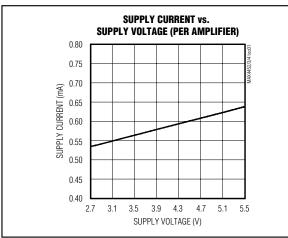


Low-Cost, +3V/+5V, 620µA, 200MHz, Single-Supply Op Amps with Rail-to-Rail Outputs

General Description

The MAX4452/MAX4352 single, MAX4453/MAX4353 dual, and MAX4454/MAX4354 quad amplifiers combine high-speed performance with ultra-low power consumption. The MAX4452/MAX4453/MAX4454 are unitygain stable and achieve a -3dB bandwidth of 200MHz, while the MAX4352/MAX4353/MAX4354 are compensated for a minimum closed-loop gain of +5V/V and achieve a 80MHz -3dB bandwidth. These devices consume only 620µA of supply current per amplifier.


These amplifiers operate from a +2.7V to +5.25V single supply and feature Rail-to-Rail[®] outputs. Along with an excellent speed/power ratio of 323MHz/mA, these devices feature a slew rate of 95V/µs and fast 20ns rise and fall times. These devices are ideal for lowpower/low-voltage systems that require wide bandwidth such as cell phones and keyless entry systems.

The MAX4452/MAX4352 are available in miniature 5-pin SC70 and SOT23 packages, while the MAX4453/ MAX4353 are available in tiny 8-pin SOT23 and SO packages. The MAX4454/MAX4354 are available in space-saving 14-pin TSSOP and SO packages.

Applications

Battery-Powered Instruments Cellular Telephones Portable Communications Keyless Entry Baseband Applications

Typical Operating Characteristic

Rail-to-Rail is a registered trademark of Nippon Motorola Ltd.

M/X/W

Features

- Ultra-Low 620µA Supply Current
- High Speed (MAX4452/MAX4453/MAX4454) 200MHz -3dB Bandwidth 30MHz 0.1dB Gain Flatness 95V/µs Slew Rate
- High Speed (MAX4352/MAX4353/MAX4354) 80MHz -3dB Bandwidth 4MHz 0.1dB Gain Flatness 240V/µs Slew Rate
- Single +3V/+5V Operation
- Rail-to-Rail Outputs
- Input Common-Mode Range Extends Beyond VEE
- Ultra-Small SC70-5, SOT23-5, and SOT23-8 Packages

Ordering Information

	-	
TEMP. RANGE	PIN- PACKAGE	TOP MARK
-40°C to +85°C	5 SC70-5	ABI
-40°C to +85°C	5 SOT23-5	ADOV
-40°C to +85°C	8 SOT23-8	AADS
-40°C to +85°C	8 SO	
-40°C to +85°C	14 TSSOP	_
-40°C to +85°C	14 SO	
-40°C to +85°C	5 SC70-5	ABJ
-40°C to +85°C	5 SOT23-5	ADOW
-40°C to +85°C	8 SOT23-8	AADT
-40°C to +85°C	8 SO	_
-40°C to +85°C	14 TSSOP	_
-40°C to +85°C	14 SO	_
	RANGE -40°C to +85°C -40°C to +85°C	RANGE PACKAGE -40°C to +85°C 5 SC70-5 -40°C to +85°C 5 SOT23-5 -40°C to +85°C 8 SOT23-8 -40°C to +85°C 8 SO -40°C to +85°C 14 TSSOP -40°C to +85°C 14 SO -40°C to +85°C 5 SC70-5 -40°C to +85°C 5 SOT23-5 -40°C to +85°C 5 SOT23-5 -40°C to +85°C 5 SOT23-5 -40°C to +85°C 8 SOT23-8 -40°C to +85°C 14 TSSOP

Pin Configurations appear at end of data sheet.

