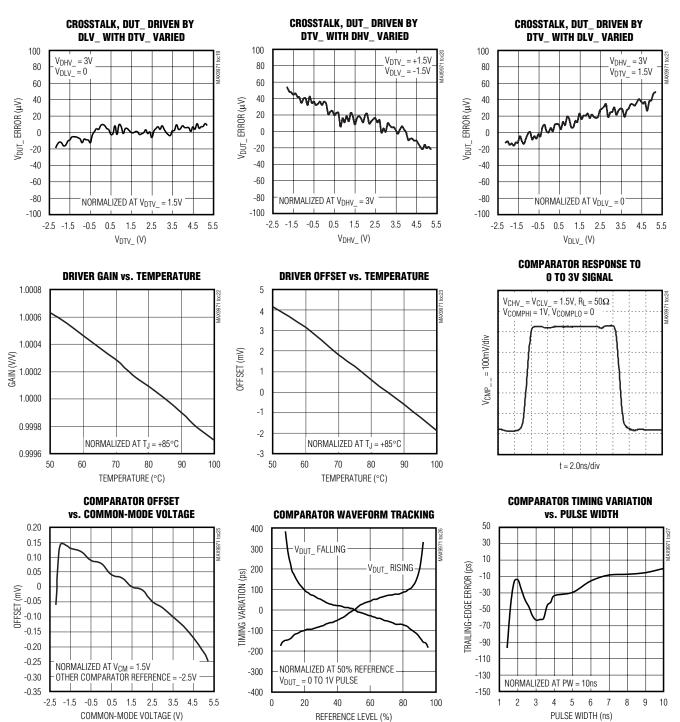
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP M	AX	UNITS
VOLTAGE REFERENCE INPUTS	S (DHV_, DTV_	, DLV_, DATA_, RCV_, CHV_, CLV_	, LDV_, COMPHI,	COMPLO)		
Input Bias Current				±	100	μΑ
Input Bias Current Temperature Coefficient				±200		nA/°C
Settling to Output		0.1% of full-scale step		10		μs
DIGITAL INPUTS (DATA_, RCV_	, LD, DIN, SC	LK, CS)	•			· · · · ·
Input High Voltage		(Note 21)	V _L / 2 + 0.2	+	3.6	V
Input Low Voltage		(Note 21)	-0.3		/ 2 -).2	V
Input Bias Current				1	00	μΑ
SERIAL DATA OUTPUT (DOUT)						
Output High Voltage		I _{OH} = -1mA	V _L - 0.4	\	/L	V
Output Low Voltage		I _{OL} = 1mA	0	+	0.4	V
Output Rise and Fall Time		$C_L = 10pF$		1.1		ns
SCLK to DOUT Delay		C _L = 10pF	tDН	tı	CLK - OS 2ns	ns
SERIAL-INTERFACE TIMING (N	ote 22)					
SCLK Frequency				Ę	50	MHz
SCLK Pulse-Width High	tсн		10			ns
SCLK Pulse-Width Low	t _{CL}		10			ns
CS Low to SCLK High Setup	tcsso		3.5			ns
SCLK High to CS Low Hold	t _{CSH0}		0			ns
CS High to SCLK High Setup	tcss1		3.5			ns
SCLK High to $\overline{\text{CS}}$ High Hold	tCSH1		15			ns
DIN to SCLK High Setup	t _{DS}		3.5			ns
DIN to SCLK High Hold	t _{DH}		1			ns
$\overline{\text{CS}}$ High to $\overline{\text{LOAD}}$ Low Setup	tCLL		6			ns
LD Low Hold Time	t _{LDW}		5			ns
LD High to Any Activity			0			ns
V _L Rising to $\overline{\text{CS}}$ Low		Power-on delay		2		μs
TEMP SENSOR						
Nominal Voltage		T _J = +27°C		3.00		V
Temperature Coefficient				+10		mV/°C
Output Resistance				500		Ω

