
Galileo
GT-96100A

Advanced Communication Controller

Datasheet
Revision 1.0

3 October, 2000

Please contact Galileo Technology for possible
updates before finalizing a design.
FEATURES
� Integrated communication controller and

system controller with PCI interface for high-
performance embedded control applications.

� Eight Multi-Protocol Serial Controllers
(MPSCs):

- Support HDLC, BISYNC, UART and
Transparent protocols.

- Bit rate of up to 55Mbit/s on multiple
channels simultaneously.

- Can drive dedicated pins or use
TDMs.

- Dedicated DPLL for clock recovery
and data encoding/decoding.

- Supports NRZ, NRZI, FM0, FM1,
Manchester and Differential
Manchester.

- Hardware support for HDLC over
asynchronous channel in UART
mode.

� Four FlexTDM channels:
- Time slot assigner for serial and

control channels.
- Supports up to four Basic Rate ISDN

interfaces (2B+D) in GCI mode.
- Fully programmable via dual-port

memory.

� Two 10/100Mbps Fast Ethernet MAC
controllers:

- MII/RMII interface.
- Full duplex and flow-control support.
- Programmable perfect filtering of 1/2K

or 8K MAC addresses (both physical
and multicast).

- 2 Queues for Tx Priority queueing
- 4 Queues for Priority queuing based

on IP DSCP field or 802.1q tag or
MAC address.

- IGMP and BPDU packet trapping.

� Twenty Serial DMA (SDMA) channels to
support the communications and Ethernet
controllers.

- Moves data between communications
controllers and SDRAM/PCI.

- Buffer chaining via a linked list of
descriptors.

� Eight baud rate generators with multiple clock
sources.

� 64-bit CPU bus interface:
- Supports all 64-bit bus MIPS CPUs:

RM5260, RM5270/1 and RM7000
from QED, RV4600 through RV5000
from IDT and R5000 compatibles from
various vendors.

- 100MHz bus frequency.
- 3.3V bus interface.
- Support for multiple GT-96100A

devices on the same SysAD bus (up
to 4).

- 8x64-bit (64 byte) CPU write posting
buffer accepts CPU writes with zero
wait-states.

- CPU address remapping to resources.
- Zero wait state secondary cache

support (L2 of R4xxx and R5000, L3
of R7000).

- Backward Software Compatibility with
GT-64010A, GT-64011 and GT-64120.
www.galileoT.com support@galileoT.com

GT-96100A Advanced Communication Controller
� SDRAM controller:
- 3.3V (5V tolerant).
- 4GB address space.
- Supports 16/64/128/256/512Mbit

SDRAM devices.
- Supports 64-bit registered SDRAM.
- Supports 2-way & 4-way SDRAM

bank interleaving.
- Up to 4GB bank address space, 1MB

granularity.
- 1 to 4 banks supported.
- 64-bit data width.
- ECC support for 64-bit SDRAM.
- Zero wait-state interleaved burst

accesses at 100MHz.
- Supports the VESA Unified Memory

Architecture (VUMA) Standard -
allows for external masters access to
SDRAM directly.

� Device controller:
- 5 chip selects.
- Programmable timing for each chip

select.
- Supports many types of standard

memory and
I/O devices.

- Up to 4GB address space.
- Optional external wait-state support.
- 8-,16-,32- and 64-bit width device

support.
- Support for boot ROMs.

� Four Independent DMA (IDMA) channels:
- Chaining via linked-lists of records.
- Byte address boundary for source and

destination.
- Moves data between PCI, memory,

and devices.
- Two 64-byte internal FIFOs.
- Alignment of source and destination

addresses.
- DMAs can be initiated by the CPU

writing to a register, external request
via DMAReq* pin, or an internal timer/
counter.

- Termination of DMA transfer on each
channel.

- Descriptor ownership transfer to CPU.
- Fly-By support for local data bus.
- Override capability of source/

destination/record address mapping.
2 Revision 1.0

GT-96100A Advanced Communication Controller
� Two 32-bit or one 64-bit high-performance PCI
2.1 compliant devices:

- Dual mode PCI interface can be used
as two independent 32-bit interfaces
(synchronous or asynchronous to
each other) or as a single 64-bit
interface.

- 192-bytes of posted write and read
prefetch buffers for each PCI
interface.

- 32/64-bit PCI master and target
operations.

- PCI bus speed of up to 66MHz with
zero wait states.

- Universal PCI buffers (each 32-bit PCI
use a different voltage).

- Operates either synchronous or
asynchronous to the CPU clock.

- Burst transfers used for efficient data
movement.

- Doorbell interrupts provided between
CPU and PCI.

- Supports flexible byte swapping
through PCI interface.

- Synchronization barrier support for
PCI side.

- PCI address remapping to resources.

� Host to PCI bridge:
- Translates CPU cycles into PCI I/O or

Memory cycles.
- Generates PCI Configuration,

Interrupt Acknowledge, and Special
cycles on PCI bus.

� PCI to Main Memory bridge:
- Supports fast back-to-back

transactions.
- Supports memory and I/O

transactions to internal configuration
registers.

- Supports locked operations.

� I2O and Plug and Play Support:
- Industry Standard I2O messaging unit

on primary 32-bit PCI interface (also
available in 64-bit mode).

- Plug and Play compatible
configuration registers.

- PCI configuration header can be
loaded from boot PROM.

- PCI configuration registers are
accessible from both CPU and PCI
bus.

- Expansion ROM support.

� PCI Hot-Plug and CompactPCI Hot-Swap
capable compliant.

� Two programmable PCI Arbiter functions:
- Supports up to 9 external agents in

addition to PCI_0 and PCI_1 internal
devices.

- Two level priority arbitration capability
- each request can be assigned either
high or low priority.

� Two-stage watchdog timer (NMI, Reset).

� One 32-bit wide timer/counter, Three 24-bit
wide timer/counters.

� Eighty-eight pins dedicated for peripheral
functions and general purpose I/Os.

- Each pin can be configured
independently as peripheral or
General Purpose I/O.

- Supports simple I/O and LED control.
- Inputs can generate a maskable

interrupt.

� 2.5V Core Supply Voltage, 3.3V I/O Supply
Voltage (PCI and Peripherals).

- All inputs are 5V tolerant.

� JTAG Boundary Scan.

� 492 pin PBGA package.

� Advanced 0.25 micron CMOS process.
Revision 1.0 3

GT-96100A Advanced Communication Controller

4 Revision 1.0

Part Number: GT-96100A
Publication Revision: 1.0
©Galileo Technology, Inc.

No part of this datasheet may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying and recording, for any purpose without
the express written permission of Galileo Technology, Inc.

Galileo Technology, Inc. retains the right to make changes to these specifications at any
time, without notice.

Galileo Technology, Inc. makes no warranty of any kind, expressed or implied, with
regard to this material, including, but not limited to, the implied warranties of merchant-
ability or fitness for any particular purpose. Galileo Technology, Inc. further does not war-
rant the accuracy or completeness of the information, text, graphics, or other items
contained within these materials. Galileo Technology, Inc. makes no commitment to
update nor to keep current the information contained in this document.

Galileo Technology, Inc. assumes no responsibility for the use of any circuitry other than
circuitry embodied in Galileo Technology, Inc. products. No other circuit patent licenses
are implied.

Galileo Technology, Inc. products are not designed for use in life support equipment or
applications in which if the product failed it would cause a life threatening situation. Do
not use Galileo Technology, Inc. products in these types of equipment or applications.

Contact your local sales office to obtain the latest specifications before finalizing your
product.

Galileo Technology, Inc.
142 Charcot Avenue
San Jose, California 95131
Phone: 1 408 367-1400
Fax: 1 (408) 367-1401
E-mail: info@galileot.com
www.galileoT.com

Other brands and names are the property of their respective owners.

GT-96100A Advanced Communication Controller
TABLE OF CONTENTS

1. Overview ... 19
1.1 Communication Unit Description . 19
1.2 CPU Interface . 21
1.3 SDRAM and Device Interface . 21
1.4 PCI Interface . 21
1.5 Independent DMA (IDMA) Engines . 22
1.6 Peripheral Configurations . 23

2. Pin Information... 25

3. Address Space Decoding.. 56
3.1 Two Stage Decoding Process . 57
3.2 Disabling Address Decoders . 63
3.3 DMA Unit Address Decoding. 63
3.4 Address Space Decoding Errors . 63
3.5 Default Memory Map . 64
3.6 Address Remapping . 67
3.7 Using the CPU PCI Override . 70
3.8 Using the DMA to PCI Bypass. 71

4. CPU Interface Description... 72
4.1 CPU Interface Signals . 72
4.2 SysAD, SysADC, and SysCmd Buses . 73
4.3 Operation of WrRdy* and the Internal Write Posting Queues . 79
4.4 CPU Write Modes and Write Patterns Supported . 79
4.5 CPU Interface Endianess . 80
4.6 Burst Order . 80
4.7 MIPS L2 Cache Support . 80
4.8 Multiple GT-96100A Support . 81
4.9 CPU Interface Restrictions . 84
4.10 CPU Interface Control Registers . 84

5. Memory Controller ... 95
5.1 SDRAM Controller . 98
5.2 Connecting the Address Bus to the SDRAM . 106
5.3 Programmable SDRAM Parameters . 108
5.4 SDRAM Performance . 110
5.5 SDRAM Bank Interleaving. 113
5.6 Unified Memory Architecture (UMA) Support . 113
5.7 Device Controller . 118
5.8 Programming the ADP lines for other Functions . 125
5.9 Memory Controller Restrictions . 126
5.10 Registered SDRAM Interface Restrictions . 128
5.11 Memory Interface Control Registers . 128

6. Data Integrity .. 143
6.1 SDRAM ECC. 143
6.2 PCI Parity Support. 147
Revision 1.0 5

GT-96100A Advanced Communication Processor
6.3 Parity Support for Devices . 147
6.4 CPU Parity Support . 147
6.5 Data Integrity Flow . 148
6.6 Register Information . 150
6.7 CPU Errors Report Registers . 151

7. PCI Interfaces ... 152
7.1 Reset Configuration . 152
7.2 PCI Master Operation. 152
7.3 PCI Target Interface . 157
7.4 PCI Synchronization Barriers . 161
7.5 PCI Master Configuration . 162
7.6 Target Configuration and Plug and Play . 163
7.7 PCI Bus/Device Bus/CPU Clock Synchronization . 166
7.8 64-bit PCI Configuration . 167
7.9 Retry Enable. 167
7.10 Locked Cycles . 167
7.11 Hot-Swap Support . 168
7.12 PCI Power Management Support. 168
7.13 PCI Interface Restrictions. 169
7.14 PCI Control and Configuration Registers . 169

8. Intelligent I/O (I2O) Standard Support .. 201
8.1 Overview . 201
8.2 I2O Registers . 201
8.3 Enabling I2O Support . 203
8.4 Register Map Compatibility with the i960Rx Family . 203
8.5 Message Registers. 203
8.6 Doorbell Registers .204
8.7 Circular Queues . 204
8.8 I2O Support Registers . 209

9. Independent DMA Controllers (IDMA Controllers).. 219
9.1 DMA Channel Registers. 219
9.2 DMA Channel Control Register (0x840 - 0x84c) . 221
9.3 Restarting a Disabled Channel. 224
9.4 Reprogramming an Active Channel . 224
9.5 Arbitration . 225
9.6 Current Descriptor Pointer Registers . 225
9.7 Design Information . 225
9.8 Initiating a DMA from a Timer/Counter. 230
9.9 DMA Restrictions . 230
9.10 DMA Control Registers. 231

10. PCI Arbiter .. 241
10.1 Interface . 241
10.2 Arbitration Scheme. 242
10.3 Arbitration Parking . 243
10.4 PCI Arbiter Configuration Register . 243
6 Revision 1.0

GT-96100A Advanced Communication Controller
11. Communication Interface Unit (CIU) .. 246
11.1 CIU Connectivity . 247
11.2 Address Decoding and PCI Override (MASTER) . 248
11.3 Arbitration Scheme . 248
11.4 CIU Arbiter Configuration Register . 251

12. 10/100Mb Ethernet Unit ... 253
12.1 Functional Overview . 253
12.2 Port Features. 254
12.3 Operational Description . 255
12.4 Ethernet Port . 275
12.5 Internal Control Registers . 283
12.6 Ethernet MIB Counters . 301

13. Serial DMA (SDMA) .. 307
13.1 Overview . 307
13.2 SDMA Descriptors . 308
13.3 SDMA Configuration Register (SDC) . 311
13.4 SDMA Command Register (SDCMx) . 313
13.5 SDMA Group Configuration Register . 315
13.6 SDMA Descriptor Pointer Registers . 316
13.7 Transmit SDMA . 316
13.8 Receive SDMA . 318
13.9 SDMA Interrupt and Mask register (SDI and SDM). 319
13.10 SDMA in Auto Mode . 319
13.11 SDMA Registers . 320

14. Multi Protocol Serial Controller (MPSC) .. 326
14.1 DPLL . 326
14.2 MPSCx Main Configuration Register (MMCRx) . 328
14.3 MPSCx Protocol Configuration Registers (MPCRx) . 337
14.4 Channel Registers (CHxRx) . 337
14.5 HDLC Mode. 337
14.6 BISYNC Mode . 347
14.7 UART Mode. 361
14.8 Transparent Protocol . 372

15. FlexTDM Units (FTDM)... 379
15.1 FlexTDM Architecture . 380
15.2 FlexTDM DPRAM . 380
15.3 FlexTDM Programing Modes. 383
15.4 FlexTDM Configuration Register (TCR) . 384
15.5 FlexTDM Synchronization . 386
15.6 IOM (GCI) Mode . 387
15.7 PCM Highway Mode . 388
15.8 Data Rate Adoption . 388
15.9 FlexTDM Auxiliary Channels A and B . 388
15.10 IOM Programing . 391
15.11 FlexTDM Registers . 394
Revision 1.0 7

GT-96100A Advanced Communication Processor
16. Baud Rate Generators (BRGs) .. 397
16.1 BRG Inputs and Outputs . 397
16.2 BRG Baud Tuning . 397
16.3 BRG Registers . 398

17. Watchdog Timer ... 401
17.1 Watchdog Registers . 401
17.2 Watchdog Operation . 402

18. Timers/Counters... 403
18.1 Timer / Counter Registers . 403

19. General Purpose Ports .. 405
19.1 Overview . 405
19.2 General Purpose Control Registers . 405

20. Physical Signal Routing .. 414
20.1 Signal Routing . 414
20.2 Clock Routing . 418

21. Interrupt Controller .. 424
21.1 Interrupt Cause Registers . 424
21.2 Interrupt Mask Registers . 425
21.3 Interrupt Summaries. 426
21.4 Interrupt Select Registers. 426
21.5 Interrupt Registers Tables . 427

22. Reset Configuration... 452

23. Connecting the Memory Controller to SDRAM and Devices................................ 455
23.1 SDRAM . 455
23.2 Devices. 456

24. JTAG Interface.. 460
24.1 IEEE Standard 1149.1 . 460
24.2 TAP Controller . 460
24.3 Instruction Register (IR) . 461
24.4 Bypass Register (BR). 461
24.5 JTAG Scan Chain. 461
24.6 ID Register . 462

25. Big and Little Endian ... 463
25.1 Background . 463
25.2 Configuring a System for Big and Little Endian . 465

26. Using the GT�96100A Without the CPU Interface ... 466

27. Using the GT�96100A in Different PCI Configurations... 467

28. Phased Locked Loop (PLL) Application Notes ... 473
28.1 PLL Power Supply . 473
28.2 PLL Characteristics . 474
8 Revision 1.0

GT-96100A Advanced Communication Controller
29. System Configurations.. 475
29.1 Minimal System Configuration. 475
29.2 Typical System Configuration . 476
29.3 High Performance System. 477

30. Register Tables .. 478
30.1 Access to On-Chip PCI Configuration Space Registers . 478
30.2 Register Maps . 479

31. DC Characteristics... 508
31.1 DC Electrical Characteristics Over Operating Range . 509
31.2 Thermal Data. 512

32. AC Timing ... 513
32.1 TClk/PClk Restrictions. 516
32.2 Serial (Communication) Clock Domain AC Characteristic . 518
32.3 MPSC Waveforms . 525
32.4 MII Waveforms . 529
32.5 JTAG AC Characteristics. 530
32.6 Additional Delay Due to Capacitive Loading . 531

33. Pinout Table, 492 Pin BGA.. 533

34. 492 BGA Package Mechanical Information ... 542

35. GT�96100A Part Numbering.. 543
35.1 Standard Part Number. 543
35.2 Valid Part Numbers . 543

36. Abbreviations ... 544

37. Revision History... 545
Revision 1.0 9

GT-96100A Advanced Communication Controller
List of Tables

1. Overview ... 19
Table 1: GT�96100A Serial Performance . 20
Table 2: GT�96100A Port Configurations . 23
Table 3: GT�96100A Peripheral Configurations . 24

2. Pin Information... 25
Table 4: CPU Interface Pin Assignments . 26
Table 5: Secondary Cache Interface Pin Assignments . 26
Table 6: PCI Bus 0 Pin Assignments. 27
Table 7: PCI Bus 1 Pin Assignments. 29
Table 8: SDRAM and Devices Pin Assignments . 31
Table 9: Local Address and Data Bus Pin Assignments . 32
Table 10: DMA Pin Assignments. 35
Table 11: WAN Pin Assignments . 36
Table 12: LAN Pin Assignments . 45
Table 13: GPP Pin Assignments . 51
Table 14: Interrupt Interface Pin Assignments . 53
Table 15: Watchdog Interface Pin Assignments . 54
Table 16: Test Interface Pin Assignments. 54
Table 17: Clock/Control Interface Pin Assignments . 54

3. Address Space Decoding.. 56
Table 18: CPU and Device Decoder Mappings. 57
Table 19: PCI_0 Base Address Register and Device Decoder Mappings. 58
Table 20: PCI_1 Base Address Register and Device Decoder Mappings. 58
Table 21: CPU and Device Decoder Default Address Mapping 64
Table 22: PCI Function 0 and Device Decoder Default Address Mapping 65
Table 23: PCI Function 1 (Byte Order Swap) and

Device Decoder Default Address Mapping . 66
Table 24: PCI Address Remapping Example . 69

4. CPU Interface Description ... 72
Table 25: CPU Interface Signals . 72
Table 26: SysCmd Bit Summary . 73
Table 27: Address Phase SysCmd[8:0] Encodings (driven by CPU) 74
Table 28: Read Response SysCmd[8:0] Encodings (driven by the GT-96100A) 75
Table 29: CPU Write SysCmd[8:0] Encodings (driven by local master) 76
Table 30: SysAD Read Phases . 76
Table 31: SysAD Write Phases . 78
Table 32: Pin Strapping the GT-96100A ID. 81
Table 33: WrRdy*, ValidIn*, and ScDOE* Signal Multiple GT-96100A Functionality . . . 82
Table 34: Initializing a Multiple GT-96100A System . 83
Table 35: CPU Interface Register Map . 84

5. Memory Controller ... 95
Table 71: DMAReq*, Ready* and BypsOE* Functionality . 101
10 Revision 1.0

GT-96100A Advanced Communication Controller
Table 72: SysAD/PCI Address Decoding for 32-bit SDRAM, 16 Mbit 104
Table 73: SysAD/PCI Address Decoding for 64-bit SDRAM, 256/512 Mbit 104
Table 74: SysAD/PCI Address Decoding for 32-bit SDRAM, 64 Mbit 105
Table 75: SysAD/PCI Address Decoding for 64-bit SDRAM, 64/128 Mbit 105
Table 76: SysAD/PCI Address Decoding for 64-bit SDRAM, 256 Mbit 106
Table 77: Programmable SDRAM Parameters. 109
Table 78: CPU SDRAM Performance on Reads . 110
Table 79: Events Determining PCI Read Performance from SDRAM 111
Table 80: GT�96100A Sync. Modes. 111
Table 81: SDRAM Performance Summary PCI Read Accesses 112
Table 82: UMA AC Timing Parameters . 114
Table 83: ADP[7:0] Pin Functionality . 125
Table 84: 32-bit Device Limitations. 127
Table 85: Memory Interface Register Map . 128

6. Data Integrity .. 143
Table 123: ECC Code Matrix . 143
Table 124: Registers for Implementing Parity and ECC. 150

7. PCI Interfaces ... 152
Table 130: DevNum to IdSel Mapping . 162
Table 131: PCI_0 Registers Loaded at RESET . 165
Table 132: PCI_1 Registers Loaded at RESET . 165
Table 133: PCI Control and Configuration Register Map . 169

8. Intelligent I/O (I2O) Standard Support.. 201
Table 209: I2O PCI and CPU Offsets . 202
Table 210: Register Differences Between the GT�96100A and i960Rx. 203
Table 211: Circular Queue Starting Addresses . 205
Table 212: I2O Circular Queue Functional Summary. 209
Table 213: I2O Support Register Map . 210

9. Independent DMA Controllers (IDMA Controllers).. 219
Table 237: Location of Source Address, SLP. 223
Table 238: Location of Destination Address, DLP . 223
Table 239: Location of Record Address, RLP . 223
Table 240: IDMA Controller Design Information Terms and Definitions 225
Table 241: Source and Data Transfer Examples . 227
Table 242: Fly-By Bits. 229
Table 243: DMA Control Register Map. 231

10. PCI Arbiter .. 241
Table 269: PCI Arbiter�s Interface. 241

11. Communication Interface Unit (CIU) .. 246

12. 10/100Mb Ethernet Unit ... 253
Table 273: Ethernet TX Descriptor - Command/Status word . 260
Table 274: Ethernet TX Descriptor - Byte Count . 261
Revision 1.0 11

GT-96100A Advanced Communication Controller
Table 275: Ethernet TX Descriptor - Buffer Pointer. 261
Table 276: Ethernet TX Descriptor - Next Descriptor Pointer . 261
Table 277: Ethernet RX Descriptor - Command/Status word . 264
Table 278: Ethernet RX Descriptor - Buffer Size / Byte Count . 266
Table 279: Ethernet RX Descriptor - Buffer Pointer . 266
Table 280: Ethernet RX Descriptor - Next Descriptor Pointer . 266
Table 281: Hash Table Entry Fields . 270
Table 282: Packet Filtering Status. 275
Table 283: MII Management Frame Format . 281
Table 284: Bit Transmission Parts. 281
Table 285: Ethernet Unit Register Map . 283
Table 300: IP Differentiated Services CodePoint to Priority0 low (DSCP2P0L) 299
Table 301: IP Differentiated Services CodePoint to Priority0 high (DSCP2P0H) 299
Table 302: IP Differentiated Services CodePoint to Priority1 low (DSCP2P1L) 299
Table 303: IP Differentiated Services CodePoint to Priority1 high (DSCP2P1H) 299
Table 304: VLAN Priority Tag to Priority (VPT2P). 299
Table 305: Writing IP DSCP Priority Example. 300
Table 306: Writing VLAN Priority Example . 300
Table 307: Writing IP DSCP and VLAN Priority Example . 301
Table 308: Writing IP DSCP and VLAN Priority Register mapping Example 301
Table 309: Terms Used in MIB Counters Descriptions . 301

13. Serial DMA (SDMA) .. 307
Table 311: SDMA Descriptor - Command/Status word . 309
Table 312: SDMA Descriptor - Buffer Size, Byte Count (Rx Descriptor) 310
Table 313: SDMA Descriptor - Byte Count, Shadow Byte Count (Tx Descriptor) 310
Table 314: SDMA Descriptor - Buffer Pointer . 310
Table 315: SDMA Descriptor - Next Descriptor Pointer . 311
Table 319: SDMA Definitions . 318
Table 320: SDMA Group 0 Register Map . 320
Table 321: SDMA Group 1 Register Map . 323

14. Multi Protocol Serial Controller (MPSC)... 326
Table 323: TIDL/RTSM Relationship. 333
Table 325: SDMAx Command/Status Field for HDLC Mode. 338
Table 337: BISYNC Receiver Operating Modes . 348
Table 338: SDMAx Command/Status Field for BISYNC Mode . 350
Table 341: BISYNC Control Character Register Format . 358
Table 342: Auto Transparent Programming . 359
Table 343: CPU Controlled Operation. 359
Table 345: SDMAx Command/Status Field for UART Mode. 362
Table 347: UART Stop Bit Reception and Framing Error . 365
Table 349: UART Control Character Register Format. 371
Table 351: SDMAx Command/Status Field for Transparent Mode 374
Table 352: Transparent Mode Synchronization Options . 376
Table 353: Transmitter Mode Synchronization Options . 376
12 Revision 1.0

GT-96100A Advanced Communication Controller
15. FlexTDM Units (FTDM)... 379
Table 356: Flex TDM DPRAM Entry. 380
Table 358: Monitor Channel Handshaking Process . 390
Table 359: IOM-1 Programming . 391
Table 360: IOM2-TE Programming. 392
Table 361: IOM2-LC (connected to channel 3) GCI . 393
Table 362: FlexTDM Register Map. 394

16. Baud Rate Generators (BRGs).. 397
Table 363: BRG Registers Map. 398
Table 364: BRGx Configuration Register (BCR) . 399
Table 365: BRGx Baud Tuning register (BTR) . 400

17. Watchdog Timer ... 401

18. Timers/Counters... 403

19. General Purpose Ports .. 405
Table 373: Control Registers . 405
Table 374: GPP Registers Map . 406

20. Physical Signal Routing .. 414

21. Interrupt Controller .. 424
Table 390: Interrupt Registers Map . 427

22. Reset Configuration... 452
Table 420: Reset Configuration . 452

23. Connecting the Memory Controller to SDRAM and Devices 455
Table 421: 64-bit SDRAM. 455
Table 422: 32-bit SDRAM. 456
Table 423: 64-bit Devices . 456
Table 424: 32-bit Devices . 457
Table 425: 16-bit Devices . 458
Table 426: 8-bit Devices . 459

24. JTAG Interface.. 460
Table 427: Supported JTAG Instructions . 461
Table 428: IDCODE Register Map . 462

25. Big and Little Endian ... 463
Table 429: Nomenclature . 464
Table 430: Configuring for Big and Little Endian . 465

26. Using the GT�96100A Without the CPU Interface... 466
Table 431: CPU-less Pin Strapping . 466

27. Using the GT�96100A in Different PCI Configurations... 467
Table 432: No PCI Interface . 467
Table 433: PCI_0 as 32-bit PCI Only . 468
Table 434: PCI_0 as 32-bit PCI and PCI_1 as 32-bit PCI . 470
Revision 1.0 13

GT-96100A Advanced Communication Controller
Table 435: PCI_0 as 64-bit PCI Only . 471

28. Phased Locked Loop (PLL) Application Notes ... 473

29. System Configurations.. 475

30. Register Tables .. 478
Table 436: CPU Registers Map. 479
Table 437: SDRAM Registers Map . 480
Table 438: DMA Registers Map . 482
Table 439: Timer/Counter Registers Map . 483
Table 440: PCI Registers Map . 483
Table 441: Interrupts Registers Map . 486
Table 442: I2O Support Registers Map. 488
Table 443: Communication Unit Register Map . 489

31. DC Characteristics ... 508
Table 444: Absolute Maximum Ratings. 508
Table 445: Recommended Operating Conditions . 508
Table 446: Pin Capacitance . 508
Table 447: DC Electrical Characteristics Over Operating Range 509
Table 448: Driving Pad Characteristics . 510
Table 449: Thermal data for GT-96100A in BGA 492 . 512

32. AC Timing ... 513
Table 450: AC Timing Measurement Formulas. 513
Table 451: AC Commercial Grade Timing. 513
Table 452: TClk/PClk Restrictions. 517
Table 453: Flex-TDM Receive Timing - Normal Clock . 518
Table 454: Flex-TDM Transmit Timing - Normal Speed Clock . 519
Table 455: Flex-TDM Receive Timing - Double Speed Clock . 520
Table 456: Flex-TDM Transmit Timing - Double Speed Clock . 521
Table 457: MPSC Receive Timing . 523
Table 458: MPSC Transmit Timing . 524
Table 459: MII Transmit Timing. 529
Table 460: MII Receive Timing . 529
Table 461: JTAG AC Characteristics. 530
Table 462: Btyp Values . 532

33. Pinout Table, 492 Pin BGA .. 533
Table 463: GT�96100A Pinout Table . 533

34. 492 BGA Package Mechanical Information.. 542

35. GT�96100A Part Numbering.. 543

36. Abbreviations ... 544

37. Revision History... 545
Table 464: Document History . 545
14 Revision 1.0

GT-96100A Advanced Communication Controller
List of Figures

Figure 1: Pin List . 25
Figure 2: Two Stage Address Decoding- Conceptual View . 56
Figure 3: CPU-Side Resource Group Decode Function and Example 60
Figure 4: Device Sub-Decode Function and Example . 61
Figure 5: Bank Size Register Function Example (16Meg Decode) 62
Figure 6: CPU Address Remapping To Resources . 68
Figure 7: Double Word (8 bytes) Read by CPU With Parity Check Bits 77
Figure 8: Four Word (16 bytes) Burst Read by CPU . 78
Figure 9: CPU Four Word Burst Write . 79
Figure 10: R5000 L2 Read Miss Example . 81
Figure 11: Memory Controller Default Arbitration . 96
Figure 12: Memory Controller Modified Arbitration . 97
Figure 13: Non-Staggered Refresh Waveform . 99
Figure 14: Staggered Refresh Waveform . 99
Figure 15: Read Modify Write Transaction by the SDRAM Controller 100
Figure 16: 512 Mbit/64-bit SDRAM Connection to Memory Bus Using x8 Devices. . . . 108
Figure 17: VUMA Device and The GT�96100A sharing SDRAM 114
Figure 18: Handing the Bus Over . 115
Figure 19: MREQ* Requests from the VUMA Device . 116
Figure 20: Waveform Showing Device Read Parameters . 120
Figure 21: Waveform Showing Device Write Parameters . 121
Figure 22: Ready* Extending AccToFirst on Read Cycle . 122
Figure 23: Ready* Extending AccToNext on Read Cycle . 123
Figure 24: Extending WrActive Parameter on Write Cycle . 124
Figure 25: PCI Master FIFOs in Single 64-bit Mode . 154
Figure 26: PCI Master FIFOs in Dual 32-bit Mode. 155
Figure 27: PCI Target Interface �Ping-Pong� FIFOs . 158
Figure 28: PCI Target Interface FIFOs Operational Example . 159
Figure 29: PCI Configuration Header. 164
Figure 30: Power Management Registers . 168
Figure 31: I2O Circular Queue Operation . 206
Figure 32: Chained Mode DMA . 224
Figure 33: PCI Arbiter�s Interface Diagram . 241
Figure 34: PCI Arbitration Flow . 242
Figure 35: CIU Connection Diagram . 247
Figure 36: Arbiter Connectivity. 249
Figure 37: MASTER Arbitration Flow. 250
Revision 1.0 15

GT-96100A Advanced Communication Controller
Figure 38: Ethernet Descriptors and Buffers . 255
Figure 39: Ethernet Packet Transmission Example . 257
Figure 40: Ethernet TX Descriptor . 259
Figure 41: Ethernet TX Buffer Alignment Restrictions (5 byte payload) 259
Figure 42: Ethernet RX DMA Descriptor. 264
Figure 43: Type of Service Queueing Algorithm. 268
Figure 44: Ethernet Hash Table Entry . 270
Figure 45: Address Chain . 272
Figure 46: Address Filtering Process . 274
Figure 47: RMII Di-Bit Stream. 279
Figure 48: MII Transmit Signal Timing . 279
Figure 49: MII Receive Signal Timing. 280
Figure 50: MDIO Output Delay . 282
Figure 51: MDIO Setup and Hold Time . 282
Figure 52: SDMA Descriptor Format . 308
Figure 53: SDMAx Configuration Register (SDCx). 311
Figure 54: SDMA Command Register (SDCMx) . 313
Figure 55: SDMA Descriptor Pointer Registers . 316
Figure 56: Using Auto Mode to Create Idle Loop . 320
Figure 57: MPSC DPLL Encoding/Decoding Schemes . 327
Figure 58: MPSC Main Configuration Register (MMCRx) . 328
Figure 59: Typical HDLC Frame. 337
Figure 60: Typical LocalTalk Frame . 337
Figure 61: MPSCx Protocol Configuration Register (MPCRx) for HDLC 339
Figure 62: Channel Registers (CHxRx) for HDLC . 341
Figure 63: Typical BISYNC/MonoSYNC Frames . 347
Figure 64: MPSCx Protocol Configuration Register (MPCRx) for BISYNC 351
Figure 65: Channel Registers (CHxRx) for BISYNC. 353
Figure 66: BISYNC Control Character Register Format . 357
Figure 67: Typical UART Frame. 361
Figure 68: MPSCx Protocol Configuration Register (MPCRx) for UART Mode 363
Figure 69: Channel Registers (CHxRx) for UART Mode . 367
Figure 70: UART Control Character Register Format. 370
Figure 71: Channel Registers (CHxRx) for Transparent Mode. 375
Figure 72: FlexTDM Architecture . 379
Figure 73: Typical IOM Structures . 387
Figure 74: Auxiliary Channel A Control Registers . 389
Figure 75: Channel B Control Register. 390
Figure 76: Baud Rate Generator Block Diagram . 397
16 Revision 1.0

GT-96100A Advanced Communication Controller
Figure 77: Watchdog Register Map . 401
Figure 78: Filtering Circuit . 473
Figure 79: Resistor and Capacitor Values for VccPLL and VssPLL 473
Figure 80: Minimal System Configuration . 475
Figure 81: Typical System Configuration . 476
Figure 82: High Performance System . 477
Figure 83: Power vs. Operating Frequency . 511
Figure 84: TClk = PClk, in Sync Mode = 1, Skew Requirement 517
Figure 85: Flex-TDM Receive Timing - Normal Clock Waveform 518
Figure 86: Flex-TDM Transmit Timing - Normal Speed Clock Waveform 519
Figure 87: Flex-TDM Receive Timing - Double Speed Clock Waveform. 520
Figure 88: Flex-TDM Receive Timing - Double Speed Clock Waveform. 521
Figure 89: Flex-TDM Transmit Timing - Double Speed Clock Waveform 522
Figure 90: Flex-TDM Transmit Timing - Double Speed Clock Waveform 522
Figure 91: MPSC Receive Timing . 523
Figure 92: MPSC Transmit Timing. 524
Figure 93: Output Delay From RTS*, Asynchronous CTS*

(CTSS=0 in MMCRLx) Waveform . 525
Figure 94: Output Delay From RTS*, Synchronous CTS*

(CTSS=1 in MMCRLx) Waveform . 525
Figure 95: Output Delay From CTS*, Asynchronous CTS*

(CTSS=0 in MMCRLx) Waveform . 526
Figure 96: Output Delay From CTS*, Synchronous CTS*

(CTSS=1 in MMCRLx) Waveform . 526
Figure 97: CTS* Loss In Synchronous Protocol:

Start of Frame Waveform With CTS Lost . 526
Figure 98: CTS* Loss In Synchronous Protocol:

Start of Frame Waveform Without CTS Lost . 527
Figure 99: CTS* Loss In Synchronous Protocol, Synchronous

CTS* (CTSS=1 in MMCRLx) Waveform. 527
Figure 100:CTS* Loss In Synchronous Protocol, Asynchronous

CTS* (CTSS=0 in MMCRLx) Waveform. 527
Figure 101:Reception Control Using CD* Waveform . 527
Figure 102:External Sync (RSYL=0 in MMCRHx), CD* Pulse Mode

(CDM=0 in MMCRLx) Waveform . 528
Figure 103:Transmit Synchronize to Receive (TSYN=1 in MMCRLx),

External Sync (RSYL=0 in MMCRHx) Waveform. 528
Figure 104:Transmit Synchronize to Receive (TSYN=1 in MMCRLx),

External Sync (RSYL=0 in MMCRHx), CD* and
CTS* Pulse Mode (CTSM=1 and CDM=1 in MMCRLx),
Synchronous CTS* (CTSS=1 in MMCRLx) Waveform. 528

Figure 105:MII Port Transmit Signals Timing . 529
Revision 1.0 17

GT-96100A Advanced Communication Controller
Figure 106:MII Port Receive Signals Timing . 530
Figure 107:JTAG AC Timing . 530
Figure 108:GT�96100A Pinout Map (top view, left side). 540
Figure 109:GT�96100A Pinout Map (top view, right side). 541
Figure 110:492 BGA Package Mechanical Information. 542
Figure 111:Sample Part Number . 543
18 Revision 1.0

GT-96100A Advanced Communication Controller
1. OVERVIEW
The GT-96100A offers a single-chip solution for designers building communication systems using any high per-
formance 64-bit MIPS CPUs.

CPUs compatible with the GT-96100A include:
� The RM5260, RM5270/1 and RM7000 from QED.
� The RV4600 through RV5000 from IDT.
� Other R5000 compatibles from various vendors.

The GT-96100A integrates a system controller with a communication unit that handles a wide range of serial
communication protocols, such as Ethernet, Fast Ethernet, and HDLC. Its architecture supports several system
implementations for different applications and cost/performance points. Also, it is possible to design a powerful
system with minimal glue logic, or add commodity logic (controlled by the GT-96100A) for differentiated sys-
tem architectures that attain higher performance.

The GT-96100A has a three or four bus architecture:
� A 64-bit interface to the CPU bus (SysAD bus)
� A 64-bit interface to the memory and device subsystem
� Two independent 32-bit PCI interfaces or one 64-bit PCI interface

The three/four buses are de-coupled from each other in most accesses, enabling concurrent operation of the CPU
bus, PCI devices, and accesses to memory. For example, the GT-96100A can simultaneously support a CPU bus
writing to the on-chip write buffer, an IDMA agent moving data from SDRAM to its own buffers, and a PCI
device writing into an on-chip FIFO.

1.1 Communication Unit Description

The heart of the GT-96100A device is a high-performance WAN communications unit.

This unit includes:
� Eight multi-protocol serial controllers.
� Four FlexTDM time slot assigners.
� Two perfect filtering 10/100 Ethernet controllers.
� Twenty SDMA channels.

The GT-96100A can directly support several WAN interfaces including Basic Rate ISDN (two channels), frame
relay, non channelized T1/E1/T3, xDSL (HDSL, VDSL etc.), HSSI, and others.

1.1.1 Multi-protocol Serial Controllers
The eight multi-protocol serial controllers (MPSCs) integrated onto the GT-96100A support UART, HDLC,
BISYNC, and transparent protocols. The MPSCs are implemented in the hardware. Hardware implementation
allows for superior performance when compared to microcoded implementations.
Revision 1.0 19

GT-96100A Advanced Communication Controller
In HDLC mode, the MPSCs perform all framing operations such as bit stuffing/stripping and flag generation, and
part of the data link operations (e.g. address recognition functions). The MPSCs directly support common HDLC
protocols including those used by ISDN and frame relay. Each MPSC can communicate over dedicated package
pins or through one of four FlexTDM time slot assigners.

1.1.2 FlexTDM Time Slot Assigners
There are four FlexTDM (time slot assigners) in the GT-96100A.

The FlexTDMs support PCM Highway, IOM1, and IOM2 (GCI) formats to allow connections to most WAN
framer and PHY devices. The FlexTDMs are fully programmable and can be configured to support almost any
proprietary TDM bus. They can also be programed to interface voice CODECs and MVIP bus peripherals.

The FlexTDM unit includes two auxiliary channels that can be multiplexed onto the TDM highway with data
from the eight MPSCs. They are optimized for supporting GCI bus Monitor and C/I channels.

1.1.3 10/100 Ethernet Controllers
There are two 10/100-Mbps full duplex Ethernet ports in GT-96100A. Each port is fully compliant with the IEEE
802.3 and 802.3u standards and integrates MAC function and a dual speed MII interface.

The ports� speed (10 or 100Mb/s) and duplex mode (half or full duplex) is auto-negotiated through the PHY and
does not require user intervention. The ports� logic also supports 802.3x flow-control mode for full-duplex and
back-pressure mode for half-duplex.

The GT-96100A�s Ethernet ports includes Galileo�s advanced address filtering capability and can be programmed
to accept or reject packets based on MAC addresses, thus providing hardware acceleration to complicated tasks
such as bridging, routing, and firewall. The ports� can also filter up to 8,000 individual MAC addresses.

1.1.4 SDMA Channels
The GT-96100A offers 20 SDMA channels to support the eight MPSCs and two Fast Ethernet controllers. The
SDMA channels are used to transfer data from the various serial ports to the SDRAM (and vice versa) or over the
PCI. The SDMA channels use linked chain of descriptors and buffers to reduce CPU overhead.

Table 1 summarizes guaranteed throughput of the MPSCs in HDLC mode when the two Fast-Ethernet ports run
at 100Mbit/s full wire speed in full duplex mode.

Table 1: GT-96100A Serial Performance

No. Operational Mode Aggregate Bandwidth

Serial Ethernet Total

1 4 ports @55 Mbps simultaneously 440Mbit/s 400Mbit/s 840Mbit/s

2 6 ports @45 Mbps simultaneously 540Mbit/s 400Mbit/s 940Mbit/s

3 All the 8 ports @30 Mbps simultaneously 480Mbit/s 400Mbit/s 880Mbit/s
20 Revision 1.0

GT-96100A Advanced Communication Controller
1.2 CPU Interface

The GT-96100A�s SysAD bus allows the CPU and other local bus masters to access the PCI and memory/device
buses.

The SysAD bus protocol supports byte, sub-word, 32-bit word, and 64-bit word operations with burst lengths of
up to eight words (sub-word, two word, and four word burst length are also supported). With a maximum fre-
quency of 100MHz, the CPU can transfer in excess of 800 Mbytes/sec.

The GT-96100A allows up to four GT-96100A devices, or GT-64120 system controllers, to share the same CPU
interface. This significantly increases the address space, number of communication channels, and flexibility of
system design.1

The GT-96100A supports CPU address remapping to resources and can operate in little or big endian mode.

1.3 SDRAM and Device Interface

The GT-96100A integrates a SDRAM controller with a 64-bit interface.

The SDRAM controller supports 16, 64, 128, 256 and 512Mbit SDRAMs. It is 3.3V and 5V tolerant, operates at
frequencies of up to 100MHz, and can address up to 4GBytes. Up to four SDRAM banks can be connected to the
controller and it supports 2 bank interleaving for 16 Mbit SDRAMs and 2 or 4 bank interleaving for 64/128/256/
512 Mbit SDRAMs.

The SDRAM controller also supports a UMA feature that enables external masters to arbitrate for direct access
to SDRAM. This feature enhances system performance and gives flexibility when designing shared memory sys-
tems.