_Selector Guide

PART	NO. OF AMPS	MIN GAIN	GAIN BANDWIDTH (MHz)	SLEW RATE (V/µs)
MAX4452	1	1	200	95
MAX4352	1	5	400	240
MAX4453	2	1	200	95
MAX4353	2	5	400	240
MAX4454	4	1	200	95
MAX4354	4	5	400	240

Maxim Integrated Products 1

For price, delivery, and to place orders, please contact Maxim Distribution at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC} to V _{EE})+6	31/
Differential Input Voltage	
N_{-} , N_{+} , OUT_{-} , V_{CC} + 0.3V) to (V_{EE} - 0.3V)	
Current into Input Pins (IN_+, IN)±20m	
Output Short-Circuit Duration to VCC, VEEContinuou	
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
5-Pin SC70 (derate 3.1mW/°C above +70°C)247m	W
5 Pin SOT23 (derate 7.1mW/°C above +70°C)571m	W

8-Pin SOT23 (derate 8.9mW/°C above +70°C).........741mW 8-Pin SO (derate 5.9mW/°C above +70°C).......471mW

14-Pin TSSOP (derate 6.3mW/°C above +70°C)	500mW
14-Pin SO (derate 8mW/°C above +70°C)	640mW
Operating Temperature Range40°C	C to +85°C
Junction Temperature	+150°C
Storage Temperature Range65°C	to +150°C
Lead Temperature (soldering, 10s)	+300°C

///XI//

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(V_{CC} = +5V, V_{CM} = V_{CC}/2 - 0.75V, V_{EE} = 0, R_L = ∞ to V_{CC}/2, V_{OUT} = V_{CC}/2, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIC	DNS	MIN	ТҮР	МАХ	UNITS
Operating Supply Voltage Range	Vs	Guaranteed by PSRR test		2.7		5.25	V
Quiescent Supply Current	la	$V_{CC} = +5V$			620	1200	
(Per Amplifier)	IS	$V_{CC} = +3V$			530		μA
Input Common-Mode Voltage Range	V _{CM}	Guaranteed by CMRR tes	t	V _{EE} - 0.1		V _{CC} - 1.5	V
Input Offset Voltage	Vos				0.4	12	mV
Input Offset Voltage Temperature Coefficient	TC _{VOS}				7		µV/°C
Input Offset Voltage Matching		MAX4453/MAX4454/MAX	4353/MAX4354		±1		mV
Input Bias Current	Ι _Β				0.8	3	μA
Input Offset Current	los				0.1		μA
	Dut	Differential mode, -0.04V \leq (V _{IN} + - V _{IN}) \leq +0.04V			120		kΩ
Input Resistance	R _{IN}	Common mode, V _{EE} - 0.1V \leq V _{CM} \leq V _{CC} - 1.5V			30		MΩ
Common-Mode Rejection Ratio	CMRR	$V_{EE} - 0.1V \le V_{CM} \le V_{CC} -$	1.5V	60	100		dB
Open-Loop Gain	Avol	+0.5V \leq V _{OUT} \leq +4.5V, R _L = 1k Ω		60	80		dB
Output Current	lour	$R_L = 20\Omega$ connected to	Sourcing		15		mA
Output Current	lout	V _{CC} or V _{EE}	Sinking		22		ША
Output Voltage Swing	Vout	Vout $R_L = 1k\Omega$	V _{CC} - V _{OH}		180	400	mV
Output voltage Swillg	V001	112 - 11/22	Vol - Vee		75	350	111 V
Output Short-Circuit Current	Isc	Sourcing			17		mA
	130	Sinking			24		
Power-Supply Rejection Ratio	PSRR	$V_{CC} = +2.7V \text{ to } +5.25V, V_{CM} = 0,$ $V_{OUT} = 2V$		60	70		dB