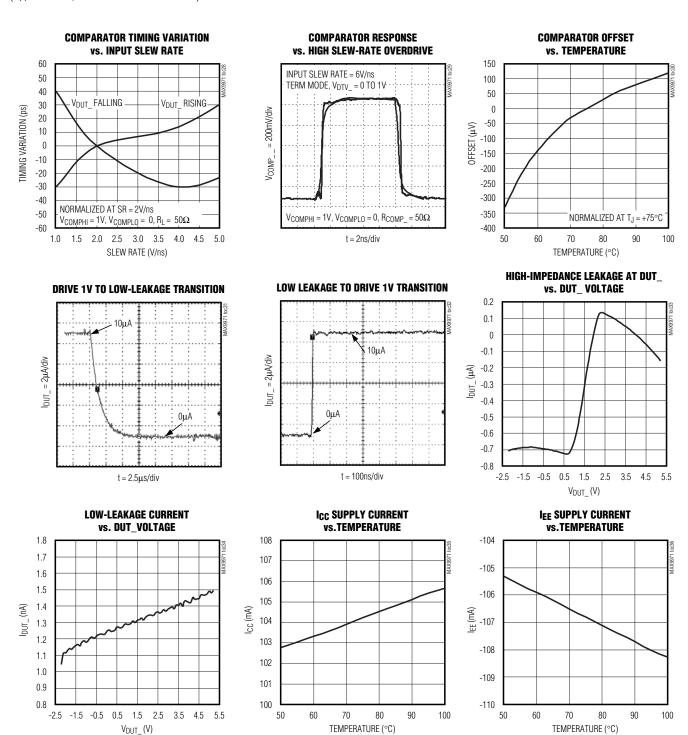

ELECTRICAL CHARACTERISTICS (continued)

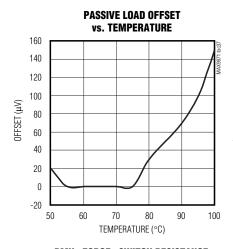
 $(V_{DD} = +8V, V_{SS} = -5V, V_{L} = +3V, V_{COMPHI} = +1V, V_{COMPLO} = 0, V_{LDV} = 0, LOAD EN LOW = LOAD EN HIGH = 0, T_{J} = +75$ °C. All temperature coefficients measured at T_{J} = +50°C to +100°C, unless otherwise noted.) (Note 1)

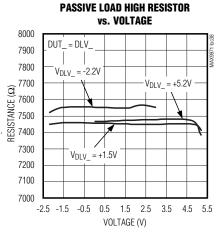

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES						
Positive Supply Voltage	V_{DD}	(Note 23)	7.6	8	8.4	V
Negative Supply Voltage	V _{SS}	(Note 23)	-5.25	-5	-4.75	V
Logic Supply Voltage	VL		2.3		3.6	V
Positive Supply Current	I _{DD}	f _{OUT} = 0MHz		97	120	mA
Negative Supply Current	ISS	f _{OUT} = 0MHz		99	120	mA
Logic Supply Current	IL			0.15	0.30	mA
Static Power Dissipation		f _{OUT} = 0MHz		1.3	1.5	W
Operating Power Dissipation		f _{OUT} = 100Mbps (Note 24)		1.4		W