The GT-96100A device controller supports different types of memory and I/O devices. It has the control signals
and timing programmability to support devices such as Flash, EPROMs, FIFOs, and I/O controllers. Device
widths from 8-bits to 64-bits are also supported.

ECC generation and checking is supported both internally and externally and is optional for each bank of
SDRAM.

1.4 PCI Interface

The GT-96100A interfaces directly to the PCI bus. The PCI interface can be configured to function as either:
� Two 32-bit PCI devices (PCI_0 and PCI_1)
� A single 64-bit PCI device (PCI_0) operating at a maximum frequency of 66MHz.

Each of the GT-96100A�s PCI interface can either be a master initiating PCI bus transaction or a target respond-
ing to a PCI bus operation.

The GT-96100A incorporates 192-bytes of posted write and read prefetch buffers per PCI device for efficient
data transfer between the CPU bus/DMA to PCI and PCI to main memory.

1. The increased loading will only have a small effect on the system�s maximum operating frequency.
Revision 1.0 21

GT-96100A Advanced Communication Controller
The GT-96100A becomes a PCI bus master when the CPU interface unit or the internal DMA engine initiates a
bus cycle to a PCI device. The following PCI bus cycles are supported:

� Memory Read/Write
� Interrupt Acknowledge
� Special
� I/O Read/Write
� Configuration Read/Write
� Locked Reads/Writes (only for PCI_0 slave).

The GT-96100A acts as a target when a PCI device initiates a memory access (or an I/O access in the case of
internal registers). It responds to all memory read/write accesses, as well as to all configuration and I/O cycles in
the case of internal registers. It is possible to program the PCI slave function to retry all PCI transactions targeted
to the GT-96100A. The PCI slave performs PCI address remapping to resources.

The GT-96100A includes all required PCI configuration registers. All internal registers, including PCI configura-
tion registers, are accessible from both the CPU bus and the PCI bus. GT-96100A configuration register set is PC
Plug-and-Play compatible, with industry standard I2O support.

The GT-96100A supports PCI Hot-Plug and CompactPCI Hot Swap Capable requirements.

The GT-96100A can also act as a PCI to Memory bridge and PCI communication peripheral, even without the
presence of a CPU.

1.5 Independent DMA (IDMA) Engines

The GT-96100A incorporates four high performance IDMA engines.

Each IDMA engine has the capability to transfer data between PCI devices, between PCI devices and main mem-
ory, or between devices residing on the 64-bit device/memory bus. The IDMA uses two internal 64-byte FIFOs
for temporary storage of IDMA data. These pair of FIFOs allows two IDMA channels to be working concur-
rently with each channel utilizing one FIFO. For example, while channel 0 is reading data from SDRAM into one
FIFO, channel 2 can write data from the other FIFO to the PCI bus.

Source and destination addresses can be nonaligned on any byte address boundary. The IDMA channels can be
controlled from the CPU or PCI interfaces or via a linked list of records without CPU bus intervention. This
linked list is loaded by the IDMA controller into the channel�s working set when a IDMA transaction ends. The
IDMA supports increment/decrement/hold on source and destination addresses independently and alignment of
addresses towards source and destination. In addition, the GT-96100A provides an override capability of source/
destination/record address mapping to force access to PCI_0 or PCI_1.

IDMA can be initiated by the CPU writing to a register, an external request via IDMAReq* pin, or an internal
timer/counter. Four End-of-Transfer pins, which act as inputs to the GT-96100A, allow ending a IDMA transfer
on a certain channel. In case of chained mode, it is possible to transfer the descriptor to CPU ownership after the
transfer has ended. The CPU then calculates the number of remaining bytes in the buffer associated with the
closed descriptor.

Fly-by is also supported. This mode allows data to be transferred directly between two residents on the device/
memory bus without having to go into an IDMA FIFO.
22 Revision 1.0

GT-96100A Advanced Communication Controller
1.6 Peripheral Configurations

The GT-96100A provides 88 pins to configure either as peripheral function pins or as general purpose I/Os.
These pins consist of the following ports:

� Six WAN ports (A, B, C, D, E, F) with seven pins allocated per port (total of 42 pins).
� Two LAN port (MII0 and MII1) with 15 pins allocated per port (total of 30 pins).
� One GPP port with 16 pins allocated to it.

Each of the ports listed above supports multiple internal functions. Table 2 shows the configuration options sup-
ported for each port.

Table 2: GT-96100A Port Configurations

Port Port Configurat ion Options

A 1. Physical interface for MPSC0
2. PCI_0 arbiter signals
3. General Purpose Port

B 1. Physical interface for MPSC1
2. PCI_1 arbiter signals
3. General Purpose Port

C 1. Physical interface for MPSC2
2. Physical interface for FlexTDM0
3. General Purpose Port

D 1. Physical interface for MPSC3
2. Physical interface for FlexTDM1
3. General Purpose Port

E 1. Physical interface for MPSC4
2. Physical interface for FlexTDM2
3. General Purpose Port

F 1. Physical interface for MPSC5
2. Physical interface for FlexTDM3
3. General Purpose Port

MII0 1. MII interface for Ethernet0
2. Physical interface for MPSC6, MPSC7
3. General Purpose Port

MII1 1. MII interface for Ethernet1
2. RMII interface for both Ethernet0 and Ethernet1
3. General Purpose Port
Revision 1.0 23

GT-96100A Advanced Communication Controller
Table 3 shows typical peripheral configurations supported by the GT-96100A.

Table 3: GT-96100A Peripheral Configurations

Peripheral
Configuration
Option

Port
A

Port
B

Port
C

Port
D

Port
E

Port
F

Port
MII0

Port
MI I1

� Two serial ports
� Two TDM ports
� One Ethernet port

Mpsc0 Mpsc1 TDM0 TDM1 GPP GPP Ether0 GPP

� Six serial ports
� Two Ethernet ports

Mpsc0 Mpsc1 Mpsc2 Mpsc3 Mpsc4 Mpsc5 Ether0 Ether1

� Two PCI arbiters
� Two serial port
� Two TDM ports
� Two Ethernet ports

PCI_0
arbiter

PCI_1
arbiter

Mpsc2 Mpsc3 TDM2 TDM3 Ether0 Ether1

� One PCI arbiter
� Three serial ports
� Four TDM ports
� One Ethernet port

PCI_0
arbiter

Mpsc1 TDM0 TDM1 TDM2 TDM3 Mpsc6
and
Mpsc7

Ether1

� Eight Serial ports
� Two Ethernet ports

Mpsc0 Mpsc1 Mpsc2 Mpsc3 Mpsc4 Mpsc5 Mpsc6
and
Mpsc7

Ether0
and
Ether1
24 Revision 1.0

GT-96100A Advanced Communication Controller
2. PIN INFORMATION

Figure 1: Pin List

PCI
Bus 0

Secondary
Cache

Interface

SDRAM
and

Devices

Local
Address

and
Data Bus

DMA
Interface

TEST

WAN

GPP

CPU
Interface

LAN

GPP[15:0]

PCI
Bus 1

DMAReq[3]* / DAdr[12] / SCAS* / EOT[0]* / TREQ*
DMAReq[2]* / DAdr[11]
DMAReq[1]* / BankSel[1]
DMAReq[0]* / MREQ* / SRAS*

AD[41] / DevRW*
AD[40] / BootCS*
AD[39:36] / CS[3:0]*

AD[63:42]

ADP[7:6] / SRAS*, SCAS*

CSTiming*
ALE
Ready* / EOT[1]*
BypsOE* / MGNT* / DWr*

AD[35:32] / DMAAck[3:0]*
AD[31:0]

ADP[5] / DAdr[11]
ADP[4] / BankSel[1]
ADP[3:1] / EOT[3:1]* / DWr*

MII0[14:0]
MII1[14:0]

MDC
MDIO

PORTA[6:0]
PORTB[6:0]
PORTC[6:0]
PORTD[6:0]

PORTF[6:0]
PORTE[6:0]

VREF1
PClk1

PAD1[31:0] / PAD0[63:32]
CBE1[3:0]* / CBE0[7:4]*

Frame1* / Req64*
IRdy1*

TRdy1*
Stop1*

Par1 / Par64

VREF0
PClk0

PAD0[31:0]
CBE0[3:0]*

Frame0*
IRdy0*

TRdy0*
Stop0*
Lock0*

Par0

DevSel0*
Req0*/PARB0_GNT0
Gnt0*/PARB0_REQ0

PErr0*
SErr0*

IDSel0

ValidOut*
ValidIn*
WrRdy*

Release*

SysAD[63:0]
SysADC[7:0]

SysCmd[8:0]

Clock/control
Interface

TClk

VccPLL
VssPLL

ScDOE*
ScMatch
ScTCE*
ScWord[1:0]

DWr*
DAdr[2:0] / BAdr[2:0]
DAdr[10:3] / Wr[7:0]*
BankSel[0]
SRAS*
SCAS*
SCS[3:0]*
SDQM[7:0]*

JTAG[4:0]

Reset*

ADP[0] / EOT[0]* / DAdr[12]

Interrupt
Interface

Interrupt0*
Interrupt1*
SerInt0*
SerInt1*

Watchdog
Interface

WDE*
NMI*

ByPassPLL
OutModePLL
ClkOutPLL

DevSel1* / Ack64*
Req1*/PARB1_GNT0
Gnt1*/PARB1_REQ0

PErr1*
SErr1*

IDSel1
Revision 1.0 25

GT-96100A Advanced Communication Controller
Table 4: CPU Interface Pin Assignments

Pin Name Type Full Name Description
ValidOut* I Valid Output Driven by the CPU to signal a valid address or data on the

SysAD bus and a valid command or data identifier on the
SysCmd bus.

ValidIn* O Valid Input Driven by the GT-96100A to signal that it is driving valid data on
the SysAD bus and a valid data identifier on the SysCmd bus.

WrRdy* O Write Ready Driven by the GT-96100A to signal that it can accept a CPU
write request from the CPU (i.e. there is room in the write post-
ing FIFO).

Release* I Release Driven by the CPU to signal that it has released the SysAD and
SysCmd buses for completion of a read request.

SysCmd[8:0] I/O System Com-
mand/Data
Identifier Bus

9-bit bus used for command and data identifier transmission
between the CPU and GT-96100A.

SysAD[63:0] I/O System
Address/Data
Bus

64-bit bus used as multiplexed address and data bus for com-
munication between the CPU, the GT-96100A, and the L2
cache.

SysADC[7:0] I/O System
Address/Data
Check

8-bit bus used as parity for the SysAD bus. SysADC is valid on
data cycles only.

CPU Interface Total: 85

Table 5: Secondary Cache Interface Pin Assignments

Pin Name Type Full Name Description
ScDOE* O Secondary

Cache Data
RAM Output
Enable

Asserted by the GT-96100A to cause the data RAM to drive
data onto their I/O pins. This signal is monitored by the proces-
sor to determine when to drive the data RAM write enable in a
secondary cache miss refill sequence.
This pin must be left unconnected if secondary cache is not
used.

ScMatch I Secondary
Cache Tag
Match

Asserted by the cache Tag RAM when a match occurs between
the value on its data inputs and the contents of its RAM at the
value of its address inputs.
This pin must be pulled LOW through a 4.7KOhm resistor if
secondary cache is not used.
26 Revision 1.0

GT-96100A Advanced Communication Controller
ScTCE* I Secondary
Cache Tag
RAM Chip
Enable

Indicates that a secondary cache access is occurring.
This pin must be pulled HIGH through a 4.7KOhm resistor if
secondary cache is not used.

ScWord[1:0] O Secondary
Cache Double
Word Index

Driven by the GT-96100A on cache miss refills.
These pins must be left unconnected if secondary cache is not
used.

Secondary Cache Total: 5

Table 6: PCI Bus 0 Pin Assignments

Pin Name Type Full Name Description
VREF0 I PCI_0 Voltage

Reference
Must be connected directly to the 3.3V or the 5V power plane,
depending on which voltage level PCI_0 supports.
NOTE: VREF0 and VREF1 can be completely independent

voltage levels.

PClk0 I PCI_0 Clock Provides the timing for the PCI_0 transactions. The PCI_0
clock range is between 0 and 66MHz.
NOTE: The PClk0 cycle must be higher than the TClk cycle by

at least 1ns. See Section 32.1 �TClk/PClk Restric-
tions� on page 516.

PAD0[31:0] I/O PCI_0
Address/Data

32-bit multiplexed PCI_0 address and data lines.
During the first clock of the transaction, PAD0[31:0] contains a
physical byte address (32 bits). During subsequent clock
cycles, this contains data.

CBE0[3:0]* I/O PCI_0 Com-
mand/Byte
Enable

During the address phase of the transaction, CBE0[3:0]* pro-
vides the PCI_0 bus command.
During the data phase, these lines provide the byte enables.

Par0 I/O PCI_0 Parity Calculated by the GT-96100A as an even parity bit for the
PAD0[31:0] and CBE0[3:0]* lines.

Frame0* I/O PCI_0 Frame Asserted by the GT-96100A to indicate the beginning and dura-
tion of a master transaction.
Frame0* asserts to indicate the beginning of the cycle. While
asserted, data transfer continues.
Frame0* deasserts to indicate that the next data phase is the
final data phase transaction.
Frame0* is monitored by the GT-96100A when it acts as a PCI
target.

IRdy0* I/O PCI_0 Initiator
Ready

Asserted to indicate the bus master�s ability to complete the
current data phase of the transaction. A data phase is com-
pleted on any clock when both IRdy0* and TRdy0* are
asserted. Wait cycles are inserted until TRdy0* and IRdy0* are
asserted together.

Table 5: Secondary Cache Interface Pin Assignments (Continued)

Pin Name Type Full Name Description
Revision 1.0 27

GT-96100A Advanced Communication Controller
TRdy0* I/O PCI_0 Target
Ready

Asserted to indicate the target agent�s ability to complete the
current data phase of the transaction. A data phase is com-
pleted on any clock when both TRdy0* and IRdy0* are
asserted. Wait cycles are inserted until TRdy0* and IRdy0* are
asserted together.

Stop0* I/O PCI_0 Stop Asserted to indicate that current target is requesting the bus
master to stop the current transaction.
As a master, the GT-96100A responds to the assertion of
Stop0* by disconnecting, retrying, or aborting.
As a target, the GT-96100A asserts Stop0* to retry or discon-
nect.

Lock0* I PCI_0 Lock Asserted to indicate an automatic operation that may require
multiple transactions to complete.
When the GT-96100A is a PCI_0 target, Lock0* is sampled on
the rising edge of PClk0 when Frame0* is asserted. If Lock0* is
sampled asserted, the GT-96100A enters a locked state and
remains in this state until Lock0* is sampled deasserted on the
following rising edge of PClk0, when Frame0* is sampled
asserted.

IDSel0 I PCI_0 Initial-
ization Device
Select

Asserted to indicate a chip select during PCI_0 configuration
read and write transactions.

DevSel0* I/O PCI_0 Device
Select

Asserted by the target of the current access.
When the GT-96100A is bus master, it expects the target to
assert DevSel0* within five bus cycles, confirming the access. If
the target does not assert DevSel0* within this time window, the
GT-96100A aborts the cycle.
As a target, when the GT-96100A recognizes that it is the target
of a transaction, it asserts DevSel0* at medium speed (two
cycles after assertion of Frame0*).

Req0*/
PARB0_GNT1

O PCI_0 Bus
Request

If the internal arbiter for PCI_0 is disabled, this signal is
asserted by the GT-96100A to indicate to the PCI_0 bus arbiter
that it requires use of the PCI_0 bus.

PCI_0 arbiter
output grant 1

If the internal arbiter for PCI_0 is enabled, this pin functions as
the arbiter�s grant 1 output signal.

Gnt0*/
PARB0_REQ1

I PCI_0 Bus
Grant

If the internal arbiter for PCI_0 is disabled, this signal is
asserted by the external PCI_0 bus arbiter to Indicate that
access to the PCI_0 bus is granted to the GT-96100A.

PCI_0 arbiter
input request 1

If the internal arbiter for PCI_0 is enabled, this pin functions as
the arbiter�s request 1 input signal.

Table 6: PCI Bus 0 Pin Assignments (Continued)

Pin Name Type Full Name Description
28 Revision 1.0

GT-96100A Advanced Communication Controller
PErr0* I/O
STS

PCI_0 Parity
Error

Asserted when a data parity error is detected.
This pin features a sustained tristate output.

SErr0* OD PCI_0 System
Error

Asserted when a serious system error (not necessarily a PCI_0
error) is detected. SErr0* behavior in the GT-96100A is pro-
grammable (refer to PCI section for details).
This pin features an open-drain output.

PCI Bus 0 Total: 50

Table 7: PCI Bus 1 Pin Assignments

Pin Name Type Full Name Description
VREF1 I PCI_1 Voltage

Reference
Must be connected directly to the 3.3V or the 5V power plane
depending on which voltage level PCI_1 supports.
NOTE: VREF0 and VREF1 can be completely independent

voltage levels.

PClk1 I PCI_1 Clock Provides the timing for PCI_1 transactions. The PCI_1 clock
range is between 0 and 66MHz.
Runs independently of PClk0.
Active only when PCI _1 is enabled.
NOTE: The PClk0 cycle must be higher than the TClk cycle

by at least 1ns. This clock frequency can be indepen-
dent of both TClk and PClk0. See Section 32.1 �TClk/
PClk Restrictions� on page 516.

PAD1[31:0]/
PAD0[63:32]

I/O PCI_1
Address/Data

During the first clock of the transaction, PAD1[31:0] contains a
physical byte address (32 bits). During subsequent clock
cycles, PAD1[31:0] contains data.

PCI_0 (64 bit)
Address/Data

If PCI_0 is configured for 64 bit, these pins function as
PAD0[63:32] and carry the most significant 32 bits of data for
PCI_0 transactions.

CBE1[3:0]*/
CBE0[7:4]*

I/O PCI_1 Com-
mand/Byte
Enable

During the address phase of the transaction, CBE1[3:0]* pro-
vide the PCI_1 bus command. During the data phase, these
lines provide the byte enables.

PCI_0 (64 bit)
Byte Enable

If PCI_0 is configured for 64 bit, these pins function as
CBE0[7:4]* and carry byte enables for the most significant 32
bits of PCI_0 data.

Par1/Par64 I/O PCI_1 Parity Calculated by the GT-96100A as an even parity bit for
PAD1[31:0] and CBE1[3:0]* lines.

PCI_0 (64 bit)
Parity

If PCI_0 is configured for 64 bit, this pin functions as Par64 and
carries even parity bit for PAD0[63:32] and CBE0[7:4]*.

Table 6: PCI Bus 0 Pin Assignments (Continued)

Pin Name Type Full Name Description
Revision 1.0 29

GT-96100A Advanced Communication Controller
Frame1*/
Req64*

I/O PCI_1 Frame Asserted by the GT-96100A to indicate the beginning and dura-
tion of a master transaction. Frame1* asserts to indicate the
beginning of the cycle.
While asserted, data transfer continues.
Deasserts to indicate that the next data phase is the final data
phase transaction. Frame1* is monitored by the GT-96100A
when it acts as a target.

PCI_0 (64 bit)
Request 64

If PCI_0 is configured for 64 bit, this pin functions as Req64*
and functions as a request for a 64-bit transaction. Req64* has
the same timing as Frame0*.

SoR Sampled on RESET to configure the GT-96100A prior to boot-up. See Section 22.
�Reset Configuration� on page 452 for more information.

IRdy1* I/O PCI_1 Initiator
Ready

Asserted to indicate the bus master�s ability to complete the
current data phase of the transaction. A data phase is com-
pleted on any clock when both IRdy1* and TRdy1* are
asserted. Wait cycles are inserted until TRdy1* and IRdy1* are
asserted together.

TRdy1* I/O PCI_1 Target
Ready

Asserted to indicate the target agent�s ability to complete the
current data phase of the transaction. A data phase is com-
pleted on any clock when both TRdy1* and IRdy1* are
asserted. Wait cycles are inserted until TRdy1* and IRdy1* are
asserted together.

Stop1* I/O PCI_1 Stop Asserted to indicate the current target is requesting the bus
master to stop the current transaction. As a master, the GT-
96100A responds to the assertion of Stop1* by disconnecting,
retrying or aborting. As a target, the GT-96100A asserts Stop1*
to retry or disconnect.

IDSel1 I PCI_1 Initial-
ization Device
Select

Asserted to indicate a chip select during PCI_1 configuration
read and write transactions.

DevSel1*/
Ack64*

I/O PCI_1 Device
Select

Asserted by the target of the current access. When the GT-
96100A is bus master, it expects the target to assert DevSel1*
within 5 bus cycles, confirming the access. If the target does
not assert DevSel1* within this time window, the GT-96100A
aborts the cycle. As a target, when the GT-96100A recognizes
that it is the target of a transaction, it asserts DevSel1* at
medium speed (two cycles after assertion of Frame1*).

PCI_1 (64 bit)
Acknowledge
64

If PCI_0 is configured for 64 bit, this signal functions as Ack64*.
When actively driven by the PCI target, it indicates that the tar-
get is willing to accept 64 bit data. Ack64* has the same timing
as DevSel0*.

Table 7: PCI Bus 1 Pin Assignments (Continued)

Pin Name Type Full Name Description
30 Revision 1.0

GT-96100A Advanced Communication Controller
Req1*/
PARB1_GNT1

O PCI_1 Bus
Request

If the internal arbiter for PCI_1 is disabled, this signal is
asserted by the GT-96100A to indicate to the PCI_1 bus arbiter
that it requires use of the PCI_1 bus.

PCI_1 arbiter
output grant 1

If the internal arbiter for PCI_1 is enabled, this pin functions as
the PCI_1 arbiter�s grant 1 output signal.

Gnt1*/
PARB1_REQ1

I PCI_1 Bus
Grant

If the internal arbiter for PCI_1 is disabled, this signal is
asserted by the external PCI_1 bus arbiter to Indicate that
access to the PCI_1 bus is granted to the GT-96100A.

PCI_1 arbiter
input request 1

If the internal arbiter for PCI_1 is enabled, this pin functions as
the PCI_1 arbiter�s request 1 input signal.

PErr1* I/O
STS

PCI_1 Parity
Error

Asserted when a data parity error is detected. This pin features
a sustained tristate output.

SErr1* OD PCI_1 System
Error

Asserted when a serious system error (not necessarily a PCI_1
error) is detected. SErr1* behavior in the GT-96100A is pro-
grammable (refer to PCI section for details).
This pin features an open-drain output.

PCI Bus 1 Total: 49

Table 8: SDRAM and Devices Pin Assignments

Pin Name Type Full Name Description
DWr* O SDRAM Write Asserted low when the GT-96100A performs a write transaction

to the SDRAM.

DAdr[2:0]/
BAdr[2:0]

O SDRAM
Address [2:0]

When accessing a SDRAM bank, these pins function as
SDRAM address bits [2:0].
In write and read accesses from devices these pins function as
burst address bits [2:0]. See Section 23.2 �Devices� on page
456 for more information on how to connect these address bits
to various devices.

Burst Address
[2:0]

SoR NOTE: Sampled on RESET to configure the GT-96100A prior to boot-up. See
Section 22. �Reset Configuration� on page 452 for more information.

DAdr[10:3]/
Wr[7:0]*

O SDRAM
Address [10:3]

When accessing a SDRAM bank, these pins function as
SDRAM address bits.
In write and accesses to devices these pins function as byte
write enable indications for bytes [7:0]. See Section 23.2
�Devices� on page 456 for more information on how to connect
these address bits to various devices.

Byte Write
[7:0]

SoR NOTE: Sampled on RESET to configure the GT-96100A prior to boot-up. See
Section 22. �Reset Configuration� on page 452 for more information.

Table 7: PCI Bus 1 Pin Assignments (Continued)

Pin Name Type Full Name Description
Revision 1.0 31

GT-96100A Advanced Communication Controller
BankSel[0] O SDRAM Bank
Select [0]

In SDRAM accesses, this pin functions as bank select bit [0].

SoR NOTE: Sampled on RESET to configure the GT-96100A prior to boot-up. See
Section 22. �Reset Configuration� on page 452 for more information.

SRAS* O SDRAM Row
Address
Strobe

Asserted to indicate that an active ROW address is driven on
DAdr lines.

SCAS* O SDRAM Col-
umn Address
Strobe

Asserted to indicate that an active COLUMN address is driven
on DAdr lines.

SCS[3:0]* O SDRAM Chip
Selects

SDRAM chip selects for up to 4 banks.

SDQM[7:0]* O SDRAM Byte
Enables

In SDRAM write transaction these pins function as byte enable
signals.

SoR NOTE: SDQM[3:0] are sampled on RESET to configure the GT-96100A prior to
boot-up. See Section 22. �Reset Configuration� on page 452 for more
information.

SDRAM/Devices Total: 27

Table 9: Local Address and Data Bus Pin Assignments

Pin Name Type Full Name Description
AD[63:42] I/O Address/Data

[63:42]
In SDRAM accesses, these pins function as part of the data to
be read/written from/to the SDRAMs. In Device accesses,
these pins function as data during the data phase.

AD[41]/
DevRW*

I/O Address/Data
[41]

In SDRAM/Device data phase, this pin functions as data bit
[41].

Device Read-
Write

In Device address phase, this pin indicates if an access to a
device is read (�1�) or write (�0�). Latching is done via ALE.

AD[40]/
BootCS*

I/O Address/Data
[40]

In SDRAM/Device data phase, this pin functions as data bit
[40].

Boot Chip
Select

In Device address phase, this pin functions as the boot device
chip select. Latching is done via ALE.

AD[39:36]/
CS[3:0]*

I/O Address/Data
[39:36]

In SDRAM/Device data phase, these pins function as data bits
[39:36].

Chip Select
[3:0]

In Device address phase, these pins function as Device Chip
Selects and are valid (and should be latched). The Chip Selects
need to be qualified with the CSTiming* signal. Latching is done
via ALE.

Table 8: SDRAM and Devices Pin Assignments (Continued)

Pin Name Type Full Name Description
32 Revision 1.0

GT-96100A Advanced Communication Controller
AD[35:32]/
DMAAck
[3:0]*

I/O Address/Data
[35:32]

In SDRAM/Device data phase, these pins function as data bits
[35:32].

DMA Acknowl-
edge[3:0]

In Device address phase, these pins function as DMA Acknowl-
edges and are valid (and should be latched). They need to be
qualified with the CSTiming* signal. Latching is done via ALE.

AD[31:0] I/O Address/
Data[31:0]

Multiplexed address and data bus to the SDRAM (data only)
and Devices (address and data).

ADP[7:6]/
SRAS*/
SCAS*

I/O SDRAM data
ECC [7:6]

If the GT-96100A is configured for ECC mode, then in SDRAM
accesses, these pins serve as bits [7:6] of the ECC for data bits
[63:0]. ECC is generated by the GT-96100A for 64-bit SDRAM
writes, and read from SDRAM ECC bank for 64-bit SDRAM
reads.

SDRAM Row
Address
Strobe

ADP[7:6] can be configured to function as SRAS* on RESET.
See Section 22. �Reset Configuration� on page 452.

SDRAM Col-
umn Address
Strobe

ADP[7:6] can be configured to function as SCAS* on RESET.
See Section 22. �Reset Configuration� on page 452.

ADP[5]/
DAdr[11]

I/O SDRAM data
ECC [5]

If the GT-96100A is configured for ECC mode, then in SDRAM
accesses this pin serve as bit [5] of the ECC for data bits [63:0].
ECC is generated by the GT-96100A for 64 bit SDRAM writes,
and read from SDRAM ECC bank for 64 bit SDRAM reads.

SDRAM
Address [11]

If the GT-96100A is configured to non-ECC mode, then in
SDRAM accesses this pin functions as SDRAM address bit[11].

ADP[4]/Bank
Sel[1]

I/O SDRAM data
ECC [4]

If the GT-96100A is configured for ECC mode, then in SDRAM
accesses this pin serve as bit [4] of the ECC for data bits [63:0].
ECC is generated by the GT-96100A for 64 bit SDRAM writes,
and read from SDRAM ECC bank for 64 bit SDRAM reads.

SDRAM Bank
Select [1]

If the GT-96100A is configured to non-ECC mode, then in
SDRAM accesses, this pin functions as bank select bit[1].

ADP[3:1]/
EOT[3:1]*/
DWr*

I/O SDRAM data
ECC [3:1]

If the GT-96100A is configured for ECC mode, then in SDRAM
accesses, these pins serve as bits [3:1] of the ECC for data bits
[63:0]. ECC is generated by the GT-96100A for 64 bit SDRAM
writes, and read from SDRAM ECC bank for 64 bit SDRAM
reads.

End of DMA
Transfer [3:1]

If the GT-96100A is configured to non-ECC mode, then in
SDRAM accesses, these pins serve as End Of Transfer indica-
tions for the DMA channels.

SDRAM Write ADP[3] can be configured to function as DWr* on RESET. See
Section 22. �Reset Configuration� on page 452.

Table 9: Local Address and Data Bus Pin Assignments (Continued)

Pin Name Type Full Name Description
Revision 1.0 33

GT-96100A Advanced Communication Controller
ADP[0]/
EOT[0]*/
DAdr[12]

I/O SDRAM data
ECC[0]

If the GT-96100A is configured for ECC mode, then in SDRAM
accesses, this pin serves as bit [0] of the ECC for data bits
[63:0]. ECC is generated by the GT-96100A for 64 bit SDRAM
writes, and read from SDRAM ECC bank for 64 bit SDRAM
reads.

End of DMA
Transfer [0]

If the GT-96100A is configured to non-ECC mode, then in
SDRAM accesses, this pin serves as End Of Transfer indication
for DMA channel 0.

SDRAM
Address [12]

ADP[0] can be configured to function as SDRAM Address [12]
on RESET. See Section 22. �Reset Configuration� on page 452.

CSTiming* O Chip Select
Timing

This signal is active (asserted low) for the number of cycles that
the device currently being accessed is programmed to. Used to
qualify CS[3:0]*, BootCS and DMAAck[3:0]* signals.

SoR NOTE: Sampled on RESET to configure the GT-96100A prior to boot-up. See
Section 22. �Reset Configuration� on page 452 for more information.

ALE O Address Latch
Enable

This signal is asserted in the Device address phase and must
be used to latch the Address, BootCS*, CS[3:0]*, DevRW* and
DMAAck[3:0]* pins from the AD bus.

Ready*/
EOT[1]*

I Ready This input signal is used as a cycle extender
NOTE: When inactive during device access, the access is

extended until Ready* is asserted.

End Of Trans-
fer [1]

Ready* can be programmed to function as EOT[1]*. See Sec-
tion 5.1.2.3 �DMA End of Transfer Pins Functionality� on page
101.

SoR NOTE: Sampled on RESET to configure the GT-96100A prior to boot-up. See
Section 22. �Reset Configuration� on page 452 for more information.

BypsOE*/
MGNT*/DWr*

O Bypass Out-
put Enable

If bypass mode is enabled, this signal controls the output
enable for bypass latches/buffers/switches. The bypass can be
used when a 64-bit read transaction is executed from the CPU.
Read data will be transferred directly to the CPU bus. See Table
77.

Memory (AD)
bus Grant

If the GT-96100A is configured (at RESET) for UMA support,
this pin functions as Memory Grant. It is asserted in response to
MREQ*.

SDRAM Write This pin can be programmed to function as DWr*. See Section
5.1.2.1 �Duplicating SDRAM Control Lines� on page 100.

Local Address Total: 76

Table 9: Local Address and Data Bus Pin Assignments (Continued)

Pin Name Type Full Name Description
34 Revision 1.0

GT-96100A Advanced Communication Controller
Table 10: DMA Pin Assignments

Pin Name Type Full Name Description
DMAReq[3]*/
DAdr[12]/
EOT[0]*/
SCAS*/TREQ*

I/O DMA
Request[3]

DMA request by external devices to IDMA channel 3.

SDRAM
Address [12]

This pin can be configured to function as DAdr[12]. See Section
5.1.2.4 �Multiplexing DAdr[12]� on page 102.

UMA Internal
Request

For UMA operation, DMAReq[3]* can be programed to indicate
that there is a pending internal request in SDRAM and Device
interface that requires the GT-96100A ownership of the AD bus.
See Section 5.6.6 �Total Request� on page 117.

End of DMA
Transfer[0]

DMAReq[3]* can be programmed to function as EOT[0]*. See
Section Section 5.1.2.3 �DMA End of Transfer Pins Functional-
ity� on page 101.

SDRAM Col-
umn Address
Strobe

DMAReq[3]* can be programmed to function as SCAS*. See
Section 5.1.2.1 �Duplicating SDRAM Control Lines� on page
100.

SoR NOTE: Sampled on RESET to configure the GT-96100A prior to boot-up. See
Section 22. �Reset Configuration� on page 452 for more information.

DMAReq[2]*/
DAdr[11]

I/O DMA
Request[2]

DMA request by external devices to IDMA channel 2.

SDRAM
Address [11]

This pin can be configured to function as SDRAM address
bit[11]. See Section 5.1.2.2 �Duplicating DAdr[11] and Bank-
Sel[1] on DMAReq[2:1]*� on page 101.

SoR NOTE: Sampled on RESET to configure the GT-96100A prior to boot-up. See
Section 22. �Reset Configuration� on page 452 for more information.

DMAReq[1]*/
BankSel[1]

I/O DMA
Request[1]

DMA request by external devices to IDMA channel 1.

SDRAM Bank
Select [1]

This pin can be configured to function as BankSel[1]. See Sec-
tion 5.1.2.2 �Duplicating DAdr[11] and BankSel[1] on
DMAReq[2:1]*� on page 101.

SoR NOTE: Sampled on RESET to configure the GT-96100A prior to boot-up. See
Section 22. �Reset Configuration� on page 452 for more information.

DMAReq[0]*/
MREQ*/
SRAS*

I/O DMA Request
[0]

DMA request by external devices to IDMA channel 0.

Memory Bus
Request

If the GT-96100A is configured (at RESET) for UMA support,
this pin functions as Memory Request.

SDRAM Row
Address Strobe

This pin can be programmed to function as SRAS*. See Sec-
tion 5.1.2.1 �Duplicating SDRAM Control Lines� on page 100.

DMA Total: 4
Revision 1.0 35

GT-96100A Advanced Communication Controller
Table 11: WAN Pin Assignments

Pin Name Type Full Name Description
Port A
NOTE: Port A can be connected to MPSC0. See Section 20. �Physical Signal Routing� on page 414 for more

details.

When not connected to MPSC0, Port A can be connected to the PCI Arbiter or used as GPP. See
Section 19. �General Purpose Ports� on page 405 for more details.

PORTA[0] I/O RXD0 (Input) Serial receive data input to MPSC0.

PARB0_GNT2
(output)

PCI_0 arbiter output grant 2.

GPP16 (I/O) General Purpose Pin 16.

PORTA[1] I/O PARB0_REQ2
(Input)

PCI_0 arbiter input request 2.

TXD0 (Output) Serial transmit data output from the MPSC0.

GPP17 (I/O) General Purpose Pin 17.

PORTA[2] I/O PARB0_REQ3
(Input)

PCI_0 arbiter input request 3.

RTS0* (Output) Request to Send output from MPSC0. Indicates that MPSC0 is
ready to transmit data.

GPP18 (I/O) General Purpose Pin 18.

PORTA[3] I/O CTS0* (Input) Clear to Send input to MPSC0. Indicates to MPSC0 that data
transmission may begin.

PARB0_GNT3
(Output)

PCI_0 arbiter output grant 3.

GPP19 (I/O) General Purpose Pin 19.

PORTA[4] I/O CD0 (Input) Carrier Detect input to MPSC0. Indicates to MPSC0 that it can
begin reception of data.

PARB0_GNT4
(Output)

PCI_0 arbiter output grant 4.

GPP20 (I/O) General Purpose Pin 20.

PORTA[5] I/O SCLK0 (Input) Input clock to MPSC0. Can be used as both transmit and
receive clock.
NOTE: This clock also serves as one of the input clocks to

the Baud Rate Generators.

PARB0_REQ4
(Input)

PCI_0 arbiter input request 4.

OSCLK0 (Out-
put)

Output clock from MPSC0. Can be used when SCLK0 is not
needed (i.e. the MPSC is programmed to use one of the Baud
Rate Generators as its clock source or is connected to one of
the TDMs).

GPP21 (I/O) General Purpose Pin 21.
36 Revision 1.0

GT-96100A Advanced Communication Controller
Port A (Continued)
PORTA[6] I/O TSCLK0

(Input)
Input clock to MPSC0. Can be used by the MPSC transmitter
when separate receive and transmit clocks are needed.
NOTE: This clock also serves as one of the input clocks to

the Baud Rate Generators.

PARB0_REQ5
(Input)

PCI_0 arbiter input request 5.

OTSCLK0
(Output)

Output Tx clock from MPSC0. Can be used when TSCLK0 is
not needed (i.e. the MPSC is programmed to use one of the
Baud Rate Generators as its clock source or is connected to
one of the TDMs, or when there is no need for a separate Tx
clock).

GPP22 (I/O) General Purpose Pin 22.

Port B
NOTE: Port B can be connected to MPSC1. See Section 20. �Physical Signal Routing� on page 414 for more

details.

When not connected to MPSC1, Port B can be connected to the PCI Arbiter or used as GPP. See
Section 19. �General Purpose Ports� on page 405 for more details.

PORTB[0] I/O RXD1 (Input) Serial receive data input to MPSC1.

PARB1_GNT2
(Output)

PCI_1 arbiter output grant 2.

GPP24 (I/O) General Purpose Pin 24.

PORTB[1] I/O PARB1_REQ2
(Input)

PCI_1 arbiter input request 2.

TXD1 (Output) Serial transmit data output from the MPSC1.

GPP25 (I/O) General Purpose Pin 25.

PORTB[2] I/O PARB1_REQ3(
Input)

PCI_1 arbiter input request 3.

RTS1* (Output) Request to Send output from MPSC1. Indicates that MPSC1 is
ready to transmit data.

GPP26 (I/O) General Purpose Pin 26.

PORTB[3] I/O CTS1* (Input) Clear to Send input to MPSC1. Indicates to MPSC1 that data
transmission may begin.

PARB1_GNT3
(Output)

PCI_1 arbiter output grant 3.

PP27 (I/O) General Purpose Pin 27.

Table 11: WAN Pin Assignments (Continued)

Pin Name Type Full Name Description
Revision 1.0 37

GT-96100A Advanced Communication Controller
Port B (Continued)
PORTB[4] I/O CD1 (Input) Carrier Detect input to MPSC1. Indicates to MPSC1 that it can

begin reception of data.

PARB0_GNT6
(Output)

PCI_0 arbiter output grant 6.

PARB1_GNT4
(Output)

PCI_1 arbiter output grant 4.

GPP28 (I/O) General Purpose Pin 28.

PORTB[5] I/O SCLK1 (Input) Input clock to MPSC1. Can be used as both transmit and
receive clock.
NOTE: This clock also serves as one of the input clocks to

the Baud Rate Generators.

PARB0_REQ6
(Input)

PCI_0 arbiter input request6.

PARB1_REQ4
(Input)

PCI_1 arbiter input request 4.

OSCLK1 (Out-
put)

Output clock from MPSC1. Can be used when SCLK1 is not
needed (i.e. the MPSC is programmed to use one of the Baud
Rate Generators as its clock source or is connected to one of
the TDMs).

GPP29 (I/O) General Purpose Pin 29.

PORTB[6] I/O TSCLK1
(Input)

Input clock to MPSC1. Can be used by the MPSC transmitter
when separate receive and transmit clocks are needed.
NOTE: This clock also serves as one of the input clocks to

the Baud Rate Generators.

OTSCLK1
(Output)

Output Tx clock from MPSC1. Can be used when TSCLK1 is
not needed (i.e. the MPSC is programmed to use one of the
Baud Rate Generators as its clock source or is connected to
one of the TDMs, or when there is no need for a separate Tx
clock).

PARB0_GNT5
(Output)

PCI_0 arbiter output grant 5.

GPP30 (I/O) General Purpose Pin 30.

Table 11: WAN Pin Assignments (Continued)

Pin Name Type Full Name Description
38 Revision 1.0

GT-96100A Advanced Communication Controller
Port C
NOTE: Port C can be connected to MPSC2. See Section 20. �Physical Signal Routing� on page 414 for more

details.

When not connected to MPSC2, Port C can be connected to TDM0 or used as GPP. See Section 19.
�General Purpose Ports� on page 405 for more details.

PORTC[0] I/O RXD2 (Input) Serial receive data input to MPSC2.

TRXD0 (Input) Serial receive data input to TDM channel0.

TTXD0 (Out-
put)

Serial transmit data from TDM channel0.

GPP32 (I/O) General Purpose Pin 32.

PORTC[1] I/O TXD2 (Output) Serial transmit data output from the MPSC2.

TTXD0 (Out-
put)

Serial transmit data from TDM channel0.

TRXD0 (Input) Serial receive data input to TDM channel0.

GPP33 (I/O) General Purpose Pin 33.

PORTC[2] I/O RTS2* (Output) Request to Send output from MPSC2. Indicates that MPSC2 is
ready to transmit data.

TDSTRB0
(Output)

TDM channel0 strobe output signal, which can be used to gate
clocks to external devices that do not have a built in TDM.

GPP34 (I/O) General Purpose Pin 34.

PORTC[3] I/O CTS2* (Input) Clear to Send input to MPSC2. Indicates to MPSC2 that data
transmission may begin.

TTSYNC0
(Input)

Transmit Frame Sync input to TDM channel0.

GPP35 (I/O) General Purpose Pin 35.

PORTC[4] I/O CD2 (Input) Carrier Detect input to MPSC2. Indicates to MPSC2 that it can
begin reception of data (input to MPSC2).

TRSYNC0
(Input)

Receive Frame Sync input to TDM channel0.

GPP36 (I/O) General Purpose Pin 36.

Table 11: WAN Pin Assignments (Continued)

Pin Name Type Full Name Description
Revision 1.0 39

GT-96100A Advanced Communication Controller
Port C (Continued)
PORTC[5] I/O SCLK2 (Input) Input clock to MPSC2. Can be used as both transmit and

receive clock.
NOTE: This clock also serves as one of the input clocks to

the Baud Rate Generators.

OSCLK2 (Out-
put)

Output clock from MPSC2. Can be used when SCLK2 is not
needed (i.e. the MPSC is programmed to use one of the Baud
Rate Generators as its clock source or is connected to one of
the TDMs).

TRCLK0
(Input)

Receive input clock to TDM channel0.

GPP37 (I/O) General Purpose Pin 37.

PORTC[6] I/O TSCLK2
(Input)

Input clock to MPSC2. Can be used by the MPSC transmitter
when separate receive and transmit clocks are needed.
NOTE: This clock also serves as one of the input clocks to

the Baud Rate Generators.