MAX4452/MAX4453/MAX4454/MAX4352/MAX4353/MAX4354

AC ELECTRICAL CHARACTERISTICS

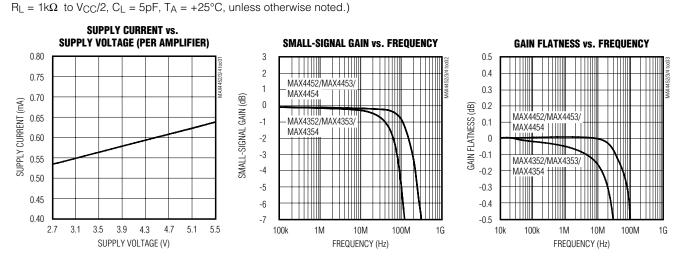
 $(V_{CC} = +5V, V_{EE} = 0, V_{CM} = +1.75V, R_L = 1k\Omega \text{ to } V_{CC}/2, A_{VCL} = +1V/V \text{ (MAX4452/MAX4453/MAX4454)}, A_{VCL} = +5V/V \text{ (MAX4352/MAX4353/MAX4354)}, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CON	DITIONS	MIN	ТҮР	МАХ	UNITS
Small Signal -3dB Bandwidth	BW _{SS}	V _{OUT} = 100mV _{p-p}	MAX4452/MAX4453/ MAX4454		200		MHz
oman oignaí -oud danúwiúln	DWSS	VOUT - 100111Vp-p	MAX4352/MAX4353/ MAX4354		80		
Larga Signal, 2dD Dandwidth		Vour OV	MAX4452/MAX4453/ MAX4454		15		MHz
Large Signal -3dB Bandwidth	BWLS	$V_{OUT} = 2V_{p-p}$	MAX4352/MAX4353/ MAX4354		38		IVINZ
)/ 100m)/	MAX4452/MAX4453/ MAX4454		30		MHz
Bandwidth for 0.1dB Flatness	BW _{0.1dB}	$V_{OUT} = 100 m V_{p-p}$	MAX4352/MAX4353/ MAX4354		4		IVIHZ
Slew Rate	SR	V _{OUT} = 2V step	MAX4452/MAX4453/ MAX4454		95		
			MAX4352/MAX4353/ MAX4354		240		V/µs
		V _{OUT} = 2V step	MAX4452/MAX4453/ MAX4454		20		
Rise/Fall Time	tR, tF	10% to 90%	MAX4352/MAX4353/ MAX4354	8			ns
Settling Time			MAX4452/MAX4453/ MAX4454		40		
	t _{s 1%}	V _{OUT} = 2V step	MAX4352/MAX4353/ MAX4354		50		
			MAX4452/MAX4453/ MAX4454		50		ns
	ts 0.1%	V _{OUT} = 2V step	MAX4352/MAX4353/ MAX4354		60		

AC ELECTRICAL CHARACTERISTICS (continued)

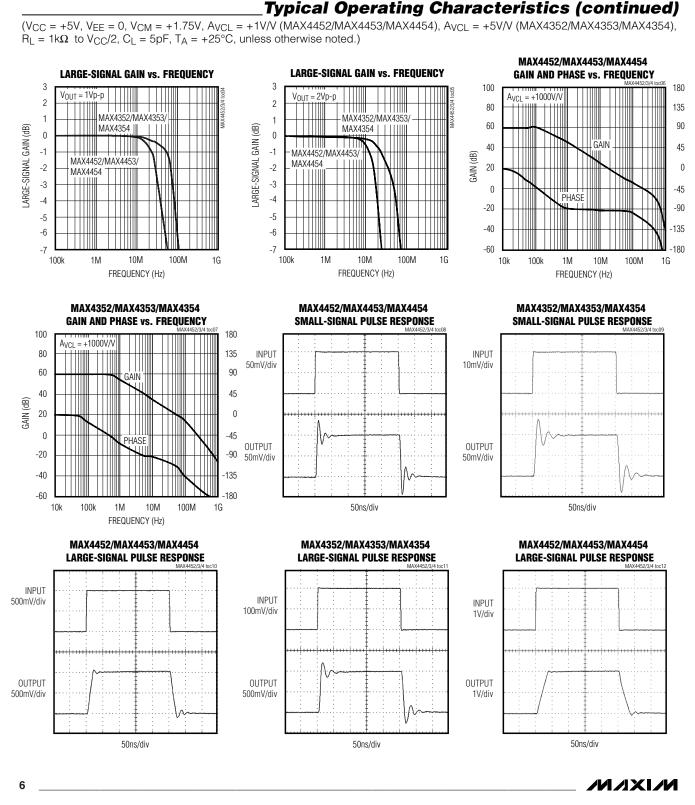
 $(V_{CC} = +5V, V_{EE} = 0, V_{CM} = +1.75V, R_L = 1k\Omega$ to $V_{CC}/2$, $A_{VCL} = +1V/V$ (MAX4452/MAX4453/MAX4454), $A_{VCL} = +5V/V$ (MAX4352/MAX4353/MAX4354), $T_A = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	BOL CONDITIONS		MIN	ТҮР	MAX	UNITS
		$V_{CC} = 5V,$ $V_{OUT} = 2Vp-p,$	MAX4452/MAX4453/ MAX4454		-83		
Spurious-Free Dynamic		$f_{\rm C} = 1$ MHz	MAX4352/MAX4353/ MAX4354		-74		dDa
Range	SFDR	$V_{CC} = 3V,$	MAX4452/MAX4453/ MAX4454		-79		dBc
		$V_{OUT} = 2Vp-p,$ $f_{C} = 1MHz$	MAX4352/MAX4353/ MAX4354		-70		
		$V_{CC} = 5V,$	MAX4452/MAX4453/ MAX4454		-83		
and Harmania Distortion		$V_{OUT} = 2Vp-p,$ $f_{C} = 1MHz$	MAX4352/MAX4353/ MAX4354		-74		dBc
2nd-Harmonic Distortion		$V_{CC} = 3V,$	MAX4452/MAX4453/ MAX4454		-79		
		V _{OUT} = 1Vp-p, f _C = 1MHz	MAX4352/MAX4353/ MAX4354		-70		
		$V_{CC} = 5V,$	MAX4452/MAX4453/ MAX4454		-87		
3rd-Harmonic Distortion		$V_{OUT} = 2V_{P-P},$ $f_{C} = 1MHz$	MAX4352/MAX4353/ MAX4354		-74		- dBc
ard-Harmonic Distortion		$V_{CC} = 3V,$	MAX4452/MAX4453/ MAX4454		-80		
		$V_{OUT} = 1Vp-p,$ $f_{C} = 1MHz$	MAX4352/MAX4353/ MAX4354		-72		
	V _{CC} = 5V,	$V_{CC} = 5V,$ $V_{OUT} = 2Vp-p,$ $f_{C} = 1MHz$	MAX4452/MAX4453/ MAX4454	-82	-82		
Total Harmonic Distortion	THD		MAX4352/MAX4353/ MAX4354		-71		dD
		$V_{CC} = 3V,$	MAX4452/MAX4453/ MAX4454		-77		dB
		$V_{OUT} = 1Vp-p,$ $f_{C} = 1MHz$	MAX4352/MAX4353/ MAX4354		-68		1