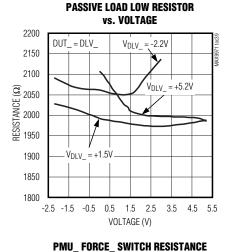
- **Note 1:** All minimum and maximum specifications are 100% production tested except driver dynamic output current, which is guaranteed by design. All specifications are with DUT_ and PMU_ electrically isolated, unless otherwise noted.
- **Note 2:** Nominal target value is 49.5Ω . Contact factory for alternate trim selections within the 45Ω to 55Ω range.
- Note 3: Measured at 1.5V, relative to a straight line through 0 and 3V.
- **Note 4:** Measured at end points, relative to a straight line through 0 and 3V.
- **Note 5:** DUT_ is terminated with 50Ω to ground, $V_{DHV_{-}} = 3V$, $V_{DLV_{-}} = 0$, $V_{DTV_{-}} = 1.5V$, unless otherwise specified. DATA_ and RCV_ logic levels are $V_{HIGH} = 2V$, $V_{LOW} = 1V$.
- **Note 6:** Undershoot is any reflection of the signal back towards its starting voltage after it has reached 90% of its swing. Preshoot is any aberration in the signal before it reaches 10% of its swing.
- Note 7: At the minimum voltage swing, undershoot is less than 20%. DHV_ and DLV_ references are adjusted to result in the specified swing.
- Note 8: At this pulse width, the output reaches at least 90% of its nominal (DC) amplitude. The pulse width is measured at DATA_.
- Note 9: With the exception of offset and gain/CMRR tests, reference input values are calibrated for offset and gain.
- Note 10: Relative to a straight line through 0 and 3V.
- Note 11: Unless otherwise noted, all propagation delays are measured at 40MHz, V_{DUT} = 0 to 1V, V_{CHV} = V_{CLV} = +0.5V, t_R = t_F = 500ps, Z_S = 50Ω, driver in term mode with V_{DTV} = +0.5V. Comparator outputs are terminated with 50Ω to GND. Measured from V_{DUT} crossing calibrated CHV_/CLV_ threshold to midpoint of nominal comparator output swing.
- **Note 12:** Terminated is defined as driver in drive mode and set to zero volts.
- **Note 13:** High impedance is defined as driver in high-impedance mode.
- **Note 14:** V_{DUT} = 200mV_{P-P}. Propagation delay is compared to a reference time at 1.5V.
- Note 15: The comparator meets all its timing specifications with the specified output conditions when the output current is less than 15mA, V_{COMPHI} > V_{COMPLO}, and V_{COMPHI} V_{COMPLO} ≤ 1V. Higher voltage swings are valid but AC performance may degrade.
- Note 16: LOAD EN LOW = LOAD EN HIGH = 1.
- **Note 17:** Waveform settles to within 5% of final value into load $100k\Omega$.
- Note 18: IPMU = ±2mA at VFORCE = -2.2V, +1.5V, and +5.2V. Percent variation relative to value calculated at VFORCE = +1.5V.
- Note 19: Time to return to the specified maximum leakage after a 3V, 4V/ns step at DUT_.
- Note 20: Load at end of 2ns transmission line; for stability only, AC performance may be degraded.
- Note 21: The driver meets all of its timing specifications over the specified digital input voltage range.
- Note 22: Timing characteristics with VLOGIC = 3V.
- **Note 23:** Specifications are simulated and characterized over the full power-supply range. Production tests are performed with power supplies at typical values.
- **Note 24:** All channels driven at $3V_{P-P}$, load = 2ns, 50Ω transmission line terminated with 3pF.

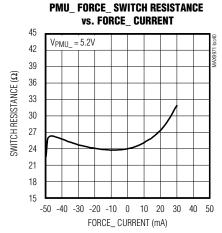

Typical Operating Characteristics

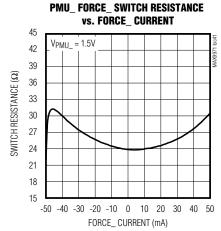

Typical Operating Characteristics (continued)

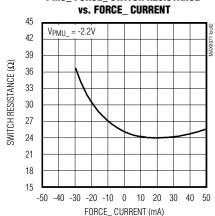

Typical Operating Characteristics (continued)




Typical Operating Characteristics (continued)




Typical Operating Characteristics (continued)