OTSCLK2
(Output)

Output Tx clock from MPSC2. Can be used when TSCLK2 is
not needed (i.e. the MPSC is programmed to use one of the
Baud Rate Generators as its clock source or is connected to
one of the TDMs, or when there is no need for a separate Tx
clock).

TTCLK0
(Input)

Transmit input clock to TDM channel0.

GPP38 (I/O) General Purpose Pin 38.

Port D
NOTE: Port D can be connected to MPSC3. See Section 20. �Physical Signal Routing� on page 414 for more

details.

 When not connected to MPSC3, Port D can be connected to TDM1 or used as GPP. See Section 19.
�General Purpose Ports� on page 405 for more details.

PORTD[0] I/O RXD3 (Input) Serial receive data input to MPSC3.

TRXD1 (Input) Serial receive data input to TDM channel1.

TTXD1 (Out-
put)

Serial transmit data from TDM channel1.

GPP40 (I/O) General Purpose Pin 40.

PORTD[1] I/O TXD3 (Output) Serial transmit data output from the MPSC3.

TTXD1 (Out-
put)

Serial transmit data from TDM channel1.

TRXD1 (Input) Serial receive data input to TDM channel1.

GPP41 (I/O) General Purpose Pin 41.

Table 11: WAN Pin Assignments (Continued)

Pin Name Type Full Name Description
40 Revision 1.0

GT-96100A Advanced Communication Controller
Port D (Continued)
PORTD[2] I/O RTS3* (Output) Request to Send output from MPSC3. Indicates that MPSC3 is

ready to transmit data.

TDSTRB1
(Output)

TDM channel1 strobe output signal, which can be used to gate
clocks to external devices that do not have a built in TDM.

GPP42 (I/O) General Purpose Pin 42.

PORTD[3] I/O CTS3* (Input) Clear to Send input to MPSC3. Indicates to MPSC3 that data
transmission may begin.

TTSYNC1
(Input)

Transmit Frame Sync input to TDM channel1.

GPP43 (I/O) General Purpose Pin 43.

PORTD[4] I/O CD3 (Input) Carrier Detect input to MPSC3. Indicates to MPSC3 that it can
begin reception of data (input to MPSC3).

TRSYNC1
(Input)

Receive Frame Sync input to TDM channel1.

GPP44 (I/O) General Purpose Pin 44.

PORTD[5] I/O SCLK3 (Input) Input clock to MPSC3. Can be used as both transmit and
receive clock.
NOTE: This clock also serves as one of the input clocks to

the Baud Rate Generators.

OSCLK3 (Out-
put)

Output clock from MPSC3. Can be used when SCLK3 is not
needed (i.e. the MPSC is programmed to use one of the Baud
Rate Generators as its clock source or is connected to one of
the TDMs).

TRCLK1
(Input)

Receive input clock to TDM channel1.

GPP45 (I/O) General Purpose Pin 45.

PORTD[6] I/O TSCLK3
(Input)

Input clock to MPSC3. Can be used by the MPSC transmitter
when separate receive and transmit clocks are needed.
NOTE: This clock also serves as one of the input clocks to

the Baud Rate Generators.

OTSCLK3
(Output)

Output Tx clock from MPSC3. Can be used when TSCLK3 is
not needed (i.e. the MPSC is programmed to use one of the
Baud Rate Generators as its clock source or is connected to
one of the TDMs, or when there is no need for a separate Tx
clock).

TTCLK1
(Input)

Transmit input clock to TDM channel1.

GPP46 (I/O) General Purpose Pin 46.

Table 11: WAN Pin Assignments (Continued)

Pin Name Type Full Name Description
Revision 1.0 41

GT-96100A Advanced Communication Controller
Port E
NOTE: Port E can be connected to MPSC4. See Section 20. �Physical Signal Routing� on page 414 for more

details.

When not connected to MPSC4, Port E can be connected to TDM2 or used as GPP. See Section 19.
�General Purpose Ports� on page 405 for more details.

PORTE[0] I/O RXD4 (Input) Serial receive data input to MPSC4.

TRXD2 (Input) Serial receive data input to TDM channel2.

TTXD2 (Out-
put)

Serial transmit data from TDM channel2.

GPP48 (I/O) General Purpose Pin 48.

PORTE[1] I/O TXD4 (Output) Serial transmit data output from the MPSC4.

TTXD2 (Out-
put)

Serial transmit data from TDM channel2.

TRXD2 (Input) Serial receive data input to TDM channel2.

GPP49 (I/O) General Purpose Pin 49.

PORTE[2] I/O RTS4* (Output) Request to Send output from MPSC4. Indicates that MPSC4 is
ready to transmit data.

TDSTRB2
(Output)

TDM channel2 strobe output signal, which can be used to gate
clocks to external devices that do not have a built in TDM.

GPP50 (I/O) General Purpose Pin 50.

PORTE[3] I/O CTS4* (Input) Clear to Send input to MPSC4. Indicates to MPSC4 that data
transmission may begin.

TTSYNC2
(Input)

Transmit Frame Sync input to TDM channel2.

GPP51 (I/O) General Purpose Pin 51.

PORTE[4] I/O CD4 (Input) Carrier Detect input to MPSC4. Indicates to MPSC4 that it can
begin reception of data (input to MPSC4).

TRCLK2
(Input)

Receive input clock to TDM channel2.

GPP52 (I/O) General Purpose Pin 52.

Table 11: WAN Pin Assignments (Continued)

Pin Name Type Full Name Description
42 Revision 1.0

GT-96100A Advanced Communication Controller
Port E (Continued)
PORTE[5] I/O SCLK4 (Input) Input clock to MPSC4. Can be used as both transmit and

receive clock.
NOTE: This clock also serves as one of the input clocks to

the Baud Rate Generators.

OSCLK4 (Out-
put)

Output clock from MPSC4. Can be used when SCLK4 is not
needed (i.e. the MPSC is programmed to use one of the Baud
Rate Generators as its clock source or is connected to one of
the TDMs).

TRSYNC2
(Input)

Receive Frame Sync input to TDM channel2.

GPP53 (I/O) General Purpose Pin 53.

PORTE[6] I/O TSCLK4
(Input)

Input clock to MPSC4. Can be used by the MPSC transmitter
when separate receive and transmit clocks are needed.
NOTE: This clock also serves as one of the input clocks to

the Baud Rate Generators.

OTSCLK4
(Output)

Output Tx clock from MPSC4. Can be used when TSCLK4 is
not needed (i.e. the MPSC is programmed to use one of the
Baud Rate Generators as its clock source or is connected to
one of the TDMs, or when there is no need for a separate Tx
clock).

TTCLK2
(Input)

Transmit input clock to TDM channel2.

GPP54 (I/O) General Purpose Pin 54.

Port F
NOTE: Port F can be connected to MPSC5. See Section 20. �Physical Signal Routing� on page 414 for more

details.

 When not connected to MPSC5, Port F can be connected to TDM3 or used as GPP. See Section 19.
�General Purpose Ports� on page 405 for more details.

PORTF[0] I/O RXD5 (Input) Serial receive data input to MPSC5.

TRXD3 (Input) Serial receive data input to TDM channel3.

TTXD3 (Out-
put)

Serial transmit data from TDM channel3.

GPP56 (I/O) General Purpose Pin 56.

PORTF[1] I/O TXD5 (Output) Serial transmit data output from the MPSC5.

TTXD3 (Out-
put)

Serial transmit data from TDM channel3.

TRXD3 (Input) Serial receive data input to TDM channel3.

GPP57 (I/O) General Purpose Pin 57.

Table 11: WAN Pin Assignments (Continued)

Pin Name Type Full Name Description
Revision 1.0 43

GT-96100A Advanced Communication Controller
Port F (Continued)
PORTF[2] I/O RTS5* (Output) Request to Send output from MPSC5. Indicates that MPSC5 is

ready to transmit data.

TDSTRB3
(Output)

TDM channel3 strobe output signal, which can be used to gate
clocks to external devices that do not have a built in TDM.

GPP58 (I/O) General Purpose Pin 58.

PORTF[3] I/O CTS5* (Input) Clear to Send input to MPSC5. Indicates to MPSC5 that data
transmission may begin.

TTSYNC3
(Input)

Transmit Frame Sync input to TDM channel3.

GPP59 (I/O) General Purpose Pin 59.

PORTF[4] I/O CD5 (Input) Carrier Detect input to MPSC5. Indicates to MPSC5 that it can
begin reception of data (input to MPSC5).

TRCLK3
(Input)

Receive input clock to TDM channel3.

GPP60 (I/O) General Purpose Pin 60.

PORTF[5] I SCLK5 (Input) Input clock to MPSC5. Can be used as both transmit and
receive clock.
NOTE: This clock also serves as one of the input clocks to

the Baud Rate Generators.

OSCLK5 (Out-
put)

Output clock from MPSC5. Can be used when SCLK5 is not
needed (i.e. the MPSC is programmed to use one of the Baud
Rate Generators as its clock source or is connected to one of
the TDMs).

TRSYNC3
(Input)

Receive Frame Sync input to TDM channel3.

GPP61 (I/O) General Purpose Pin 61.

PORTF[6] I/O TSCLK5
(Input)

Input clock to MPSC5. Can be used by the MPSC transmitter
when separate receive and transmit clocks are needed.
NOTE: This clock also serves as one of the input clocks to

the Baud Rate Generators.

OTSCLK5
(Output)

Output Tx clock from MPSC5. Can be used when TSCLK5 is
not needed (i.e. the MPSC is programmed to use one of the
Baud Rate Generators as its clock source or is connected to
one of the TDMs, or when there is no need for a separate Tx
clock).

TTCLK3
(Input)

Transmit input clock to TDM channel3.

GPP62 (I/O) General Purpose Pin 62.

WAN total: 42

Table 11: WAN Pin Assignments (Continued)

Pin Name Type Full Name Description
44 Revision 1.0

GT-96100A Advanced Communication Controller
Table 12: LAN Pin Assignments

Pin Name Type Full Name Description
Port MII0
NOTE: Port MII0 can be connected to MPSC6 and/or MPSC7. See Section 20. �Physical Signal Routing� on

page 414 for more details.

When not connected to MPSC6 and MPSC7, Port MII0 is connected to Ethernet 0 or used as GPP.
Section 19. �General Purpose Ports� on page 405 for more details.

MII0[0] I/O MTXEN0 -
MII0 Transmit
Enable (Out-
put)

Indicates that a packet is being transmitted to the PHY.
MTXEN0 is synchronous to MTXCLK0.

GPP64 (I/O) General Purpose Pin 64.

MII0[1] I/O MTXCLK0 -
MII0 Transmit
Clock (Input)

Provides the timing reference for the transfer of the MTXEN0,
MTXD0 signals. It operates at either 25 MHz (100Mbps) or 2.5
MHz (10Mbps).

TSCLK6
(Input)

Input clock to MPSC6.
Can be used by the MPSC transmitter when separate receive
and transmit clocks are needed.
NOTE: This clock also serves as one of the input clocks to the

Baud Rate Generators.

OTSCLK6
(Output)

Output Tx clock from MPSC6.
Can be used when TSCLK6 is not needed (i.e. the MPSC is pro-
grammed to use one of the Baud Rate Generators as its clock
source or is connected to one of the TDMs, or when there is no
need for a separate Tx clock).

GPP65 (I/O) General Purpose Pin 65.

MII0[2] I/O MTXD0[3] -
MII0 Transmit
Data Bit [3]
(Output)

Data nibble bit [3] output to the external PHY device. Synchro-
nous to MTXCLK0.

RTS6* (Out-
put)

Request to Send output from MPSC6. Indicates that MPSC6 is
ready to transmit data.

GPP66 (I/O) General Purpose Pin 66.

MII0[3] I/O MTXD0[2] -
MII0 Transmit
Data Bit [2]
(Output)

Data nibble bit [2] output to the external PHY device. Synchro-
nous to MTXCLK0.

TXD6 (Output) Serial transmit data output from the MPSC6.

GPP67 (I/O) General Purpose Pin 67.
Revision 1.0 45

GT-96100A Advanced Communication Controller
Port MII0 (Continued)
MII0[4] I/O MTXD0[1] -

MII0 Transmit
Data Bit [1]
(Output)

Data nibble bit [1] output to the external PHY device. Synchro-
nous to MTXCLK0.

RTS7* (Out-
put)

Request to Send output from MPSC7. Indicates that MPSC7 is
ready to transmit data.

GPP68 (I/O) General Purpose Pin 68.

MII0[5] I/O MTXD0[0] -
MII0 Transmit
Data Bit [0]
(Output)

Data nibble bit [0] output to the external PHY device. Synchro-
nous to MTXCLK0.

TXD7 (Output) Serial transmit data output from the MPSC7.

GPP69 (I/O) General Purpose Pin 69.

MII0[6] I/O MCOL0 - MII0
Collision
detect (Input)

Indicates that a collision has been detected on the wire.
NOTE: This input is ignored in half - and full-duplex mode

mode when MTxEn0 is LOW. MCol0 is asynchronous.

TSCLK7
(Input)

Input clock to MPSC7.
Can be used by the MPSC transmitter when separate receive
and transmit clocks are needed.
NOTE: This clock also serves as one of the input clocks to the

Baud Rate Generators.

OTSCLK7
(Output)

Output Tx clock from MPSC7. Can be used when TSCLK7 is
not needed (i.e. the MPSC is programmed to use one of the
Baud Rate Generators as its clock source or is connected to
one of the TDMs, or when there is no need for a separate Tx
clock).

GPP70 (I/O) General Purpose Pin 70.

MII0[7] I/O MRXD0[3] -
MII0 Receive
Data Bit [3]
(Input)

Data nibble bit [3] input from external PHY. Synchronous to
MRXCLK0.

CTS6* (Input) Clear to Send input to MPSC6. Indicates to MPSC6 that data
transmission may begin.

GPP71 (I/O) General Purpose Pin 71.

MII0[8] I/O MRXD0[2] -
MII0 Receive
Data Bit [2]
(Input)

Data nibble bit [2] input from external PHY. Synchronous to
MRXCLK0.

RXD6 (Input) Serial receive data input to MPSC6.

GPP72 (I/O) General Purpose Pin 72.

Table 12: LAN Pin Assignments (Continued)

Pin Name Type Full Name Description
46 Revision 1.0

GT-96100A Advanced Communication Controller
Port MII0 (Continued)
MII0[9] I/O MRXD0[1] -

MII0 Receive
Data Bit [1]
(Input)

Data nibble bit [1] input from external PHY. Synchronous to
MRXCLK0.

CTS7* (Input) Clear to Send input to MPSC7. Indicates to MPSC7 that data
transmission may begin.

GPP73 (I/O) General Purpose Pin 73.

MII0[10] I/O2 MRXD0[0] -
MII0 Receive
Data Bit [0]
(Input)

Data nibble bit [0] input from external PHY. Synchronous to
MRXCLK0.

RXD7 (Input) Serial receive data input to MPSC7.

GPP74 (I/O) General Purpose Pin 74.

MII0[11] I/O MRXER0 -
MII0 Receive
Error (Input)

Indicates that an error was detected in the received frame. This
input is ignored when MRXDV0 is inactive.

CD6 (Input) Carrier Detect input to MPSC6. Indicates to MPSC6 that it can
begin reception of data.

GPP75 (I/O) General Purpose Pin 75.

MII0[12] I/O MRXCLKO
(Input)

Provides the timing reference for the transfer of the MRXDV0,
MRXD0 and MRXER0 signals. Operates at either 25 MHz
(100Mbps) or 2.5 MHz (10Mbps).
NOTE: The nominal frequency of MRXCLK0 must match the

nominal frequency of MTXCLK0.

SCLK6 (Input) Input clock to MPSC6.
Can be used as both transmit and receive clock.
NOTE: This clock also serves as one of the input clocks to the

Baud Rate Generators.

OSCLK6 (Out-
put)

Output clock from MPSC6.
Can be used when SCLK6 is not needed (i.e. the MPSC is pro-
grammed to use one of the Baud Rate Generators as its clock
source or is connected to one of the TDMs).

GPP76 (I/O) General Purpose Pin 76.

Table 12: LAN Pin Assignments (Continued)

Pin Name Type Full Name Description
Revision 1.0 47

GT-96100A Advanced Communication Controller
Port MII0 (Continued)
MII0[13] I/O MRXDV0 -

MII0 Receive
Data Valid
(Input)

Indicates that valid data is present on RXD0 lines. Synchronous
to MRXCLK0.

SCLK7 (Input) Input clock to MPSC7.
Can be used as both transmit and receive clock.
NOTE: This clock also serves as one of the input clocks to the

Baud Rate Generators.

OSCLK7 (Out-
put)

Output clock from MPSC7. Can be used when SCLK7 is not
needed (i.e. the MPSC is programmed to use one of the Baud
Rate Generators as its clock source or is connected to one of
the TDMs).

GPP77 (I/O) General Purpose Pin 77.

MII0[14] I/O MCRS0 - MII0
Carrier Sense
(Input)

In half duplex mode, indicates that either the transmit or receive
medium is non-idle.
NOTE: MCRS0 is ignored in full-duplex.

CD7 (Input) Carrier Detect input to MPSC7. Indicates to MPSC7 that it can
begin reception of data.

GPP78 (I/O) General Purpose Pin 78.

Port MII1
MII1[0] I/O MTXEN1 -

MII1 Transmit
Enable (Out-
put)

Indicates that a packet is being transmitted to the PHY.
MTXEN1 is synchronous to MTXCLK1.

GPP80 (I/O) General Purpose Pin 80.

RMTXEN1
(Output)

Transmit enable for Ethernet port 1.

MII1[1] I/O MTXCLK1 -
MII1 Transmit
Clock (Input)

Provides the timing reference for the transfer of the MTXEN1,
MTXD1 signals. It operates at either 25 MHz (111Mbps) or 2.5
MHz (11Mbps).
NOTE: Port MII1 can be connected to Ethernet 1. See Section

20. �Physical Signal Routing� on page 414 for more
details.
When not connected to Ethernet 1, Port MII1 is con-
nected to Ethernet 0 and Ethernet 1 RMII interfaces or
used as GPP. See Section 19. �General Purpose
Ports� on page 405 for more details.

GPP81 (I/O) General Purpose Pin 81.

RM50CLK
(input)

RMII clock input (50MHz)

Table 12: LAN Pin Assignments (Continued)

Pin Name Type Full Name Description
48 Revision 1.0

GT-96100A Advanced Communication Controller
Port MII1 (Continued)
MII1[2] I/O MTXD1[3] -

MII1 Transmit
Data Bit [3]
(Output)

Data nibble bit [3] output to the external PHY device. Synchro-
nous to MTXCLK1.

GPP82 (I/O) General Purpose Pin 82.

RMTXD0[1]
(Output)

RMII transmit data bit [1] for port 0.

MII1[3] I/O MTXD1[2] -
MII1 Transmit
Data Bit [2]
(Output)

Data nibble bit [2] output to the external PHY device. Synchro-
nous to MTXCLK1.

GPP83 (I/O) General Purpose Pin 83.

RMTXD0[0]
(Output)

RMII transmit data bit [0] for port 0.

MII1[4] I/O MTXD1[1] -
MII1 Transmit
Data Bit [1]
(Output)

Data nibble bit [1] output to the external PHY device. Synchro-
nous to MTXCLK1.

GPP84 (I/O) General Purpose Pin 84.

RMTXD1[1]
(Output)

RMII transmit data bit [1] for port 1.

MII1[5] I/O MTXD1[0] -
MII1 Transmit
Data Bit [0]
(Output)

Data nibble bit [0] output to the external PHY device. Synchro-
nous to MTXCLK1.

RMTXD1[0]
(Output)

RMII transmit data bit [0] for port 1.

GPP85 (I/O) General Purpose Pin 85.

MII1[6] I/O MCOL1 - MII1
Collision
detect (Input)

Indicates that a collision has been detected on the wire.
NOTE: This input is ignored in half- and full-duplex mode when

MTxEn1 is LOW. MCol1 is asynchronous.

GPP86 (I/O) General Purpose Pin 86.

RMTXEN0
(Output)

RMII transmit enable for Ethernet port 0.

Table 12: LAN Pin Assignments (Continued)

Pin Name Type Full Name Description
Revision 1.0 49

GT-96100A Advanced Communication Controller
Port MII1 (Continued)
MII1[7] I/O MRXD1[3] -

MII1 Receive
Data Bit [3]
(Input)

Data nibble bit [3] input from external PHY. Synchronous to
MRXCLK1.

GPP87 (I/O) General Purpose Pin 87.

RMRXD0[1]
(Input)

RMII receive data bit [1] for port 0.

MII1[8] I/O MRXD1[2] -
MII1 Receive
Data Bit [2]
(Input)

Data nibble bit [2] input from external PHY. Synchronous to
MRXCLK1.

GPP88 (I/O) General Purpose Pin 88.

RMRXD0[0]
(Input)

RMII receive data bit [0] for port 0.

MII1[9] I/O MRXD1[1] -
MII1 Receive
Data Bit [1]
(Input)

Data nibble bit [1] input from external PHY. Synchronous to
MRXCLK1.

GPP89 (I/O) General Purpose Pin 89.

RMRXD1[1]
(Input)

RMII receive data bit [1] for port 1.

MII1[10] I/O MRXD1[0] -
MII1 Receive
Data Bit [0]
(Input)

Data nibble bit [0] input from external PHY. Synchronous to
MRXCLK1.

GPP90 (I/O) General Purpose Pin 90.

RMRXD1[0]
(Input)

RMII receive data bit [0] for port 1.

MII1[11] I/O MRXER1 -
MII1 Receive
Error (Input)

Indicates that an error was detected in the received frame.
NOTE: This input is ignored when MRXDV1 is inactive.

GPP91 (I/O) General Purpose Pin 91.

Table 12: LAN Pin Assignments (Continued)

Pin Name Type Full Name Description
50 Revision 1.0

GT-96100A Advanced Communication Controller
Port MII1 (Continued)
MII1[12] I/O MRXCLK1 -

MII1 Receive
Clock (Input)

Provides the timing reference for the transfer of the MRXDV1,
MRXD1 and MRXER1 signals. Operates at either 25 MHz
(111Mbps) or 2.5 MHz (11Mbps).
NOTE: The nominal frequency of MRXCLK1 must match the

nominal frequency of MTXCLK1.

GPP92 (I/O) General Purpose Pin 92.

MII1[13] I/O MRXDV1 -
MII1 Receive
Data Valid
(Input)

Indicates that valid data is present on RXD1 lines. Synchronous
to MRXCLK1.

GPP93 (I/O) General Purpose Pin 93.

RMCRSDV1
(Input)

RMII CRS_DV for port 1.

MII1[14] I/O MCRS1 - MII1
Carrier Sense
(Input)

In half-duplex mode, indicates that either the transmit or receive
medium is non-idle. MCRS1 is ignored in full-duplex.

GPP94 (I/O) General Purpose Pin 94.

RMCRSDV0
(Input)

RMII CRS_DV for port 0.

Port MDC and MDIO
MDC O MII Manage-

ment Inter-
face Clock
Signal

MII management serial data transfers are clocked by this clock
output.

MDIO I/O MII Manage-
ment Inter-
face Data
Signal

MII management serial data to and from the PHYs is transmitted
on this line.

LAN total: 32

Table 13: GPP Pin Assignments

Pin Name Type Full Name Description
GPP[0] I/O BCLK0 (Input) One of the input clocks that can be used for the Baud Rate

Generators.

GPP0 (I/O) General purpose I/O pin for system use.

Table 12: LAN Pin Assignments (Continued)

Pin Name Type Full Name Description
Revision 1.0 51

GT-96100A Advanced Communication Controller
GPP[1] I/O BCLK1 (Input) One of the input clocks that can be used for the Baud Rate
Generators.

GPP1 (I/O) General purpose I/O pin for system use.

GPP[2] I/O BRGO0 (Out-
put)

Baud Rate Generator�s output (from Baud Rate Generator 0).

GPP2 (I/O) General purpose I/O pin for system use.

GPP[3] I/O BRGO1 (Out-
put)

Baud Rate Generator�s output (from Baud Rate Generator 1).

GPP3 (I/O) General purpose I/O pin for system use.

GPP[4] I/O TRCLK0
(Input)

Input receive clock to TDM channel0.

GPP4 (I/O) General purpose I/O pin for system use.

GPP[5] I/O TRCLK1
(Input)

Input receive clock to TDM channel1.

GPP5 (I/O) General purpose I/O pin for system use.

GPP[6] I/O TRCLK2
(Input)

Input receive clock to TDM channel2.

OTSCLK4
(Output)

Output Tx clock from MPSC4.

GPP6 (I/O) General purpose I/O pin for system use.

GPP[7] I/O TRCLK3
(Input)

Input receive clock to TDM channel3.

OTSCLK5
(Output)

Output Tx clock from MPSC5.

GPP7 (I/O) General purpose I/O pin for system use.

GPP[8] I/O TOCLK0 (Out-
put)

Output clock from TDM channel0.

GPP8 (I/O) General purpose I/O pin for system use.

GPP[9] I/O TOCLK1 (Out-
put)

Output clock from TDM channel1.

GPP9 (I/O) General purpose I/O pin for system use.

GPP[10] I/O TOCLK2 (Out-
put)

Output clock from TDM channel2.

OTSCLK2
(Output)

Output Tx clock from MPSC2.

GPP10 (I/O) General purpose I/O pin for system use.

Table 13: GPP Pin Assignments (Continued)

Pin Name Type Full Name Description
52 Revision 1.0

GT-96100A Advanced Communication Controller
GPP[11] I/O TOCLK3 (Out-
put)

Output clock from TDM channel3.

OTSCLK3
(Output)

Output Tx clock from MPSC3.

GPP11 (I/O) General purpose I/O pin for system use.

GPP[12] I/O/OD A general purpose I/O pin for system use.
When configured as functional output, this pin features an
open-drain output.
NOTE: See Section 19. �General Purpose Ports� on page 405

for details about GPP configuration options.

GPP[13] I/O/OD A general purpose I/O pin for system use.
When configured as functional output, this pin features an
open-drain output.
NOTE: See Section 19. �General Purpose Ports� on page 405

for details about GPP configuration options.

GPP[14] I/O A general purpose I/O pin for system use.

GPP[15] I/O A general purpose I/O pin for system use.

GPP Total: 16

Table 14: Interrupt Interface Pin Assignments

Pin Name Type Full Name Description
Interrupt0* I/O Interrupt0 Driven by the GT-96100A to signal that one (or more) of the

internal (unmasked) interrupt sources within the GT-96100A is
set.

Interrupt1* OD Interrupt1 Driven by the GT-96100A to signal that one (or more) of the
internal (unmasked) interrupt sources within the GT-96100A is
set.
This pin features an open-drain output.

SerInt0* I/O Serial
Interrupt0

Driven by the GT-96100A to signal that one (or more) of the
internal (unmasked) SERIAL interrupt sources within the GT-
96100A is set. This signal is dedicated only to interrupt events
that occur within the communication unit.

SerInt1* I/O Serial
Interrupt1

Driven by the GT-96100A to signal that one (or more) of the
internal (unmasked) SERIAL interrupt sources within the GT-
96100A is set. This signal is dedicated only to interrupt events
that occur within the communication unit.

Interrupt Total: 4

Table 13: GPP Pin Assignments (Continued)

Pin Name Type Full Name Description
Revision 1.0 53

GT-96100A Advanced Communication Controller
Table 15: Watchdog Interface Pin Assignments

Pin Name Type Full Name Description
WDE* I/O Watchdog

Expired (Out-
put)

Asserts to indicate that the watchdog timer in the GT-96100A
expired.

NMI* I/O Non Maskable
Interrupt (Out-
put)

Asserted by the GT-96100A to indicate that a non maskable
interrupt is pending.

Watchdog Total: 2

Table 16: Test Interface Pin Assignments

Pin Name Type Full Name Description
JTAG[0] I TCLK - JTAG

Clock
Input clock for test logic. TMS and TDI are received on the ris-
ing edge, TDO is driven from the falling edge. This signal deter-
mines the shifting rate.

JTAG[1] I TMS - JTAG
Mode Select

A broadcast test signal that controls test logic operation.

JTAG[2] I TDI - JTAG
Data In

Serial data input.

JTAG[3] O TDO - JTAG
Data Out

Serial data output. Tristate changes on negative change of
JTCLK.

JTAG[4] I TRST - JTAG
RESET

Asynchronous reset to the JTAG controller.

TEST Total: 5

Table 17: Clock/Control Interface Pin Assignments

Pin Name Type Full Name Description
TClk I Clock Master clock input to the GT-96100A (up to 100MHz). TClk is

used for the SysAD interface and the Device interface. TClk
must be driven for ALL applications.

Reset* I Reset Must be asserted for any reset sequence.

VccPLL I Vcc for PLL Used for supplying a low-noise power to the internal PLL.

VssPLL I Vss for PLL Used for supplying a low-noise ground to the internal PLL.

ByPassPLL I ByPass PLL This is used for PLL bypass mode:
0 - PLL is not bypassed (normal mode)
1 - PLL is bypassed
54 Revision 1.0

GT-96100A Advanced Communication Controller
OutModePLL I Output Mode
PLL Clock

This pin controls the clock output function of the PLL:
0 - PLL generated clock is driven on ClkOutPLL pin.
1 - PLL generated clock is not driven out (i.e. ClkOutPLL pin is
in hi-z state).

ClkOutPLL O Clock Output
for PLL

This pin is used for driving the PLL generated clock. To enable
this pin, the OutModePLL pin must be pulled low.

Clock/Control Total: 7

Table 17: Clock/Control Interface Pin Assignments (Continued)

Pin Name Type Full Name Description
Revision 1.0 55

GT-96100A Advanced Communication Controller
3. ADDRESS SPACE DECODING
The GT-96100A has a fully programmable address map. Two address spaces exist: the CPU address space and
the PCI address space (see Figure 2.) Both address maps use a two-stage decoding process where major device
regions are decoded first, then the individual devices are subdecoded.

Figure 2: Two Stage Address Decoding- Conceptual View

To PCI_0
Bus

PCI Base
Address
Registers

Processor
Decode

Registers
To PCI_1 Bus

(If configured for PCI_0
and PCI_1)

SDRAM Bank
SCS0
-or-

SCS1

SDRAM Bank
SCS3
-or-

SCS2

Devices
(Multiple

Decoders)

Device Decoders

SCS0
Bank

SCS1
Bank

SCS2
Bank

SCS3
Bank BootCS* CS0* CS1* CS2* CS3*

D
ev

ic
e

C
on

tro
l

Si
gn

al
s

D
ev

ic
e

Bu
s

(A
D

 B
us

)

SDRAM Bank
SCS0
-or-

SCS1

SDRAM Bank
SCS3
-or-

SCS2

PCI_0
Memory0

Window

PCI_0
I/O

Window

Devices
(Multiple

Decoders)

PCI_0
Memory1

Window

PCI_1
I/O
Window

PCI_1
Memory0
Window

PCI_1
Memory1
Window

Internal GT-96100A
Registers

GT-96100A
Internal

Registers

GT-96100A
Internal

Registers
56 Revision 1.0

GT-96100A Advanced Communication Controller
3.1 Two Stage Decoding Process

The system resources are divided into the following groups:
� SCS[1:0]*
� SCS[3:2]*
� CS[2:0]*
� CS[3] & BootCS*
� Internal Registers
� PCI_0 I/O
� PCI_0 Memory0/1
� PCI_1 I/O
� PCI_1 Memory0/1

NOTE: PCI_1 I/0 and PCI_1 Memory0/1 will only exist if the GT-96100A is configured for both PCI_0 and
PCI_1.

Each group can have a minimum of 2 Mbytes and a maximum of 4 Gbytes of address space. The individual
devices in the device groups are further sub decoded to 1 Mbyte resolution. Table 18 shows the CPU decode and
device sub-decode associations. Table 19 shows the same process for PCI_0 and Table 20 shows the process for
PCI_1.
Table 18: CPU and Device Decoder Mappings

CPU Decoder Associated Device Sub-Decoders

SCS[1:0]* SCS[0]*
SCS[1]*

SCS[3:2]* SCS[2]*
SCS[3]*

CS[2:0]* CS0*
CS1*
CS2*

BootCS*/CS3* BootCS*
CS3*

PCI_0 I/O None.
Accesses decoded for PCI_0 I/O are bridged to PCI_0 I/O transfers.

PCI_0 Memory 0/1 None.
Accesses decoded for PCI_0 Memory 0/1 are bridged to PCI Memory transfers.

PCI_1 I/O None.
Accesses decoded for PCI_1 I/O are bridged to PCI_1 I/O transfers.

PCI_1 Memory 0/1 None.
Accesses decoded for PCI_1 Memory 0/1 are bridged to PCI_1 Memory transfers.

Internal None.
Decodes to the GT-96100A internal registers.
Revision 1.0 57

GT-96100A Advanced Communication Controller
Table 19: PCI_0 Base Address Register and Device Decoder Mappings

PCI Base Address Register (BAR)
Decoder1

1. This mapping also applies to the swap BARs located in PCI function 1, if enabled.

Associated Device Sub-Decoders

SCS[1:0] *
- BAR 0 at 0x10

SCS0*
SCS1*

SCS[3:2]*
- BAR 1 at 0x14

SCS2*
SCS3*

CS[2:0]*
- BAR 2 at 0x18

CS0*
CS1*
CS2*

BootCS*/CS3*
- BAR 3 at 0x1C

BootCS*
Cs3*

Internal Registers (Memory)
- BAR 4 at 0x20

None
Decodes PCI_0 memory accesses to the GT-96100A
internal registers.

Internal Registers (I/O)
- BAR 5 at 0x24

None.
Decodes PCI_0 I/O accesses to the GT-96100A internal
registers.

Expansion ROM
- BAR at 0x30

None.
Decodes directly to CS3*.

Table 20: PCI_1 Base Address Register and Device Decoder Mappings

PCI Base Address Register (BAR)
Decoder1 Associated Device Sub-Decoders

SCS[1:0]*
- BAR 0 at 0x90

SCS0*
SCS1*

SCS[3:2]*
- BAR 1 at 0x94

SCS2*
SCS3*

CS[2:0]*
- BAR 2 at 0x98

CS0*
CS1*
CS2*

BootCS*/CS3*
- BAR 3 at 0x9C

BootCS*
Cs3*

Internal Registers (Memory)
- BAR 4 at 0xa0

None.
Decodes PCI_1 memory accesses to the GT-96100A
internal registers.
58 Revision 1.0

GT-96100A Advanced Communication Controller
3.1.1 CPU Side Decoding Process
Decoding on the CPU side starts with the SysAD address being compared with the values in the various CPU
Low and High decoder registers. For example, the SCS[1:0]* CPU High and Low decoder registers set the
address range in which the SCS0* and SCS1* signals are active (i.e. where DRAM banks 0 and 1 are located.)
The comparison works as follows:

1. Bits 35:32 of the SysAD address are compared against bits 14:11 in the various CPU Low decode regis-
ters. These values must match exactly. This effectively sets a 4 Gbyte �page� for the resource group.

2. Bits 31:21 of the SysAD address are compared against bits 10:0 in the various CPU Low decode regis-
ters. The value of the SysAD bits must be greater than or equal to the Low decode value. This sets the
lower boundary for the region.

3. Bits 31:21 of the SysAD address are compared against the High decode registers. The value of the
SysAD bits must be less than or equal to this value. This sets the upper bound for the region.

4. If all of the above are true, then the resource group is selected and a subdecode is performed to deter-
mine the specific resource.

An example of the CPU resource group decode process is shown in Figure 3.

Internal Registers (I/O)
- BAR 5 at 0xa4

None.
Decodes PCI_1 I/O accesses to the GT-96100A internal
registers.

1. This mapping also applies to the swap BARs located in PCI function 1, if enabled.

Table 20: PCI_1 Base Address Register and Device Decoder Mappings (Continued)

PCI Base Address Register (BAR)
Decoder1 Associated Device Sub-Decoders
Revision 1.0 59

GT-96100A Advanced Communication Controller
Figure 3: CPU-Side Resource Group Decode Function and Example

Once a CPU resource group has been decoded, it must be subdecoded to determine which physical device should
be accessed within that group. This decoding is controlled by the device Low and High decode registers. The
comparison works as follows:

1. Bits 31:20 of the SysAD address are compared against the relevant device Low decode registers. The
value of the SysAD bits must be greater than or equal to the Low decode value. This sets the lower
boundary for the sub-decode region.

2. Bits 31:20 of the SysAD address are compared against the relevant device High decode registers. The
value of the SysAD bits must be less than or equal to this value. This sets the upper bound for the sub-
decode region.

3. If all of the above are true, then the specific device is selected and an access to that device is performed.

Figure 4 illustrates the device decode process that occurs after the CPU resource group has been decoded.

Example: Set up a SysAD decode region that starts at 0xA.4000.0000 and is
512Mbytes in length (0xA.4000.0000 to 0xA.5FFF.FFFF):

If the SysAD address is between the Low and the High decode
addresses, then the access is passed to the Device Unit for sub-
decode.

Low Processor
Decode Reg

High Processor
Decode Reg

SysAD Address
Bits

ge ge ge

23 22 21 20

le le le

ge ge ge ge

27 26 25 24

le le le le

eq eq eq eq

35 34 33 32

ge ge ge ge

31 30 29 28

le le le le

Low Processor
Decode Reg

High Processor
Decode Reg

SysAD Address
Bits

0 0 0

23 22 21 20

1 1 1

0 0 0 0

27 26 25 24

1 1 1 1

1 0 1 0

35 34 33 32

0 1 0 0

31 30 29 28

0 1 0 1

�eq� equal to
�ge� greater or equal to
�le� less or equal to
60 Revision 1.0

GT-96100A Advanced Communication Controller
Figure 4: Device Sub-Decode Function and Example

Example: Using the previous CPU decode example (0xA.4000.0000 to 0xA.5FFF.FFFF), place a
device sub-decode in the first 384 Meg (0xA.4000.0000 to 0xA.57FF.FFFF).

A match in the processor decoders forwards the
address to the device sub-decoders

Processor Decode
Region

(512Mbyte)
0xA.5FFF.FFFF

Device Sub-Decode
Region

(384 Meg)

0xA.4000.0000

0xA.57FF.FFFF

Low Processor
Decode Reg

High Processor
Decode Reg

SysAD Address
Bits

0 0 0

23 22 21 20

1 1 1

0 0 0 0

27 26 25 24

1 1 1 1

1 0 1 0

35 34 33 32

0 1 0 0

31 30 29 28

0 1 0 1

Low Device
Decode Reg

High Device
Decode Reg

0 1 0 0

0 1 0 1

0 0 0 0

0 1 1 1

0 0 0

1 1 1

0

1

A match in the processor decoders forwards the address to the
device subdecoders.

Low Processor
Decode Reg

High Processor
Decode Reg

SysAD Address
Bits

ge ge ge

23 22 21 20

le le le

ge ge ge ge

27 26 25 24

le le le le

ge ge ge ge

31 30 29 28

le le le le

Low Device
Decode Reg

High Devicer
Decode Reg

ge ge ge ge

le le le le

ge ge ge ge

le le le le

ge ge ge

le le le

ge

le

�eq� equal to
�ge� greater or equal to
�le� less or equal to
Revision 1.0 61

GT-96100A Advanced Communication Controller
3.1.2 PCI Side Decoding Process
Decoding on the PCI side starts with the PCI address being compared with the values in the various Base
Address Registers. For example, the SCS[1:0]* Base Address register sets the PCI base address range in which
the SCS0* and SCS1* signals are active (i.e., where DRAM banks 0 and 1 are located in PCI space).

Once a resource group has been decoded by a BAR, it must be subdecoded to determine which physical device
should be accessed within that group. This decoding is controlled by the Device Low and High decode registers.

NOTE: These registers are the same ones used for CPU-side decoding. This means that the PCI and SysAD
memory maps are coupled at the device decoders. Address bits 31:20 (the bits compared by the Device
decoders) for any given device overlap in both the PCI and SysAD maps.

The sub-decoding comparison works as follows:
1. Bits 31:20 of the PCI address are compared against bits the relevant device Low decode registers. The

value of the PCI address bits must be greater than or equal to the Low decode value. This sets the lower
boundary for the sub-decode region.

2. Bits 31:20 of the PCI address are compared against the relevant device�s High decode registers. The
value of the PCI address bits must be less than or equal to this value. This sets the upper bound for the
sub-decode region.

3. If all of the above are true, the specific device is selected and an access to that device is performed.

Figure 5: Bank Size Register Function Example (16Meg Decode)

0 0 0 0 0 0 0 0 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20

1 Bank Size Reg

PCI Address
Bits

1 1 1 1 1 1 1

19 18 17 16 15 14 13 12

1

= = = = = = = = x x x x x x x x x x x x

'=' must match exactly
'x' don't care

Comparison
against PCI

address
62 Revision 1.0

GT-96100A Advanced Communication Controller
3.2 Disabling Address Decoders

CPU interface address decoders can be disabled by setting the Low decoder value higher than the High decoder
value.

Device sub-decoder can be disabled by setting the Low decoder value higher than the High decoder value.

PCI address decoders can be disabled by setting the BAR�s corresponding bit in Base Address registers� Enable
to 1.

3.3 DMA Unit Address Decoding

The IDMA controller uses the address mapping of the CPU interface.

NOTE: CPU interface address mapping to determine whether the source address is located in one of the
SDRAM banks, Device banks, PCI_0 or PCI_1. The same is true for destination address and next
record address.DMA address decoding is only up to address bit [31]. Bits [35:32] of CPU address
decoding registers are ignored.

3.4 Address Space Decoding Errors

When the CPU tries to access an address from the SysAD that is not supported, the GT-96100A:
� Latches the address into the Bus Error Address registers (offsets 0x70,0x78).
� Issues a bus error (over SysCmd[5]), if the access was a read access.
� Issues an interrupt, if the access was a read or write access.

This feature is useful during software debugging, when errant code can cause fetches from unsupported
addresses.

When SysAD matches one of CPU interface address spaces, but misses the associated subdecoders, the GT-
96100A:

� Issues a bus error (over SysCmd[5]), if the access was a read access.
� Sets the MemOut bit in the Interrupt Cause register.

When a PCI access hits in a Base Address register then misses in the associated subdecoders:
� Random data is returned on a read and write data is discarded.
� Latches the address into the Address Decode Error register (offset 0x470).
� The MemOut bit in the Interrupt Cause register is also set.

Accesses that miss all of the GT-96100A BARs result in no response at all from the GT-96100A.

When a DMA accesses an unmapped address, DMAOut bit in the interrupt Cause register is set.