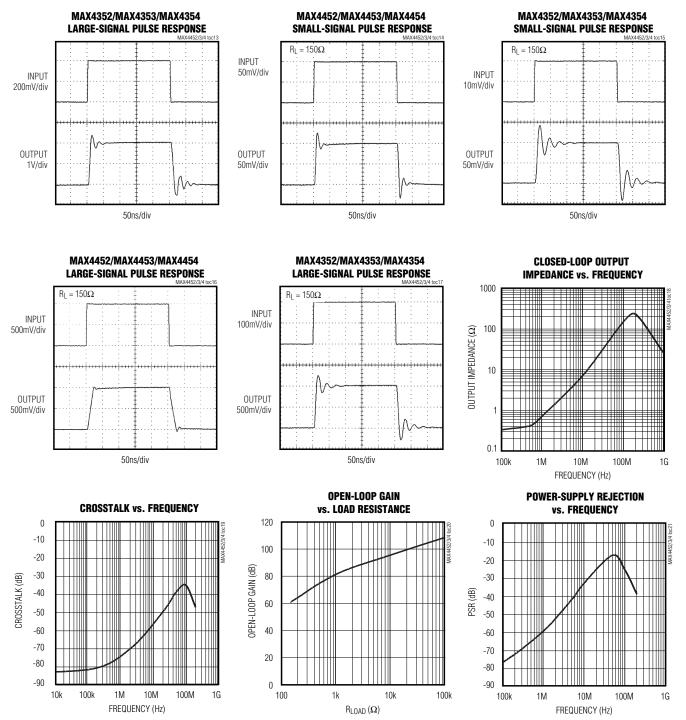

M/IXI/M

AC ELECTRICAL CHARACTERISTICS (continued)