Pin Description

PIN						
MAX9972	MAX9971	NAME	FUNCTION			
1	60	DATA1	Channel 1 Multiplexer Control Input. Selects driver 1 input from DHV1 or DLV1 in drive mode. See Table 1 and Figure 2.			
2	59	RCV1	Channel 1 Multiplexer Control Input. Sets channel 1 mode to drive or receive. See Table 1 and Figure 2.			
3, 8, 13, 18, 51	10, 43, 48, 53, 58	GND	Analog Ground			
4	57	CMPH1	Channel 1 High-Side Comparator Output			
5	56	CMPL1	Channel 1 Low-Side Comparator Output			
6	55	DATA2	Channel 2 Multiplexer Control Input. Selects driver 2 input from DHV2 or DLV2 in drive mode. See Table 1 and Figure 2.			
7	54	RCV2	Channel 2 Multiplexer Control Input. Sets channel 2 mode to drive or receive. See Table 1 and Figure 2.			
9	52	CMPH2	Channel 2 High-Side Comparator Output			
10	51	CMPL2	Channel 2 Low-Side Comparator Output			
11	50	CMPL3	Channel 3 Low-Side Comparator Output			
12	49	CMPH3	Channel 3 High-Side Comparator Output			
14	47	RCV3	Channel 3 Multiplexer Control Input. Sets channel 3 mode to drive or receive. See Table 1 and Figure 2.			
15	46	DATA3	Channel 3 Multiplexer Control Input. Selects driver 3 input from DHV3 or DLV3 in drive mode. See Table 1 and Figure 2.			
16	45	CMPL4	Channel 4 Low-Side Comparator Output			
17	44	CMPH4	Channel 4 High-Side Comparator Output			
19	42	RCV4	Channel 4 Multiplexer Control Input. Sets channel 4 mode to drive or receive. See Table 1 and Figure 2.			
20	41	DATA4	Channel 4 Multiplexer Control Input. Selects driver 4 input from DHV4 or DLV4 in drive mode. See Table 1 and Figure 2.			
21	40	DHV4	Channel 4 Driver High Voltage Input			
22	39	DLV4	Channel 4 Driver Low Voltage Input			
23	38	DTV4	Channel 4 Driver Termination Voltage Input			
24	37	CHV4	Channel 4 Threshold Voltage Input for High-Side Comparator			
25	36	CLV4	Channel 4 Threshold Voltage Input for Low-Side Comparator			
26	35	DHV3	Channel 3 Driver High Voltage Input			
27	34	DLV3	Channel 3 Driver Low Voltage Input			
28	33	DTV3	Channel 3 Driver Termination Voltage Input			
29	32	CHV3	Channel 3 Threshold Voltage Input for High-Side Comparator			
30	31	CLV3	Channel 3 Threshold Voltage Input for Low-Side Comparator			
31	30	DGND	Digital Ground Connection			
32	29	DOUT	Serial-Interface Data Output			
33	28	ĪD	Load Input. Latches data from the serial input register to the control register on rising edge. Transparent when low.			

_Pin Description (continued)

PIN NAME FUNCTION MAX9972 MAX9971 NAME FUNCTION 34 27 DIN Serial-Interface Data Input 35 26 SCLK Serial Clock 36 25 CS Chip Select 37 24 SENSE4 Channel 4 PMU Sense Connection 38 23 FORCE4 Channel 4 PMU Force Connection 39 22 SENSE3 Channel 3 PMU Sense Connection	
34 27 DIN Serial-Interface Data Input 35 26 SCLK Serial Clock 36 25 CS Chip Select 37 24 SENSE4 Channel 4 PMU Sense Connection 38 23 FORCE4 Channel 4 PMU Force Connection	
35 26 SCLK Serial Clock 36 25 CS Chip Select 37 24 SENSE4 Channel 4 PMU Sense Connection 38 23 FORCE4 Channel 4 PMU Force Connection	
36 25 CS Chip Select 37 24 SENSE4 Channel 4 PMU Sense Connection 38 23 FORCE4 Channel 4 PMU Force Connection	
37 24 SENSE4 Channel 4 PMU Sense Connection 38 23 FORCE4 Channel 4 PMU Force Connection	
38 23 FORCE4 Channel 4 PMU Force Connection	
I 30 I 99 I SENSES I Channal 3 PMI I Sanco Connoction	
40 21 FORCE3 Channel 3 PMU Force Connection	
41 20 TEMP Temperature Sensor Output	
42, 47, 1, 5, 9, 52, 56, 60 14, 19 V _{DD} Positive Power-Supply Input	
43 18 DUT4 Channel 4 Device-Under-Test Connection. Driver, comparator, and load I/O	node for channel 4.
44 17 PMU4 Channel 4 Parametric Measurement Connection. PMU switch I/O node for ch	nannel 4.
45, 50, 4, 8, 53, 57 11, 16 V _{SS} Negative Power-Supply Input	
46 15 V _L Logic Power-Supply Input	
48 13 DUT3 Channel 3 Device-Under-Test Connection. Driver, comparator, and load I/O	node for channel 3.
49 12 PMU3 Channel 3 Parametric Measurement Connection. PMU switch I/O node for ch	nannel 3.
54 7 PMU2 Channel 2 Parametric Measurement Connection. PMU switch I/O node for ch	nannel 2.
55 6 DUT2 Channel 2 Device-Under-Test Connection. Driver, comparator, and load I/O	node for channel 2.
58 3 PMU1 Channel 1 Parametric Measurement Connection. PMU switch I/O node for ch	nannel 1.
59 2 DUT1 Channel 1 Device-Under-Test Connection. Driver, comparator, and load I/O	node for channel 1.
61 80 FORCE2 Channel 2 PMU Force Connection	
62 79 SENSE2 Channel 2 PMU Sense Connection	
63 78 FORCE1 Channel 1 PMU Force Connection	
64 77 SENSE1 Channel 1 PMU Sense Connection	
65 76 COMPLO Comparator Output-Low Voltage Reference Input	
66 75 COMPHI Comparator Output-High Voltage Reference Input	
67 74 LDV4 Channel 4 Load Voltage Input	
68 73 LDV3 Channel 3 Load Voltage Input	
69 72 LDV2 Channel 2 Load Voltage Input	
70 71 LDV1 Channel 1 Load Voltage Input	
71 70 CLV2 Channel 2 Threshold Voltage Input for Low-Side Comparator	
72 69 CHV2 Channel 2 Threshold Voltage Input for High-Side Comparator	
73 68 DTV2 Channel 2 Driver Termination Voltage Input	
74 67 DLV2 Channel 2 Driver Low Voltage Input	
75 66 DHV2 Channel 2 Driver High Voltage Input	
76 65 CLV1 Channel 1 Threshold Voltage Input for Low-Side Comparator	
77 64 CHV1 Channel 1 Threshold Voltage Input for High-Side Comparator	
78 63 DTV1 Channel 1 Driver Termination Voltage Input	
79 62 DLV1 Channel 1 Driver Low Voltage Input	
80 61 DHV1 Channel 1 Driver High Voltage Input	
EP Exposed Pad. Leave unconnected or connect to VEE.	