NOTE: Never program address space decoders to overlap. Programming address space decoders to overlap
results in unpredictable behavior.
Revision 1.0 63

GT-96100A Advanced Communication Controller
3.5 Default Memory Map

The default CPU memory map that is valid following RESET is shown in Table 21. The default PCI map and
BAR sizing information is shown in Table 22 and Table 23.
Table 21: CPU and Device Decoder Default Address Mapping

CPU Decode
Range and Size

Resource
Group

Device Decode
Range and Size

Device
Selected

0x0 to 0x0.00FF.FFFF
16 Megabytes

SCS[1:0]* 0x0 to 0x0.007F.FFFF
8 Megabytes

SCS0*

0x0.0080.0000 to 0x0.00FF.FFFF
8 Megabytes

SCS1*

0x0.0100.0000 to 0x0.01FF.FFFF
16 Megabytes

SCS[3:2]* 0x0.0100.0000 to 0x0.017F.FFFF
8 Megabytes

SCS2*

0x0.0180.0000 to 0x0.01FF.FFFF
8 Megabytes

SCS3*

0x0.1400.0000 to 0x0.1400.0FFF
4 Kbytes

Internal Regis-
ters

No subdecode.
Access bridged directly to the GT-
96100A internal registers

Internal Regis-
ters

0x0.1000.0000 to 0x0.11FF.FFFF
32 Megabytes

PCI0 I/0 No subdecode.
Access bridged directly to PCI I/0
space

PCI0

0x0.1200.0000 to 0x0.13FF.FFFF
32 Megabytes

PCI0 Mem0 No subdecode.
Access bridged directly to PCI
memory space

PCI0

0x0.1C00.0000 to 0x0.1E1F.FFFF
34 Megabytes

CS[2:0] 0x0.1C00.0000 to
0x0.1C7F.FFFF
8 Megabytes

CS0*

0x0.1C80.0000 to
0x0.1CFF.FFFF
8 Megabytes

CS1*

0x0.1D00.0000 to
0x0.1DFF.FFFF
16 Megabytes

CS2*

0x0.1E00.0000 to
0x0.1E1F.FFFF not accessible

0x0.1F00.0000 to 0x0.1FFF.FFFF
16 Megabytes

CS[3] and
BootCS*

0x0.1F00.0000 to
0x0.1FBF.FFFF
12 Megabyte

CS3*

0x0.1FC0.0000 to
0x0.1FFF.FFFF
4 Megabytes

BootCS*
64 Revision 1.0

GT-96100A Advanced Communication Controller
0x0.F200.0000 to 0x0.F3FF.FFFF
32 Megabytes

PCI0 Mem1 No subdecode.
Access bridged directly to PCI
memory space

PCI0

0x0.2000.0000 to 0x0.21FF.FFFF
32 Megabytes

PCI1 I/0 No subdecode
Access bridged directly to PCI I/
O space

PCI1

0x0.2200.0000 to 0x0.23FF.FFFF
32 Megabytes

PCI1 Mem0 No subdecode.
Access bridged directly to PCI
memory space

PCI1

0x0.2400.0000 to 0x0.25FF.FFFF
32 Megabytes

PCI1 Mem1 No subdecode.
Access bridged directly to PCI
memory space

PCI1

Table 22: PCI Function 0 and Device Decoder Default Address Mapping

PCI Function 0 Decode
Range and Size

Resource
Group

Device Decode
Range and Size

Device
Selected

0x0 to 0x0.00FF.FFFF
16 Megabytes in Memory Space

SCS[1:0]* 0x0 to 0x0.007F.FFFF
8 Megabytes

SCS0*

0x0.0080.0000 to
0x0.00FF.FFFF
8 Megabytes

SCS1*

0x0.0100.0000 to 0x0.01FF.FFFF
16 Megabytes in Memory Space

SCS[3:2]* 0x0.0100.0000 to
0x0.017F.FFFF
8 Megabytes

SCS2*

0x0.0180.0000 to
0x0.01FF.FFFF
8 Megabytes

SCS3*

0x0.1400.0000 to 0x0.1400.0FFF
4 Kbytes in Memory Space

Internal Regis-
ters

No subdecode Internal Regis-
ters

0x0.1400.0000 to 0x0.1400.0FFF
4 Kbytes in I/O Space

Internal Regis-
ters

No subdecode. Internal Regis-
ters

Table 21: CPU and Device Decoder Default Address Mapping (Continued)

CPU Decode
Range and Size

Resource
Group

Device Decode
Range and Size

Device
Selected
Revision 1.0 65

GT-96100A Advanced Communication Controller
0x0.1C00.0000 to 0x0.1DFF.FFFF
32 Megabytes in Memory Space

CS[2:0] 0x0.1C00.0000 to
0x0.1C7F.FFFF
8 Megabytes

CS0*

0x0.1C80.0000 to
0x0.1CFF.FFFF
8 Megabytes

CS1*

0x0.1D00.0000 to
0x0.1DFF.FFFF
16 Megabytes

CS2*

0x0.1F00.0000 to 0x0.1FFF.FFFF
16 Megabytes in Memory Space

CS[3] and
BootCS*

0x0.1F00.0000 to
0x0.1FBF.FFFF
12 Megabyte

CS3*

0x0.1FC0.0000 to
0x0.1FFF.FFFF
4 Megabytes

BootCS*

0x0.1F00.000 to 0x0.1FFF.FFFF
16 Megabytes (uses CS[3] and
BootCS* size register)

PCI
Expansion
ROM

No subdecode.
This decoder is used only during
PC BIOS initialization.

CS3*

Table 23: PCI Function 1 (Byte Order Swap) and
Device Decoder Default Address Mapping

PCI Function 0 Decode
Range and Size

Resource
Group

Device Decode
Range and Size

Device
Selected

0x0 to 0x0.00FF.FFFF
16 Megabytes in Memory Space

SCS[1:0]* 0x0 to 0x0.007F.FFFF
8 Megabytes

SCS0*

0x0.0080.0000 to
0x0.00FF.FFFF
8 Megabytes

SCS1*

0x0.0100.0000 to 0x0.01FF.FFFF
16 Megabytes in Memory Space

SCS[3:2]* 0x0.0100.0000 to
0x0.017F.FFFF
8 Megabytes

SCS2*

0x0.0180.0000 to
0x0.01FF.FFFF
8 Megabytes

SCS3*

Table 22: PCI Function 0 and Device Decoder Default Address Mapping (Continued)

PCI Function 0 Decode
Range and Size

Resource
Group

Device Decode
Range and Size

Device
Selected
66 Revision 1.0

GT-96100A Advanced Communication Controller
3.6 Address Remapping

The GT-96100A supports address remapping on both the CPU interface and the PCI interfaces.

NOTE: Although the IDMA controllers use the CPU address decode registers, the source and destination DMA
addresses are NEVER remapped.

3.6.1 CPU Address Remapping
The resources that can be addressed by the CPU are the following:

� SDRAM banks (SCS[1:0]*, SCS[3:2]*)
� Devices (CS[2:0]*, CS[3]* & BootCS*)
� PCI_0 IO
� PCI_0 Memory0/1
� PCI_1 IO
� PCI_1 Memory0/1

NOTE: PCI_1 IO and PCI_1 Memory0/1 are only addressable if the device is configured for both PCI_0 and
PCI_1 on RESET.

Each resource addressed by the CPU has a Remap register associated with it. These registers are listed in Section
4.10.2 �CPU Address Decode Registers� on page 87.

An address presented on the SysAD bus by the CPU is decoded with the following steps:
1. Address bits [35:21] are checked for a hit in the CPU decoders.
2. Assuming there is a hit in the CPU decoders, the HIT address will have bits 35:32 discarded. Bits 20:0

are left unchanged. Bits[31:21] are remapped as follows: Going from the most significant bit (MSB) to
least significant bit (LSB) of the HIT address bits [31:21], any bit found matching to its respective bit in
the LOW decode register�s bits [10:0] will cause the according bit in the remap register to REPLACE
the original address bit. Upon first mismatch, all remaining LSBs of address bits[31:21] are unchanged.

3. Address bits [31:20] of the remapped address are checked to be a hit in the Device decoders.
4. Assuming there is a hit in the Device decoders, the HIT address will be transferred to the resource.

See Figure 6 outlining this address remapping procedure.

0x0.1F00.0000 to 0x0.1FFF.FFFF
16 Megabytes in Memory Space

CS[3]* and
BootCS*

0x0.1F00.0000 to
0x0.1FBF.FFFF
12 Megabyte

CS3*

0x0.1FC0.0000 to
0x0.1FFF.FFFF
4 Megabytes

BootCS*

Table 23: PCI Function 1 (Byte Order Swap) and
Device Decoder Default Address Mapping (Continued)

PCI Function 0 Decode
Range and Size

Resource
Group

Device Decode
Range and Size

Device
Selected
Revision 1.0 67

GT-96100A Advanced Communication Controller
Figure 6: CPU Address Remapping To Resources

Bits 35 - 32 are discarded.
Bits [20:0] are
unchanged
from
the hit address.

Starting at the MSB. Each matching bit of [31:21] of
the Hit Address and [10:0] of LOW decode are replace
with bits in Remap.All other bits are unchanged.

Remapped
Address

Remap
Register

Step 1.

Step 2.

Step 3.

A match in the processor decoders
forwards the address to remap register.

Step 4.
A match in
the sub-
decoders
forwards the
address to the
resource.

Address bits [35:21] are checked
for a hit in the CPU decoders.

Low Processor
Decode Reg

High Processor
Decode Reg

SysAD Address
Bits

ge ge ge

23 22 21 20

le le le

ge ge ge ge

27 26 25 24

le le le le

eq eq eq eq

35 34 33 32

ge ge ge ge

31 30 29 28

le le le le

35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 3 2 1 0

...

 6 5 4 310 9 8 7

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 3 2 1 0

...

2 1 0

Low Device
Decode Reg

High Device
Decode Reg

ge ge ge

le le le

ge

le

ge ge ge ge

le le le le

ge ge ge ge

le le le le
68 Revision 1.0

GT-96100A Advanced Communication Controller
3.6.2 Writing to Decode Registers
When a LOW decode register is written to, the least significant 11 bits are written to the associated remap regis-
ter, simultaneously.

When a remap register is written to, only its contents are affected.

Following RESET, the default value of a remap register is equal to its associated LOW Decode register bits
[10:0].

Unless a specific write operation to a remap register takes place, a 1:1 mapping is maintained. Also, changing a
LOW Decode register�s contents automatically returns its associated space to a 1:1 mapping. This allows for
backward software compatibility with other Galileo Technology devices such as the GT-64010A and the GT-
64011 core logic devices.

3.6.3 PCI Address Remapping
The PCI slave interface has the ability to remap addresses of PCI transactions to memory using PCI remap regis-
ters. There are seven registers for PCI_0 and seven registers for PCI_1, if implemented.

These registers correspond to the following PCI Base Address Registers:
� SCS[1:0]*
� SCS[3:2]*
� CS[2:0]*
� CS[3]* & BootCS*
� Swapped SCS[1:0]*
� Swapped SCS[3:2]*
� Swapped CS[3]* and BootCS*

These registers are listed in the Register Section as part of PCI Internal Registers, Section 7.14.1 �PCI Internal
Registers� on page 172. The offsets for these registers are 0xc48 - 0xc64. Each MAP register is 32-bits wide.
Each MAP register is 32-bits wide, where bits [12:0] are Read Only.

When an address is presented on the PAD lines, the address decoder in the PCI slave compares the PCI address to
its base/size registers. If there is a HIT in one of the seven Base Address registers listed above, then the address
undergoes remapping in accordance to the right Remap register in the non-masked address bits (by size register).
An example of this is summarized in Table 24.
Table 24: PCI Address Remapping Example

PCI address 0x1D98.7654

SCS[1:0]* BAR 0x1F00.0000

SCS[1:0]* Size 0x03FF.FFFF

SCS[1:0]* Remap Register 0x3F00.0000

Remapped PCI Address Presented to SDRAM 0x3D98.7654
Revision 1.0 69

GT-96100A Advanced Communication Controller
NOTE: The size register is programmed to 0x03FF.FFFF. This indicates that this BAR requires a hit in the six
MSB (bits 31:26) bits of the PCI address for their to be a hit in the BAR. Therefore, the PCI address
0x1DXX.XXXX is a hit in a BAR programmed to 0x1FXX.XXXX as bits 31-26 of both of these
addresses is 0b0001.11.
Then according to the Remap register, these same bit locations will be remapped to 6b111111. The rest
of the PCI address bits (i.e. [25:0]) remain unchanged. This means that the final PCI slave address will
be 0x3D987654.

3.6.4 Writing to Decode Registers
When a BAR register is written to, the associated remap register is written to, simultaneously. When a remap reg-
ister is written to, only its contents are affected.

Following RESET, the default value of a remap register is equal to its associated BAR decode register.

Unless a specific write operation to a remap register takes place, a 1:1 mapping is maintained. Also, changing a
BAR register�s contents automatically returns its associated space to a 1:1 mapping. This allows for backward
software compatibility with other Galileo Technology devices such as the GT-64010A and the GT-64011 core
logic devices.

3.7 Using the CPU PCI Override

In default, the CPU interface supports 512Mbyte PCI memory address space (256Mbyte on PCI_0 Mem0,
256Mbyte on PCI_0 Mem1). If configured to both PCI_0 and PCI_1, it supports 512Mbyte also on PCI_1. The
CPU PCI override feature enables larger PCI memory address space.

The CPU configuration register includes four PCI override bits - two bits per PCI_0 and two bits per PCI_1. Each
bit pair controls whether the PCI window is 2Gbyte, 1Gbyte, or the default.

Setting the PCI override bits are set to �01�, and SysAD bits[31:30] match bits [10:9] of the PCI Mem0 Low
decode address register, the transaction is directed to PCI Mem0. This effectively sets a 1Gbyte window in the
PCI memory address space.

NOTE: If Bits[31:30] do not match bits [10:9] of PCI Mem0 Low decode address register, the address is com-
pared against all other address decode registers.

When PCI override bits are set to �10�, and SysAD bit[31] matches bit [10] of the PCI Mem0 Low decode
address register, the transaction is directed to PCI Mem0. This effectively sets a 2Gbyte window to PCI.

NOTE: If bit[31] does not match bit [10] of PCI Mem0 Low decode address register, the address is compared
against all other address decode registers.

If PCI override bits are set to �00� there is no PCI override (default address decoding).
70 Revision 1.0

GT-96100A Advanced Communication Controller
NOTE: When PCI override is enabled, there is no address remapping from the CPU to the PCI.

3.8 Using the DMA to PCI Bypass

In default, the IDMA controller uses CPU interface address decoding. However, the IDMA controller supports
direct access to PCI bus, bypassing this address decoding.

In each of the four DMA channel control registers, there are six bits:
� Two bits per source address.
� Two bits per destination address.
� Two bits per next record address.

Each bit pair controls whether the address should be directed to PCI_0 memory space, to PCI_1 memory space,
or run through CPU address decoding.
Revision 1.0 71

GT-96100A Advanced Communication Controller
4. CPU INTERFACE DESCRIPTION
The GT-96100A SysAD bus interface allows the CPU to gain access to the GT-96100A�s internal registers, PCI
interface and the memory/device bus (AD bus). The SysAD bus supports accesses from one to 32 bytes in length.

The SysAD bus on the GT-96100A is a slave-only interface. The GT-96100A will never master the SysAD bus.

4.1 CPU Interface Signals

The CPU interface incorporates the following signals:
Table 25: CPU Interface Signals

Signal Type Description

SysAd[63:0] - Master Address/Data I/O Transfers multiplexed address/data.

SysCmd[8:0] - Master Port Command I/O Transfers information about the access (read/write,
size) and the data (good/bad, last word).

SysADC[7:0] - Master Data Check I/O An 8-bit bus containing parity for the SysAD bus.
SysADC is valid on data cycles only.

ValidOut* I Indicates that the local master is driving valid
address/data/command on the SysAD bus.

ValidIn* O Indicates that the GT-96100A is driving valid data/
command on the SysAD bus.

WrRdy*1

1. There is no RdRdy* signal output from the GT-96100A. This signal should be tied LOW on the CPU as the GT-96100A is always ready to accept
a read command.

O Indicates that the GT-96100A is capable of accept-
ing a write transaction up to eight 32-bit words in
length.

Release* I Indicates to the GT-96100A that the local master
will not drive the SysAD after the current clock
cycle. For example, the local master is floating the
SysAD and SysCmd bus for completion of a read.

Interrupt* O An �OR� of all the internal interrupt sources on the
GT-96100A.

ScMatch I L2 cache Tag RAM hit indication.

TcDOE* O L2 cache data RAM output enable. Asserted by the
GT-96100A on L2 read hit.

TcTCE* I L2 cache Tag RAM chip enable. Sampled by the
GT-96100A to identify L2 access.

TcWord[1:0] O L2 cache word index. Driven by theGT-96100A dur-
ing L2 read miss.
72 Revision 1.0

GT-96100A Advanced Communication Controller
The SysAD bus is synchronous with respect to TClk and is locked with respect to the AD bus. The SysAD bus
may be asynchronous with respect to the PCI bus or locked to the PCI bus for lower synchronization latency.

4.2 SysAD, SysADC, and SysCmd Buses

The SysAD and SysCmd bus protocol implemented by the GT-96100A is completely compatible with the 64-bit
Orion bus protocol used by the IDT R4xxx, R5000, and R7000 processors. The GT-96100A extends this protocol
to support bursts less than four 64-bit words. These extensions can be used by DMA engines on the SysAD bus
for more efficient use of the interface.

The SysAD[63:0] bus is a 64-bit multiplexed address/data bus. The local CPU drives address for a single cycle
then either drives data (for a write) or floats the bus in anticipation of returned data (for a read.)

SysADC[7:0] is valid during data cycles only. It provides parity information for data on the SysAD bus. SysADC
has the same timing as SysAD.

The SysCmd[8:0] bus conveys the following information about the transaction:
� The direction (read/write).
� The size (byte, short, word, multi-word).
� The status of the data (good/bad/last.).

SysCmd is driven by the CPU (or other local master) during the address phase of a transaction (with direction/
size information) and for the duration of a write (with good/bad/last information.) The GT-96100A drives
SysCmd during the data phase of read transactions.

The encodings for SysCmd[8:0] are shown in the tables below.

NOTE: Many encodings are not defined. These encodings are reserved and must not be used. A summary of bit
usage is shown below.

Table 26: SysCmd Bit Summary

SysCmd Bit Funct ion

SysCmd[8] 0 = Transaction information (read/write/size)
1 = Data information (good/bad/last)

SysCmd[7] Indicates last data/not last data during data cycles.
NOTE: Must be 0 for address cycles.

SysCmd[6] 0 = Read transaction during address cycles
1 = Write transaction during address cycles
NOTE: Must be 0 for data cycles.

SysCmd[5] Indicates error status for data cycles.
NOTE: Must be 0 for address cycles.
Revision 1.0 73

GT-96100A Advanced Communication Controller

SysCmd[4] 0 = Check the Data & Check-bits during data cycles
1 = Do not check Data during data cycles
NOTE: Must be 1 for address cycles.

SysCmd[3:0] Encoded to indicate size of the transfer during address
cycles.
Reserved during data cycles.

Table 27: Address Phase SysCmd[8:0] Encodings (driven by CPU)

SysCmd[8:0] Encoding1
Command
Mnemonic Command Description8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 0 0 RdByte Read a single byte.

0 0 0 0 1 1 0 0 1 RdShort Read 16 bits.

0 0 0 0 1 1 0 1 0 RdTriByte Read 3 bytes.

0 0 0 0 1 1 0 1 1 RdWord Read 4 bytes (single word).

0 0 0 0 1 1 1 0 0 Rd5Byte Read 5 bytes.

0 0 0 0 1 1 1 0 1 Rd6Byte Read 6 bytes.

0 0 0 0 1 1 1 1 0 Rd7Byte Read 7 bytes.

0 0 0 0 1 1 1 1 1 RdDWord Read a double-word (64 bits).

0 0 0 0 1 0 X X 0 Rd4Words Not supported.

0 0 0 0 1 0 X 0 1 Rd8Words Read eight words (32 bytes) in a 4-DW burst.

0 0 0 0 0 X X X X Invalid Reserved.

0 0 1 0 1 1 0 0 0 WrByte Write a single byte.

0 0 1 0 1 1 0 0 1 WrShort Write 16 bits.

0 0 1 0 1 1 0 1 0 WrTriByte Write 3 bytes.

0 0 1 0 1 1 0 1 1 WrWord Write 4 bytes (single word).

0 0 1 0 1 1 1 0 0 Wr5Byte Read 5 bytes.

0 0 1 0 1 1 1 0 1 Wr6Byte Read 6 bytes.

0 0 1 0 1 1 1 1 0 Wr7Byte Read 7 bytes.

0 0 1 0 1 1 1 1 1 Wr2Words Write a double word (8 bytes).

0 0 1 0 1 0 X X 0 Wr4Words Not supported.

0 0 1 0 1 0 X 0 1 Wr8Words Write eight words (32 bytes) in a 4-DW burst.

Table 26: SysCmd Bit Summary (Continued)

SysCmd Bit Function
74 Revision 1.0

GT-96100A Advanced Communication Controller

0 0 1 1 0 0 X X X NullReq Null Request command.

0 0 1 1 X 1 X X X Invalid Reserved.

1. �X� denotes �don�t care� but �X� signals must be driven to a valid 0/1.

Table 28: Read Response SysCmd[8:0] Encodings (driven by the GT-96100A)

SysCmd[8:0] Encoding1

1. �X� denotes �don�t care� but �X� signals are driven to a valid 0/1 by the GT-96100A.

Command
Mnemonic Command Description8 7 6 5 4 3 2 1 0

1 1 0 E 0 X X X X RD &Chk Indicates valid data and data-check-bit within a
burst.
E = 0 Data is good
E = 1 Data is erroneous

1 1 0 E 1 X X X X RD &NoChk Indicates valid data within a burst (no check-bit).
E = 0 Data is good
E = 1 Data is erroneous

1 0 0 E 0 X X X X REOD &Chk Indicates last valid data and data-checkbit within a
burst.
E = 0 Data is good
E = 1 Data is erroneous

1 0 0 E 1 X X X X REOD
&NoChk

Indicates last valid data in a burst (no check-bit).
E = 0 Data is good
E = 1 Data is erroneous

Table 27: Address Phase SysCmd[8:0] Encodings (driven by CPU) (Continued)

SysCmd[8:0] Encoding1
Command
Mnemonic Command Description8 7 6 5 4 3 2 1 0
Revision 1.0 75

GT-96100A Advanced Communication Controller

4.2.1 SysAD Read Protocol
SysAD reads occur in three phases:

NOTE: If the read command requires parity, then check bits will be driven by the GT-96100A together with
SysAD data for every data transfer.

The address phase for all transactions begins with the assertion of ValidOut* to the GT-96100A. Valid address
and command information must be present on SysAD and SysCmd during this phase. Release* must also be
asserted to the GT-96100A to indicate that the local master is releasing mastership of the SysAD/SysCmd/
SysADC buses to the GT-96100A for completion of the read. ValidOut* is deasserted at the end of the phase
since the CPU is no longer driving information on SysAD/SysCmd.

Table 29: CPU Write SysCmd[8:0] Encodings (driven by local master)

SysCmd[8:0] Encoding1

1. �X� denotes �don�t care� but �X� signals are driven to a valid 0/1 by the GT-96100A.

Command
Mnemonic Command Description8 7 6 5 4 3 2 1 0

1 1 1 E 0 X X X X WD &Chk Indicates valid data and data-check-bit within a
burst.
E = 0 Data is good
E = 1 Data is erroneous

1 1 1 E 1 X X X X WD &NoChk Indicates valid data within a burst (No check-bit).
E = 0 Data is good
E = 1 Data is erroneous

1 0 1 E 0 X X X X WEOD &Chk Indicates valid data and data-check-bit within a
burst.
E = 0 Data is good
E = 1 Data is erroneous

1 0 1 E 1 X X X X WEOD
&NoChk

Indicates last valid data in a burst (No check-bit).
E = 0 Data is good
E = 1 Data is erroneous

Table 30: SysAD Read Phases

Phase Description

Address Address information is driven on the SysAD bus and command information is
driven on SysCmd.

Mid burst-data The GT-96100A drives data on the SysAD bus and a read response on SysCmd.

Last burst-data The GT-96100A drives data on the SysAD bus and a read end-of-data (REOD)
response on SysCmd.
76 Revision 1.0

GT-96100A Advanced Communication Controller
For transactions longer than 64 bits, the mid-burst data phase is entered next. The GT-96100A:
� Drives valid data on SysAD.
� Drives bits on SysADC[7:0] for parity.
� Drives a valid read response (mnemonic = RD) on SysCmd.
� Assert ValidIn* to qualify the SysAD, SysADC, and SysCmd buses (see Figure 8).

The GT-96100A transitions to the last-burst data phase on the last datum of the transfer. This state is differenti-
ated by from the mid-burst state by the REOD command driven on the SysCmd bus. The last-burst data phase is
also entered for the datum returned for a double word, single word, or sub-word, read.

On the clock cycle following REOD, the GT-96100A floats the SysAD, SysADC, and SysCmd buses, returning
ownership to the CPU.

Figure 7: Double Word (8 bytes) Read by CPU With Parity Check Bits

ADDRESS PHASE SINGLE-BURST PHASE

Local master must
sample data here.

Wait states

ADDR

RDDWORD

DATA

REOD

TClk

ValidOut*

SysAD[63:0]

SysCmd[8:0]

Release*

ValidIn*

Parity DATASysADC[7:0]
Revision 1.0 77

GT-96100A Advanced Communication Controller
Figure 8: Four Word (16 bytes) Burst Read by CPU

4.2.2 SysAD Write Protocol
CPU writes occur in three phases:

NOTE: If the write command requires parity, then check bits are driven by the Local Master together with
SysAD data for every data transfer.

The address phase for write transactions begins with the assertion of ValidOut* to the GT-96100A. Valid address
and command information must be present on the SysAD and SysCmd busses during this phase. Release*
remains high for write transactions since the Local Master is not relinquishing ownership of the bus. ValidOut*
remains asserted throughout a write transaction as the CPU is always driving valid information on SysAD/
SysADC/SysCmd.

For transactions longer than 64 bits, the mid-burst data write phase is entered next. The CPU drives valid data on
SysAD, a valid write command (mnemonic = WD) on SysCmd (see Figure 9).

Table 31: SysAD Write Phases

Phase Description

Address Address information is driven on the SysAD bus and command information is
driven on SysCmd.

Mid-burst write data The Local Master drives data on the SysAD bus, possibly Parity data on
SysADC[7:0], and a write command (mnemonic = WD) on SysCmd.

Last-burst write data The Local Master drives data on the SysAD bus and a write end-of-data (WEOD)
command on SysCmd.

ADDR

RDWORD

DATA 1

RD

DATA 2

REOD

Wait state.

TClk

ValidOut*

SysAD[63:0]

SysCmd[8:0]

Release*

ValidIn*

ADDRESS PHASE LAST-BURST PHASEMID-BURST DATA READ PHASE

Local master must
sample data here.

Local master must
sample data here.
78 Revision 1.0

GT-96100A Advanced Communication Controller
Figure 9: CPU Four Word Burst Write

The GT-96100A transitions to the last-burst write data phase on the last datum of the transfer. This state is differ-
entiated from the mid-burst state by the WEOD command driven on the SysCmd bus. The last-burst data phase is
also entered for the datum written for a single word, or sub-word, write. On the clock cycle following WEOD,
the GT-96100A returns to the idle state.

NOTE: CPU writes cannot be issued as long as WrRdy* is deasserted (HIGH). If WrRdy* is high and an CPU
write is attempted, data from previous write cycles may be corrupted (see Section 4.3 �Operation of
WrRdy* and the Internal Write Posting Queues� on page 79.) All MIPs compliant processors follow
this protocol. Only DMA engines on the SysAD bus need to be concerned with sampling WrRdy*
before initiating a write.

4.3 Operation of WrRdy* and the Internal Write Posting Queues

The GT-96100A�s CPU interface includes a write posting queue that absorbs local CPU writes at zero wait-states.
This is required per the MIPs SysAD bus write protocol.

The write posting queue has four address entries and eight 64-bit data entries. The GT-96100A signals if there is
room in the CPU write posting queue by asserting WrRdy*. If WrRdy* is asserted, the CPU may issue a write of
up to eight words or four double words.

MIPs compliant processors such as the R4XXX/R5000/R7000 sample WrRdy* automatically before issuing a
write.

4.4 CPU Write Modes and Write Patterns Supported

The GT-96100A supports both pipelined and R4XXX/R5000/R7000 compatible write modes (with two dead
cycles between consecutive writes). The default mode is pipelined. However, the R4XXX mode can be selected
in the CPU Interface Configuration Register.

The CPU interface supports only DDDD and DXDXDXDX write patterns. One of these two write patterns must
be selected via the CPU serial initialization bitstream during the CPU reset process. Bit 16 of the CPU Interface
Configuration register (0x000) must be programmed according to the write pattern programming of the CPU.

NOTE: In the above explanation, �D� represents data and �X� is a wait state.

ADDR

WR4WORD

DATA 1&2 DATA 3&4

WEOD

TClk

ValidOut*

WrRdy*

SysAD[63:0]

SysCmd[8:0]

Release*

ValidIn*

ADDRESS PHASE LAST-BURST PHASE

MID-BURST DATA
 WRITE PHASE
Revision 1.0 79

GT-96100A Advanced Communication Controller
4.5 CPU Interface Endianess

The GT-96100A provides the capability to swap the data transferred to or from the internal registers and to or
from the PCI interface.

NOTE: Data written to or from the memory controller is NEVER swapped.

The GT-96100A interface endianess to the CPU is programmed on RESET by sampling the Interrupt* pin, see
Section 22. �Reset Configuration� on page 452. The setting of this pin programs the Endianess bit in the CPU
Configuration register at 0x000. When accessing the internal registers, the endianess of the data will be deter-
mined by the Interrupt* pin�s setting.

NOTE: If set to BIG endian, data is swapped.

The setting of the ByteSwap bit in the PCI Internal Command Register, bit 0 of 0xc00, determines how data
transactions from the CPU to/from PCI are handled along with the setting of bit 12 in the CPU Configuration
Register, 0x000. Both of these bits are set to the same value as the pin strapping of the Interrupt*, but can be re-
programmed after RESET.

The setting of MByteSwap bit and MWordSwap bit in the PCI Internal Command register, determines how data
transactions from the CPU to or from the PCI are handled along with the setting of the Endianess bit in the CPU
Configuration register. Both MByteSwap and Endianess bits are set to the same value as the pin strapping of the
Interrupt* (resulting PCI interface working in little-endian mode). These bits can be re-programmed after
RESET.

4.6 Burst Order

The GT-96100A supports only the sub-block ordered bursts used by Orion MIPs processors. Sub-block ordered
bursts are optimized for the burst patterns used by most SDRAMs.

4.7 MIPS L2 Cache Support
The GT-96100A supports second level cache placed on the SysAD bus. It does not include L2 cache controller,
but it supports L2 required signaling, as defined in the R5000 specification.

GT-96100A samples the ScMatch signal. If a CPU access hits the L2 cache line (Tag RAM asserts ScMatch sig-
nal), the GT-96100A ignores the transaction, enabling the CPU to complete the transaction against L2 cache.

If the CPU initiates a block read transaction with ScTCE* asserted (indicating a L2 read request), and ScMatch is
asserted two cycles after issue cycle (indicating a L2 hit), the GT-96100A ignores the transaction, but keeps
ScDOE* asserted, enabling L2 data RAM drive read data on the SysAD bus. ScDOE[1:0] word index is driven
by the R5000 L2 cache controller.

In case cache miss (ScMatch deasserted two cycles after block read issue cycle), the GT-96100A responds to the
transaction. It also deasserts ScDOE* preventing L2 data RAM from driving the bus, and drives ScWord[1:0] for
the L2 data RAM to load the data that the GT-96100A returns to CPU. An example of L2 read miss is shown in
Figure 10.
80 Revision 1.0

GT-96100A Advanced Communication Controller
Figure 10: R5000 L2 Read Miss Example

4.8 Multiple GT-96100A Support

Up to four GT-96100A devices can be connected to the CPU System Interface without the need for any glue
logic. This capability increases the address space and adds significant flexibility for system design.

Enable multiple GT-96100A devices by sampling the value of DAdr[10] on RESET, see Section 22. �Reset Con-
figuration� on page 452. If this pin is sampled HIGH, multiple GT-96100A devices are enabled. The value of
DAdr[10] sampled on RESET will also set bit 18, MultiGT, of the CPU Configuration register at 0x000. This bit
is programmable after RESET.

NOTE: This pin must be tied LOW if there is only one GT-96100A device.

If multiple GT-96100A devices are enabled, the values sampled on Ready* and CSTiming* determine the ID of
the particular GT-96100A device, as shown in Table 32. This sampled values also program the MultiGTAct bits
[1:0] in the MultiGTID Register, 0x120. These bits are programmable after RESET.
Table 32: Pin Strapping the GT-96100A ID

Pin Configuration Function

Ready*, CSTiming* Multi-GT-96100A Address ID

00 -
01-

10 -
11-

GT responds to SysAD[26,25]=00
GT responds to SysAD[26,25]= 01
GT responds to SysAD[26,25]=10
GT responds to SysAD[26,25]= 11
NOTE: Boot GT-96100A must be programmed to 11

addr

read

D10 D11 D12 D13

I0 I1 I2 I3 I0 I1 I2 I3

SysClk

SysAD[63:0]

SysCmd[8:0]

ValidOut*

Release*

ScTCE*

ScMatch

ValidIn*

ScDOE*

ScWord[1:0]
Revision 1.0 81

GT-96100A Advanced Communication Controller
4.8.1 Hardware Connections
When Multiple GT-96100A devices are enabled, the WrRdy*, ValidIn*, and ScDOE* signals have slightly differ-
ent functionality versus when only one GT-96100A is enabled.

4.8.2 MultiGT Bit In The CPU Configuration Register
When the MultiGT bit is SET, the CPU Interface address decoding reduces to:

� If (SysAD[26:25] == ID) AND (it's a WRITE), the access is directed to the internal space of the CPU
Interface registers. Bits[11:0] define the specific register offset.

� If (SysAD[26:25] == ID) AND (it's a READ) AND (SysAD[27] == 0), the access is directed to the
internal space of the CPU Interface registers. Bits[11:0] define the specific register offset.

� If (SysAD[26:25] == ID) AND (it's a READ) AND (SysAD[27] == 1), the access is directed to
BootCS*. Since 0x0.1FC0.0000 implies SysAD[26:25] == 3, the GT 96100A holding the boot device
should be strapped to ID = 3.

NOTE: As long as MultiGT bit is SET, there is no access to PCI, SDRAM and Devices and DMA internal regis-
ters. Access is available only to the CPU interface internal registers and to boot ROM.

� When the MultiGT bit is CLEARED, the CPU Interface resumes normal address decoding.
NOTE: After the MultiGT bit is CLEARED, WrReady*,ValidIn*, and ScDOE* signals still operate as sustained

3-state (STS) outputs.

Table 33: WrRdy*, ValidIn*, and ScDOE* Signal Multiple GT-96100A Functionality

Signal Multiple GT-96100A Functional ity

WrRdy* An open-source output requiring a 4.7 KOhm pull-down resistor. All WrRdy* outputs from
the GT-96100A devices must be tied together to drive the CPU WrRdy* input.
WrRdy* is driven LOW for one cycle before floating the output.

ValidIn* An open-drain output requiring a 4.7 KOhm pull-up resistor. All ValidIn* outputs from the GT-
96100A devices must be tied together to drive the CPU ValidIn* input.
ValidIn* is driven HIGH for one cycle before floating the output.

ScDOE* An open-source output requiring a 4.7 KOhm pull-down resistor. All ScDOE* outputs from the
GT-96100A devices must be tied together to drive the CPU and Secondary cache inputs.
ScDOE* is driven LOW for one cycle before floating the outputs.
82 Revision 1.0

GT-96100A Advanced Communication Controller
4.8.3 Initializing a Multiple GT-96100A System
This section contains an example of connecting two GT-96100A devices to the same CPU. In actuality, it is pos-
sible to connect up to four GT-96100A devices to the same CPU.

Use the following procedure for initializing a system with two GT-96100A devices attached to the same CPU.

NOTE: Assuming that the two GT-96100A devices are called GT-1 and GT-2, respectively; both devices have
DAdr[10] pulled to VCC (enabling MultiGT mode). GT-1 has Ready* and CSTiming* tied to 11 (boot
GT-96100A). GT-2 has Ready* and CSTiming* tied to 00. GT-1 has the BootRom.

Both GT-96100A devices will now resume NORMAL operation with USUAL address decoding.

NOTE: In MultiGT mode, the GT-96100A does not support address mismatch in the CPU Interface decode. In
other words, if the CPU attempts a READ of which the address is not mapped in ANY of the GT-
96100A devices in the system, ValidIn* is not returned to the CPU and the system will halt.

4.8.4 Multi-GT Restrictions
1. Due to System Interface loading, maximum operating frequency will decrease as the number of GT-

96100A devices increase.
2. When Multi-GT support is enabled and if the CPU and GT-96100A are in Pipeline Writes mode (bit 11,

WriteMode, in the CPU Interface Configuration register - 0x0, reset to 0), a contention for one clock
cycle on the WrRdy* signal may occur. As a result, only R4000 mode (no Pipeline writes - 1 wait state
between transactions) is allowed When Multi-GT support is enabled.

Table 34: Initializing a Multiple GT-96100A System

Init ial ization Steps Descript ion
1. Access GT-1's BootROM and
reconfigure GT-2's CPU Interface
address space registers.

After reset, the processor executes from the BootROM on GT-1
because the address on SysAD is 0x0.1FCx.xxxx where
SysAD[27:25] = 111 and it's a read cycle. Registers on GT-1 are
accessible via address SysAD[26:25]=11, [20:0]=offset]. Registers on
GT-2 are accessible via address [SysAD[26:25]=00, [20:0]=offset].

2. Access GT-1's BootROM and
reconfigure GT-1's CPU Interface
address space registers.

Reconfigures ALSO, the Internal space address decode register, so
that later (once Multi-GT mode is disabled) the user can distinguish
between internal accesses to GT-1 or GT-2.

3. Lower GT-2 BootCS* high decode
register BELOW 0x0.1FCx.xxxx (i.e.
0x0.1FBx.xxxx).

Causes GT-2 to ignore accesses to 0x0.1FCx.xxxx once taken out of
MultiGT mode. Further, the address mapping of register and memory
space in the GT-96100A and on their interfaces must be unique. In
other words, the four PCI address ranges, two SDRAM ranges, I/O
space, and internal GT-96100A register spaces of both system con-
trollers must be different.

4. Clear GT-2 Multi-GT mode bit.

5. Clear GT-1 Multi-GT mode bit.
Revision 1.0 83

GT-96100A Advanced Communication Controller
4.9 CPU Interface Restrictions

1. The GT-96100A does not support access of more than 4 bytes to internal space.

4.10 CPU Interface Control Registers
Table 35: CPU Interface Register Map

Description Offset Page Number

CPU Configuration

CPU Interface Configuration 0x000 page 85

Multi-GT Register 0x120 page 87

CPU Address Decode

SCS[1:0]* Low Decode Address 0x008 page 87

SCS[1:0]* High Decode Address 0x010 page 87

SCS[3:2]* Low Decode Address 0x018 page 88

SCS[3:2]* High Decode Address 0x020 page 88

CS[2:0]* Low Decode Address 0x028 page 88

CS[2:0]* High Decode Address 0x030 page 88

CS[3]* & Boot CS* Low Decode Address 0x038 page 88

CS[3]* & Boot CS* High Decode Address 0x040 page 89

PCI_0 I/O Low Decode Address 0x048 page 89

PCI_0 I/O High Decode Address 0x050 page 89

PCI_0 Memory 0 Low Decode Address 0x058 page 89

PCI_0 Memory 0 High Decode Address 0x060 page 89

PCI_0 Memory 1 Low Decode Address 0x080 page 90

PCI_0 Memory 1 High Decode Address 0x088 page 91

PCI_1 I/O Low Decode Address 0x090 page 90

PCI_1 I/O High Decode Address 0x098 page 90

PCI_1 Memory 0 Low Decode Address 0x0a0 page 90

PCI_1 Memory 0 High Decode Address 0x0a8 page 91

PCI_1 Memory 1 Low Decode Address 0x0b0 page 91

PCI_1 Memory 1 High Decode Address 0x0b8 page 91

Internal Space Decode 0x068 page 91
84 Revision 1.0

GT-96100A Advanced Communication Controller
4.10.1 CPU Configuration Registers

SCS[1:0]* Address Remap 0x0d0 page 91

SCS[3:2]* Address Remap 0x0d8 page 92

CPU Address Decode (Continued)

CS[2:0]* Remap 0x0e0 page 92

CS[3]* & Boot CS* Remap 0x0e8 page 92

PCI_0 I/O Remap 0x0f0 page 92

PCI_0 Memory 0 Remap 0x0f8 page 92

PCI_0 Memory 1 Remap 0x100 page 93

PCI_1 I/O Remap 0x108 page 93

PCI_1 Memory 0 Remap 0x110 page 93

PCI_1 Memory 1 Remap 0x118 page 93

CPU Sync Barrier

PCI_0 Sync Barrier Virtual Register 0x0c0 page 94

PCI_1 Sync Barrier Virtual Register 0x0c8 page 94

Table 36: CPU Interface Configuration, Offset: 0x000

Bits Field Name Function Init ial Value

8:0 Reserved Cache Operation Mapping
Indicates which address bits the GT�
64012 uses for cache flush and cache
invalidate operations. Bits [8:0] corre-
spond to SysAD[35:27].
Must be 0

0x0

9 Reserved Secondary Cache support
0 - GT�64012 not present
1 - GT�64012 present
Must be 0

0x0

10 Reserved Reserved
Must be 0

0x0

Table 35: CPU Interface Register Map (Continued)

Description Offset Page Number
Revision 1.0 85

GT-96100A Advanced Communication Controller
11 WriteMode Write mode
0 - Pipelined writes mode
1 - R4000 mode
There must be at least two dead-cycles
minimum between consecutive address-
phase.

0x0

12 Endianess Byte orientation
0 - Big endian
1 - Little endian
NOTE: Affects only the internal registers

and the PCI Configuration data
register.

Sampled at RESET via
the Interrupt* pin.