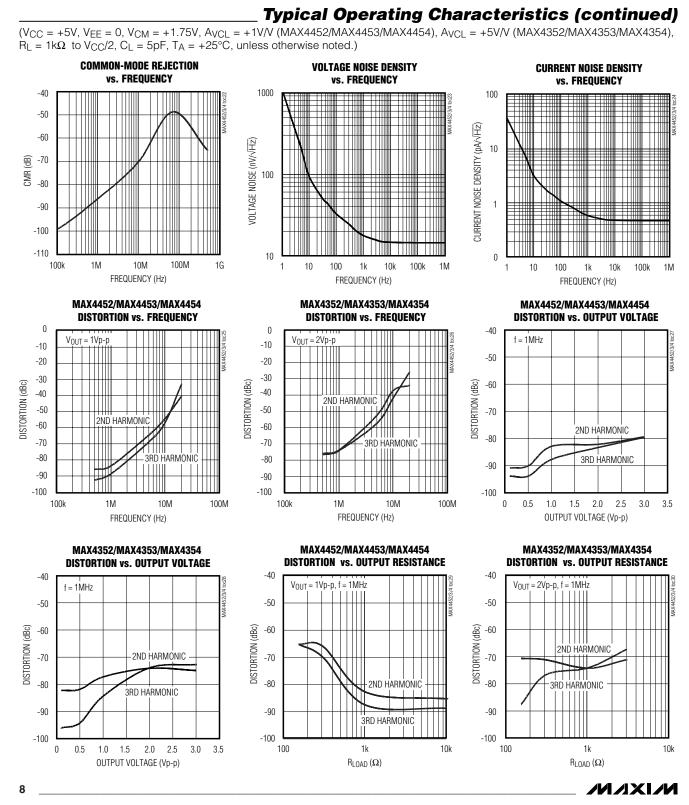
 $(V_{CC} = +5V, V_{EE} = 0, V_{CM} = +1.75V, R_L = 1k\Omega \text{ to } V_{CC}/2, A_{VCL} = +1V/V \text{ (MAX4452/MAX4453/MAX4454)}, A_{VCL} = +5V/V \text{ (MAX4452/MAX4454)}, A_{VCL} = +5V/V \text{ (MAX4454)}, A_{VCL} = +5V/V \text{ (MAX4454)$ (MAX4352/MAX4353/MAX4354), $T_A = +25^{\circ}C$, unless otherwise noted.)


PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Two-Tone, Third-Order Intermodulation Distortion		$f_1 = 2MHz, f_2 = 2.1MHz$		-65		dBc
Input Noise-Voltage Density	en	f = 10kHz		15		nV/√Hz
Input Noise-Current Density	in	f = 10kHz		0.5		pA/√Hz
Input Capacitance	CIN			2		pF
Output Impedance	Zout	f = 1MHz		0.8		Ω
Capacitive Load Drive				22		pF
Crosstalk	X _{TALK}	MAX4453/MAX4454/MAX4353/MAX4354 V _{OUT} = 100mVp-p, f = 1MHz		-74		dB
Power-Up 1% Settling Time (Note 2)				1	100	μs

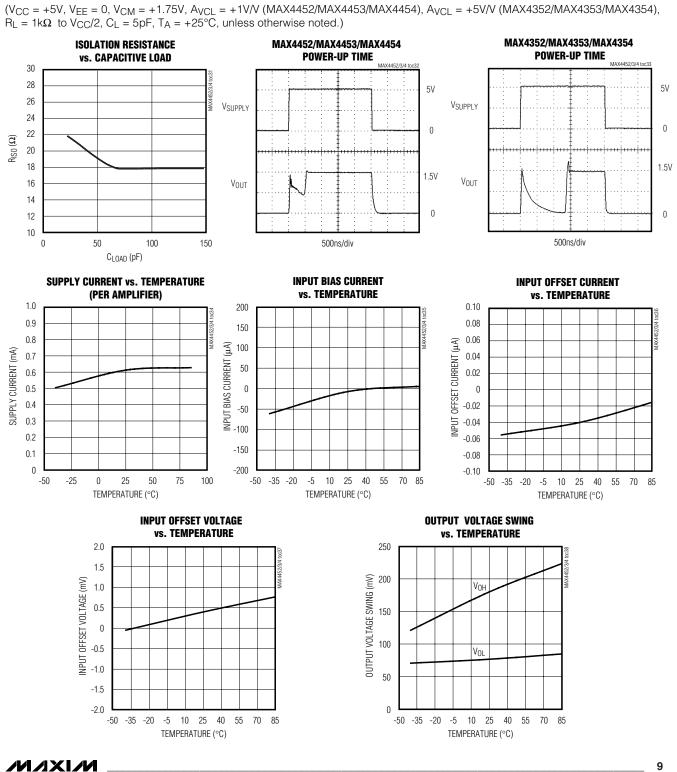
Note 1: Units are 100% production tested at $T_A = +25^{\circ}C$. Specifications over temperature limits are guaranteed by design. Note 2: Guaranteed by design.