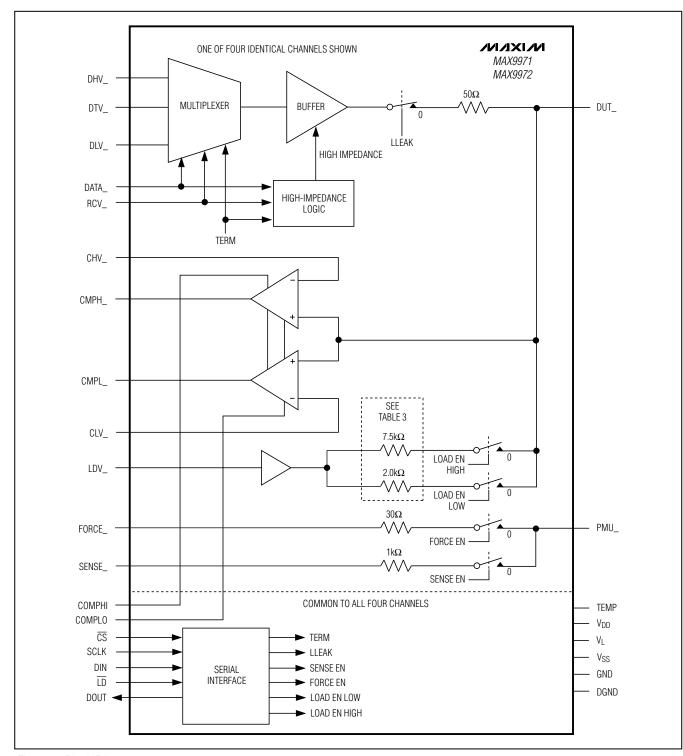


Figure 1. Block Diagram

Detailed Description

The MAX9971/MAX9972 are four-channel, pin-electronics ICs for automated test equipment that include, for each channel, a three-level pin driver, a window comparator, a passive load, and a Kelvin instrument connection (Figure 1). All functions feature a -2.2V to +5.2V operating range and the drivers include both high-impedance and active-termination (3rd-level drive) modes. The comparators feature programmable output voltages, allowing optimization for different CMOS interface standards. The loads have selectable output resistance for optimizing DUT current loading. The Kelvin paths allow accurate connection of an instrument with ±25mA source/sink capability. Additionally, the MAX9971/MAX9972 offer a low-leakage mode that reduces DUT_leakage current to less than 20nA.