13 Reserved Must be 0. 0x0

14 R5KL2_present Second level cache present
0 - R5KL2 not present
1 - R5KL2 present

0x0

15 External_Hit_Delay Register second level cache ScMatch sig-
nal1.
0 - Not sampled inside the GT-96100A.
1 - Sampled inside the GT-96100A.

0x0

16 CPU WriteRate CPU Data Write Rate
0 - DXDXDXDX
1 - DDDD

0x0

17 Stop_Retry Relevant only if PCI Retry was enabled
(DAdr[6] was sampled 0 at reset).
0 - Continue to Retry all PCI transactions
targeted to the controller�s PCI slave
1 - Stop Retry of PCI transactions

0x0

18 MultiGT Multiple GT-96100A support
0 - Not Supported
1 - Supported

Sampled at RESET via
the DAdr[10] pin

19 SysADCValid GT-96100A to CPU SysADC Connection
0 - Not connected (no parity)
1 - Connected

0x0

21:20 PCI_0_Override 00 - Normal address decoding
01 - 1Gbyte PCI_0 Mem0 space
10 - 2Gbyte PCI_0 Mem0 space
11 - Reserved

0x0

23:22 Reserved 0x0

Table 36: CPU Interface Configuration, Offset: 0x000 (Continued)

Bits Field Name Function Init ial Value
86 Revision 1.0

GT-96100A Advanced Communication Controller

4.10.2 CPU Address Decode Registers

25:24 PCI_1_Override 00 - Normal address decoding
01 - 1Gbyte PCI_1 Mem0 space
10 - 2Gbyte PCI_1 Mem0 space
11 - Reserved

0x0

31:26 Reserved 0x0

1. TagRAMs used with L2/L3 cache output the ScMatch signal registered. If for some reason, the TagRAM in use outputs
the ScMatch signal non-registered, this bit must be set to 1 to maintain timing relationship between the cache and the
GT-96100A.

Table 37: Multi-GT register, Offset: 0x120

Bits Field Name Function Init ial Value

1:0 MultiGTAct Multi-GT Activity bits
These bits represent the ID to which the
GT-96100A responds with activity.

Value sampled at reset
on Ready* and CSTim-
ing*.

31:2 Reserved 0x0

Table 38: SCS[1:0]* Low Decode Address, Offset: 0x008

Bits Field Name Function Init ial Value

14:0 Low SDRAM banks 1 and 0 are accessed
when the decoded addresses are
between Low and High.

0x0000

31:15 Reserved 0x0

Table 39: SCS[1:0]* High Decode Address, Offset: 0x010

Bits Field Name Function Init ial Value

10:0 High SDRAM banks 1 and 0 are accessed
when the decoded addresses are
between Low and High.

0x07

31:11 Reserved 0x0

Table 36: CPU Interface Configuration, Offset: 0x000 (Continued)

Bits Field Name Function Init ial Value
Revision 1.0 87

GT-96100A Advanced Communication Controller

Table 40: SCS[3:2]* Low Decode Address, Offset: 0x018

Bits Field Name Function Init ial Value

14:0 Low SDRAM banks 3 and 2 are accessed
when the decoded addresses are
between Low and High.

0x0008

31:15 Reserved 0x0

Table 41: SCS[3:2]* High Decode Address, Offset: 0x020

Bits Field Name Function Init ial Value

10:0 High SDRAM banks 3 and 2 are accessed
when the decoded addresses are
between Low and High.

0x0F

31:11 Reserved 0x0

Table 42: CS[2:0]* Low Decode Address, Offset: 0x028

Bits Field Name Function Init ial Value

14:0 Low Device banks 2, 1, and 0 are accessed
when the decoded addresses are
between Low and High.

0x00e0

31:15 Reserved 0x0

Table 43: CS[2:0]* High Decode Address, Offset: 0x030

Bits Field Name Function Init ial Value

10:0 High Device banks 2, 1, and 0 are accessed
when the decoded addresses are
between Low and High.

0xF0

31:11 Reserved 0x0

Table 44: CS[3]* & Boot CS* Low Decode Address, Offset: 0x038

Bits Field Name Function Init ial Value

14:0 Low Device bank 3 and the boot bank are
accessed when the decoded addresses
are between Low and High.

0x00f8

31:15 Reserved 0x0
88 Revision 1.0

GT-96100A Advanced Communication Controller

Table 45: CS[3]* & Boot CS* High Decode Address, Offset: 0x040

Bits Field Name Function Init ial Value

10:0 High Device bank 3 and the boot bank are
accessed when the decoded addresses
are between Low and High.

0xFF

31:11 Reserved 0x0

Table 46: PCI_0 I/O Low Decode Address, Offset: 0x048

Bits Field Name Function Init ial Value

14:0 Low The PCI_0 I/O address space is accessed
when the decoded addresses are
between Low and High.

0x0080

31:15 Reserved 0x0

Table 47: PCI_0 I/O High Decode Address, Offset: 0x050

Bits Field Name Function Init ial Value

10:0 High The PCI_0 I/O address space is accessed
when the decoded addresses are
between Low and High.

0x8F

31:11 Reserved 0x0

Table 48: PCI_0 Memory 0 Low Decode Address, Offset: 0x058

Bits Field Name Function Init ial Value

14:0 Low The PCI_0 memory address space is
accessed when the decoded addresses
are between Low and High.

0x0090

31:15 Reserved 0x0

Table 49: PCI_0 Memory 0 High Decode Address, Offset: 0x060

Bits Field Name Function Init ial Value

10:0 High The PCI_0 memory address space is
accessed when the decoded addresses
are between Low and High.

0x9F

31:11 Reserved 0x0
Revision 1.0 89

GT-96100A Advanced Communication Controller

Table 50: PCI_0 Memory 1 Low Decode Address, Offset: 0x080

Bits Field Name Function Init ial Value

14:0 Low The PCI_0 memory address space is
accessed when the decoded addresses
are between Low and High.

0x0790

31:15 Reserved 0x0

Table 51: PCI_0 Memory 1 High Decode Address, Offset: 0x088

Bits Field Name Function Init ial Value

10:0 High The PCI_0 memory address space is
accessed when the decoded addresses
are between Low and High.

0x79F

31:11 Reserved 0x0

Table 52: PCI_1 I/O Low Decode Address, Offset: 0x090

Bits Field Name Function Init ial Value

14:0 Low The PCI_1 I/O address space is accessed
when the decoded addresses are
between Low and High.

0x0100

31:15 Reserved 0x0

Table 53: PCI_1 I/O High Decode Address, Offset: 0x098

Bits Field Name Function Init ial Value

10:0 High The PCI_1 I/O address space is accessed
when the decoded addresses are
between Low and High.

0x10F

31:11 Reserved 0x0

Table 54: PCI_1 Memory 0 Low Decode Address, Offset: 0x0a0

Bits Field Name Function Init ial Value

14:0 Low The PCI_1 memory address space is
accessed when the decoded addresses
are between Low and High.

0x0110

31:15 Reserved 0x0
90 Revision 1.0

GT-96100A Advanced Communication Controller

Table 55: PCI_1 Memory 0 High Decode Address, Offset: 0x0a8

Bits Field Name Function Init ial Value

10:0 High The PCI_1 memory address space will be
accessed when the decoded addresses
are between Low and High.

0x11F

31:11 Reserved 0x0

Table 56: PCI_1 Memory 1 Low Decode Address, Offset: 0x0b0

Bits Field Name Function Init ial Value

14:0 Low The PCI_1 memory address space is
accessed when the decoded addresses
are between Low and High.

0x0120

31:15 Reserved 0x0

Table 57: PCI_1 Memory 1 High Decode Address, Offset: 0x0b8

Bits Field Name Function Init ial Value

10:0 High The PCI_1 memory address space is
accessed when the decoded addresses
are between Low and High.

0x12F

31:11 Reserved 0x0

Table 58: Internal Space Decode, Offset: 0x068

Bits Field Name Function Init ial Value

14:0 IntDecode Registers inside the GT-96100A are
accessed when SysAD bits 35:21 match
the value programmed in bits 14:0.

0x00a0

31:15 Reserved 0x0

Table 59: SCS[1:0]* Address Remap, Offset: 0x0d0

Bits Field Name Function Init ial Value

10:0 SCS[1:0]*_Remap CPU address remap to resources for
SDRAM 0 region.

0x0

31:11 Reserved 0x0
Revision 1.0 91

GT-96100A Advanced Communication Controller

Table 60: SCS[3:2]* Address Remap, Offset: 0x0d8

Bits Field Name Function Init ial Value

10:0 SCS[3:2]*_Remap CPU address remap to resources of
SDRAM 1 region.

0x008

31:11 Reserved 0x0

Table 61: CS[2:0]* Address Remap, Offset: 0x0e0

Bits Field Name Function Init ial Value

10:0 CS[2:0]*_Remap CPU address remap to resources of
Device 0 region.

0x0e0

31:11 Reserved 0x0

Table 62: CS[3]* & Boot CS* Address Remap, Offset: 0x0e8

Bits Field Name Function Init ial Value

10:0 CS[3]*_&_
Boot CS*_Remap

CPU address remap to resources of
Device 1 region.

0x0f8

31:11 Reserved 0x0

Table 63: PCI_0 IO Address Remap, Offset: 0x0f0

Bits Field Name Function Init ial Value

10:0 PCI_0_IO_Remap CPU address remap to resources of
PCI_0 IO region.

0x080

31:11 Reserved 0x0

Table 64: PCI_0 Memory 0 Address Remap, Offset: 0x0f8

Bits Field Name Function Init ial Value

10:0 PCI_0_Mem0_
Remap

CPU address remap to resources of
PCI_0 Memory 0 region.

0x090

31:11 Reserved 0x0
92 Revision 1.0

GT-96100A Advanced Communication Controller

Table 65: PCI_0 Memory 1 Address Remap, Offset: 0x100

Bits Field Name Function Init ial Value

10:0 PCI_0_Mem1_
Remap

CPU address remap to resources of
PCI_0 Memory 1 region.

0x790

31:11 Reserved 0x0

Table 66: PCI_1 IO Address Remap, Offset: 0x108

Bits Field Name Function Init ial Value

10:0 PCI_1_IO_Remap CPU address remap to resources of
PCI_1 IO region.

0x100

31:11 Reserved 0x0

Table 67: PCI_1 Memory 0 Address Remap, Offset: 0x110

Bits Field Name Function Init ial Value

10:0 PCI_1_Mem0_
Remap

CPU address remap to resources of
PCI_1 Memory 0 region.

0x110

31:11 Reserved 0x0

Table 68: PCI_1 Memory 1 Address Remap, Offset: 0x118

Bits Field Name Function Init ial Value

10:0 PCI_1_Mem1_
Remap

CPU address remap to resources of
PCI_1 Memory 1 region.

0x120

31:11 Reserved 0x0
Revision 1.0 93

GT-96100A Advanced Communication Controller
4.10.3 CPU Sync Barrier
Table 69: PCI_0 Sync Barrier Virtual Register, Offset: 0x0c0

Bits Field Name Function Init ial Value

31:0 SyncBarrier_0 A CPU read from this register creates a
synchronization barrier cycle. When Vali-
dIn* is returned to the CPU, both of the
PCI_0 slave FIFOs are guaranteed to be
empty. The read data returned to the CPU
is random and should be ignored.
This register is READ ONLY.

0x0

Table 70: PCI_1 Sync Barrier Virtual Register, Offset: 0x0c8

Bits Field Name Function Init ial Value

31:0 SyncBarrier_1 A CPU read from this register creates a
synchronization barrier cycle. When Vali-
dIn* is returned to the CPU, both of the
PCI_1 slave FIFOs are guaranteed to be
empty. The read data returned to the CPU
is random and should be ignored.
This register is READ ONLY.

0x0
94 Revision 1.0

GT-96100A Advanced Communication Controller
5. MEMORY CONTROLLER
The GT-96100A�s Memory Controller consists of an integrated SDRAM controller and a device controller. The
SDRAM controller has a 15-bit address bus (DAdr[12:0],BankSel[1:0]) and shares the 64-bit address/data (AD)
bus for data transfers. The device controller uses the 64-bit muxed AD bus for both address and data transfers.

All memory and I/O devices in a GT-96100A system are connected to the AD bus (the SysAD bus is used prima-
rily as a point-to-point connection between the CPU and the GT-96100A system.)

The memory controller only MASTER reads and writes transactions to SDRAM or devices. It receives the
instructions for these transactions from the CPU, IDMA controller, or a PCI device on the PCI interface.

NOTE: A device may not master transactions via the GT-96100A�s memory controller.

The GT-96100A�s memory controller supports both 32 or 64-bit SDRAM as well as 8-, 16-, 32-, and 64-bit
devices.

NOTE: Whenever this datasheet refers to 64-bit SDRAM, it means 64-bits of data plus eight additional bits for
ECC.

The GT-96100A supports two arbitration schemes for memory controller requests. The default arbitration is
shown in Figure 11, while a modified arbitration scheme is shown in Figure 12.
Revision 1.0 95

GT-96100A Advanced Communication Controller
Figure 11: Memory Controller Default Arbitration

UMA

Toggle

CPU Comm / IDMA

RefreshToggle

PCI 1 PCI 0

NOTE: Only if the memory controller is idle, a Low Priority UMA request is granted.
96 Revision 1.0

GT-96100A Advanced Communication Controller
Figure 12: Memory Controller Modified Arbitration

The modified arbitration reduces the latency associated with CPU memory read transactions.1

1. Programming the memory controller�s arbitration mode is done using bit 10 of the SDRAM Burst Mode register (see Table 107, �SDRAM Burst
Mode, Offset: 0x478,� on page 135).

CPU (*)

Toggle

CPU Comm / IDMA

RefreshToggle

PCI 1 PCI 0

NOTE: Only if the memory controller is idle, a Low Priority UMA request is granted.
Revision 1.0 97

GT-96100A Advanced Communication Controller
5.1 SDRAM Controller

The SDRAM controller supports up to four banks of SDRAMs.

The SDRAM configuration register (0x448) contains configuration information which is valid for the four banks.
Various access parameters can be programmed on a per bank basis as each bank has its own parameters register
(0x44c - 0x458).

The supported address depth of the SDRAM can vary for each bank, depending on whether 16, 64, 128 or
256Mbit SDRAMs are used (see Section 5.2 �Connecting the Address Bus to the SDRAM� on page 106 for more
information). Up to 256 Mbytes can be addressed by each SCS for a total SDRAM address space of 512 Mbytes
by the GT-96100A system.

5.1.1 SDRAM Configuration Register (0x448)
The SDRAM Configuration Register contains parameters which are used for all of the SDRAM banks used with
the GT-96100A.

5.1.1.1 Refresh Rates
The GT-96100A implements standard SCAS before SRAS refreshing.

The refresh rate for the SDRAM banks is programmable using the RefIntCnt field in the SDRAM Configuration
Register, see Table 105. For example, the default value of RefIntCnt is 0x200. If TClk is 100 MHz, than a refresh
sequence will occur every 5us. This is derived from 100MHz (=10ns) * 0x200 (512d) = 5.12us.

Every instance that the refresh counter in the GT-96100A device reaches its terminal count, a refresh request is
sent to the Memory Controller. This request enters the arbiter. Once the AD bus is idle and the last SDRAM or
Device transaction has finished, the refresh cycle begins.

NOTE: If a UMA transaction is being serviced, the external SDRAM master is responsible for refreshing the
SDRAM. See Section 5.6 �Unified Memory Architecture (UMA) Support� on page 113.

5.1.1.2 Non-staggered and staggered Refresh
Non-staggered or staggered refresh for each bank can be programmed according to StagRef in the SDRAM con-
figuration register.

In non-staggered refresh, SCS[3:0]* and SRAS* and SCAS* simultaneously asserts refreshing all banks at the
same time as shown in Figure 13.

If the SDRAM Controller is programmed to perform staggered refresh (default), SCS[3:0]* will not simulta-
neously assert LOW together with SRAS*, following the low-going SCAS*. Rather, SCS[0]* will first go LOW
for 1 cycle, followed by SCS[1]* on the next TClk, and so on. After the last SCS[3]* has asserted LOW for 1
cycle, SCAS* and SRAS* will go HIGH again. Staggered Refresh is useful for load balancing, shown in Figure
14.
98 Revision 1.0

GT-96100A Advanced Communication Controller
Figure 13: Non-Staggered Refresh Waveform

Figure 14: Staggered Refresh Waveform

5.1.1.3 Read Modify Write Enable/ECC
The GT-96100A supports Error Checking and Correction of 64-bit wide SDRAMs.

NOTE: See Section 6. �Data Integrity� on page 143 for more information about ECC.

For 64-bit SDRAMs with ECC enabled, ECC is generated and written to the ADP[7:0] lines on 64-bit writes dur-
ing the same cycle that the data is written.

Bit 15 enables or disables read modify write protocol to SDRAM. If ECC is enabled in any of the DRAM banks,
this bit must be set to 1 to enable read modify write.

ECC checking and generation requires a 72-bit DIMM to store the ECC information. In order to generate the
ECC on partial writes, the current ECC bits must first be read and then modified during the partial write. The
protocol for the read modify write transaction is as follows:

1. Read the existing data and ECC information. On this read, all SDQM* lines are asserted (LOW). This
means that the BE (byte enable) for the ECC byte can be connected to any of the SDQM[7:0]* outputs.
The ECC data is read on the ADP[7:0] inputs.

2. Modify the ECC information based on the data that is to be written. The modification of the ECC byte is
done in the GT-96100A system.

TClk

SCS[3:0]*

SRAS*

0F F

SCAS*

TClk

SCS[3:0]*

SRAS*

BDEF F7

SCAS*
Revision 1.0 99

GT-96100A Advanced Communication Controller
3. Write the new data and new ECC byte.

Figure 15 illustrates the procedure used to generate ECC in a partial write to SDRAM.

Figure 15: Read Modify Write Transaction by the SDRAM Controller

5.1.2 Duplicating Signals
Some systems require using duplicate signals due to loading requirements. The following sections outlines which
signals can be duplicated by setting the appropriate bit in the SDRAM Configuration Register.

5.1.2.1 Duplicating SDRAM Control Lines
SRAS*, SCAS*, and DWr* are the control lines for SDRAM. These signals can be duplicated on different pins
for loading considerations.

Setting bit 19 to 0 means these SRAS*, SCAS*, and DWr* signals are not duplicated on other pins (default).

Setting bit 19 to 1 means SRAS*, SCAS*, and DWr* signals are duplicated on DMAReq[0]*/MREQ*,
DMAReq[3]*, and BypsOE*/MGNT, respectively. These pins are no longer usable as DMAReq[0]*/MREQ*,
DMAReq[3]*, and MGNT*/BypOE* when bit 19 is set to 1. Regardless of the pin strapping of DAdr[7] sampled
on RESET (UMA enable), when bit 19 is set to 1, the duplication of SRAS*, SCAS*, and DWr* on the
DMAReq[0]*, DMAReq[3]*, and BypsOE* pins takes priority over setting DMAReq[0]* to MREQ* and Byp-
sOE* to MGNT.

2. Modify Data and ECC Byte
in the GT-96100A Device

ADP[7:0]

.

.

.

x8
SDRAM

#1

x8
SDRAM

#2

x8
SDRAM

#7

x8
SDRAM

#8

x8
SDRAM

#9

x72
SDRAM

SDQM[0]*
ASSERTED

SDQM[1]*
ASSERTED

SDQM[6]*
ASSERTED

SDQM[7]*
ASSERTED

1. READ All Data and
ECC Bits

0 0 1 0 1 1 1 0
Existing ECC Byte

1 0 1 1 0 0 1 0

ADP[7:0]
SDRAM ECC

.

.

.

x8
SDRAM

#1

x8
SDRAM

#2

x8
SDRAM

#7

x8
SDRAM

#8

x8
SDRAM

#9

x72
SDRAM

SDQM[0]*
ASSERTED

SDQM[1]*
ASSERTED

SDQM[6]*
ASSERTED

SDQM[7]*
ASSERTED

3. WRITE New Data and
Modified ECC Byte

SDQM[X]*
ASSERTED

SDQM[X]*
ASSERTED

Data[7:0]

Data[15:8]

Data[55:48]

Data[63:56]

Data[7:0]
NEW

Data[15:8]
NEW

Data[55:48]
EXISTING

Data[63:56]
EXISTING

New ECC Byte
100 Revision 1.0

GT-96100A Advanced Communication Controller
5.1.2.2 Duplicating DAdr[11] and BankSel[1] on DMAReq[2:1]*
DAdr[11] and BankSel[1] are used for 64/128/256 Mbit SDRAM. These signals can be duplicated on different
pins for loading considerations.

Setting bit 20 to 0 means these pins are not duplicated on other pins (default).

Setting bit 20 to 1 means DAdr[11] and Banksel[1] signals are duplicated on DMAReq[2]* and DMAReq[1]*,
respectively. These pins are no longer usable as DMAReq[2]* and DMAReq[1]* when bit 20 is set to 1.

NOTE: If ECC is implemented in the system, ADP[5:4] cannot be used as DAdr[11] and BankSel[1]. There-
fore, to use DAdr[11] and BankSel[1], program bit 20 to 1 and use DMAReq[2:1]* as DAdr[11] and
BankSel[1].

5.1.2.3 DMA End of Transfer Pins Functionality
The IDMA controllers use the End of Transfer pins to give an external device the ability to terminate a current
DMA transfer. See Table 236 for more information about this feature.

Bit 21 controls the function of DMAReq[3]*. Setting this bit to 0 means DMAReq[3]* functions as DMA
Request for channel 3. Setting this bit to 1 means DMAReq3* functions as End of Transfer for channel 0, EOT0.

Likewise, setting bit 22 to 0 means Ready* functions as Ready. And, setting this bit to 1 means Ready* functions
as End of Transfer for channel 1, EOT[1].
Table 71: DMAReq*, Ready* and BypsOE* Functionality

Primary
Signal
Name

Secondary
Signal Name
(Programmed
on RESET) Bit 19 = 1 Bit 20 = 1 Bit 21 = 1 Bit 22 = 1

DMAReq[0]* MREQ* SRAS*

DMAReq[1]* BankSel[1]

DMAReq[2]* DAdr[11]

DMAReq[3]* SCAS* EOT[0]

Ready* EOT[1]

BypsOE* MGNT* DWr*
Revision 1.0 101

GT-96100A Advanced Communication Controller
5.1.2.4 Multiplexing DAdr[12]
If any of the SDRAM banks is configured to 256Mbit, an additional DRAM address bit is required. If bit 24 is set
to 1, DAdr[12] is driven on DMAReq[3]* pin. If bit 24 is set to 0, it is driven on ADP[0] pin.

NOTE: If ECC is implemented in the system, ADP[0] cannot be used as DAdr[12]. To use DAdr[12], program
bit 24 to 1 and use DMAReq[3]* as DAdr[12].

5.1.3 Registered SDRAM Support
The GT-96100A SDRAM controller can be configured to interface registered SDRAM DIMMs.

Setting bit 23 to 1means the registered SDRAM is enabled and the SDRAM controller drives and samples
SDRAM signals accordingly. The SDRAM controller compensates the clock cycle needed for the DIMM sam-
ples SDRAM control signals. Only 64-bit registered SDRAMs are supported.

5.1.4 SDRAM Operation Mode Register (0x474)
The SDRAM Operation Mode Register is a 3-bit register used to execute commands other than standard memory
reads and writes to the SDRAM. These operations include:

� Normal SDRAM Mode (0x0)
� NOP Commands (0x1)
� Precharge All Banks (0x2)
� Writing to the SDRAM Mode Register (0x3)
� Force a Refresh Cycle (0x4)

In order to execute one of the above commands on the SDRAM, the following procedure must occur:
1. SDRAM Operation Mode Register must be written the corresponding value. Either the CPU or a PCI

device can master this transaction.
2. This write must be followed by a dummy word (32-bit) write to the corresponding SDRAM.
3. To complete the command, the SDRAM Operation Mode Register must be written 0x0 to place it back

into Normal SDRAM Mode.

5.1.4.1 Normal SDRAM Mode
The SDRAM Operation Mode Register must be written 0x0 to enable normal reading and writing to the
SDRAM.

5.1.4.2 NOP Commands
The NOP command is used to perform a NOP to an SDRAM which is selected by the SDRAM Chip Select
(SCS[3:0]*). This prevents unwanted commands from being registered during idle or wait states.

5.1.4.3 Precharge All Banks
The Precharge Bank command is used to deactivate the open row in a particular bank or the open row in both
banks.

Once a bank has been precharged, it is in the idle state and must be activated prior to any read or write commands
being issued to that bank.
102 Revision 1.0

GT-96100A Advanced Communication Controller
5.1.4.4 Writing to the SDRAM�s Parameter Register
Each SDRAM has its own Mode Register. The Mode Register defines the specific operation mode for the
SDRAM. This definition includes the selection of a burst length, SCAS latency, operating mode, etc.

NOTE: Refer to the SDRAM data sheet for more information about this register.

Typically, the Mode Register of each SDRAM is initialized on boot-up of the system and is kept static. The GT-
96100A has the flexibility to allow the CPU or a PCI Master to update the SDRAM�s Mode Register at any time
during the operation.

The parameters that the GT-96100A can change are the CAS latency and the burst length. To change these
parameters in the SDRAM�s Mode Register:

1. Update the corresponding SDRAM Bank Parameters Register (0x44c - 0x458) with the correct values.
2. The SDRAM Operation Mode Register must be written to 0x3. This indicates a Write Command to the

SDRAM Mode Register.
3. This write must be followed by a dummy word (32-bit) write to the corresponding SDRAM whose

Mode Register must be updated.
4. Finally, the SDRAM Operation Mode Register must be written 0x0 to place it back into Normal

SDRAM Mode.

The GT-96100A uses the following procedure to automatically initialize the SDRAM on boot up.

NOTE: This default initialization can be easily overwritten by the procedure described above.

1. SRAS* and DWr* are asserted with DAdr[10] HIGH and SCS[3:0] = 0000. This indicates a Precharge
to all SDRAM Banks.

2. SRAS* and SCAS* are asserted with SCS[3:0] = 0000. This indicates a CBR (CAS before RAS)
refresh to all SDRAM Banks. This occurs twice in a row.

3. SRAS*, SCAS*, and DWr* are asserted four times in a row.
 - Once with SCS[3:0] = 1110.
 - Once with SCS[3:0] = 1101.
 - Once with SCS[3:0] = 1011.
 - And, once with SCS[3:0] = 0111.
This command programs each of the SDRAM Mode Registers by activating each of the four chip
selects (SCS[3:0]) individually.

The GT-96100A automatically initializes the SDRAM on boot up to Sub-block burst ordering as required for
MIPS CPUs block reads.

NOTE: The GT-96100A always programs the SDRAM�s mode register to burst in sub-block order which sup-
port the MIPS CPU burst order. The other modes that are programmed following boot up are the default
values of the SDRAM control and parameters register.

Set the GT-96100A to initialize to linear ordering by programing SDRAM Burst Mode register to 0x9
and then following the above procedure. Initializing to linear ordering is only possible with a linear
burst read type CPU.

5.1.4.5 Force Refresh
The Force Refresh Command is used to execute a refresh cycle on the particular bank that is accessed.
Revision 1.0 103

GT-96100A Advanced Communication Controller
5.1.5 SDRAM Address Decode Register (0x47c)
The Address Decode Register is a three bit register which determines how bits of an address, presented on the
SysAD or PCI bus, are translated to row and column address bits on DAdr[12:0] and BankSel[1:0]. This flexibil-
ity allows the designer to choose the address decode setting. This gives the software the best chance This
improves the software�s capability of interleaving and enhancing overall system performance.

NOTE: The row and column address translation is different for 16 Mbit, 64/128 Mbit, 256 Mbit SDRAMs, 32-
bit and 64-bit SDRAM banks. The address decoding depends on the setting of AddrDecode. See Table
76 for the SRAS* and SCAS* address translation from the SysAD interface and PCI.

Table 72: SysAD/PCI Address Decoding for 32-bit SDRAM, 16 Mbit

AddrDecode,
0x47c

SysAD/PCI Bits used for
SRAS* on BankSel[0],
DAdr[10:0]

SysAD/PCI Bits used for
SCAS* on BankSel[0] ,
DAdr[10:0]

000 4, 21-11 4, �0�, 23-22, 10-5, 3-2

001 5, 21-11 5, �0�, 23-22, 10-6, 4-2

010 11, 21-12, 10 11, �0�, 23-22, 9-2

011 12, 21-13, 11-10 12, �0�, 23-22, 9-2

100 20, 21, 19-10 20, �0�, 23-22, 9-2

101 21, 20-10 21, �0�, 23-22, 9-2

110 22, 21-11 22, �0�, 23, 10-2 (only for x4 & x8)

111 23, 21-11 23, �0�, 22, 10-2 (only for x4)

Table 73: SysAD/PCI Address Decoding for 64-bit SDRAM, 256/512 Mbit

AddrDecode,

SysAD/PCI Bits used for
SRAS* on BankSel[0],
BankSel[1], DAdr[12:0]

SysAD/PCI Bits used for
SCAS* on BankSel[0] ,
BankSel[1], DAdr[12:0]

000 Illegal setting for 64, 128Mbit and 256Mbit SDRAM

001 6, 7, 25-13 6, 7, 29-28, �0�, 27-26, 12-8, 5-3

010 11, 12, 25-13 11, 12, 29-28, �0�, 27-26, 10-3

011 13, 14, 25-15, 12-11 13, 14, 29-28, �0�, 27-26, 10-3

100 21, 22, 25-23, 20-11 21, 22, 29-28, �0�, 27-26, 10-3

101 23, 24, 25, 22-11 23, 24, 29-28, �0�, 27-26, 10-3

110 24, 25, 23-11 24, 25, 29-28, �0�, 27-26, 10-3

111 25, 26, 27, 22-11 25, 26, 29-28, �0�, 24-23, 10-3
104 Revision 1.0

GT-96100A Advanced Communication Controller

Table 74: SysAD/PCI Address Decoding for 32-bit SDRAM, 64 Mbit

AddrDecode,
0x47c

SysAD/PCI Bits used for
SRAS* on BankSel[0],
BankSel[1] , DAdr[11:0]

SysAD/PCI Bits used for
SCAS* on BankSel[0],
BankSel[1], DAdr[11:0]

000 Illegal setting for 64, 128Mbit and 256Mbit SDRAM

001 5, 6, 23-12 5, 6, �00�, 25-24, 11-7, 4-2

010 11, 12, 23-13, 10 11, 12, �00�, 25-24, 9-2

011 12, 13, 23-14, 11-10 12, 13, �00�, 25-24, 9-2

100 20, 21, 23-22, 19-10 20, 21, �00�, 25-24, 9-2

101 22, 23, 21-10 22, 23, �00�, 25-24, 9-2

110 23, 24, 21-10 23, 24, �00�, 25, 22, 9-2
 (only for x4 & x8)

111 24, 25, 21-10 24, 25, �00�, 26, 22, 9-2
(Only for x4)

Table 75: SysAD/PCI Address Decoding for 64-bit SDRAM, 64/128 Mbit

AddrDecode,
0x47c

SysAD/PCI Bits used for
SRAS* on BankSel[0],
BankSel[1] , DAdr[11:0]

SysAD/PCI Bits used for
SCAS* on BankSel[0],
BankSel[1], DAdr[11:0]

000 Illegal setting for 64, 128Mbit and 256Mbit SDRAM

001 6, 7, 24-13 6, 7, 27, �0�, 26-25, 12-8, 5-3

010 11, 12, 24-13 11, 12, 27, �0�, 26-25, 10-3

011 13, 14, 24-15, 12-11 13, 14, 27, �0�, 26-25, 10-3

100 21, 22, 24-23, 20-11 21, 22, 27, �0�, 26-25, 10-3

101 23, 24, 22-11 23, 24, 27, �0�, 26-25, 10-3

110 24, 25, 22-11 24, 25, 27, �0�, 26, 23, 10-3
(Only for x4 & x8)

111 25, 26, 22-11 25, 26, 27, �0�, 24-23, 10-3
(Only for x4)
Revision 1.0 105

GT-96100A Advanced Communication Controller

5.2 Connecting the Address Bus to the SDRAM

Connecting the address bus to SDRAM is very simple with The GT-96100A. The SDRAM controller has its own
address bus and its depends on whether a 16 Mbit or 64 Mbit SDRAMs are being used.

5.2.1 16 MBit SDRAMs
For 16 Mbit SDRAMs, DAdr[10:0] and BankSel[0] are outputs of the GT-96100A and must be directly con-
nected to address bits 10-0 and Bank Select of the actual SDRAM.

NOTE: DAdr[11] and BankSel[1] are not used when connecting to 16 Mbit SDRAMs. These lines are in HIGH-
Z state when accessing 16Mbit SDRAMs.

During a SRAS cycle, a valid row address is placed on the DAdr[10:0] and BankSel[0] lines. During the SCAS
cycle, a valid column address is placed on DAdr[9:0] (10-bit). DAdr[10] is used as the auto-precharge select bit
and is always written 0 during SCAS cycles. BankSel[0] is held constant from the SRAS cycle.

With 16 MBit SDRAMs, the GT-96100A supports a maximum of 4M addresses, 12 address bits for SRAS and 10
address bits for SCAS.

5.2.2 64/128 Mbit SDRAMs
For 64/128 MBit SDRAMs, DAdr[11:0] and BankSel[1:0] are outputs of the GT-96100A and must be directly
connected to address bits 11-0 and Bank Select of the actual SDRAM.

During a SRAS cycle, a valid row address is placed on the DAdr[11:0] and BankSel lines. During the SCAS
cycle, a valid column address is placed on DAdr[11,9:0] (11-bit). DAdr[10] is used as the auto-precharge select
bit and is always written 0 during SCAS cycles. BankSel is held constant from the SRAS cycle.

With 64 MBit SDRAMs, the GT-96100A supports a maximum of 16M addresses, 14 address bits for SRAS and
10 address bits for SCAS (DAdr[11] is ignored and is in HIGH-Z state when accessing 64 Mbit SDRAMs).

Table 76: SysAD/PCI Address Decoding for 64-bit SDRAM, 256 Mbit

AddrDecode,
0x47c

SysAD/PCI Bits used for
SRAS* on BankSel[0],
BankSel[1], DAdr[12:0]

SysAD/PCI Bits used for
SCAS* on BankSel[0] ,
BankSel[1], DAdr[12:0]

000 Illegal setting for 64, 128Mbit and 256Mbit SDRAM

001 6, 7, 25-13 6, 7, 29-28, �0�, 27-26, 12-8, 5-3

010 11, 12, 25-13 11, 12, 29-28, �0�, 27-26, 10-3

011 13, 14, 25-15, 12-11 13, 14, 29-28, �0�, 27-26, 10-3

100 21, 22, 25-23, 20-11 21, 22, 29-28, �0�, 27-26, 10-3

101 23, 24, 25, 22-11 23, 24, 29-28, �0�, 27-26, 10-3

110 24, 25, 23-11 24, 25, 29-28, �0�, 27-26, 10-3

111 25, 26, 27, 22-11 25, 26, 29-28, �0�, 24-23, 10-3
106 Revision 1.0

GT-96100A Advanced Communication Controller
With 128 MBit SDRAMs, the GT-96100A supports a maximum of 32M addresses, 14 address bits for SRAS and
11 address bits for SCAS.

5.2.3 256 Mbit SDRAMs
For 256/512 MBit SDRAMs, DAdr[12:0] and BankSel[1:0] are outputs of the GT-96100A and must be con-
nected directly to address bits 12-0 and Bank Select of the actual SDRAM.

During a SRAS cycle, a valid row address is placed on the DAdr[12:0] and BankSel lines. During the SCAS
cycle, a valid column address is placed on DAdr[12-11,9:0] (12-bit). DAdr[10] is used as the auto-precharge
select bit and is always written 0 during SCAS cycles. BankSel is held constant from the SRAS cycle.

With 256/512 MBit SDRAMs, the GT-96100A supports a maximum of 128M addresses, 15 address bits in SRAS
and 12 address bits in SCAS. For a 64 bit wide SDRAM built from 128Mx4bit memories, 1Gbyte can be
addressed by a single SDRAM device decoder.
Revision 1.0 107

GT-96100A Advanced Communication Controller
Figure 16: 512 Mbit/64-bit SDRAM Connection to Memory Bus Using x8 Devices

5.3 Programmable SDRAM Parameters

The SDRAM controller of the GT-96100A device supports a wide range of SDRAMs with different access times
and each bank can be programmed independently by the SDRAM Bank[3:0] Parameter registers (0x44c-0x458).
These parameters include the number of clock cycles (based on TClk) between active SRAS* and SCAS*.

NOTE: To update the SCAS* Latency or the Burst Length, follow the procedure outlined in Section 5.1.4.4
�Writing to the SDRAM�s Parameter Register� on page 103 to update the SDRAM�s Mode Register.

64Mx8 RAM
#1

64Mx8 RAM
#2

64Mx8 RAM
#3

64Mx8 RAM
#4

64Mx8 RAM
#5

64Mx8 RAM
#6

64Mx8 RAM
#7

64Mx8 RAM
#8

64Mx8 RAM
#9

512Mbit SDRAM

64Mx8 RAM
#1

64Mx8 RAM
#2

64Mx8 RAM
#3

64Mx8 RAM
#4

64Mx8 RAM
#5

64Mx8 RAM
#6

64Mx8 RAM
#7

64Mx8 RAM
#8

64Mx8 RAM
#9

512Mbit SDRAM

SRAS*

SCAS*

DWr

SCS[1]
BANK

0,
CS0*

GT-96100A

DAdr[12:0]

BankSel[1:0]

SDQM[0]

SDQM[1]

SDQM[2]

SDQM[3]

SDQM[4]

SDQM[5]

SDQM[6]

SDQM[7]

D
[6

3:
0]

,A
D

P[
7:

0]

D[63:0],ADP[7:0]

SCS[0]

D[7:0]

D[15:8]

D[23:16]

D[31:24]

D[39:32]

D[47:40]

D[55:48]

D[63:56]

ADP[7:0]

D[7:0]

D[15:8]

D[23:16]

D[31:24]

D[39:32]

D[47:40]

D[55:48]

D[63:56]

ADP[7:0]

BANK
1,

CS1*

Tclk

SDQM[0]

SDQM[1]

SDQM[2]

SDQM[3]

SDQM[4]

SDQM[5]

SDQM[6]

SDQM[7]

Parity Byte Enabled, Always Asserted (GND)
108 Revision 1.0

GT-96100A Advanced Communication Controller
Table 77 describes the programmable functions of the SDRAM parameters.
Table 77: Programmable SDRAM Parameters

Function Descript ion

SCAS* Latency SCAS* Latency is the number of TClks from the assertion of SCAS* to the sampling
of the first read data. This parameter can be programmed to be either 2 or 3 TClks.
Selecting this parameter depends on TClk frequency and the speed grade of the
SDRAM.
NOTE: Check your SDRAM data sheet for the most optimal setting.

Flow-through Bit 2 specifies the number of times that the data is sampled by the GT-96100A on
SDRAM reads when bypass is not enabled (bit 9 = 0). This option is included for
future designs which will run at faster clock frequencies.
NOTE: As of January 1999, Flow-through mode must always be enabled (bit 2 =

1). If ECC or registered SDRAM are used, Flow-through must be disabled
(bit 2 = 0).

SRAS* Precharge Bit 3 specifies the SRAS precharge time. This parameter specifies the number of
TClks following a precharge cycle that a new SRAS* transaction may generate.

64-bit Interleaving Bit 5 specifies the number of banks that are supported for interleaving if the bank is
set for 64/128/256 Mbit SDRAM. If the bank is NOT set for 64/128/256 Mbit
SDRAM (bit 11 = 0), the setting of this bit is irrelevant.

Bank Width Bit 6 specifies the data width of the particular bank.

Bank Location Bit 7 specifies the location of the bank if the bank is set for 32-bit SDRAM. If the
bank is not set for 32-bit SDRAM (bit 6 = 1), the setting of this bit is irrelevant.

ECC Support Bit 8 enables or disables ECC on a 64-bit wide SDRAM bank.

64-bit Bypass Mode for
CPU Reads

Bit 9 enables or disables 64-bit SDRAM Read bypass.
NOTE: This option is only for SDRAM banks configured as 64-bit (the option is not

available for devices).
An optional bypass mode is available for CPU reads where a clock cycle of latency
can be eliminated when the CPU executes read cycles from 64-bit SDRAM. The
bypass mode requires additional bus switches to enable direct data flow to the
CPU. Instead of passing response data from the SDRAM to the GT-96100A prior to
presenting it to the CPU, data flows directly from the SDRAM to the CPU via bus
switches. This reduces the latency from ValidOut* to ValidIn* from 9 TClk cycles to
8.
NOTE: The bypass is used for partial reads as well. Reads from 64-bit SDRAM

are no longer sampled by the GT-96100A prior to presenting the data to
the CPU.
64-bit bypass can only be enabled if the bank is set for 64-bit (bit 6 = 1).

No writes are transferred via the bypass switches at any time.

SRAS* to SCAS* Bit 10 specifies the number of TClks that the GT-96100A inserts between the asser-
tion of SRAS* with a valid row address to the assertion of SCAS* with a valid col-
umn address.
Revision 1.0 109

GT-96100A Advanced Communication Controller
5.4 SDRAM Performance

Depending on the setting of certain variables, SDRAM performance can vary on both the CPU and PCI interface.

5.4.1 CPU Access to SDRAM
SDRAM performance on the CPU interface is based on the latency between the CPU�s assertion of ValidOut* to
the GT-96100A�s assertion of ValidIn* returning the first data on a burst read (cache line read).

Performance is different if the 64-bit Bypass feature is enabled. Table 78 summarizes the latency between Valid-
Out* and ValidIn* on SDRAM reads. After the first data is read, the remaining data is returned with zero wait
states. For example, if bypass is enabled and the CPU executes a cache line read from memory, data will be
returned with 8-1-1-1 performance when bypass is enabled.

On CPU writes to SDRAM, the data cycles will follow the address cycle with zero wait states. Further, the next
data of a burst can also be written on the next clock cycle (zero wait states).

5.4.2 PCI Read Performance from SDRAM
The following sections outlines SDRAM memory performance. These figures depend on a number of variables
including the PClk/TClk ratio, as well as the sync. mode that the device is configured for. The following numbers
are based on the fastest SDRAM settings.

16/64/128/256 MBit
SDRAM Configuration

Bits [14,11] specify when the particular bank supports 16, 64/128, or 256 MBit
SDRAMs.
NOTE: The value of 10 is a reserved setting and must not be used.

Burst Length Bit 13 specifies the data burst length supported for the particular SDRAM bank.
The data can be either 32 or 64 bit, depending on the setting of bit 6.