Typical Operating Characteristics

///XI///



Typical Operating Characteristics (continued)


 $(V_{CC} = +5V, V_{EE} = 0, V_{CM} = +1.75V, A_{VCL} = +1V/V (MAX4452/MAX4453/MAX4454), A_{VCL} = +5V/V (MAX4352/MAX4353/MAX4354), R_L = 1k\Omega$ to V_{CC}/2, C_L = 5pF, T_A = +25°C, unless otherwise noted.)

MAX4452/MAX4453/MAX4454/MAX4352/MAX4353/MAX4354

Typical Operating Characteristics (continued)

MAX4452/MAX4453/MAX4454/MAX4352/MAX4353/MAX4354

Pin Description

	PIN			
MAX4452 MAX4352	MAX4453 MAX4353	MAX4454 MAX4354	- NAME	FUNCTION
1	—	—	OUT	Amplifier Output
2	4	11	V _{EE}	Negative Power Supply
3	—		IN+	Noninverting Amplifier Input
4	—	—	IN-	Inverting Amplifier Input
5	8	4	V _{CC}	Positive Power Supply
_	1	1	OUTA	Amplifier A Output
_	2	2	INA-	Amplifier A Inverting Input
_	3	3	INA+	Amplifier A Noninverting Input
_	7	7	OUTB	Amplifier B Output
	6	6	INB-	Amplifier B Inverting Input
_	5	5	INB+	Amplifier B Noninverting Input
—	—	8	OUTC	Amplifier C Output
_	_	9	INC-	Amplifier C Inverting Input
	—	10	INC+	Amplifier C Noninverting Input
	—	14	OUTD	Amplifier D Output
_	_	13	IND-	Amplifier D Inverting Input
_	_	12	IND+	Amplifier D Noninverting Input

M/IXI/M

Detailed Description

The MAX4452/MAX4352 single, MAX4453/MAX4353 dual, and MAX4454/MAX4354 quad, single-supply, railto-rail, voltage-feedback amplifiers achieve high slew rates and wide bandwidths while consuming only 620µA per amplifier. Excellent speed/power ratio makes them ideal for portable devices and high-frequency signal applications.

Internal feedback around the output stage ensures low open-loop output impedance, reducing gain sensitivity to load variations. This feedback also produces demand-driven current bias to the output transistors.

Rail-to-Rail Outputs, Ground-Sensing Input

The input common-mode range extends from (V_{EE} - 0.1V) to (V_{CC} - 1.5V) with excellent common-mode rejection. Beyond this range, the amplifier output is a nonlinear function of the input, but does not undergo phase reversal or latchup.

The output swings to within 180mV of either power-supply rail with a $1k\Omega$ load. The input ground-sensing and the rail-to-rail output substantially increase the dynamic range.

Output Capacitive Loading and Stability

The MAX4452/MAX4453/MAX4454/MAX4352/MAX4353/ MAX4354 are optimized for AC performance. They are not designed to drive highly reactive loads. Such loads decrease phase margin and may produce excessive ringing and oscillation. The use of an isolation resistor eliminates this problem (Figure 1). Figure 2 is a graph of the Optimal Isolation Resistor (RISO) vs. Capacitive Load.

Applications Information

Choosing Resistor Values

Unity-Gain Configuration

The MAX4452/MAX4453/MAX4454 are internally compensated for unity gain. When configured for unity gain, a 24 Ω feedback resistor (R_F) is recommended. This resistor improves AC response by reducing the Q of the parallel LC circuit formed by the parasitic feedback capacitance and inductance.