The MAX9971/MAX9972 are available in two grades. The A-grade devices provide tighter tolerances for driver gains and offsets, comparator offsets, and load resistor values. This allows reference levels to be shared across multiple channels in cost-sensitive systems. The B-grade devices are intended for system designs that incorporate independent reference levels for each channel.

Each of the four channels feature single-ended CMOS-compatible inputs, DATA_ and RCV_, for control of the driver signal path (Figure 2). The MAX9971/MAX9972 modal operation is programmed through a 3-wire, low-voltage CMOS-compatible serial interface.

Output Driver

The driver input is a high-speed multiplexer that selects one of three voltage inputs; DHV_, DLV_, or DTV_. This switching is controlled by high-speed inputs DATA_ and RCV_, and mode-control bit TERM (Table 1). DATA_ and RCV_ are single-ended inputs with threshold levels equal to V_L / 2. Each channel's threshold levels are independently generated to minimize crosstalk.

DUT_ can be toggled at high speed between the buffer output and high-impedance mode, or it can be placed into low-leakage mode (Figure 2, Table 1). High-speed input RCV_ and mode-control bits TERM and LLEAK

control these modes. In high-impedance mode, the bias current at DUT_ is less than $2\mu A$ over the -2.2V to +5.2V range, while the node maintains its ability to track high-speed signals. In low-leakage mode, the bias current at DUT_ is further reduced to less than 20nA, and signal tracking slows.

The nominal driver output resistance is 50Ω . Custom resistance values from 45Ω to 51Ω are possible; consult factory for further information.

Table 1. Driver Channel Control Signals

EXTERNAL CONNECTIONS		INTERNAL CONTROL BITS		DRIVER OUTPUT	DRIVER MODE
RCV_	DATA_	TERM	LLEAK	001101	WODL
0	0	Χ	0	DUT_ = DLV_	Drive
0	1	Χ	0	DUT_ = DHV_	Drive
1	Х	0	0	High Impedance	Receive
1	Х	1	0	DUT_ = DTV_	Receive
Х	Х	Χ	1	Low Leak	Low Leakage

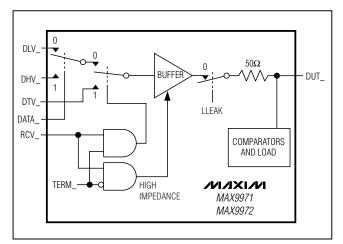


Figure 2. Multiplexer and Driver Channel

Comparators

The MAX9971/MAX9972 provide two independent highspeed comparators for each channel. Each comparator has one input connected internally to DUT_ and the other input connected to either CHV_ or CLV_ (see Figure 1). Comparator outputs are a logical result of the input conditions, as indicated in Table 2.

The comparator output voltages are easily interfaced to a wide variety of logic standards. Use buffered inputs COMPHI and COMPLO to set the high and low output voltages. For correct operation, COMPHI should be greater than or equal to COMPLO. The comparator 50Ω output impedance provides source termination (Figure 3).

Passive Load

The MAX9971/MAX9972 channels each feature a passive load consisting of a buffered input voltage, LDV_, connected to DUT_ through two resistive paths (Figure 1). Each path connects to DUT_ individually by a switch controlled through the serial interface. Programming options include none (load disconnected), either, or both paths connected. The resistor values vary depending on the accuracy grade of the device, as shown in Table 3. The loads facilitate fast open/short testing in conjunction with the comparator, and pullup of open-drain DUT_ outputs.

Parametric Switches

Each of the four MAX9971/MAX9972 channels provides force-and-sense paths for connection of a PMU or other DC resource to the device-under-test (Figure 1). Each force-and-sense switch is independently controlled though the serial interface providing maximum application flexibility. PMU_ and DUT_ are provided on separate pins allowing designs that do not require the parametric switch feature to avoid the added capacitance of PMU_. It also allows PMU_ to connect to DUT_ either directly or with an impedance-matching network.

Low-Leakage Mode, LLEAK

Asserting LLEAK through the serial port places the MAX9971/MAX9972 into a very-low-leakage state (see the *Electrical Characteristics* table). This mode is convenient for making IDDQ and PMU measurements without the need for an output disconnect relay. LLEAK control is independent for each channel.