Table 78: CPU SDRAM Performance on Reads

SDRAM device
Number of TClks between
Val idOut* to ValidIn*

Bypass Enabled1

1. See Table 77 for more information about the bypass feature.

8

Bypass Not Enabled 9

Table 77: Programmable SDRAM Parameters (Continued)

Function Description
110 Revision 1.0

GT-96100A Advanced Communication Controller
Performance is rated on three events:

There are five different sync. modes that the GT-96100A can be placed in depending on the PClk/TClk ratio.
These sync. modes are:

Table 79: Events Determining PCI Read Performance from SDRAM

Event Description

PCI Read request from
SDRAM.

This event is based on the number of clocks between Frame* being asserted by a
PCI master to the assertion of SRAS* by the SDRAM controller.

Data from SDRAM con-
troller to PCI.

This event is based on the number of clocks between the first data placed on the
AD bus until TRdy* is asserted on the PCI bus by the GT-96100A.

Latency till first data. This event is based on the number of clocks between a PCI master asserting
Frame* to the assertion of TRdy* by the GT-96100A.

Table 80: GT-96100A Sync. Modes

Sync. Mode Description

SYNC MODE 0, x00 No assumptions on TClk/PClk ratio.

SYNC MODE 1, 001 PClk frequency is greater than or equal to 1/2 TClk frequency.

SYNC MODE 2, 01x PClk frequency is synchronized1 to TClk frequency and greater than or equal to 1/2
TClk frequency

1. If TClk and PClk are synchronized, see Section 32.1 �TClk/PClk Restrictions� on page 516.

SYNC MODE 5, 101 PClk frequency is greater than or equal to 1/3 TClk frequency but smaller than 1/2
TClk frequency.

SYNC MODE 6, 11x PClk frequency is synchronized to TClk frequency and greater than or equal to 1/3
TClk frequency but smaller than 1/2 TClk frequency.
Revision 1.0 111

GT-96100A Advanced Communication Controller
Table 81: SDRAM Performance Summary PCI Read Accesses

TClk/PClk
Frequency
(MHz)

Sync.
Mode Event # of TClk # of PClk

100/33 0 A
B
C

9
12
26

3
5
10

5 A
B
C

10
12
26

3
5
10

100/50 0 A
B
C

8
8
20

4
5
12

1 A
B
C

8
8
20

4
5
12

100/66 0 A
B
C

5
6
16

4
5
12

1 A
B
C

6
6
16

4
5
12

100/33 0 A
B
C

14
12
30

5
4
10

5 A
B
C

14
12
30

5
4
10

6 or 7 A
B
C

12
8
24

4
3
8

100/50 0 A
B
C

11
9
24

6
5
12

1 A
B
C

11
9
24

6
5
12

2 A
B
C

9
5
18

5
3
9

112 Revision 1.0

GT-96100A Advanced Communication Controller
5.5 SDRAM Bank Interleaving

The GT-96100A supports two bank interleaving with 16 Mbit SDRAM and two or four bank interleaving with 64
Mbit SDRAMs. The SDRAM Address Control Register (0x47c) determines what address bits are used for SRAS
and SCAS cycles. This allows flexibility for different software applications to select an address decoding scheme
which may give data accesses a better probability of interleaving.

Interleaving provides higher system performance by hiding SRAS to SCAS cycles and precharge time of a pend-
ing transaction during the data cycles of a current transaction. This reduces the number of wait states before data
can be read from or written to SDRAM, thus, increasing bandwidth. Interleaving occurs when two independent
resources require access to SDRAM. These resources can be the CPU, PCI_0, PCI_1, or one of the IDMA con-
trollers.

At the end of every SDRAM memory transaction, the GT-96100A will precharge the bank.

5.6 Unified Memory Architecture (UMA) Support

The GT-96100A supports UMA. This feature allows an external master device to share the same physical
SDRAM memory is controlled by the GT-96100A device. This feature works according to the VESA Unified
Memory Architecture (VUMA) specification1.

A VUMA device refers to any type of controller which needs to share the same physical system memory and
have direct access to it as shown in Figure 17.

100/66 0 A
B
C

9
8
21

6
6
14

1 A
B
C

9
8
21

6
6
14

1. More information about the VESA Unified Memory Architecture can be found at http://www.vesa.org

Table 81: SDRAM Performance Summary PCI Read Accesses (Continued)

TClk/PClk
Frequency
(MHz)

Sync.
Mode Event # of TClk # of PClk
Revision 1.0 113

http://www.vesa.org

GT-96100A Advanced Communication Controller
Figure 17: VUMA Device and The GT-96100A sharing SDRAM

5.6.1 UMA Hardware Support
UMA is enabled by a pin strapping option. If DAdr[7] is sampled LOW on RESET, DMAReq[0]* is pro-
grammed to function as MREQ*. The BypsOE* pin will function as MGNT* as long as bit 9 is 0 for all of the
SDRAM Bank Parameters registers (bypass disabled).

NOTE: The Bypass feature and UMA cannot be used simultaneously.

MREQ* is an input into the GT-96100A and must be an output for the VUMA device. This signal is used by the
VUMA device to make a request of GT-96100A to access the shared SDRAM. MREQ* should be driven by the
VUMA device on a rising edge of TClk. MREQ* is sampled on a rising edge of TClk by the GT-96100A.

MGNT* is an output of the GT-96100A and must be an input to the VUMA device. This signal is used by the GT-
96100A to inform the VUMA device that it can access the shared SDRAM. MGNT* is driven by the GT-96100A
on a rising edge of TClk. MGNT* must be sampled by the VUMA device on a rising edge of TClk.

NOTE: The AC timing parameters are shown in Section 32. �AC Timing� on page 513.

Table 82: UMA AC Timing Parameters

Signals Description Min. Max. Unit Loading

MREQ* Setup. 3 ns

MREQ* Hold. 1 ns

MGNT* Output Delay From TClk
rising.

2 10 ns 30 pF

GT�96100ACPU

PCI

VUMA
Device

SDRAM

MREQ*
MGNT*

TClk

TREQ*
114 Revision 1.0

GT-96100A Advanced Communication Controller
5.6.2 SDRAM Pins
Once MGNT* is asserted by the GT-96100A and the VUMA device is granted access to SDRAM, the
SCS[3:0]*, SRAS*, SCAS*, DWr*, AD[63:0], DQM[8:0], DAdr[11:0], and BankSel[1:0] are held in sustained
tri-state until the GT-96100A regains access to SDRAM. During this period, the VUMA device must drive these
signals to access SDRAM.

When the GT-96100A and the VUMA device hands the bus over to each other, they must drive all of the above
signals HIGH for one TClk and then float the pins (except the SDRAM address lines). The SDRAM address
lines do not need to be driven high before floating the bus. A sample waveform is shown in Figure 18.

Figure 18: Handing the Bus Over

5.6.3 Address Decoding
The GT-96100A complies with the standard for CPU address to SDRAM Row and Column addressing. See Sec-
tion 5.1.5 �SDRAM Address Decode Register (0x47c)� on page 104 to see how the CPU address translation is
performed. This register (0x47c) should be programmed with the binary value of 010 in order to properly use the
UMA feature when using 16 Mbit/64-bit SDRAM.

NOTE: As of January 1999, there is no standard for UMA SDRAM addressing when using 16 Mbit/32-bit
SDRAM or 64 MBit SDRAMs (32 or 64 bit).

5.6.4 Arbitration
As shown in Figure 17 on page 114, the VUMA device arbitrates with the GT-96100A for access to SDRAM
through MREQ* and MGNT*, which should be synchronous to TClk.

The GT-96100A is always the default owner of the SDRAM and access to this memory is only allowed to the
VUMA device upon demand.

The GT-96100A has the right to take the VUMA device off of the bus by de-asserting MGNT*.

The VUMA device may request access to SDRAM with either a low or high priority, and both of these priorities
are conveyed to the core logic through the MREQ* signal.

TClk

MREQ*

MGNT*

SCS[3:0]*, SRAS*, SCAS*,
DWr*, AD[63:0], DQM[8:0]

BankSel[1:0],DAdr[11:0]

GT-96100A Driving

GT-96100A Driving

VUMA Driving

VUMA
Revision 1.0 115

GT-96100A Advanced Communication Controller
Figure 19: MREQ* Requests from the VUMA Device

5.6.4.1 VUMA Device Access to SDRAM Rules
There are certain rules that must be followed when the VUMA device makes a request for access to the SDRAM.

1. Once MREQ* is asserted by the VUMA device for a low priority request, it must keep it asserted until
the VUMA device is given access to SDRAM via MGNT*. The only reason to change the status of the
MREQ* pin is to raise a high priority request or raise the priority of an already pending low priority
request.
 - If MGNT* is sampled asserted, the VUMA device must not de-assert MREQ*. Instead, the VUMA
device will have ownership of SDRAM and must continue asserting MREQ* until it has completed its
transaction.
 - If MGNT* is sampled de-asserted, the VUMA device can de-assert MREQ* for one clock and
assert it again regardless of the status of MGNT*. After re-assertion, the VUMA device must keep
MREQ* asserted until the GT-96100A gives the VUMA device access to SDRAM via MGNT*.

2. The VUMA device may only assert the MREQ* for the purpose of accessing SDRAM and must stay
asserted until MGNT* is sampled asserted except to raise the priority request. No speculative requests
or request abortion is allowed.

3. Once the VUMA device samples MGNT* as asserted, it gains and retains access to SDRAM until
MREQ* is de-asserted.

4. The GT-96100A always asserts MGNT* for one clock cycle only, and immediately requests back own-
ership of the bus.

NOTE: Any other transitions asserted other than those shown in this figure will keep the state machine
in the current state.

TClk

MREQ*

Low Priority Request

TClk

MREQ*

High Priority Request

TClk

MREQ*

Pending Low Priority converted to a High Priority
116 Revision 1.0

GT-96100A Advanced Communication Controller
5. The VUMA device retains ownership of SDRAM indefinitely. The standard calls for the VUMA device
to keep ownership for no longer than 60 TClks before it must release the bus. This is not a requirement
for the GT-96100A and it will wait until the VUMA device releases the bus by de-asserting MREQ*.

6. When the VUMA device has ownership of the bus, it has full responsibility to execute refresh cycles on
the SDRAM.

7. Once the VUMA device de-asserts MREQ* to transfer ownership back to the GT-96100A either on its
own, or because of a preemption requires, MREQ* should be de-asserted for at least 2 TClks before
asserting it again to raise a request.

5.6.5 Latencies, Low and High Priority
If a VUMA device places a low priority request for access to SDRAM, there is no set time specified by the GT-
96100A to assert MGNT*. Once there are no pending transactions to the memory controller, MGNT* is asserted.

If a VUMA device places a high priority request for an access to SDRAM, the GT-96100A has a maximum of 35
TClks before it asserts MGNT*.

5.6.6 Total Request
The GT-96100A immediately requests back ownership of the bus after MGNT* assertion.

If bit 4 of SDRAM Bank2 Parameters register is set to 1, DMAReq[3]*/SCAS* pin functions as a total request
pin. It indicates that there is a real internal request inside the GT-96100A that requires SDRAM bus ownership.

NOTE: This may cause some difficulty to implement a fair arbitration mechanism on the SDRAM bus.

5.6.7 Disable Refresh
In some applications, the GT-96100A will be most of the time OFF the SDRAM bus. The bus master has full
responsibility to execute refresh cycles on the SDRAM.

In such applications, the user may want to disable the GT-96100A�s refresh cycles (make memory controller arbi-
tration cycle shorter).

Disable refresh cycles by setting bit 4 of SDRAM Bank1 Parameters register to 1.

5.6.8 Internal Register Reads with UMA Enabled
In order for the GT-96100A to return the data of an internal register read, the SDRAM and Memory Controller
must have control over the AD bus. Therefore, the logic controller the input of MREQ* to the GT-96100A must
de-assert its request of the memory.

 The internal register read transaction is held off until the GT-96100A obtains mastership of the memory bus.
Revision 1.0 117

GT-96100A Advanced Communication Controller
5.7 Device Controller

The device controller supports up to five group of devices. Various access parameters can be programmed on a
per group basis as each group has its own parameters register (0x45c - 0x46c).

The supported memory space of each device can vary for each bank up to 256 Mbytes. The width of each device
may be 8, 16, 32 or 64-bits. The maximum total device address space is 512 Mbytes for all five groups.

The five individual chip selects are typically broken up into four individual device groups plus one chip select for
a boot device (non-volatile memory). Each device group can have unique programmable timing parameters to
accommodate different device types (e.g. Flash, ROM, I/O Controllers). The devices share the local AD bus with
the SDRAM. Unlike the SDRAM, the devices use the AD bus as a multiplexed address and data bus.

In the address phase, the device controller puts an address on the AD bus with a corresponding Chip Select
asserted. ALE indicates the AD bus is output as address with a valid CS*. ALE is used to latch the address and
the CS* in an external latch. ALE is HIGH by default, making the latch transparent.1 ALE goes LOW a half
clock cycle before CSTiming* is asserted for the particular read or write transaction. At the completion of the
transaction, ALE goes HIGH again on the same rising TClk that CSTiming* is de-asserted.

CS* must then be qualified (OR-tied) with CSTiming*. A read or write cycle is indicated by DevRW*. The
CSTiming* signal is valid for the programmable number of cycles of the specific CS* is active. TurnOff, AccTo-
First and AccToNext can be set in registers 0x45c - 0x46c for each group�s read timing parameters. ALEtoWr,
WrActive, and WrHigh are set for each group�s write timing parameters. There are certain restrictions to setting
these timing parameters. See Section 5.9 �Memory Controller Restrictions� on page 126 before configuring these
bits.

NOTE: Some of these parameters can be extended by the Ready* pin. See Section 5.7.10 �Ready* Support� on
page 122.

5.7.1 TurnOff
TurnOff is the number of TClk cycles that the GT-96100A does not drive the memory bus after a read from a
device. This prevents contention on the memory bus after a read cycle for a slow device.

This parameter is measured from the number of cycles between the de-assertion of DevOE* (an externally
extracted signal which is the logical OR between CSTiming* and inverted DevRW*) to an new AD bus cycle.

5.7.2 AccToFirst
AccToFirst defines the number of cycles in a read access from the assertion of CS* (first rising TClk where CS*
is asserted LOW) to the cycle that the first data is sampled by the GT-96100A.

NOTE: This parameter can be extended by the Ready* pin. See Section 5.7.10 �Ready* Support� on page 122.

1. Note that this definition of ALE is slightly different than the GT-64010A/11/14/60. ALE on these
devices is default LOW, and is only asserted HIGH for a half clock cycle to latch the address. This
change in definition for ALE on the GT-96100A has no affect on system performance or architecture.
118 Revision 1.0

GT-96100A Advanced Communication Controller
5.7.3 AccToNext
AccToNext defines the number of cycles in a read access from the cycle that the first data is latched to the cycle
to the next data is latched (in burst accesses). This parameter can also be thought of as the delay between the ris-
ing edge of TClk which data is latched to the rising edge of TClk where the next data is latched in a burst cycle.

NOTE: This parameter can be extended by the Ready* pin. See Section 5.7.10 �Ready* Support� on page 122.

5.7.4 ALEtoWr
There are eight byte write signals, Wr[7:0]*. ALEtoWr can also be thought of as the delay between the rising
edge of TClk which drives ALE LOW to the assertion of Wr*, or for the first write pulse.

NOTE: The Wr[7:0]* signals are asserted and de-asserted off of the FALLING edge of TClk.

5.7.5 WrActive
WrActive is the number of TClks that Wr* are active (asserted). This parameter is measured from the first rising
edge of TClk where Wr* is asserted LOW to the last rising edge of TClk where Wr* is LOW for that particular
write pulse.

NOTE: This parameter can be extended by the Ready* pin. See Section 5.7.10 �Ready* Support� on page 122.
The Wr[7:0]* signals are asserted and de-asserted off of the FALLING edge of TClk.

5.7.6 WrHigh
WrHigh is the number of TClks that Wr* is inactive between burst writes. This parameter is measured from the
first rising edge of TClk where Wr* is de-asserted HIGH to the last rising edge of TClk where Wr* is HIGH.

On the next rising edge of TClk, Wr* is asserted LOW for the next write pulse.

NOTE: The Wr[7:0]* signals are asserted and de-asserted off of the FALLING edge of TClk. The previous data
remains on the AD bus during WrHigh.

5.7.7 Device Bank Width and Location
Bit 21:20 of the Device Bank[3:0] Parameter registers (0x45c-0x46c), DevWidth, specifies whether the data
width of the particular device bank is 8, 16, 32 (default except for BootCS*), or 64 bits. If the bank is set for 8-,
16-, or 32-bit operation, it can either reside on the even half (31:0) or odd half (63:32) by setting bit 23, DevLoc.

Selecting the even or the odd half allows for load balancing.

In case of a 64-bit device, DevLoc has no meaning.
Revision 1.0 119

GT-96100A Advanced Communication Controller
Figure 20: Waveform Showing Device Read Parameters

NOTES:
1. CS* is driven off the same rising TClk* as ALE. Throughout consecutive transactions to the same device,
 CS* remains asserted. This is why CS* must always be qualified with CSTiming.
2. The GT�96100A may start a new AD cycle after TurnOff.

ADDRESS

TClk

ALE

AD[63:0]

AcctoFirst = 3 TurnOff = 22

CS*1

CSTiming*

DevRW*

DATA1 DATA2

AcctoNext = 1
120 Revision 1.0

GT-96100A Advanced Communication Controller
Figure 21: Waveform Showing Device Write Parameters

5.7.8 Burst Writes
The device controller supports up to eight word burst accesses.

The burst address is supported by a 3-bit wide address bus (BAdr[2:0]) that is different from the latched address
on the multiplexed AD bus.

NOTE: BAdr[2:0] are the same pins as the least significant SDRAM address lines, DAdr[2:0]. See Section 33.
�Pinout Table, 492 Pin BGA� on page 533 for more information.

5.7.9 Packing and Unpacking Data and Burst Support
The AD bus supports the packing of data into a 64-bit double word, in reads from devices that are 8-, 16-, or 32-
bits wide. Devices that are 8- or 16-bits wide are supported by partial reads (up to 64-bits).

The controller supports CPU writes of one to eight bytes to 8-bit or 16-bit wide devices. Therefore, 8 and 16-bit
devices MUST NOT be mapped to cacheable regions. The reason is that the R4xxx/R5000/R7000 have an eight
or 16 word (32 or 64 bytes) cache line size. This would equate to a burst of 32/64 8-bit accesses or 16/32 16-bit
accesses.

The GT-96100A supports cached accesses to 32- and 64-bit device spaces. It supports DMA/PCI writes of one to
eight bytes to 8-bit or 16-bit wide devices.

ADDRESS

TClk

ALE

AD[63:0]

ALEtoWr = 2 WrActive =1

Wr[7:0]*2

CS*1

CSTiming*

DevRW*

NOTES:
1. CS* is driven off the same rising TClk* as ALE. Throughout consecutive transactions to the same device, CS* will
 remain asserted. This is why CS* must ALWAYS be qualified with CSTiming*.
2. Wr[7:0]* are asserted and deasserted from the falling edge of TClk.

DATA 1 DATA 2 DATA 3 DATA 4

WrHigh =1
Revision 1.0 121

GT-96100A Advanced Communication Controller
5.7.10 Ready* Support
The Ready* pin is sampled on three occasions:

� One clock before the data is sampled to the GT-96100A.
� During both AccToFirst (see Figure 22) and AccToNext (see Figure 23) phases of read cycles.
� On the last rising edge of the WrActive (see below) phase during a write cycle.

During all other phases Ready* is not sampled by the GT-96100A.

If Ready* is not asserted during the WrActive, AccToFirst, or AccToNext phases. These phases are extended
until Ready* is asserted again. The transaction may be indefinitely held off until Ready* is asserted.

NOTE: There are no SDRAM refreshes as long as an access to a device is not completed. Use Ready* carefully
on device accesses so it not interfere with the SDRAM refresh.

Figure 22: Ready* Extending AccToFirst on Read Cycle

TClk

ALE

AcctoFirst set to 5

CS*1

CSTiming*

DevRW*

Notes:
1. CS* is driven off the same rising TClk* as ALE. Throughout consecutive transactions to the same device, CS* will remain
asserted. This is why CS* must ALWAYS be qualified with CSTiming*.
2. Ready* is sampled as deasserted one clock before data should be sampled according to AcctoFirst. AD[63:0] is NOT
sampled by the GT-64120 on the following rising TClk.
3. Ready* is asserted on some following rising TClk.
4. AD[63:0] (DATA 1) is sampled on the following rising TClk of the rising TClk that Ready* was asserted. Effectively,
AccToFirst is 7 in this example (instead of the programmed 5).

4

Ready*

2
3

ADDRESSAD[63:0] DATA 1 DRIVEN FROM DEVICE

1. CS* is driven off the same rising TClk* as ALE. Throughout consecutive transactions to the same device, CS* will remain asserted. This is why CS* must
always be qualified with CSTiming*.

2. Ready* is sampled as deasserted one clock before data should be sampled according to AccToFirst. AD[63:0] is not sampled by GT�96100A on the following
rising TClk.

3. Ready* is asserted on some following rising TClk.
4. AD[63:0] (Data1) is sampled on the following rising TClk of the rising TClk that Ready* was asserted. Effectively, AccToFirst is 7 in this example (instead of

programmed 5).
122 Revision 1.0

GT-96100A Advanced Communication Controller
Figure 23: Ready* Extending AccToNext on Read Cycle

ADDRESS

TClk

ALE

AD[63:0]

AcctoFirst = 5 AcctoNext programmed to 3

DATA 1 DRIVEN FROM DEVICE

CS*2

CSTiming*

DevRW*

Notes:
1. CS* is driven off the same rising TClk* as ALE. Throughout consecutive transactions to the same device, CS* will remain
asserted. This is why CS* must ALWAYS be qualified with CSTiming*.
2. Ready* is sampled as asserted one clock before data should be sampled according to AcctoFirst. DATA 1 is sampled on
AD[63:0].
3. Ready* is sampled as de-asserted one clock before data should be sampled according to AcctoNext. DATA 2 is NOT
sampled.
4. Ready* is asserted on some following rising TClk.
5. AD[63:0] (DATA 2) is sampled on the following rising TClk of the rising TClk that Ready* was asserted. Effectively,
AccToNext is 5 (instead of the programmed 3).

DATA 2 DRIVEN FROM DEVICE

4

Ready*

2
3

5

Revision 1.0 123

GT-96100A Advanced Communication Controller
Figure 24: Extending WrActive Parameter on Write Cycle

5.7.11 Parity Support for Devices
The GT-96100A has no dedicated logic to support device parity. If device parity checking is required, it can be
implemented externally using �511 devices and some logic for interrupt generation.

Still, the GT-96100A generates EVEN parity on CPU SysADC lines during CPU read transaction from devices.

ADDRESS

TClk

ALE

AD[63:0]

ALEtoWr = 3 WrActive = 3 WrHigh= 3 WrActive programmed to 3

Wr*2

GT�96100 DRIVES VALID DATA 1 GT�96100 DRIVES VALID DATA 2

CS*1

CSTiming*

DevRW*

Notes:
1. CS* is driven off the same rising TClk* as ALE. Throughout consecutive transactions to the same device, CS* will remain asserted. This is
 why CS* must ALWAYS be qualified with CSTiming*.
2. Wr[7:0]* are asserted and de-asserted from the falling edge of TClk.
3. Ready* is asserted on last rising TClk of WrActive, therefore, the GT�96100A assumes the device is written to correctly and continues to the
 next write cycle.
4. Ready* is deasserted on the last rising TClk of WrActive, therefore, the GT�96100A does NOT continue to the next write cycle effectly
 extending the WrActive parameter. Wr* remains asserted.
5. Ready* is asserted on the next rising TClk, therefore, the GT�96100A assumes the device has been written to correctly and continues to the
 next cycle (end of write transaction). Effectively, WrActive is 4 (instead of the programmed 3). For clarification, if there was another word to
 burst, WrHigh would start counting from the rising TClk denoted by 5, not 4.

Ready*

3

4

5

124 Revision 1.0

GT-96100A Advanced Communication Controller
5.8 Programming the ADP lines for other Functions

If ECC is enabled for any SDRAM bank, the ADP lines function as pins used for reading and writing the ECC
byte.

If ECC is not implemented in the system, the ADP lines are usable for other functions. These functions include
duplicating the SDRAM control lines (used for load balancing) and duplicating the ALE signal (used for load
balancing).

During RESET, certain pins are sampled (either HIGH or LOW) to select these pin functions, see Section 22.
�Reset Configuration� on page 452.

If ECC is not enabled, AND the ADP lines are not programmed to function as other pins on RESET, ADP[3:0]
will function as EOT[3:0], see Table 236, �DMA Channel Control Register (0x840 - 0x84c),� on page 221. Fur-
ther, ADP[4] will be used as BankSel[1] and ADP[5] will be used as DAdr[11]. ADP[7:6] are unused.

Table 83 summarizes the functionality of the ADP lines depending on system configuration.
Table 83: ADP[7:0] Pin Functionality

ECC IN SYSTEM NO ECC IN SYSTEM

Primary Pin
(ECC Enabled for
any SDRAM bank)

ECC Not Enabled
for ANY SDRAM
bank

DMAReq[1]*
sampled HIGH
on RESET

DMAReq[3]*
sampled
HIGH on
RESET

ADP[0] EOT[0]

ADP[1] EOT[1] ALE

ADP[2] EOT[2]

ADP[3] EOT[3] DWr*

ADP[4] BankSel[1]

ADP[5] DAdr[11]

ADP[6] SCAS*

ADP[7] SRAS*
Revision 1.0 125

GT-96100A Advanced Communication Controller
5.9 Memory Controller Restrictions

1. Unless the boot device is 64-bits wide, the boot must be on the even half (bits 31:0 of AD[63:0] bus).
2. When working with an 8- or 16-bit configured bank, a read/write operation can not exceed 64-bits (eight

bytes). Since PCI reads are always prefetchable, PCI access to a 8- or 16-bit wide device is not allowed
(unless FRAME* is asserted for a single PClk cycle).

3. When an erroneous address is issued or a burst operation is performed to an 8- or 16-bit device, the GT-
96100A forces an interrupt (unless masked). If a sequence of address misses occurs, there is no other
interrupt prior to resetting the appropriate bit in the cause register and no new address is registered in the
Address Decode Error register (0x470) prior to reading it.

4. When the CPU reads from an address which is decoded in the CPU Interface Unit as being a hit for
CS[2:0]* or BootCS* and CS[3]* and decoded as a miss in the SDRAM/Device Interface Unit, the
cycle completes only if Ready* is asserted (i.e., driven LOW).

Although being a result of improper and inconsistent programming of the address space defining regis-
ters, the following 2 workaround exist:
 - Ready* must be asserted (LOW) when CSTiming* is inactive (HIGH).
 - If the Ready* signal is not needed in the system, the Ready* pin must be driven active (LOW).

5. The minimum parameter for TurnOff, AccToFirst, AccToNext, WrActive, and WrHigh is 1 and for
ALEToWr is 3.

6. If address decode (register 0x47c) is set to 0, bursts of 64 bytes to 64-bit SDRAM are not supported.
Address decode mode 0 (0x47c) should not be used when using 64, 128, or 256Mbit SDRAMs.

7. PCI reads from 8- or 16-bit bank must not be prefetchable.
8. Access to SDRAM during SDRAM initialization time after reset results in unpredictable behavior.
9. When SDRAM CAS latency is 3, RAS precharge time (bit 3 of SDRAM parameter register) must be

programmed to 1.
10. When using 64/256 Mbit SDRAM, address decode 0 is not allowed.
11. In order for memory controller to return data of an internal register read, it must have control over the

AD bus.
12. When using aggressive prefetch, the highest address that can be read from the PCI is the last DRAM

address minus 0x8.
13. Table 84 describes the limitation of a 32 bit device in the GT-96100A.
126 Revision 1.0

GT-96100A Advanced Communication Controller
Table 84: 32-bit Device Limitations

Terminology Word: 32 bit
Aligned: aligned to a word

Limitation During a read/write cycle of an odd number of words to a 32-bit device from an
aligned address, or a read/write cycle to a 32-bit device to an unaligned
address, an extra read/write occurs to the complementary word of the double-
word address accessed with byte enables not active. This may result in
destructive reads and loss of performance while accessing the device.

Examples 1. CPU writes one word to offset 0 of a 32-bit device.
Result: a write to offset 0 with Wr* asserted and a write to offset 4 with Wr* not
asserted.
2. CPU writes one word to offset 4 of a 32 bit device.
Result: a write to offset 0 with Wr* not asserted and a write to offset 4 with Wr*
asserted.
3. DMA writes five words to offset 0 of a 32 bit device.
Result: Burst of six bits to the device, with the last Wr* not asserted.
NOTE: If Ready* is used, the GT-96100A must sample it active an even num-

ber of times. i.e., once for address 0 and once for address 4 (see
example 1 above).

Workaround 1. If the device is always accessed for single word transfers, connect the
AD[4:2], latched, to the device's least significant address pins instead of the
BAdr[2:0]. This prevents destructive reads.
2. Access the device always with an even number of words at double word
aligned addresses (e.g. 0x0, 0x8, 0x10...). This means that the DMA must
have the DatTransLimit field set to at least eight bytes. This will make sure
there are no destructive reads and no loss of performance.
Revision 1.0 127

GT-96100A Advanced Communication Controller
5.10 Registered SDRAM Interface Restrictions

1. All SDRAM DIMMs must be registered (no support for registered and non-registered DIMMs in one
system).

2. ALL SDRAM DIMMs are 64-bit (no support for 32-bit registered DIMMs).
3. Bit 2 (Flow-Through) in all SDRAM parameters registers is set to 0.

5.11 Memory Interface Control Registers
Table 85: Memory Interface Register Map

Description Offset Page Number

SDRAM and Device Address Decode

SCS[0]* Low Decode Address 0x400 page 130

SCS[0]* High Decode Address 0x404 page 130

SCS[1]* Low Decode Address 0x408 page 130

SCS[1]* High Decode Address 0x40c page 130

SCS[2]* Low Decode Address 0x410 page 131

SCS[2]* High Decode Address 0x414 page 131

SCS[3]* Low Decode Address 0x418 page 131

SCS[3]* High Decode Address 0x41c page 131

CS[0]* Low Decode Address 0x420 page 131

CS[0]* High Decode Address 0x424 page 132

CS[1]* Low Decode Address 0x428 page 132

CS[1]* High Decode Address 0x42c page 132

CS[2]* Low Decode Address 0x430 page 132

CS[2]* High Decode Address 0x434 page 132

CS[3]* Low Decode Address 0x438 page 133

CS[3]* High Decode Address 0x43c page 133

Boot CS* Low Decode Address 0x440 page 133

Boot CS* High Decode Address 0x444 page 133

Address Decode Error 0x470 page 133
128 Revision 1.0

GT-96100A Advanced Communication Controller
SDRAM Configuration

SDRAM Configuration 0x448 page 134

SDRAM Operation Mode 0x474 page 135

SDRAM Burst Mode 0x478 page 135

SDRAM Address Decode 0x47c page 136

SDRAM Parameters

SDRAM Bank0 Parameters 0x44c page 137

SDRAM Bank1 Parameters 0x450 page 138

SDRAM Bank2 Parameters 0x454 page 138

SDRAM Bank3 Parameters 0x458 page 139

ECC

ECC Upper Data 0x480 page 139

ECC Lower Data 0x484 page 139

ECC from Memory 0x488 page 139

ECC Calculated 0x48c page 139

ECC Error report 0x490 page 140

Device Parameters

Device Bank0 Parameters 0x45c page 140

Device Bank1 Parameters 0x460 page 141

Device Bank2 Parameters 0x464 page 141

Device Bank3 Parameters 0x468 page 141

Device Boot Bank Parameters 0x46c page 142

Table 85: Memory Interface Register Map (Continued)

Description Offset Page Number
Revision 1.0 129

GT-96100A Advanced Communication Controller
5.11.1 SDRAM and Device Address Decode

Table 86: SCS[0]* Low Decode Address, Offset: 0x400

Bits Field Name Function Init ial Value

11:0 Low SDRAM bank 0 is accessed when the
decoded addresses are between Low and
High.

0x00

31:12 Reserved 0x0

Table 87: SCS[0]* High Decode Address, Offset: 0x404

Bits Field Name Function Init ial Value

11:0 High SDRAM bank 0 is accessed when the
decoded addresses are between Low and
High.

0x07

31:12 Reserved 0x0

Table 88: SCS[1]* Low Decode Address, Offset: 0x408

Bits Field Name Function Init ial Value

11:0 Low SDRAM bank 1 is accessed when the
decoded addresses are between Low and
High.

0x08

31:12 Reserved 0x0

Table 89: SCS[1]* High Decode Address, Offset: 0x40c

Bits Field Name Function Init ial Value

11:0 High SDRAM bank 1 is accessed when the
decoded addresses are between Low and
High.

0x0f

31:12 Reserved 0x0
130 Revision 1.0

GT-96100A Advanced Communication Controller

Table 90: SCS[2]* Low Decode Address, Offset: 0x410

Bits Field Name Function Init ial Value

11:0 Low SDRAM bank 2 is accessed when the
decoded addresses are between Low and
High.

0x10

31:12 Reserved 0x0

Table 91: SCS[2]* High Decode Address, Offset: 0x414

Bits Field Name Function Init ial Value

11:0 High SDRAM bank 2 is accessed when the
decoded addresses are between Low and
High.

0x17

31:12 Reserved 0x0

Table 92: SCS[3]* Low Decode Address, Offset: 0x418

Bits Field Name Function Init ial Value

11:0 Low SDRAM bank 3 is accessed when the
decoded addresses are between Low and
High.

0x18

31:12 Reserved 0x0

Table 93: SCS[3]* High Decode Address, Offset: 0x41c

Bits Field Name Function Init ial Value

11:0 High SDRAM bank 3 is accessed when the
decoded addresses are between Low and
High.

0x1f

31:12 Reserved 0x0

Table 94: CS[0]* Low Decode Address, Offset: 0x420

Bits Field Name Function Init ial Value

11:0 Low Device bank 0 is accessed when the
decoded addresses are between Low and
High.

0xc0

31:12 Reserved 0x0
Revision 1.0 131

GT-96100A Advanced Communication Controller

Table 95: CS[0]* High Decode Address, Offset: 0x424

Bits Field Name Function Init ial Value

11:0 High Device bank 0 is accessed when the
decoded addresses are between Low and
High.

0xc7

31:12 Reserved 0x0

Table 96: CS[1]* Low Decode Address, Offset: 0x428

Bits Field Name Function Init ial Value

11:0 Low Device bank 1 is accessed when the
decoded addresses are between Low and
High.

0xc8

31:12 Reserved 0x0

Table 97: CS[1]* High Decode Address, Offset: 0x42c

Bits Field Name Function Init ial Value

11:0 High Device bank 1 is accessed when the
decoded addresses are between Low and
High.

0xcf

31:12 Reserved 0x0

Table 98: CS[2]* Low Decode Address, Offset: 0x430

Bits Field Name Function Init ial Value

11:0 Low Device bank 2 is accessed when the
decoded addresses are between Low and
High.

0xd0

31:12 Reserved 0x0

Table 99: CS[2]* High Decode Address, Offset: 0x434

Bits Field Name Function Init ial Value

11:0 High Device bank 2 is accessed when the
decoded addresses are between Low and
High.

0xdf

31:12 Reserved 0x0
132 Revision 1.0

GT-96100A Advanced Communication Controller

Table 100: CS[3]* Low Decode Address, Offset: 0x438

Bits Field Name Function Init ial Value

11:0 Low Device bank 3 is accessed when the
decoded addresses are between Low and
High.

0xf0

31:12 Reserved 0x0

Table 101: CS[3]* High Decode Address, Offset: 0x43c

Bits Field Name Function Init ial Value

11:0 High Device bank 3 is accessed when the
decoded addresses are between Low and
High.

0xfb

31:12 Reserved 0x0

Table 102: Boot CS* Low Decode Address, Offset: 0x440

Bits Field Name Function Init ial Value

11:0 Low Boot bank is accessed when the decoded
addresses are between Low and High.

0xfc

31:12 Reserved 0x0

Table 103: Boot CS* High Decode Address, Offset: 0x444

Bits Field Name Function Init ial Value

11:0 High Boot bank is accessed when the decoded
addresses are between Low and High.

0xff

31:12 Reserved 0x0

Table 104: Address Decode Error, Offset: 0x470

Bits Field Name Function Init ial Value

31:0 ErrAddr The addresses of accesses to invalid
address ranges (those not in the range
programmed in the SDRAM or device
decode registers) are captured in this reg-
ister.

0xffffffff
Revision 1.0 133

GT-96100A Advanced Communication Controller
5.11.2 SDRAM Configuration
Table 105: SDRAM Configuration, Offset: 0x448

Bits Field Name Function Init ial Value

13:0 RefIntCnt Refresh Interval Count Value 0x0200

14 Interleave Bank Interleaving Control
0 - Interleaving enabled
1 - Interleaving disabled

0x0

15 RMW Enable Read Modify Write
0 - Disabled
1 - Enabled

0x0

16 StagRef Staggered Refresh
0 - Staggered refresh
1- Non-staggered refresh

0x0

17 DisECCEr Disable Force ECC Error 0x0

18 IntOorT Interrupt One or Two 0x0

19 DupCntl Duplicate Control Pins
0 - Do not duplicate
1 - Duplicate control pins

� DMAReq0* = SRAS*
� DMAReq3* = SCAS*
� BypsOE* = DWr*

0x0

20 DupBA Duplicate Bank Addresses
0 - Do not duplicate
1 - Duplicate bank addresses

� DMAReq[2]* = DAdr[11]
� DMAReq[1]* = BankSel[1]

0x0

21 DupEOT0 Duplicate End of Transfer 0
0 - Do not duplicate
1 - Duplicate End of Transfer 0

� DMAReq[3]* = EOT0

0x0

22 DupEOT1 Duplicate End of Transfer 1
0 - Do not duplicate
1 - Duplicate End of Transfer 1

� Ready* = EOT1

0x0

23 RegSDRAM Registered SDRAM Enable
0 - Disable
1 - Enable

0x0
134 Revision 1.0

GT-96100A Advanced Communication Controller
24 DAdr12Sel DAdr[12] Pin Select
0 - DAdr[12] driven on ADP[0]
1 - DAdr[12] driven on DMAReq[3]*

0x0

31:25 Reserved 0x0

Table 106: SDRAM Operation Mode, Offset: 0x474

Bits Field Name Function Init ial Value

2:0 SDRAMOp Special SDRAM Mode Select
000 - Normal SDRAM mode
001 - NOP command
010 - All banks precharge command
011 - Mode register command enable
100 - CBR cycle enable
101,110, and 111 - Reserved

0x0

31:3 Reserved 0x0

Table 107: SDRAM Burst Mode, Offset: 0x478

Bits Field Name Function Init ial Value

1:0 Reserved Must be 0x1. 0x1

2 Burst_Order 0 - Linear
1 - Sub-block

0x1

9:3 Reserved Must be 0x1. 0x1

10 ArbitrationMode This bit controls the internal arbitration
scheme employed by the memory control
unit:
0 - Normal arbitration mode (round robin:
CPU -> PCI -> DMA ->...).
1 - CPU preferred arbitration mode (CPU -
> PCI -> CPU -> DMA...).
NOTE: Setting this bit is allowed only

after the SDRAM was pro-
grammed.

0x0

11 Reserved Must be 0. 0x0

31:12 Reserved Read Only 0. X

Table 105: SDRAM Configuration, Offset: 0x448 (Continued)

Bits Field Name Function Init ial Value
Revision 1.0 135

GT-96100A Advanced Communication Controller

Table 108: SDRAM Address Decode, Offset: 0x47c

Bits Field Name Function Init ial Value

2:0 AddrDecode SDRAM Address Decode
See Section 5.1.5 �SDRAM Address
Decode Register (0x47c)� on page 104 for
more information.

0x2

31:3 Reserved 0x0
136 Revision 1.0

GT-96100A Advanced Communication Controller
5.11.3 SDRAM Parameters
Table 109: SDRAM Bank0 Parameters, Offset: 0x44c

Bits Field Name Function Init ial Value

1:0 CASLat CAS Latency
Identical for all SDRAM banks.
1 - 2 cycles
2 - 3 cycles
3 and 0 - Reserved
NOTE: This value must be the same as

in the SRAStoSCAS field.

0x1

2 FlowThrough Flow-Through Enable
0 - One sample
1 - No Sample
NOTE: Must be set to 0 if ECC or regis-

tered SDRAM is enabled.

0x1

3 SRASPrchg SRAS Precharge Time
0 - 2 cycle
1 - 3 cycles

0x0

4 Reserved Must be set to 0. 0x0

5 64bitInt 64-bit SDRAM Interleaving
0 - 2 way bank interleaving
1 - 4 way bank interleaving

0x0

6 BankWidth Width of SDRAM bank
0 - 32 (36) bit wide SDRAM
1 - 64 (72) bit wide SDRAM

0x0

7 BankLoc 32-bit SDRAM Bank Location
NOTE: Not applicable when using 64-bit

SDRAMs.
0 - Even, AD[31:0]
1 - Odd, AD[63:32]

0x0

8 ECC ECC support for the bank.
0 - No ECC support
1 - ECC supported

0x0

9 Bypass Bypass enable to CPU
0 - No Bypass
1 - Bypass

0x0

10 SRAStoSCAS SRAS to SCAS delay
0 - 2 cycles
1 - 3 cycles
NOTE: This value must be the same as

in the CASLat field.

0x0
Revision 1.0 137

GT-96100A Advanced Communication Controller

11 SDRAMSize0 16 or 64/128/256 Mbit SDRAM
0 - 16 Mbit SDRAM
1 - 64/128/256 Mbit SDRAM

0x0

12 Reserved Must be set to 0. 0x0

13 BrstLen Burst Length
0 - Burst of 8
1 - Burst of 4

0x0

14 SDRAMSize1 256 Mbit SDRAM support
0 - 16 or 64/128 Mbit SDRAM
1 - 256Mbit SDRAM

0x0

31:15 Reserved 0x0

Table 110: SDRAM Bank1 Parameters, Offset: 0x450

Bits Field Name Function Init ial Value

3:0 Various Fields function as in SDRAM Bank0. 0x5

4 Disable_Refresh Disable refresh of ALL SDRAM banks.
0 - Do refresh
1 - Disable refresh

0x0

14:5 Various Fields function as in SDRAM Bank0. 0x0

31:15 Reserved 0x0

Table 111: SDRAM Bank2 Parameters, Offset: 0x454

Bits Field Name Function Init ial Value

3:0 Various Fields function as in SDRAM Bank0. 0x5

4 TREQ*_Enable UMA Total Request pin enable.
0 - Disable
1 - Enable
DMAReq[3]*/SCAS* pin functions as a
total request pin.