Inverting and Noninverting Configurations

Select the gain-setting feedback (R_F) and input (R_G) resistor values that best fit the application. Large resistor values increase voltage noise and interact with the amplifier's input and PC board capacitance. This can generate undesirable poles and zeros and decrease bandwidth or cause oscillations. For example, a noninverting gain-of-two configuration (R_F = R_G) using 1k Ω

resistors, combined with 2pF of amplifier input capacitance and 1pF of PC board capacitance, causes a pole at 106MHz. Since this pole is within the amplifier bandwidth, it jeopardizes stability. Reducing the 1k Ω resistors to 100 Ω extends the pole frequency to 1.06GHz, but could limit output swing by adding 200 Ω in parallel with the amplifier's load resistor.

Note: For high-gain applications where output offset voltage is a consideration, choose RS to be equal to the parallel combination of RF and RG (Figures 3a and 3b).

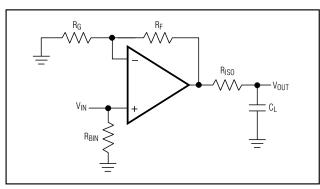


Figure 1. Driving a Capacitive Load Through an Isolation Resistor

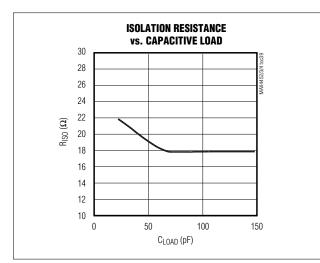


Figure 2. Optimal Isolation Resistor vs. Capacitive Load

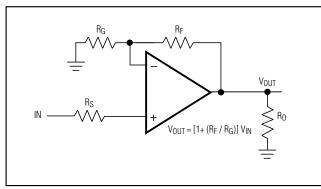


Figure 3a. Noninverting Gain Configuration

Active Filters

The low distortion and high bandwidth of the MAX4452/MAX4453/MAX4454 and MAX4352/ MAX4353/MAX4354 make them ideal for use in active filter circuits. Figure 4 is a 15MHz lowpass multiple feedback active filter using the MAX4452.

$$Gain = \frac{-R2}{R1}$$

$$f_0 = \frac{1}{2p} \sqrt{\frac{1}{R2 \times R3 \times C1 \times C2}}$$

$$Q = \frac{C2}{\frac{\sqrt{C1 \times C2 \times R2 \times R3}}{\frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3}}}$$

ADC Input Buffer

Input buffer amplifiers can be a source of significant errors in high-speed ADC applications. The input buffer is usually required to rapidly charge and discharge the ADC's input, which is often capacitive. See *Output Capacitive Loading and Stability*. In addition, since a high-speed ADC's input impedance often changes very rapidly during the conversion cycle, measurement accuracy must be maintained using an amplifier with very low output impedance at high frequencies. The combination of high speed, fast slew rate, low noise, and a low and stable distortion over load makes the MAX4452/MAX4453/MAX4454/MAX4352/MAX4353/ MAX4354 ideally suited for use as buffer amplifiers in high-speed ADC applications.

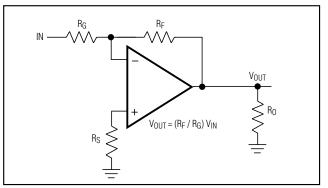


Figure 3b. Inverting Gain Configuration

Layout and Power-Supply Bypassing

These amplifiers operate from a single +2.7V to +5.25V power supply. Bypass V_{CC} to ground with a 0.1µF capacitor as close to the pin as possible.

Maxim recommends using microstrip and stripline techniques to obtain full bandwidth. Design the PC board for a frequency greater than 1GHz to prevent amplifier performance degradation due to board parasitics. Avoid large parasitic capacitance at inputs and outputs. Whether or not a constant-impedance board is used, observe the following guidelines:

- Do not use wirewrap boards due to their high inductance.
- Do not use IC sockets because of the increased parasitic capacitance and inductance.