When DUT_ is driven with a high-speed signal while LLEAK is asserted, the leakage current momentarily increases beyond the limits specified for normal operation. The low-leakage recovery specification in the *Electrical Characteristics* table indicates device behavior under this condition.

Table 2. Comparator Logic

DUT_ > CHV_	DUT_ > CLV_	CMPH_	CMPL_	
0	0	0	0	
0	1	0	1	
1	0	1	0	
1	1	1	1	

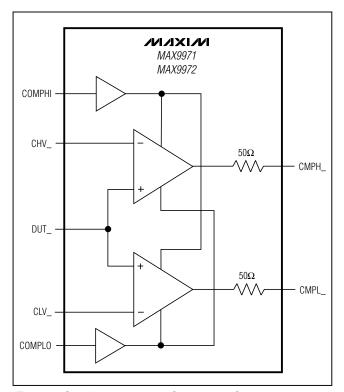


Figure 3. Complementary 50Ω Comparator Outputs

Table 3. Passive Load Resistance Values

ACCURACY GRADE	HIGH RESISTOR (kΩ)	LOW RESISTER ($k\Omega$)
А	7.5	2
В	6	1.5

Temperature Monitor

Each device supplies a single temperature output signal, TEMP, that asserts a nominal 3.43V output voltage at a +70°C (343K) die temperature. The output voltage increases proportionately with temperature at a rate of 10mV/°C. The temperature sensor output impedance is 500Ω , typical.

Serial Interface and Device Control

A CMOS-compatible serial interface controls the MAX9971/MAX9972 modes (Figure 4). Control data flow into a 12-bit shift register (MSB first) and are latched when $\overline{\text{CS}}$ is taken high. Data from the shift register are then loaded to the per-channel control latches as determined by bits D8–D11, and indicated in Figure

4 and Table 4. The latches contain the six mode bits for each channel of the device. The mode bits, in conjunction with external inputs DATA_ and RCV_, manage the features of each channel. Transfer data asynchronously from the input registers to the channel registers by forcing \overline{LD} low. With \overline{LD} always low, data transfer on the rising edge of \overline{CS} .

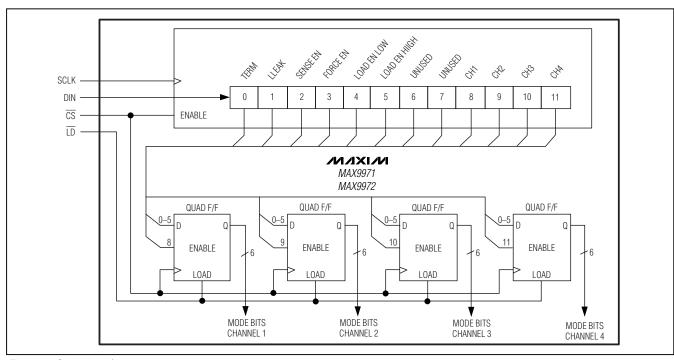


Figure 4. Serial Interface

Table 4. Control Register Bit Functions

BIT	NAME	FUNCTION	BIT S	POWER-UP	
		FUNCTION	0	1	STATE
0	TERM	Term Mode Control	High Impedance	Term Mode	0
1	LLEAK	Assert Low-Leakage Mode	Term Mode	Low Leakage	0
2	SENSE EN	Enable Sense Switch	Disabled	Enabled	0
3	FORCE EN	Enable Force Switch	Disabled	Enabled	0
4	LOAD EN LOW	Enable Low Load Resistor	Disabled	Enabled	0
5	LOAD EN HIGH	Enable High Load Resistor	Disabled	Enabled	0
6	_	Unused	X	X	0
7	_	Unused	X	X	0
8	CH1	Update Channel 1 Control Register	Disabled	Enabled	1
9	CH2	Update Channel 2 Control Register	Disabled	Enabled	1
10	CH3	Update Channel 3 Control Register	Disabled	Enabled	1
11	CH4	Update Channel 4 Control Register	Disabled	Enabled	1