0x0

14:5 Various Fields function as in SDRAM Bank0. 0x0

31:15 Reserved 0x0

Table 109: SDRAM Bank0 Parameters, Offset: 0x44c (Continued)

Bits Field Name Function Init ial Value
138 Revision 1.0

GT-96100A Advanced Communication Controller

5.11.4 ECC

Table 112: SDRAM Bank3 Parameters, Offset: 0x458

Bits Field Name Function Init ial Value

3:0 Various Fields function as in SDRAM Bank0. 0x5

4 Reserved Must be 0. 0x0

14:5 Various Fields function as in SDRAM Bank0. 0x0

31:15 Reserved 0x0

Table 113: ECC Upper Data, Offset: 0x480

Bits Field Name Function Init ial Value

31:0 ECCUpData Bits[63:32] of the last data with an ECC
error.

0x0

Table 114: ECC Lower Data, Offset: 0x484

Bits Field Name Function Init ial Value

31:0 ECCLoData Bits[31:0] of the last data with an ECC
error.

0x0

Table 115: ECC from Mem, Offset: 0x488

Bits Field Name Function Init ial Value

7:0 ECCMem Eight bits of ECC code read from memory. 0x0

31:8 Reserved 0x0

Table 116: ECC Calculated, Offset: 0x48c

Bits Field Name Function Init ial Value

7:0 ECCCalc Eight bits of ECC code calculated inside
the GT-96100A.

0x0

31:8 Reserved 0x0
Revision 1.0 139

GT-96100A Advanced Communication Controller

5.11.5 Device Parameters

Table 117: ECC Error Report, Offset: 0x490

Bits Field Name Function Init ial Value

1:0 ECCErr Number of ECC errors
00 - No errors
01 - One error detected and corrected
10 - Two or more errors detected
11 - Reserved

0x0

31:2 Reserved 0x0

Table 118: Device Bank0 Parameters, Offset: 0x45c

Bits Field Name Function Init ial Value

2:0 TurnOff The number of cycles between the de-
assertion of DevOE* to a new AD bus
cycle.
NOTE: An externally extracted signal

which is the logical OR between
CSTiming* and inverted
DevRW*.

0x7

6:3 AccToFirst The number of cycles in a read access
from the assertion of CS* to the cycle
when the data is latched (by the external
latches).
Extend the number of cycles via the
Ready* pin.

0xf

10:7 AccToNext The number of cycles in a read access
from the cycle that the first data is latched
to the cycle that the next data is latched (in
burst accesses).
Extend the number of cycles via the
Ready* pin.

0xf

13:11 ALEtoWr The number of cycles from ALE de-
asserted to the assertion of Wr*.

0x7

16:14 WrActive The number of cycles Wr* signals are
active.
Extend the number of cycles via the
Ready* pin.

0x7

19:17 WrHigh The number of cycles between de-asser-
tion and assertion of Wr* signals.

0x7
140 Revision 1.0

GT-96100A Advanced Communication Controller

21:20 DevWidth Device Width
00 - 8 bits
01 - 16 bits
10 - 32 bits
11 - 64 bits

0x2

22 DMAFlyBy Forwarded to BootCS* during Flyby DMA 0x1

23 DevLoc 32/16/8 bit device location
0 - Even bank

� AD[31:0], AD[15:0], and
AD[7:0]

1 - Odd bank
� AD[63:32], AD[47:32], and

AD[39:32]

0x0

24 Reserved Read only. 0x0

25 Reserved Must be 0. 0x0

29:26 DMAFlyBy Forwarded to CS[3:0]* during FlyBy DMA. 0xe

31:30 Reserved Must be 0. 0x0

Table 119: Device Bank1 Parameters, Offset: 0x460

Bits Field Name Function Init ial Value

31:0 Various Fields function as in Device Bank0. 0x386fffff

Table 120: Device Bank2 Parameters, Offset: 0x464

Bits Field Name Function Init ial Value

31:0 Various Fields function as in Device Bank0. 0x386fffff

Table 121: Device Bank3 Parameters, Offset: 0x468

Bits Field Name Function Init ial Value

31:0 Various Fields function as in Device Bank0. 0x38?fffff

Table 118: Device Bank0 Parameters, Offset: 0x45c (Continued)

Bits Field Name Function Init ial Value
Revision 1.0 141

GT-96100A Advanced Communication Controller

NOTE: In case of Bank3 or Boot Bank, bits [23:20] are shown as �?� because bits 21:20 are sampled at reset via
DAdr[4:3] to define the width of the boot device.

Table 122: Device Boot Bank Parameters, Offset: 0x46c

Bits Field Name Function Init ial Value

31:0 Various Fields function as in Device Bank0.
Bits bits [29:26] and bit 22 are reserved.

14?fffff
142 Revision 1.0

GT-96100A Advanced Communication Controller
6. DATA INTEGRITY
GT-96100A supports:

� Parity generation and checking on CPU and PCI interfaces.
� ECC generation and checking on SDRAM interfaces.
� Errors propagation between these the CPU, PCI, and SDRAM interfaces.

6.1 SDRAM ECC

The GT-96100A implements Error Checking and Correction (ECC) on accesses to the SDRAM. It supports
detection and correction of one data bit error, detection of two bits error, and detection of three or four bit errors,
if residing in the same nibble.

6.1.1 ECC Calculation
Each of the 64 data bits and eight check bits has a unique 8-bit ECC check code, as shown in Table 123. For
example, data bit 12 has the check value of 01100001, and check bit 5 has the check value of 00100000.
Table 123: ECC Code Matrix

Check Bit Data Bit

ECC Code Bits
Number of
1s in7 6 5 4 3 2 1 0

63 1 1 0 0 1 0 0 0 3

62 1 1 0 0 0 1 0 0 3

61 1 1 0 0 0 0 1 0 3

60 1 1 0 0 0 0 0 1 3

59 1 1 1 1 0 1 0 0 5

58 1 0 0 0 1 1 1 1 5

4 0 0 0 1 0 0 0 0 1

3 0 0 0 0 1 0 0 0 1

57 1 1 1 0 0 0 0 0 3

56 1 0 1 1 0 0 0 0 3

55 0 0 0 0 1 1 1 0 3

54 0 0 0 0 1 0 1 1 3

53 1 1 1 1 0 0 1 0 3

52 0 0 0 1 1 1 1 1 5

5 0 0 1 0 0 0 0 0 5

2 0 0 0 0 0 1 0 0 1
Revision 1.0 143

GT-96100A Advanced Communication Controller
51 1 0 0 0 0 1 1 0 1

50 0 1 0 0 0 1 1 0 3

49 0 0 1 0 0 1 1 0 3

48 0 0 0 1 0 1 1 0 3

47 0 0 1 1 1 0 0 0 3

46 0 0 1 1 0 1 0 0 3

45 0 0 1 1 0 0 1 0 3

44 0 0 1 1 0 0 0 1 3

43 1 0 1 0 1 0 0 0 3

42 1 0 1 0 0 1 0 0 3

41 1 0 1 0 0 0 1 0 3

40 1 0 1 0 0 0 0 1 3

39 1 0 0 1 1 0 0 0 3

38 1 0 0 1 0 1 0 0 3

37 1 0 0 1 0 0 1 0 3

36 1 0 0 1 0 0 0 1 3

35 0 1 0 1 1 0 0 0 3

34 0 1 0 1 0 1 0 0 3

33 0 1 0 1 0 0 1 0 3

32 0 1 0 1 0 0 0 1 3

31 1 0 0 0 1 0 1 0 3

30 0 1 0 0 1 0 1 0 3

29 0 0 1 0 1 0 1 0 3

28 0 0 0 1 1 0 1 0 3

27 1 0 0 0 1 0 0 1 3

26 0 1 0 0 1 0 0 1 3

25 0 0 1 0 1 0 0 1 3

24 0 0 0 1 1 0 0 1 3

23 1 0 0 0 0 1 0 1 3

Table 123: ECC Code Matrix (Continued)

Check Bit Data Bit

ECC Code Bits
Number of
1s in7 6 5 4 3 2 1 0
144 Revision 1.0

GT-96100A Advanced Communication Controller
22 0 1 0 0 0 1 0 1 3

21 0 0 1 0 0 1 0 1 3

20 0 0 0 1 0 1 0 1 3

19 1 0 0 0 1 1 0 0 3

18 0 1 0 0 1 1 0 0 3

17 0 0 1 0 1 1 0 0 3

16 0 0 0 1 1 1 0 0 3

15 0 1 1 0 1 0 0 0 3

14 0 1 1 0 0 1 0 0 3

13 0 1 1 0 0 0 1 0 3

12 0 1 1 0 0 0 0 1 3

11 1 1 1 1 1 0 0 0 5

10 0 1 0 0 1 1 1 1 5

7 1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 1

9 0 1 1 1 0 0 0 0 3

8 1 1 0 1 0 0 0 0 3

7 0 0 0 0 0 1 1 1 3

6 0 0 0 0 1 1 0 1 3

5 1 1 1 1 0 0 0 1 5

4 0 0 1 0 1 1 1 1 5

6 0 1 0 0 0 0 0 0 1

1 0 0 0 0 0 0 1 0 1

3 1 0 0 0 0 0 1 1 3

2 0 1 0 0 0 0 1 1 3

1 0 0 1 0 0 0 1 1 3

0 0 0 0 1 0 0 1 1 3

Table 123: ECC Code Matrix (Continued)

Check Bit Data Bit

ECC Code Bits
Number of
1s in7 6 5 4 3 2 1 0
Revision 1.0 145

GT-96100A Advanced Communication Controller
The GT-96100A calculates ECC by taking the EVEN parity of ECC check codes of all data bits that are logic
one. For example, if the 64 bit data is 0x45. The binary equivalent is 01000101. From Table 123, the required
check codes are 00001101 (bit[6]), 01000011 (bit[2]) and 00010011 (bit[0]). Bitwise XOR of this check codes
(even parity) result in ECC value of 01011101.

On a write transaction to a 64-bit wide SDRAM, if ECC is enabled, the GT-96100A calculates the new ECC and
writes it to the ECC bank along with the data that is written to the data bank. Since the ECC calculation is based
on a 64-bit data width, if the write transaction is smaller than 64 bits, the GT-96100A runs a read modify write
sequence.

For a read transaction from a 64-bit wide SDRAM, if ECC is enabled, the GT-96100A reads a 64-bit data and 8-
bit ECC. It calculates ECC based on the 64-bit data and then compares it against the received ECC. The result of
this comparison (bitwise XOR between received ECC and calculated ECC) is called syndrome. If the syndrome
is 00000000, both the received data and ECC are correct. If the syndrome is any other value, it is assumed either
the received data or the received ECC are in error.

If the syndrome contains a single 1, there is a single bit error in the ECC byte. For example, if the received data is
0x45, the calculated ECC is 01011101, as explained before. If the received ECC is 01010101, the resulting syn-
drome is 00001000. Table 123 shows that this syndrome corresponds to check bit 3. GT-96100A will not report
nor correct this type of error.

If the syndrome contains three or five 1�s, it indicates that there is at least one data bit error. For example, if the
received data is 0x45, the calculated ECC is 01011101, as explained before. If the received ECC is 00011110, the
resulting syndrome is 01000011. This syndrome includes three 1�s and it corresponds to data bit 2 as shown in
Table 123. GT-96100A corrects the data by inverting data bit 2 (the corrected data is 0x41).

If the result syndrome contains two 1�s, it indicates that there is a double-bit error.

If the result syndrome contains four 1�s, it indicates a 4-bit error located in four consecutive bits of a nibble.

If the result syndrome contains three or five 1�s and does not corresponds to any data bit, it indicates a triple-bit
error within a nibble.

These types of errors cannot be corrected. The GT-96100A reports an error but will not change the data.

NOTE: ECC is not supported in bypass mode (data must go through GT-96100A in order to be checked and cor-
rected).

6.1.2 ECC Error Report
If the GT-96100A identifies an ECC data bit error, it sets MemErr bit in Interrupt Cause register (an interrupt is
asserted if not masked).

Additionally, it stores error information in dedicated registers.
� The 64-bit data in ECC Upper Data and ECC Lower Data registers.
� The ECC byte read from memory in ECC from Memory register.
� The calculated ECC byte in ECC Calculated register.
� Address bits[31:2] of the erroneous data in ECC Address register. In bits[1:0] it reports whether it was a

single data bit error or multiple data bits error.
146 Revision 1.0

GT-96100A Advanced Communication Controller
6.2 PCI Parity Support

The GT-96100A implements all parity features required by PCI spec, including PAR, PERR*, and SERR* gener-
ation and checking (also PAR64 in case of 64-bit PCI configuration).

As an initiator, the GT-96100A generates even parity on PAR signals for address phase and data phase of write
transaction. It samples PAR on data phase of read transactions. If the GT-96100A detects bad parity and PErrEn
bit in Status and Command Configuration register is set, it asserts PERR*.

As a target, the GT-96100A generates even parity on PAR signal for data phase of a read transaction. It samples
PAR on address phase and data phase of write transactions. If the GT-96100A detects bad parity and PErrEn bit
in Status and Command Configuration register is set, it asserts PERR*.

The GT-96100A asserts SERR* if any of the following occur:

� Detects a bad address parity as a target.
� Detects a bad data parity on a write transaction as a master (detects PERR* asserted).
� Detects a bad data parity on a read transaction as a master.
� Detects ECC error on read from SDRAM or Device.
� Performs master abort.
� Detects target abort.

SERR* is asserted if SErrEn bit in Status and Command configuration register is set to 1 and if SERR* is not
masked through SERR Mask register.

NOTE: For a description of the Serr0* and Serr1* registers, see Table 418 and Table 419 .

6.3 Parity Support for Devices

There is no dedicated logic in the GT-96100A to support devices parity. If Devices parity checking is required, it
can be implemented externally using �511 devices and some logic for interrupt generation.

Still, the GT-96100A generates EVEN parity on CPU SysADC lines during CPU read transaction from devices.

6.4 CPU Parity Support

CPU parity is supported through SysADC lines.

On write transactions, CPU drives even parity on SysADC. The GT-96100A samples the incoming data driven
on SysAD and the parity driven on SysADC. In case of parity error, the GT-96100A latches:

� The address in CPU Error address register.
� The data in CPU Error Data register.
� The parity in CPU Error Parity register.

On read transactions, CPU drives even parity on SysADC, in parallel to the data it drives on SysAD.

CPU parity errors are reported through CPUOut interrupt bit in the interrupt cause register, and through
SysCmd[5] in case of read transaction.
Revision 1.0 147

GT-96100A Advanced Communication Controller
NOTES:CPU Error Address register is also used to latch the address in case of CPU address decoding error.
More over, CPUOut interrupt bit is used both for CPU address decoding error as well as CPU parity
error indication. In order for interrupt handler to distinguish between the two interrupts events, it needs
to read CPU Error Data register and compare against its previous value. If register value changed, it
implies it is a parity error.

The CPUOut interrupt bit is set in case of parity error only if SysADCValid bit in CPU Configuration
register is set to 1.

6.5 Data Integrity Flow

6.5.1 CPU writes to SDRAM and PCI
The GT-96100A samples the SysADC (CPU parity) lines when the CPU performs a write transaction to PCI or
SDRAM. Parity checking is performed by the GT-96100A.

If a parity error occurs, the GT-96100A latches the address, data, and parity lines, see Section 6.6 �Register Infor-
mation� on page 150. The GT-96100A also generates an interrupt (via Interrupt*) to the CPU indicating a parity
error has been detected on the CPU parity lines.

In addition, the GT-96100A forces two ECC errors when writing the data to the SDRAM. This feature is config-
ured through ForceEccErr bit in SDRAM Configuration register, see Section 6.6 �Register Information� on page
150. This will make sure that when the data is read by another resource, the ECC bits will indicate erroneous data
to the reading device.

6.5.2 CPU reads from SDRAM
The GT-96100A samples the ADP (SDRAM ECC) lines when the CPU performs a read transaction from the
SDRAM. An ECC check is performed by the GT-96100A SDRAM interface.

In case there is a 2-bit ECC error, the GT-96100A generates an interrupt to the CPU and drives the Bus_Err bit
(SysCmd[5]) to the CPU. The SysADC lines will NOT drive the wrong value, assuming the Bus_Err and the
interrupt are sufficient indications for the CPU.

In case of a single-bit ECC error, the default does NOT interrupt the CPU and the error is corrected. The GT-
96100A can be programmed to interrupt the CPU on single bit ECC errors, see Section 6.6 �Register Informa-
tion� on page 150. Regardless, the data is corrected and then returned to the CPU. Also, the address, data, ECC
bits, and an indication for single or double ECC errors are latched in the GT-96100A ECC error report registers,
see Section 6.6 �Register Information� on page 150.

6.5.3 CPU reads from PCI
When the CPU reads data from the PCI, the PAR signal (and PAR64 in case of 64-bit PCI) is sampled. In case
PAR does NOT match the data, an interrupt to the CPU is generated.
148 Revision 1.0

GT-96100A Advanced Communication Controller
6.5.4 PCI writes to GT-96100A SDRAM
When a PCI master writes data to the GT-96100A�s SDRAM, the PAR signal (PAR64 in case of 64-bit PCI) is
sampled. In case PAR does NOT match the data, PERR* is asserted on the PCI bus and an interrupt to the CPU is
generated. The ECC bits will not be intentionally damaged while being written to the SDRAM (GT-96100A will
generate correct ECC to SDRAM based on the written data, ignoring the bad PAR indication).

6.5.5 PCI reads from the SDRAM
When a PCI master reads data from the GT-96100A�s SDRAM, the GT-96100A samples the ADP (SDRAM
ECC) lines. An ECC check is performed by the GT-96100A.

In case there is a 2-bit ECC error, the GT-96100A generates an interrupt to the CPU (and PCI) and defaults to
driving PAR with the correct value matching the data. This feature is configured, see Section 6.6 �Register Infor-
mation� on page 150, and PAR can be chosen to be driven with a value NOT matching the data.

In case of a single ECC error, an interrupt to the CPU (and PCI) is generated and the data is corrected and
returned to the PCI. PAR will drive a correct value, matching the data.

In both cases the address, data, ECC bits, and an indication for single or double ECC errors are latched in the GT-
96100A ECC error report registers.

6.5.6 DMA cycles
There is no change in the implementation of data integrity during DMA transfers from the GT-64120 device. If a
parity/ECC error is detected during a DMA transfer from the SDRAM or from the PCI, an interrupt is generated.

In case of a single-bit ECC error, the default does NOT interrupt the CPU and the error is corrected. The GT-
96100A can be programmed to interrupt the CPU on single-bit ECC errors, see Section 6.6 �Register Informa-
tion� on page 150. Regardless, the data is corrected and then returned to the DMA Unit. Also, the address, data,
ECC bits, and an indication for single or double ECC errors are latched in the GT-96100A ECC error report reg-
isters.
Revision 1.0 149

GT-96100A Advanced Communication Controller
6.6 Register Information

Table 124 describes the registers used to implement parity and ECC in the GT-96100A.
Table 124: Registers for Implementing Parity and ECC

Register Offset Description

CPU Error
Address

0x70 Holds the lower 32 bits of the address during a parity error on SysADC (CPU
write).

0x78 Holds the upper 5 bits of the CPU address during a parity error on SysADC
(CPU write).

CPU Error
Data

0x128 Holds the lower 32 bits of the data during a parity error on SysADC (CPU write).

0x130 Holds the upper 32 bits of the data during a parity error on SysADC (CPU write).

CPU Error
Parity

0x138 Holds the SysADC lines when parity error is detected (CPU write).

ECC Error
Address

 0x490 � Bits [31:2] holds the 30 MSB of the address to the SDRAM when an
ECC error is detected (CPU/PCI/DMA read from SDRAM).

� Bit [1], if active, indicates that two or more ECC errors are detected.
� Bit [0] - If active, indicates that a single bit ECC error is detected.

ECC Error
Data

 0x480 Holds the upper 32 bits of the data when an error is detected (CPU/PCI/DMA
read from SDRAM).

0x484 Holds the lower 32 bits of the data when an error is detected (CPU/PCI/DMA
read from SDRAM).

ECC from
Memory

0x488 Holds the ECC read from memory when an error is detected.

ECC Calcula-
tion

0x48C Holds the value calculated by the GT-96100A as correct ECC. This value may be
helpful during debug.

Force bad
PAR on PCI
read bad ECC
from SDRAM

0xc00,
bit 26

0 - Par always drives matching value (Default).
1 - Par will drive wrong value if ECC error detected.

0xc80,
bit 26

Force SDRAM
ECC error on
CPU writes
with bad parity

0x448,
bit 17

0 - SDRAM interface unit writes two ECC errors to the SDRAM (Default).
1 - ECC will always be written correctly to the SDRAM.

Interrupt for 1
or 2 ECC
errors

0x448,
bit 18

0 - Interrupt only if two ECC errors are detected (Default).
1 - Interrupt when one or two ECC errors are detected.
150 Revision 1.0

GT-96100A Advanced Communication Controller
6.7 CPU Errors Report Registers

Table 125: CPU Error Address (Low), Offset: 0x070

Bits Field Name Funct ion Init ial Value

31:0 IlegLoAdd This register captures bits 31:0 of an illegal 36-
bit address, or an address of a CPU write
transaction with bad parity driven on SysADC.

0x0

Table 126: CPU Error Address (High), Offset: 0x078

Bits Field Name Funct ion Init ial Value

3:0 IlegHiAdd This register captures bits 35:32 of an illegal
36-bit address, or an address of a CPU write
transaction with bad parity driven on SysADC.

0x0

31:4 Reserved 0x0

Table 127: CPU Error Data (Low), Offset: 0x128

Bits Field Name Funct ion Init ial Value

31:0 DataErr Holds the lower 32 bits of the data during a
parity error on SysADC (CPU write).

0xffffffff

Table 128: CPU Error Data (High), Offset: 0x130

Bits Field Name Funct ion Init ial Value

31:0 DataErr Holds the upper 32 bits of the data during a
parity error on SysADC (CPU write).

0xffffffff

Table 129: CPU Error Parity, Offset: 0x138

Bits Field Name Funct ion Init ial Value

7:0 ParErr Holds the SysADC lines when a parity error is
detected (CPU write).

0xff

31:8 Reserved Reserved. 0x0
Revision 1.0 151

GT-96100A Advanced Communication Controller
7. PCI INTERFACES
The GT-96100A can be configured to have two 32-bit PCI buses, or one 64-bit PCI bus; all compliant with Revi-
sion 2.1 of the PCI Specification.

Both 3.3V and 5V operations are supported through the use of universal PCI buffers. Support for the I2O specifi-
cation is also included.

7.1 Reset Configuration

At reset, the GT-96100A can be configured to have one 64-bit PCI interface or two 32-bit PCI interfaces, see Sec-
tion 22. �Reset Configuration� on page 452. Each PCI interface can be either a master initiating a PCI bus opera-
tion or a target responding to a PCI bus operation.

NOTE: When the GT-96100A is configured with two 32-bit PCI interfaces, both interfaces are almost identical
in behavior and structure. The only difference is that PCI interface 1 (PCI_1) does not support locked
cycles and does not have a separate interrupt signal.

If no reference is made to a particular PCI interface, then the description in this section applies to both
interfaces.

7.2 PCI Master Operation

When the CPU or the internal DMA machine initiates a bus cycle to a PCI device, the GT-96100A needs to
decode the target address to determine which address space is being accessed.
If the GT-96100A is configured as one 64-bit PCI interface, then PCI_0 registers are used for address comparison
and remapping.
If the GT-96100A is configured with two 32-bit PCI buses, the address registers of both interfaces are used for
comparison. Based on the match results, either PCI_0 or PCI_1 becomes the master on the PCI bus and translates
the cycle into the appropriate PCI bus cycle.
Supported master PCI cycles are:

� Memory Read
� Memory Write
� Memory Read Line
� Memory Read Multiple
� Memory Write and Invalidate
� I/O Read
� I/O Write
� Configuration Read
� Configuration Write
� Interrupt Acknowledge
� Special Cycle
152 Revision 1.0

GT-96100A Advanced Communication Controller
Memory Write and Invalidate and Memory Read Line cycles are carried out when the transaction accessing PCI
memory space requests a data transfer equal to the PCI cache line size. In case the transfer initiator is a DMA
engine, the requested address must be cache line aligned. In case of write transaction, Memory Write and Invali-
date Enable bit in the Configuration Command register must be set. When the PCI cache line size is set equal to
0, the GT-96100A never issues Memory Write and Invalidate or Memory Read Line cycles.

Memory Read Multiple is carried out when the transaction accessing PCI memory space requests a data transfer
greater than the PCI cache line size.

As a master, the GT-96100A does not issue Dual Address cycles (DAC) or Lock cycles on the PCI.

The PCI posted write buffer in the GT-96100A permits the CPU to complete CPU-to-PCI memory writes even if
the PCI bus is busy. The posted data is written to the target PCI device when the PCI bus becomes available.

7.2.1 PCI Master CPU Address Space Decode and Translation
Local masters access the PCI space through the PCI_0/1 Memory 0, PCI_0/1 Memory 1, and PCI_0/1 I/O decod-
ers in CPU address space.

CPU accesses claimed by these decoders are translated into the appropriate PCI cycles by the appropriate PCI
interface (PCI_0 only in case of 64-bit PCI interface). The address seen on the CPU bus is copied directly to the
PCI bus (unless the CPU-to-PCI address remapping capability is enabled.) For example, if an access to
0x1200.0040 is programmed to be bridged as a memory read from PCI, the active PCI address for this cycle will
be 0x1200.0040.

7.2.2 PCI Master CPU Byte Swapping
All accesses to PCI space by the CPU can have the data byte order swapped as the data moves through the GT-
96100A. Byte swapping is turned on via the MByteSwap bit in the PCI Internal Command register (0xc00.)

When the GT-96100A is configured for 64-bit PCI mode, byte swapping occurs across all eight byte lanes when
the ByteSwap bit is set for PCI_0.
Revision 1.0 153

GT-96100A Advanced Communication Controller
7.2.3 PCI Master FIFOs
If the GT-96100A is configured to have one 64-bit PCI interface, then this interface includes a FIFO of eight
entries, each 64-bits wide (64 bytes total), see Figure 25.

Figure 25: PCI Master FIFOs in Single 64-bit Mode

If the GT-96100A is configured to have two 32-bit PCI interfaces, then each master interface includes its own
FIFO of eight entries, each 64-bits wide, see Figure 26. During writes to the PCI interface, the target PCI unit
receives write data from the CPU interface or the DMA unit. When the PCI bus is granted, the PCI master�s
FIFO delivers the write data to the target on the PCI bus.

64-bit PCI Master FIFO
8 entries by 64-bits

(64 bytes total)

PCI Master Unit

PCI Bus

SysAD Write Posting FIFO
8 entries by 64-bits

Unidirectional

SysAD[63:0]

C
PU

 P
C

I R
ea

d
Pa

th

DMA0/1 FIFO
8 entries by 64-bits

(64 bytes total)

DMA2/3 FIFO
8 entries by 64-bits

(64 bytes total)

To intra-unit buses
154 Revision 1.0

GT-96100A Advanced Communication Controller
Figure 26: PCI Master FIFOs in Dual 32-bit Mode

32-bit PCI Master FIFO 0
8 entries by 64-bits

(64 bytes total)

PCI Master Unit

PCI Bus

SysAD Write Posting FIFO
8 entries by 64-bits

Unidirectional

SysAD[63:0]

C
PU

 P
C

I R
ea

d
Pa

th

DMA0/1 FIFO
8 entries by 64-bits

(64 bytes total)

DMA2/3 FIFO
8 entries by 64-bits

(64 bytes total)

To intra-unit buses

32-bit PCI Master FIFO 1
8 entries by 64-bits

(64 bytes total)

PCI Master Unit

PCI Bus
Revision 1.0 155

GT-96100A Advanced Communication Controller
Upon receiving the first 32- or 64-bit data from the CPU interface or DMA unit, the PCI master interface requests
the PCI bus, if the GT-96100A is not already parked. Once granted, the appropriate write cycle is started on the
PCI bus.

During reads, the PCI master interface FIFO receives read data from the PCI bus and delivers it to the CPU inter-
face or the DMA unit. Upon receiving the first word or doubleword from the PCI target, the data is forwarded to
the requesting unit (CPU interface or DMA unit). The GT-96100A supports sub-block ordering during CPU
reads, therefore if the original read request address is not aligned to a cache line boundary, then the first 32-bit
word (or 64-bit double-word in case of a 64-bit PCI interface) returned to the requesting unit is delayed until it is
received from the PCI target, since reads across the PCI bus are linear.

The GT-96100A internal architecture allows zero wait-state data transfer over the PCI bus (Irdy* continuously
asserted) during both master reads and writes.

7.2.4 PCI Master DMA
The GT-96100A�s internal DMA engines act as PCI bus masters while transferring data to/from the PCI bus. The
DMA engines only issue PCI memory space read and write cycles. The type of cycle issued follows the same
rules as for the CPU.

The DMA engines transfers data between PCI devices using the on-chip DMA FIFOs for temporary storage.

NOTE: See Section 9. �Independent DMA Controllers (IDMA Controllers)� on page 219 for a detailed descrip-
tion of the DMA engines.

7.2.5 PCI Master RETRY Counter
RETRYs detected by the PCI master interface are normally handled transparently from the point of view of the
CPU or DMA engines.

In some rare circumstances, however, a target device may RETRY the GT-96100A excessively (or forever.) Use
the Retry Counter to recover from this condition. Every time the number of RETRYs equals the value in the
Retry Counter, the GT-96100A aborts the cycle and sends an interrupt to the CPU. If the cycle was a read, unde-
fined data is returned and the ERROR bit is set within the data identifier.

Disable the Retry Counter by setting the Retry count to zero.
156 Revision 1.0

GT-96100A Advanced Communication Controller
7.3 PCI Target Interface

The GT-96100A responds to the following PCI cycles as a target device:
� Memory Read
� Memory Write
� Memory Read Line
� Memory Read Multiple
� Memory Write and Invalidate
� I/O Read
� I/O Write
� Configuration Read
� Configuration Write
� Locked Read to PCI_0 only
� Locked Write to PCI_0 only

The GT-96100A will not act as a target for Interrupt Acknowledge, Special, and Dual Address cycles. These
cycles are ignored.)

7.3.1 PCI Target FIFOs
The GT-96100A incorporates dual 64-byte posted write/read prefetch buffers, per PCI interface. These buffers
allow full memory (AD) and PCI bus concurrency. The dual FIFOs can operate in a �ping-pong� fashion, each
FIFO alternating between filling and draining, see Figure 27 and Figure 28.

When the GT-96100A is the target of PCI write cycles, data is first written to one of the FIFOs. When the first
FIFO fills up (64 bytes), the data is written to the destination from the first FIFO while the second FIFO is filled.
This �ping-pong� operation continues as long as data is received from the PCI bus. The GT-96100A de-asserts
TRDY for 2 PCI clocks while switching target FIFOs.

Occasionally, the PCI target interface cannot drain the FIFOs (i.e. write to local memory) as fast as data is
received. This occurs when access to memory is prevented (possibly by excessive CPU accesses) or when the
target memory is particularly slow. In this case, the GT-96100A�s PCI target interface de-asserts TRDY until one
of the FIFOs is empty again and might even issue a DISCONNECT to the PCI bus if reached timeout, see Sec-
tion 22. �Reset Configuration� on page 452.

The target FIFOs are also used to align data bursts that do not start on 64-byte boundaries for more efficient pro-
cessing by the GT-96100A�s memory subsystem. When an incoming burst passes a 64-byte boundary, the target
FIFOs switch and the remainder of the burst (now aligned to a 64-byte boundary) fills the new FIFO. TRDY de-
asserts for two PCI clocks when the FIFO switch occurs.
Revision 1.0 157

GT-96100A Advanced Communication Controller
Figure 27: PCI Target Interface �Ping-Pong� FIFOs

Target FIFO 0
16 entries by 32-bits
(8 entries by 64-bits

in 64-bit Mode)

Target FIFO 1
16 entries by 32-bits
(8 entries by 64-bits

in 64-bit Mode)

Target Address

DRAM and Device Unit
To DRAM

and
Devices

PCI Bus
158 Revision 1.0

GT-96100A Advanced Communication Controller
Figure 28: PCI Target Interface FIFOs Operational Example

7.3.2 Controlling Burst Length
The GT-96100A�s memory interface is capable of maximum burst of eight data bursts to SDRAM or devices,
regardless of the device width. This implies that if the device is 64-bits wide, it can burst up to 64 bytes in a sin-
gle transaction. If the device is 32-bits wide it can burst up to 32 bytes per transaction and so on.

The PCI target is limited to requesting burst reads/writes from the memory interface that are not greater than the
bursts supported by the controller. Each PCI target FIFO corresponds to a single memory interface transaction.
The PCI target has a programmable FIFO depth. The MaxBurst register (offset 0xc40) defines the FIFO depth
per each Base Address Register. If the FIFO depth is set to 16 (MaxBurst = 1) then the maximum burst is 64
bytes to/from the memory interface. If the FIFO depth is eight (MaxBurst = 0) then a maximum burst of 32 bytes
is supported on the memory interface.

The system�s software must program the MaxBurst register properly.

NOTE: In order to support PCI bursts to a 32-bit SDRAM or device, MaxBurst must be set to 0. This is also true
for a 64-bit SDRAM programed to burst length of 4.

MaxBurst may be used for performance optimization in systems with 64-bit wide memory. In some cases, it is
sometimes preferred to keep the bursts short to allow CPU or DMA to get more memory interface bandwidth. In
this case, setting the MaxBurst value to 8 may be an appropriate strategy.

FIFO B (32-BYTES)

DATA 0

DATA 1

DATA 2

DATA 3

DATA 4

DATA 5

DATA 6

DATA 7

DATA 0

DATA 1

DATA 2

DATA 3

DATA 4

DATA 5

DATA 6

DATA 7

DRAM/DEVICE UNIT

FIFO A (32-BYTES)

PCI BUS

FIFO B (32-BYTES)

DATA 0

DATA 1

DATA 2

DATA 3

DATA 4

DATA 5

DATA 6

DATA 7

DATA 0

DATA 1

DATA 2

DATA 3

DATA 4

DATA 5

DATA 6

DATA 7

DRAM/DEVICE UNIT

FIFO A (32-BYTES)

PCI BUS

FIFO B (32-BYTES)

DATA 0

DATA 1

DATA 2

DATA 3

DATA 4

DATA 5

DATA 6

DATA 7

DATA 0

DATA 1

DATA 2

DATA 3

DATA 4

DATA 5

DATA 6

DATA 7

DRAM/DEVICE UNIT

FIFO A (32-BYTES)

PCI BUS

DATA FLOWING INTO FIFO A
FROM PCI. NO DATA FLOWING

INTO DRAM YET. 8 WORDS HAVE
BEEN POSTED FROM PCI.

FIFO A AND B "FLIP". FIFO B IS
NOW TAKING DATA FROM PCI

WHILE FIFO A DRAINS INTO
DRAM. 10 WORDS HAVEN BEEN

POSTED.

PCI BUS HAS COMPLETED
BURST AFTER 10 WORDS. FIFO
A HAS DRAINED AND NOW FIFO

B IS DRAINING INTO DRAM.

64 bits 64 bits 64 bits

32/64 bits 32/64 bits 32/64 bits

NOTE: Graphic shows only 8 of the 16 entries in the FIFOs (in 32-bit mode)
Revision 1.0 159

GT-96100A Advanced Communication Controller
7.3.3 PCI Target Read Prefetching
The target FIFOs are also used for read prefetch. The Memory Read (MR), Memory Read Line (MRL), and
Memory Read Multiple (MRM) cycles are executed as prefetchable read cycles.

The Device/DRAM Unit fills the target FIFOs as soon as it is determined that the PCI request will be longer than
a single word (based on how long Frame* is asserted.) The �aggressiveness� of the prefetch is controlled by the
type of read command (MR/MRL/MRM) and the state of the bits for each of the read command types in the
Prefetch/Max_Burst register.

By default, the only �aggressive� prefetched read is the Memory Read Multiple. Both Memory Read and Mem-
ory Read Line commands are marked for aggressive prefetch via the Prefetch/Max_Burst register. With aggres-
sive prefetch, as soon as at least one word is delivered from the FIFO to the PCI bus, the PCI slave requests from
the Device/DRAM unit to prefetch into the second FIFO.

NOTE: When using aggressive prefetch, the upper address allowed to be read from the PCI is last DRAM
address minus 0x8.

In a non-aggressive prefetch, read cycle data is prefetched into only one of the target FIFOs. Data is not fetched
into the second FIFO until all the data from the first FIFO is delivered to the PCI bus. MR and MRL cycles are by
default, non-aggressive prefetch.

NOTE: All three types of read commands will result in prefetch (multiple read cycles) on the Device/DRAM
bus unless Frame* is only asserted for a single cycle.

Cycles to internal registers and Configuration cycles are non-postable nor prefetchable. These cycles are always
single word.

NOTE: If a PCI master attempts to burst transaction to internal register, the GT-96100A disconnects after the
first TRDY*.

7.3.4 PCI Target Address Space Decode and Byte Swapping
The GT-96100A decodes accesses on the PCI bus, for which it may be a target, by the values programmed into
the Base Address registers (BARs).

There are two sets of BARs for each PCI interface: regular BARs (in PCI Function 0) and swap BARs (in PCI
Function 1). Accesses decoded by the regular BARs are passed without modifying the data to or from the target
memory device. Accesses decoded by the swap BARs are passed with to or from the target memory device after
converting the endianess of the data (e.g. little-endian to big-endian).

The GT-96100A uses a two stage decode process for accesses through the PCI devices target interface. Once a
PCI access is determined to be a �hit� based on the BAR comparison, the address is passed to the Device Unit for
sub-decode. For example, PCI_0 Base Address Register 0 in Function 0 (PCI_0 BAR0) decodes non-byte
swapped accesses to the SDRAM controlled by either SCS[0]* or SCS[1]*. The GT-96100A then uses the values
programmed into the SCS[0]* Low and SCS[0] High decode registers to determine if the access is to the
SDRAM in SCS[0]* space.

NOTE: The second stage decoders are shared with the CPU, see Figure 9 on page 79.

If the target address of a PCI write transaction �hits� based on the BAR decode, then misses in the Device Unit,
transaction is completed properly on the PCI bus, but data is NOT written to memory. In case of read transaction,
although there is no actual read from memory, transaction is completed properly on PCI bus, but the data driven
160 Revision 1.0

GT-96100A Advanced Communication Controller
on the bus is undefined (unless timeout is reached first - RETRY termination). In both cases, MemOut bit in
interrupt cause register is set (and interrupt is generated if not masked).

7.3.5 Enhancing Target Interface Performance
The GT-96100A includes special performance tuning features for the PCI target interface. The PCI_0/1 Timeout0
and Timeout1 registers allow the designer to force the GT-96100A to wait either longer than normal, or shorter
than normal, before issuing a RETRY/DISCONNECT.

The Timeout0 value of PCI device0 or device1 sets the number of clocks the device will wait for the first data of
an access before issuing a RETRY. The Timeout1 value sets the number of clocks the device will wait between
subsequent data phases during an access before issuing a DISCONNECT. The PCI 2.1 specifications sets the
maximum for both of these at 16 clocks (Timeout0) and 8 clocks (Timeout1) respectively. However, in many
systems, especially those with long SDRAM latencies, it may be necessary to �bend� these restrictions.1

NOTE: A value of 0x00 in Timeout0 or Timeout1 means "never timeout"

If excessive RETRY/DISCONNECT behavior occurs in the system, lengthen the Timeout0/1 values. This behav-
ior may result from excessive memory activity due to the CPU or DMA engines and the PCI interface failing to
access the SDRAM within 16 clocks.

The settings in the Prefetch/Max_Burst registers provide another area for performance optimization. Turning on
aggressive prefetch for all read types results in a significant performance improvement, depending on the length
and type of read commands.

NOTE: If a system uses many short reads from a PCI, aggressive prefetch on speculative reads that are not used
wastes bandwidth on the Device/DRAM bus.

7.4 PCI Synchronization Barriers

The GT-96100A considers some cycles to be �synchronization barrier� cycles. In such cycles, the GT-96100A
confirms that at the end of the cycle there remains no posted data within the chip. These cycles can be initiated
either from the PCI slave side or the CPU side.

The slave �synchronization barrier� cycles are Lock Read (for PCI_0 only) and Configuration Read. If there is
no posted data within the device, the cycle ends normally. If after a retry period there is still posted data, the cycle
is retried. Until the original cycle ends, any other (different address/command) �synchronization barrier� cycles
are retried.

Lock Read is a �synchronization barrier� cycle that lasts during the entire Lock period. For Example, when the
slave of PCI_0 is locked, all Configuration Reads are retried. Also, all cycles addressed to internal registers are
retried until Lock ends.

The CPU interface treats I/O Reads to PCI and Configuration Reads as �synchronization barrier� cycles as well.
These reads are responded to once no posted data remains within the GT-96100A.

1. The PCI specification also states that a master may not enforce target rules. In other words, even if the GT-96100A takes longer than 16 clocks to
return the first data, the master must wait.
Revision 1.0 161

GT-96100A Advanced Communication Controller
The GT-96100A provides the CPU with a simpler way to perform synchronization with PCI buffers1. The CPU
issues a read command to �PCI_0/1 Sync Barrier Virtual� register to synchronize PCI_0/1 buffers. The response
dummy read completes once no posted data remains within the addressed PCI interface.

7.5 PCI Master Configuration

The GT-96100A translates CPU read and write cycles into configuration cycles using PCI configuration mecha-
nism #1 (per the PCI specification). Mechanism #1 defines a way to translate the CPU cycles into both PCI con-
figuration cycles on the PCI bus and accesses to the GT-96100A�s internal configuration registers.

The GT-96100A includes two registers per PCI device: Configuration Address (at offset 0xcf8 for PCI0 and
0xcf0 for PCI1) and Configuration Data (at offset 0xcfc for PCI0 and 0xcf4 for PC1). The mechanism for access-
ing configuration registers is to write a value into the Configuration Address register that specifies:

� PCI bus number.
� The device on that bus.
� The function number within the device.
� The configuration register within that device/function being accessed.

A subsequent read or write to the Configuration Data register (at 0xcfc/0xcf4) then causes the GT-96100A to
translate that Configuration Address value to the requested cycle on the PCI bus.