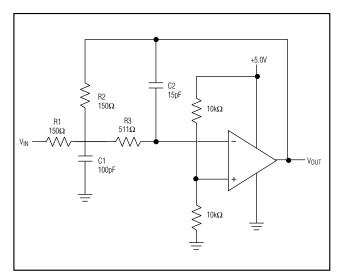


Figure 4. Multiple-Feedback Lowpass Filter

///XI//

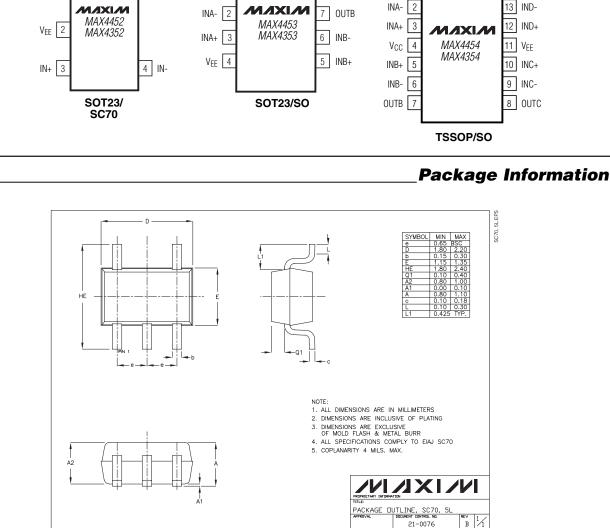
- Use surface-mount instead of through-hole components for better high-frequency performance.
- Use a PC board with at least two layers; it should be as free from voids as possible.
- Keep signal lines as short and as straight as possible. Do not make 90° turns; round all corners.

TOP VIEW

OUT 1

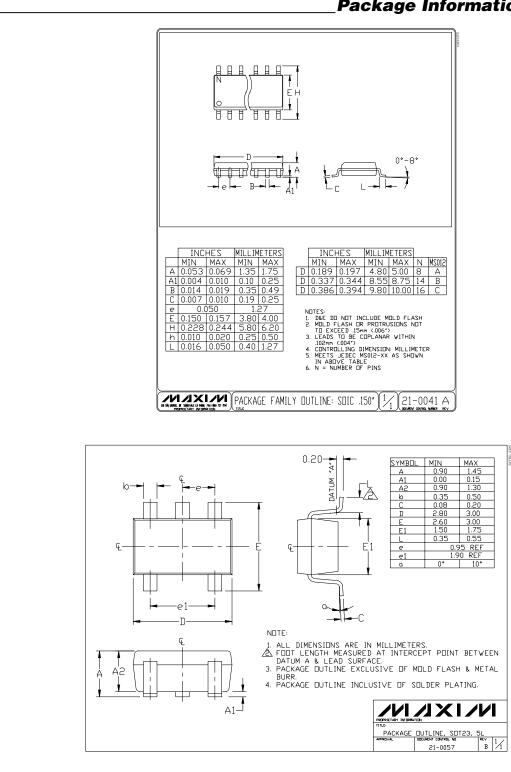
Chip Information

MAX4452/MAX4352 TRANSISTOR COUNT: 97 MAX4453/MAX4353 TRANSISTOR COUNT: 192 MAX4454/MAX4354 TRANSISTOR COUNT: 378 PROCESS: Bipolar

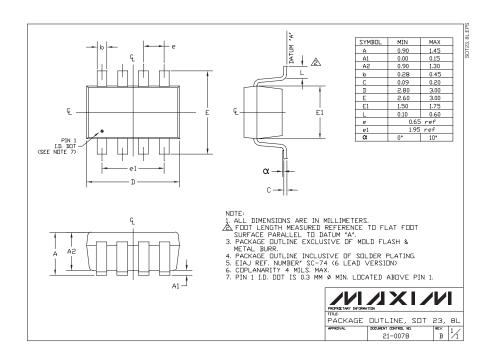

OUTA

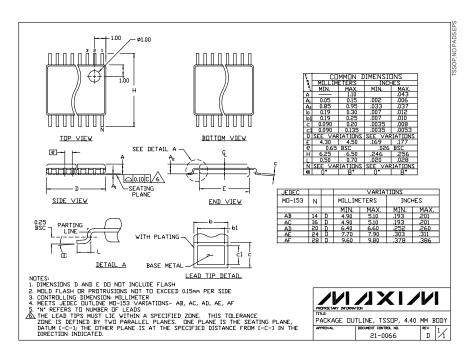
8 V_{CC}

Pin Configurations 14 OUTD 13 IND-IND+ INC-



13


OUTA


5 V_{CC}

Package Information (continued)

Package Information (continued)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

_____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2001 Maxim Integrated Products

15

Printed USA

is a registered trademark of Maxim Integrated Products.