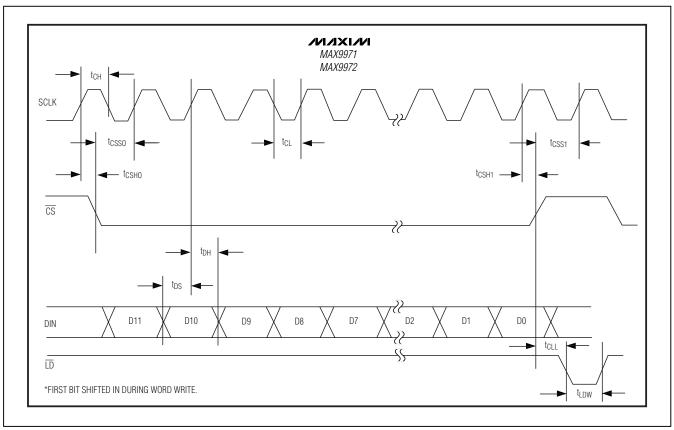
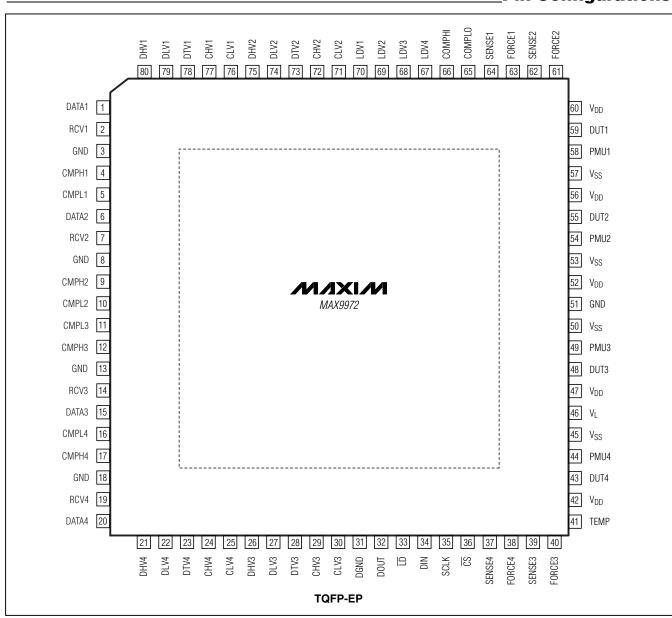
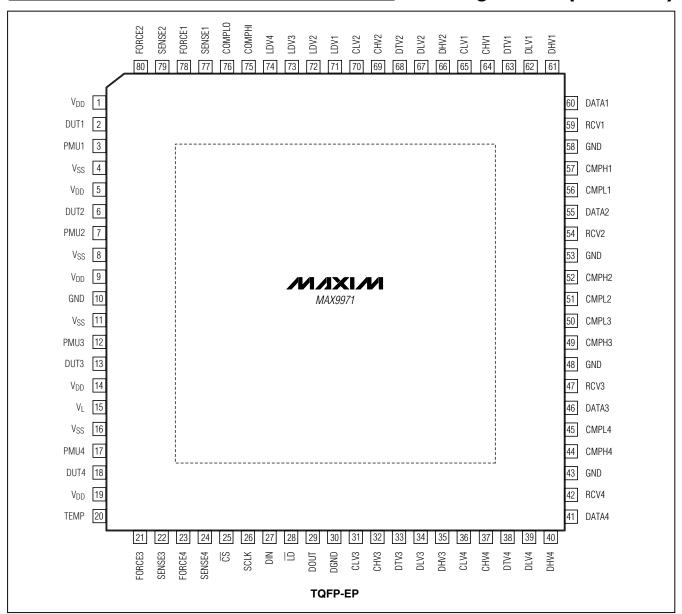


Figure 5. Serial-Interface Timing


Heat Removal

With adequate airflow, no external heat sinking is needed under most operating conditions. If excess heat must be dissipated through the exposed paddle, solder it to circuit board copper (MAX9972) or use an external heat sink (MAX9971). The exposed paddle must be either left unconnected, isolated, or connected to Vss.


Power Minimization

To minimize power consumption, activate only the needed channels. Each channel placed in low-leakage mode saves approximately 240mW.

Pin Configurations

Pin Configurations (continued)

Chip Information

_Package Information

TRANSISTOR COUNT: 5728 PROCESS: BICMOS

For the latest package outline information, go to **www.maxim-ic.com/packages**.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

22 _____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600