If the BusNum field in the Configuration Address register equals 0 but the DevNum field is other than 0, a Type0
access is performed that addresses a device attached to the local PCI bus. If the BusNum field in the Configura-
tion Address register is other than 0, a Type1 access is performed that addresses a device attached to a remote
PCI bus.

The GT-96100A performs address stepping for PCI configuration cycles. This allows for the use of the high-
order PCI AD signals as IdSel signals through resistive coupling.2 Table 130 shows DevNum to IdSel mapping.

1. This mechanism is not compatible with the GT-64010A and GT-64011 devices.

Table 130: DevNum to IdSel Mapping

DevNum[15:11] PAD_0[31:11] /PAD_1[31:11]

00001 0 0000 0000 0000 0000 0001

00010 0 0000 0000 0000 0000 0010

00011 0 0000 0000 0000 0000 0100

00100 0 0000 0000 0000 0000 1000

 -
 -
 -

 -
 -
 -

10101 1 0000 0000 0000 0000 0000

00000,
10110 - 11111 0 0000 0000 0000 0000 0000

2. �Resistive Coupling� is a fancy way of saying �hook a resistor from ADx to IdSel� on a given device. Look at the Galileo-4PB backplane sche-
matics for examples.
162 Revision 1.0

GT-96100A Advanced Communication Controller
The CPU accesses the GT-96100A�s internal configuration registers when the fields DevNum and BusNum in the
Configuration Address register are equal to 0. The GT-96100A Configuration registers are also accessed from the
PCI bus when the GT-96100A is a target responding to PCI configuration read and write cycles.

The CPU accesses the GT-96100A internal PCI_1 configuration registers through PCI_0 Configuration Address
and Data registers (0xcf8,0xcfc). For example, in order to access the GT-96100A�s PCI_1 Class Code and Rev Id
register, CPU software should write 0x80000088 to PCI_0 Configuration Address register (0xcf8), and then
read/write PCI_0 Configuration Data register. CPU will use PCI_1 Configuration Address register (0xcf0) and
Configuration Data register (0xcf4) only in order to generate a configuration read/write transaction on PCI_1
bus.

The CPU interface unit cannot distinguish between an access to the GT-96100A�s PCI configuration space and an
access to an external PCI device configuration space. Both are accessed using an access to the GT-96100A�s
internal space (i.e. Configuration Data register). The software engineer must keep this in mind, especially when
byte swapping is enabled on the PCI interface. In this case, internal configuration registers and configuration reg-
isters in external devices will appear to have a different neediness.

The configuration enable bit (ConfigEn) in the Configuration Address register must be set before the Configura-
tion Data register is read or written. An attempt of CPU read a configuration register without this bit set, will
result in undefined data returned on Sassed bus

7.5.1 Special Cycles and Interrupt Acknowledge
A Special cycle is generated whenever the Configuration Data register is written to and the Configuration
Address register has been previously written with 0 for BusNum, 1f for DevNum, 7 for FunctNum and 0 for Reg-
Num.

An Interrupt acknowledge cycle is generated whenever the Interrupt Acknowledge (0xc34) register is read.

7.6 Target Configuration and Plug and Play

The GT-96100A includes all of the required plug and play PCI configuration registers. These registers, as well as
the GT-96100A�s internal registers are accessible from both the CPU and the PCI bus.

The GT-96100A acts as a two function device when being configured from the PCI bus. The base address regis-
ters available in Function 0 are used to decode accesses for which there is no byte swapping.

Function 1 is used to decode byte swapped addresses.

All other registers are shared between Function 0 and Function 1, as shown in Figure 29.
Revision 1.0 163

GT-96100A Advanced Communication Controller
Figure 29: PCI Configuration Header

7.6.1 Plug and Play Base Address Register Sizing
Systems adhering to the plug and play configuration standard determine the size of a base address register�s
decode range by first writing 0xFFFF.FFFF to the BAR and then reading back the value contained in the BAR.
Any bits that were unchanged (i.e., read back a zero) indicate that they cannot be set and are therefore not part of
the address comparison. With this information, the size of the decode region can be determined.1

The GT-96100A responds to BAR sizing requests based on the values programmed into the Bank Size registers.
These registers can be loaded automatically after RESET from the system ROM (see Section 7.6.2 �PCI Auto-
load of Configuration Registers at RESET� on page 164).

7.6.2 PCI Autoload of Configuration Registers at RESET
Thirteen PCI registers per PCI interface can be automatically loaded after Rst*. Autoload mode is enabled by
asserting the DAdr[0] pin LOW on Rst*. Any PCI transactions targeted for the GT-96100A must be retried while
the loading of the PCI configuration registers is in process.

1. Refer to the PCI specification for more information on the BAR sizing process.

Device ID Vendor ID

Rev ID
Status Command

Class Code
Header Line SizeLatencyBIST

SCS[1:0] BAR
SCS[3:2] BAR
CS[2:0] BAR

CS[3] & BootCS BAR
Mem Mapped Internal BAR
IO Mapped Internal BAR

Reserved
Subsystem ID Subsystem Vendor ID

Expansion ROM BAR

Reserved
Min_Gnt Int. LineInt. PinMax_Lat

00h
04h
08h
0Ch
10h
14h
18h
1Ch
20h
24h
28h
2Ch
30h
34h
38h
3Ch

Function 0 Header

Swap SCS[1:0] BAR
Swap SCS[3:2] BAR

Reserved
Swap CS[3] & BootCS BAR

Reserved
Reserved

Reserved

00h
04h
08h
0Ch
10h
14h
18h
1Ch
20h
24h
28h
2Ch
30h
34h
38h
3Ch

Function 1 Header

Reserved Read Only 0

Aliased to function 0 register

Reserved Cap.Ptr
164 Revision 1.0

GT-96100A Advanced Communication Controller
The PCI register values are loaded from the ROM controlled by BootCS*. These register values are shown in
Table 131 for PCI_0 and in Table 132 for PCI_1. Although the configuration register information is typically
stored in a Boot ROM device, a PLD device can also be programmed to store this information.

NOTE: The PLD should be programmed to support burst read cycles.

Table 131: PCI_0 Registers Loaded at RESET

Register Offset Boot Device Address

Command 0xc00 0x1fffff80

Timeout & Retry Counters 0xc04 0x1fffff84

RAS[1:0]* Bank Size 0xc08 0x1fffff88

RAS[3:2]* Bank Size 0xc0c 0x1fffff8c

CS[2:0]* Bank Size 0xc10 0x1fffff90

CS[3]* & Boot CS* Bank Size 0xc14 0x1ffffff94

Conf_en 0xc3c 0x1ffffff98

Prefetch/Max_burst 0xc40 0x1ffffff9c

Device and Vendor ID 0x000 0x1fffffa0

Class Code and Revision ID 0x008 0x1fffffa4

Cache_line/Latency 0x00c 0x1fffffa8

Subsystem Device and Vendor ID 0x02c 0x1fffffac

Interrupt Pin and Line 0x03c 0x1fffffb0

Table 132: PCI_1 Registers Loaded at RESET

Register Offset Boot Device Address

Timeout & Retry Counters 0xc80 0x1fffffc0

Counter 0xc84 0x1fffffc4

RAS[1:0]* Bank Size 0xc88 0x1fffffc8

RAS[3:2]* Bank Size 0xc8c 0x1fffffcc

CS[2:0]* Bank Size 0xc90 0x1fffffd0

CS[3]* & Boot CS* Bank Size 0xc94 0x1ffffffd4

Conf_en 0xcbc 0x1ffffffd8

Prefetch/Max_burst 0xcc0 0x1ffffffdc

Device and Vendor ID 0x080 0x1fffffe0

Class Code and Revision ID 0x088 0x1fffffe4

Cache_line/Latency 0x08c 0x1fffffe8
Revision 1.0 165

GT-96100A Advanced Communication Controller
7.6.3 Expansion ROM Functionality
The GT-96100A implements the PCI Expansion ROM as required by PC boot devices. The PCI Expansion ROM
functionality is enabled by strapping DAdr[5] low at RESET, see Section 22. �Reset Configuration� on page 452.

If the PCI Expansion ROM is disabled, expansion ROM register (offset 0x30 of PCI configuration space) acts as
reserved register and returns only 0 when read.

When the expansion ROM is enabled by the pin strapping option, the PCI Expansion ROM BAR appears in the
GT-96100A�s PCI_0 configuration header. However, the Expansion ROM decoder shares functionality with the
SCS[3]*/BootCS* resource. In normal operation (i.e., after the BIOS initialization is complete), the Expansion
ROM is disabled via bit 0 in the Expansion ROM BAR. During BIOS boot, however, the BIOS �turns on� the
Expansion ROM decoder by setting bit 0. When the Expansion ROM decoder is �on� the following happens in
PCI_0:

� The PCI target acts as if the Timeout0 and Timeout1 MSBs are 1 (which means initial value of 0x8f and
0x87 respectively). This is done to allow for the long default access time from 8-bit boot ROMs.

� The Device unit will bypass it's address decoding for all transactions from PCI that are targeted to
expansion ROM or SCS[3]*/BootCS*. All of these transactions assert CS[3] regardless of the actual
address.

� The GT-96100A acts this way as long as bit[0] of expansion ROM register is set to 1. The BIOS must
clear this bit when it is done executing/probing the Expansion ROM. If the BIOS does not clear bit[0] of
expansion ROM BAR, program this bit to 0 from CPU side.

7.7 PCI Bus/Device Bus/CPU Clock Synchronization

The PCI interface is designed to run asynchronously with respect to the AD and CPU buses.

The synchronization delay between these two clock domains can be reduced by running the interfaces in syn-
chronized mode. An example would be having the CPU/AD buses running at 66MHz and the PCI bus running at
a 33MHz frequency that was derived from the 66MHz.

Latency through the GT-96100A is reduced to a minimum when synchronized mode is selected. The synchroni-
zation mode is set via the SyncMode bits in the PCI Internal Command registers (0xc00/0xc80). See Section
2.4.2 �PCI Read Performance from SDRAM� on page 117 for a full description.

NOTE: TClk cycle must be smaller than PClk cycle by at least 1ns (T tclk < Tpclk + 1ns).

Subsystem Device and Vendor ID 0x0ac 0x1fffffec

Interrupt Pin and Line 0x0bc 0x1ffffff0

Table 132: PCI_1 Registers Loaded at RESET (Continued)

Register Offset Boot Device Address
166 Revision 1.0

GT-96100A Advanced Communication Controller
7.8 64-bit PCI Configuration

The GT-96100A is configured to work as a 64-bit PCI device if DAdr[2] and FRAME1*/REQ64* pins are sam-
pled LOW on reset, see Section 22. �Reset Configuration� on page 452.

NOTE: The hold time for REQ64*, in respect to RST* rise, is 0, as required by the PCI spec.

When the GT-96100A is configured to a 64-bit PCI, both master and target interfaces are configured to execute
64-bit transactions, whenever possible.

The PCI master interface always attempts to generate 64-bit transactions (asserts REQ64#) except for I/O or con-
figuration transactions or when the required data is less than 64 bits. If the transaction target does not respond
with ACK64#, the master completes the transaction as a 32-bit transaction.

The PCI target interface always responds with ACK64# to a 64-bit transaction, except for accesses to configura-
tion space or internal registers.

NOTE: PClk1 must be tied to PClk0 on 64-bit PCI configuration.

7.9 Retry Enable

Some applications require that the local MIPS CPU program the PCI configuration registers in advance of other
bus masters accessing them. In a PC add-in card application, for example, the MIPS CPU must set the device ID,
BAR size requirements, etc. before the BIOS attempts to configure the card. The GT-96100A provides a mecha-
nism by which the PCI target interface retries all transactions until this configuration is complete. This prevents
race conditions between the local MIPS processor and the BIOS.

If DAdr[6] pin is sampled low on reset, the GT-96100A PCI target retries any transaction targeted to the GT-
96100A�s space. The GT-96100A stays in this retry mode until the Stop Retry bit in CPU configuration register
(0x000) is set to 1.

7.10 Locked Cycles

The GT-96100A locks a cache line (fixed at 32 bytes) in the local memory address space when responding to
Lock sequences on the PCI bus.

When a cache line is locked, any new PCI access to an address within the locked cache line (except accesses ini-
tiated by the LOCK owner) is terminated with RETRY. Also, every access from CPU or DMA to the locked
cache line is on hold until the LOCK ends.

Although the GT-96100A does not support the Lock* pin on PCI_1, any access from PCI_1 to a locked cache
line is not completed until the LOCK ends.
Revision 1.0 167

GT-96100A Advanced Communication Controller
7.11 Hot-Swap Support

The GT-96100A is CompactPCI Hot Swap Capable. It supports the following hot swap device requirements:

� All PCI outputs float when RST# is asserted.
� All the GT-96100A�s PCI state machines are kept in their idle state while RST# is asserted.
� The GT-96100A PCI interface does not leave it�s idle state until PCI bus is in an IDLE state. If reset is

de-asserted in the middle of a PCI transaction, the GT-96100A PCI interface stays in it�s idle state until
PCI bus is back in idle).

� The GT-96100A has no assumptions on clock behavior prior to it�s setup to the rising edge of RST#.
� The GT-96100A is tolerant of the 1V precharge voltage during insertion.
� The GT-96100A can be powered from Early VCC.

7.12 PCI Power Management Support

The GT-96100A is PCI Power Management compliant. It contains the required configuration registers as shown
in Figure 30.

Figure 30: Power Management Registers

The GT-96100A supports Power Management through reset configuration pins SDQM[1:0], each pin per each
PCI interface.

If sampled HIGH, power management is enabled. Bit[4] of Configuration Status register is set, indicating the
existence of a capability list. A capability list pointer register is implemented at offset 0x34, pointing to power
management configuration registers implemented at offset 0x40 and 0x44.

If sampled LOW, capability list is not supported and a capability pointer as well as PMC registers are reserved.

Power Management registers are accessible from both CPU and PCI. Whenever PCI_0 or PCI_1 updates Power
State bits (bits[1:0] of PMCSR register), bit[21] of interrupt cause register is set (bit[21] of high interrupt cause
register in case of PCI_1 PMCSR configuration register) and an interrupt to CPU or PCI is generated, if not
masked by interrupt mask registers. When Power Management is enabled, bit[21] in the interrupt cause register
is used as a power management interrupt rather than a doorbell interrupt, see Interrupt section for details.

NOTE: The GT-96100A does not support it�s own power down. It only supports the software capability to
power down the CPU or other on board devices.

Cap. Ptr
Function 0 Header

Offset 0x34

Cap. IDNull Ptr.PMC
PMCSRBSRData

Power Management
Capability
168 Revision 1.0

GT-96100A Advanced Communication Controller
7.13 PCI Interface Restrictions

7.13.1 General
1. TClk cycle must be smaller than PClk cycle by at least 1ns (T tclk < Tpclk + 1ns).

7.13.2 Master
1. Latency count, as specified in LatTimer (PCI Configuration Register 0x00c), must not be programmed

to less than 6.

7.13.3 Slave
1. The set bits in the Bank Size registers must be sequential.
2. When the slave is locked, in order to prevent a deadlock, all transactions to internal registers (I/O or

memory cycles) are not supported (retry will be issued).
3. Timeout0 value (PCI internal Register 0xc04) must not be programed to less than 2.
4. All PCI reads result in prefetch read from the target device regardless of the BAR prefetch bit value,

unless FRAME* is asserted for a single clock cycle.
5. If 64-bit SDRAM/device is used that supports bursts of eight 64-bit words, the MaxBurst can only be

set to 1 (i.e. 64 bytes).

7.14 PCI Control and Configuration Registers
Table 133: PCI Control and Configuration Register Map

Description Offset Page Number

PCI Internal

PCI_0 Command 0xc00 page 172

PCI_1 Command 0xc80 page 174

PCI_0 Time Out & Retry 0xc04 page 174

PCI_1 Time Out & Retry 0xc84 page 174

PCI_0 SCS[1:0]* Bank Size 0xc08 page 175

PCI_1 SCS[1:0]* Bank Size 0xc88 page 175

PCI_0 SCS[3:2]* Bank Size 0xc0c page 175

PCI_1 SCS[3:2]* Bank Size 0xc8c page 176

PCI_0 CS[2:0]* Bank Size 0xc10 page 176

PCI_1 CS[2:0]* Bank Size 0xc90 page 176

PCI_0 CS[3]* & Boot CS* Bank Size 0xc14 page 177
Revision 1.0 169

GT-96100A Advanced Communication Controller
PCI Internal (Continued)

PCI_1 CS[3]* & Boot CS* Bank Size 0xc94 page 177

PCI_0 Internal Registers Space Size 0xc20 page 177

PCI_1 Internal Registers Space Size 0xca0 page 178

PCI_0 Base Address Registers� Enable 0xc3c page 178

PCI_1 Base Address Registers� Enable 0xcbc page 179

PCI_0 Prefetch/Max Burst Size 0xc40 page 179

PCI_1 Prefetch/Max Burst Size 0xcc0 page 179

PCI_0 SCS[1:0]* Base Address Remap 0xc48 page 180

PCI_1 SCS[1:0]* Base Address Remap 0xcc8 page 180

PCI_0 SCS[3:2]* Base Address Remap 0xc4c page 181

PCI_1 SCS[3:2]* Base Address Remap 0xccc page 181

PCI_0 CS[2:0]* Base Address Remap 0xc50 page 182

PCI_1 CS[2:0]* Base Address Remap 0xcd0 page 182

PCI_0 CS[3]* & Boot CS* Address Remap 0xc54 page 182

PCI_1 CS[3]* & Boot CS* Address Remap 0xcd4 page 182

PCI_0 Swapped SCS[1:0]* Base Address Remap 0xc58 page 180

PCI_1 Swapped SCS[1:0]* Base Address Remap 0xcd8 page 180

PCI_0 Swapped SCS[3:2]* Base Address Remap 0xc5c page 181

PCI_1 Swapped SCS[3:2]* Base Address Remap 0xcdc page 181

PCI_0 Swapped CS[3]* & BootCS* Base Address Remap 0xc64 page 183

PCI_1 Swapped CS[3]* & BootCS* Base Address Remap 0xce4 page 183

PCI_0 Configuration Address 0xcf8 page 183

PCI_1 Configuration Address 0xcf0 page 184

PCI_0 Configuration Data Virtual Register 0xcfc page 184

PCI_1 Configuration Data Virtual Register 0xcf4 page 184

PCI_0 Interrupt Acknowledge Virtual Register 0xc34 page 184

PCI_1 Interrupt Acknowledge Virtual Register 0xc30 page 184

Table 133: PCI Control and Configuration Register Map (Continued)

Description Offset Page Number
170 Revision 1.0

GT-96100A Advanced Communication Controller
PCI Configuration

PCI_0 Device and Vendor ID 0x000 page 185

PCI_1 Device and Vendor ID 0x080 page 185

PCI_0 Status and Command 0x004 page 186

PCI_1 Status and Command 0x084 page 186

PCI_0 Class Code and Revision ID 0x008 page 188

PCI_1 Class Code and Revision ID 0x088 page 188

PCI_0 BIST, Header Type, Latency Timer, Cache Line 0x00c page 188

PCI_1 BIST, Header Type, Latency Timer, Cache Line 0x08c page 189

PCI_0 SCS[1:0]* Base Address 0x010 page 190

PCI_1 SCS[1:0]* Base Address 0x090 page 190

PCI_0 SCS[3:2]* Base Address 0x014 page 191

PCI_1 SCS[3:2]* Base Address 0x094 page 191

PCI_0 CS[2:0]* Base Address 0x018 page 191

PCI_1 CS[2:0]* Base Address 0x098 page 192

PCI_0 CS[3]* & Boot CS* Base Address 0x01c page 192

PCI_1 CS[3]* & Boot CS* Base Address 0x09c page 192

PCI_0 Internal Registers Memory Mapped Base Address 0x020 page 193

PCI_1 Internal Registers Memory Mapped Base Address 0x0a0 page 193

PCI_1 SCS[1:0]* Base Address 0x090 page 190

PCI_0 SCS[3:2]* Base Address 0x014 page 191

PCI_0 Internal Registers I/O Mapped Base Address 0x024 page 193

PCI_1 Internal Registers I/O Mapped Base Address 0x0a4 page 193

PCI_0 Subsystem ID and Subsystem Vendor ID 0x02c page 194

PCI_1 Subsystem ID and Subsystem Vendor ID 0x0ac page 194

Expansion ROM Base Address Register 0x030 page 194

PCI_0 Interrupt Pin and Line 0x03c page 195

PCI_1 Interrupt Pin and Line 0x0bc page 195

Table 133: PCI Control and Configuration Register Map (Continued)

Description Offset Page Number
Revision 1.0 171

GT-96100A Advanced Communication Controller
7.14.1 PCI Internal Registers

PCI Configuration, Function 1

PCI_0 Swapped SCS[1:0]* Base Address 0x110 page 198

PCI_1 Swapped SCS[1:0]* Base Address 0x190 page 198

PCI_0 Swapped SCS[3:2]* Base Address 0x114 page 198

PCI_1 Swapped SCS[3:2]* Base Address 0x194 page 199

PCI_0 Swapped CS[3]* & Boot CS* Base Address 0x11c page 199

PCI_1 Swapped CS[3]* & Boot CS* Base Address 0x19c page 200

Table 134: PCI_0 Command, Offset: 0xc00

Bits Field Name Function Init ial Value

0 MByteSwap Master Byte Swap.
When set to zero, the GT-96100A PCI
master swaps the bytes of the incoming
and outgoing PCI data (swap the 8 bytes
of a long-word).

Set to the same value
sampled at reset into
bit[12] of the CPU Inter-
face Configuration regis-
ter.

3:1 SyncMode1 Indicates the ratio between TClk and PClk
as follows:
x00 - Default mode. When the PClk
ranges from DC to 66MHz. This mode
works in all cases.
NOTE: Use following settings for higher

performance.
001 - When PClk is higher than or equal to
half the TClk frequency (e.g. when TClk is
100MHz, SyncMode can be set to 001 if
the PCI frequency is higher than or equal
to 50MHz).
01x - When the two clocks are synchro-
nized and PClk is higher than or equal to
half of TCLK frequency (e.g. TClk =
100MHz, PClk = 50MHz).
101 - When PClk is higher than or equal to
a third of the TClk frequency but less than
half of the TCLK frequency.
11x - When the two clocks are synchro-
nized and PClk is higher than or equal to
third of the TCLK frequency but less than
half of the TCLK frequency.

0x0

Table 133: PCI Control and Configuration Register Map (Continued)

Description Offset Page Number
172 Revision 1.0

GT-96100A Advanced Communication Controller
7:4 Reserved Read only. 0x0

9:8 Reserved Must be 0. 0x0

10 MWordSwap* Master Word Swap
When set to 1, the GT-96100A PCI master
swaps the words of the incoming and out-
going PCI data (swaps the 2 words of a
long-word).
NOTE: Not supported when using a 64-

bit PCI interface.

0x0

11 SWordSwap* Slave Word Swap
When set to 1, the GT-96100A PCI slave
swaps the words of the incoming and out-
going PCI data (swap the 2 words of a
long-word), if there is an address hit in one
of SDRAM or Devices BARs.
NOTE: Not supported when using a 64-

bit PCI interface.

0x0

12 SSBWordSwap* Slave Swap BAR Word Swap.
When set to 1, the GT-96100A PCI slave
swaps the words of the incoming and out-
going PCI data (swap the 2 words of a
long-word), if address hit in one of
SDRAM or Devices Swap BARs.
NOTE: Not supported when using a 64-

bit PCI interface.

0x0

15:13 Reserved Must be 0. 0x0

16 SByteSwap Slave Byte Swap.
When set to zero, the GT-96100A PCI
slave swaps the bytes of the incoming and
outgoing PCI data (swap the 8 bytes of a
long-word).

Set to the same value as
sampled at reset into
bit[12] of the CPU Inter-
face Configuration regis-
ter.

31:17 Reserved Must be 0. 0x0

1. Regardless of the selected syncmode, PClk frequency must be smaller than TClk frequency by at least 1MHz.

Table 134: PCI_0 Command, Offset: 0xc00 (Continued)

Bits Field Name Function Init ial Value
Revision 1.0 173

GT-96100A Advanced Communication Controller

NOTE: See also Section 7.6.3 �Expansion ROM Functionality� on page 166

Table 135: PCI_1 Command, Offset: 0xc80

Bits Field Name Function Init ial Value

31:0 Various Same as for the PCI_0 Command. 0x01

1. For bit 16, set to the same value as sampled at reset into bit[12] of the CPU Interface Configuration register.

Table 136: PCI_0 Time Out & ReTry, Offset: 0xc04

Bits Field Name Function Init ial Value

7:0 Timeout0 Specifies in PCI clock units the number of
clocks that the GT-96100A, as a slave,
holds the PCI bus before the generation of
retry termination.
A value of 0x00 means "never timeout".
Used for the first data transfer.

0x0f

15:8 Timeout1 Specifies in PCI clock units the number of
clocks that the GT-96100A, as a slave,
holds the PCI bus before the generation of
disconnect termination.
A value of 0x00 means "never timeout".
Used for data transfers following the first
data.

0x07

23:16 RetryCtr Specifies the number of retries of the GT-
96100A Master. The GT-96100A gener-
ates an interrupt when this timer expires.
A value of 0x00 means �retry forever�.
The number in RetryCtr does not include
the first access of the transaction.

0x0

31:24 Reserved 0x0

Table 137: PCI_1 Time Out & ReTry, Offset: 0xc84

Bits Field Name Function Init ial Value

31:0 Various Same as for PCI_0 Time Out and ReTry. 0x070f
174 Revision 1.0

GT-96100A Advanced Communication Controller

Table 138: PCI_0 SCS[1:0] Bank Size, Offset: 0xc08

Bits Field Name Function Init ial Value

11:0 Reserved Read only. 0x0

31:12 BankSize Specifies the SCS[1:0]* address mapping
in conjunction with the SCS[1:0]* Base
Address register.
0 - The corresponding bit in the address
and in the base address must be equal in
order to have a hit.
1 -The corresponding bit in the address is
a �don�t-care�.
For example, bit 12 set to 1 indicates that
the SCS[1:0]* size is 8KBytes. The set bits
in the Bank Size must be sequential (e.g.
000...001, 000...011, 000...111 are correct
values, whereas 000...010 and 000...100
are not).

0x00fff

Table 139: PCI_1 SCS[1:0]* Bank Size, Offset: 0xc88

Bits Field Name Function Init ial Value

31:0 Various Same as for PCI_0 SCS[1:0]* Bank Size. 0x00fff000

Table 140: PCI_0 SCS[3:2]* Bank Size, Offset: 0xc0c

Bits Field Name Function Init ial Value

11:0 Reserved Read only. 0x0

31:12 BankSize Specifies the SCS[3:2]* address mapping
in conjunction with the SCS[3:2]* Base
Address register.
0 -The corresponding bit in the address
and in the base address must be equal in
order to have a hit.
1 - The corresponding bit in the address is
a �don�t-care�.
For example, bit 12 set to 1 indicates that
the SCS[3:2]* size is 8KBytes. The set bits
in the Bank Size must be sequential (e.g.
000...001, 000...011, 000...111 are correct
values, whereas 000...010 and 000...100
are not).

0x00fff
Revision 1.0 175

GT-96100A Advanced Communication Controller

Table 141: PCI_1 SCS[3:2]* Bank Size, Offset: 0xc8c

Bits Field Name Function Init ial Value

31:0 Various Same as for PCI_0 SCS[3:2]* Bank Size. 0x00fff000

Table 142: PCI_0 CS[2:0]* Bank Size, Offset: 0xc10

Bits Field Name Function Init ial Value

11:0 Reserved Read only 0x0

31:12 BankSize Specifies the CS[2:0]* address mapping in
conjunction with the CS[2:0]* Base
Address register.
0 - The corresponding bit in the address
and in the base address must be equal in
order to have a hit.
1 - The corresponding bit in the address is
a �don�t-care�.
For example, bit 12 set to �1� indicates that
the CS[2:0]* size is 8KBytes. The set bits
in the Bank Size must be sequential (e.g.
000...001, 000...011, 000...111 are correct
values, whereas 000...010 and 000...100
are not).

0x01fff

Table 143: PCI_1 CS[2:0]* Bank Size, Offset: 0xc90

Bits Field Name Function Init ial Value

31:0 Various Same as for PCI_0 CS[2:0]* Bank Size. 0x01fff000
176 Revision 1.0

GT-96100A Advanced Communication Controller

Table 144: PCI_0 CS[3]* and Boot CS* Bank Size, Offset: 0xc14

Bits Field Name Function Init ial Value

11:0 Reserved Read only. 0x0

31:12 BankSize Specifies the CS[3]* and Boot CS*
address mapping in conjunction with the
CS[3]* and Boot CS* Base Address regis-
ter.
0 - The corresponding bit in the address
and in the base address must be equal in
order to have a hit.
1 - The corresponding bit in the address is
a �don�t-care�.
For example, bit 12 set to �1� indicates that
the CS[3]*/ Boot CS* size is 8KBytes. The
set bits in the Bank Size must be sequen-
tial (e.g. 000...001, 000...011, 000...111
are correct values, whereas 000...010 and
000...100 are not).

0x00fff

Table 145: PCI_1 CS[3]* and Boot CS* Bank Size, Offset: 0xc94

Bits Field Name Function Init ial Value

31:0 Various Same as for PCI_0 CS[3]* and Boot CS*
Bank Size.

0x00fff000

Table 146: PCI_0 Internal Registers Space Size, Offset: 0xc20

Bits Field Name Function Init ial Value

11:0 Reserved Read only. 0x0

31:12 BankSize Specifies the internal registers address
mapping in conjunction with the Internal
Registers Base Address register.
0 - The corresponding bit in the address
and in the base address must be equal in
order to have a hit.
1 - The corresponding bit in the address is
a �don�t-care�.
For example, bit 12 set to �1� indicates that
the internal registers space size is
8KBytes. The set bits in the BankSize
must be sequential (e.g. 000...001,
000...011, 000...111 are correct values,
whereas 000...010 and 000...100 are not).

0x00000
Revision 1.0 177

GT-96100A Advanced Communication Controller

Table 147: PCI_1 Internal Registers Space Size, Offset: 0xca0

Bits Field Name Function Init ial Value

31:0 Various Same as for PCI_0 Internal Registers
Space Size.

0x00000000

Table 148: PCI_0 Base Address Registers� Enable, Offset: 0xc3c

Bits Field Name Function Init ial Value

0 SwCS[3]_&_Boot_C
SEn

Controls address matching with Swapped
CS[3]* & Boot CS* base/size.
0 - Enable
1 - Disable

0x1

1 SwSCS[3:2]En Controls address matching with Swapped
SCS[3:2]* base/size.
0 - Enable
1 - Disable

0x1

2 SwSCS[1:0]En Controls address matching with Swapped
SCS[1:0]* base/size.
0 - Enable
1 - Disable

0x1

3 IntIOEn Controls address matching with internal
registers I/O mapped base/size.
0 - Enable
1 - Disable

0x1

4 IntMeMEn Controls address matching with internal
registers memory mapped base/size.
0 - Enable
1 - Disable

0x0

5 CS[3]*_&_Boot_CSE
n

Controls address matching with CS[3]* &
Boot CS* base/size.
0 - Enable
1 - Disable

0x0

6 CS[2:0]En Controls address matching with CS[2:0]*
base/size.
0 - Enable
1 - Disable

0x0

7 SCS[3:2]En Controls address matching with SCS[3:2]*
base/size.
0 - Enable
1 - Disable

0x0
178 Revision 1.0

GT-96100A Advanced Communication Controller

NOTE: The GT-96100A prevents disabling both memory mapped base/size address matching and I/O mapped
base/size address matching at the same time (bits 3 and 4 cannot simultaneously be set to 1).

8 SCS[1:0]En Controls address matching with SCS[1:0]*
base/size.
0 - Enable
1 - Disable

0x0

31:9 Reserved 0x0

Table 149: PCI_1 Base Address Registers� Enable, Offset: 0xcbc
NOTE: RESERVED if configured for only PCI_0)

Bits Field Name Function Init ial Value

31:0 Various Same As for PCI_0 Base Address regis-
ters� enable.

0x0f

Table 150: PCI_0 Prefetch/Max Burst Size, Offset: 0xc40

Bits Field Name Function Init ial Value

0 Dram0MaxBrst SCS[1:0]* Max Burst Length 0x0

1 Dram1MaxBrst SCS[3:2]* Max Burst Length 0x0

2 Dev0MaxBrst CS[2:0]* Max Burst Length 0x0

3 Dev1MaxBrst CS[3]* & Boot CS* Max Burst Length 0x0

4 RdMemPref Read Memory Prefetch 0x0

5 RdLnPref Read Line Prefetch 0x0

6 RdMulPref Read Multiple Prefetch 0x1

31:7 Reserved 0x0

Table 151: PCI_1 Prefetch/Max Burst Size, Offset: 0xcc0
NOTE: RESERVED if configured for only PCI_0.

Bits Field Name Function Init ial Value

31:0 Various Same as for PCI_0 Prefetch/Max Burst
Size.

0x040

Table 148: PCI_0 Base Address Registers� Enable, Offset: 0xc3c (Continued)

Bits Field Name Function Init ial Value
Revision 1.0 179

GT-96100A Advanced Communication Controller
Table 152: PCI_0 SCS[1:0]* Base Address Remap, Offset: 0xc48

Bits Field Name Function Init ial Value

11:0 Reserved Read only. 0x0

31:12 DRAM0Remap SCS[1:0]* memory address remap from
PCI side.
Reserved if this BAR is disabled through
PCI_0 Base Address Registers� Enable.

0x0

Table 153: PCI_1 SCS[1:0]* Base Address Remap, Offset: 0xcc8
NOTE: RESERVED if configured for only PCI_0.

Bits Field Name Function Init ial Value

11:0 Reserved Read only. 0x0

31:12 DRAM0Remap SCS[1:0]* memory address remap from
PCI side
Reserved if this BAR is disabled through
PCI_1 Base Address Registers� Enable.

0x0

Table 154: PCI_0 Swapped SCS[1:0]* Base Address Remap, Offset: 0xc58

Bits Field Name Function Init ial Value

11:0 Reserved Read only. 0x0

31:12 Swapped_DRAM0_
Remap

Swapped SCS[1:0]* memory address
remap from PCI side
Reserved if this BAR is disabled through
PCI_0 Base Address Registers� Enable.

0x0

Table 155: PCI_1 Swapped SCS[1:0]* Base Address Remap, Offset: 0xcd8
NOTE: RESERVED if configured for only PCI_0.

Bits Field Name Function Init ial Value

11:0 Reserved Read only. 0x0

31:12 Swapped_
DRAM0Remap

Swapped SCS[1:0]* memory address
remap from PCI side
Reserved if this BAR is disabled through
PCI_1 Base Address Registers� Enable.

0x0
180 Revision 1.0

GT-96100A Advanced Communication Controller
Table 156: PCI_0 SCS[3:2]* Base Address Remap, Offset: 0xc4c

Bits Field Name Function Init ial Value

11:0 Reserved Read only. 0x0

31:12 DRAM1Remap SCS[3:2]* memory address remap from
PCI side
Reserved if this BAR is disabled through
PCI_0 Base Address Registers� Enable.

0x01000

Table 157: PCI_1 SCS[3:2]* Base Address Remap, Offset: 0xccc
NOTE: RESERVED if configured for only PCI_0.

Bits Field Name Function Init ial Value

11:0 Reserved Read only. 0x0

31:12 DRAM1Remap SCS[3:2]* memory address remap from
PCI side
Reserved if this BAR is disabled through
PCI_1 Base Address Registers� Enable.

0x01000

Table 158: PCI_0 Swapped SCS[3:2]* Base Address Remap, Offset: 0xc5c

Bits Field Name Function Init ial Value

11:0 Reserved Read only. 0x0

31:12 Swapped_
DRAM1Remap

Swapped SCS[3:2]* memory address
remap from PCI side
Reserved if this BAR is disabled through
PCI_0 Base Address Registers� Enable.

0x01000

Table 159: PCI_1 Swapped SCS[3:2]* Base Address Remap,
Offset: 0xcdc (RESERVED if configured for only PCI_0)

Bits Field Name Function Init ial Value

11:0 Reserved Read only. 0x0

31:12 Swapped_
DRAM1Remap

Swapped SCS[3:2]* memory address
remap from PCI side
Reserved if this BAR is disabled through
PCI_1 Base Address Registers� Enable.

0x01000
Revision 1.0 181

GT-96100A Advanced Communication Controller
Table 160: PCI_0 CS[2:0]* Base Address Remap, Offset: 0xc50

Bits Field Name Function Init ial Value

11:0 Reserved Read only. 0x0

31:12 Dev0Remap CS[2:0]* memory address remap from PCI
side
Reserved if this BAR is disabled through
PCI_0 Base Address Registers� Enable.

0x1c000

Table 161: PCI_1 CS[2:0]* Base Address Remap, Offset: 0xcd0
NOTE: RESERVED if configured for only PCI_0.

Bits Field Name Function Init ial Value

11:0 Reserved Read only. 0x0

31:12 Dev0Remap CS[2:0]* memory address remap from PCI
side
Reserved if this BAR is disabled through
PCI_1 Base Address Registers� Enable.

0x1c000

Table 162: PCI_0 CS[3]* & BootCS* Base Address Remap, Offset: 0xc54

Bits Field Name Function Init ial Value

11:0 Reserved Read only. 0x0

31:12 Dev1Remap CS[3]* & BootCS* memory address remap
from PCI side
Reserved if this BAR is disabled through
PCI_0 Base Address Registers� Enable.

0x1f000

Table 163: PCI_1 CS[3]* & BootCS* Base Address Remap, Offset: 0xcd4
NOTE: RESERVED if configured for only PCI_0.

Bits Field Name Function Init ial Value

11:0 Reserved Read only. 0x0

31:12 Dev1Remap CS[3]* & BootCS* memory address remap
from PCI side
Reserved if this BAR is disabled through
PCI_1 Base Address Registers� Enable.

0x1f000
182 Revision 1.0

GT-96100A Advanced Communication Controller
Table 164: PCI_0 Swapped CS[3]*& BootCS* Base Address Remap, Offset: 0xc64

Bits Field Name Function Init ial Value

11:0 Reserved Read only. 0x0

31:12 Swapped_
Dev1Remap

Swapped CS[3]* & BootCS* memory
address remap from PCI side
Reserved if this BAR is disabled through
PCI_0 Base Address Registers� Enable.

0x1f000

Table 165: PCI_1 Swapped CS[3]* & BootCS* Base Address Remap, Offset: 0xce4
NOTE: RESERVED if configured for only PCI_0.

Bits Field Name Function Init ial Value

11:0 Reserved Read only. 0x0

31:12 Swapped_
Dev1Remap

Swapped CS[3]* & BootCS* memory
address remap from PCI side
Reserved if this BAR is disabled through
PCI_1 Base Address Registers� Enable.

0x1f000

Table 166: PCI_0 Configuration Address, Offset: 0xcf8

Bits Field Name Function Init ial Value

1:0 Reserved Read only. 0x0

7:2 RegNum Indicates the register number. 0x00

10:8 FunctNum Indicates the function type. 0x0

15:11 DevNum Indicates the device number. 0x00

23:16 BusNum Indicates the bus number. 0x00

30:24 Reserved Read only. 0x0

31 ConfigEn When set, an access to the Configuration
Data register is translated into a Configu-
ration or Special cycle on the PCI bus.

0x0
Revision 1.0 183

GT-96100A Advanced Communication Controller

Table 167: PCI_0 Configuration Data, Offset: 0xcfc

Bits Field Name Function Init ial Value

31:0 Config The data is transferred to/from the PCI
bus when the CPU accesses this register
and the ConfigEn bit in the Configuration
Address register is set.
A CPU access to this register means the
GT-96100A performs a Configuration or
Special cycle on the PCI bus.

0x000

Table 168: PCI_1 Configuration Address, Offset: 0xcf0
NOTE: RESERVED if configured for only PCI_0.

Bits Field Name Function Init ial Value

31:0 Various Same as for PCI_0 Configuration
Address.

0x000

Table 169: PCI_1 Configuration Data, Offset: 0xcf4
NOTE: RESERVED if configured for only PCI_0.

Bits Field Name Function Init ial Value

31:0 Config Same as for PCI_0 Configuration Data. 0x000

Table 170: PCI_0 Interrupt Acknowledge Virtual Register, Offset: 0xc34

Bits Field Name Function Init ial Value

31:0 IntAck_0 A CPU read access to this register forces
an interrupt acknowledge cycle on PCI_0.
Read only.

0x0

Table 171: PCI_1 Interrupt Acknowledge Virtual Register, Offset: 0xc30

Bits Field Name Function Init ial Value

31:0 IntAck_1 A CPU read access to this register forces
an interrupt acknowledge cycle on PCI_1.
Read only.

0x0
184 Revision 1.0

GT-96100A Advanced Communication Controller
7.14.2 PCI Configuration Registers
All PCI Configuration registers are located at their standard offset when accessed from their corresponding PCI
bus. For example, if a master on PCI_0 performs a PCI configuration cycle on PCI_0�s Status and Command reg-
ister, the register is located at 0x004. Likewise, if a master on PCI_1 performs a PCI configuration cycle on
PCI_1�s Status and Command register, the register is located at 0x004.

On the other hand, if a master on PCI_0 performs a PCI configuration cycle on PCI_1�s Status and Command
register, the register is located at 0x084. Likewise, if a master on PCI_1 performs a PCI configuration cycle on
PCI_0�s Status and Command register, the register is located at 0x084.

If the CPU masters PCI configuration cycles, PCI_0 configuration registers are located at their standard offsets
and PCI_1 configuration registers are located at 0x80 + standard offset.

NOTE: All PCI_1 configuration registers are reserved if the GT-96100A is configured for only PCI_0 opera-
tion.

Table 172: PCI_0 Device and Vendor ID, Offset: 0x000 from
PCI_0 or CPU; 0x080 from PCI_1

Bits Field Name Function Init ial Value

15:0 VenID Provides the GT-96100A�s manufacturer.
Read only.

0x11ab

31:16 DevID Provides the unique GT-96100A PCI
device0 ID number.
Read Only.

0x9653

Table 173: PCI_1 Device and Vendor ID, Offset: 0x080 from
PCI_0 or CPU; 0x000 from PCI_1

Bits Field Name Function Init ial Value

31:0 Various Same as for PCI_0 Device and VenID 0x965311ab
Revision 1.0 185

GT-96100A Advanced Communication Controller
Table 174: PCI_0 Status and Command, Offset: 0x004 from
PCI_0 or CPU; 0x084 from PCI_1

Bits Field Name Function Init ial Value

0 IOEn Controls the GT-96100A�s response to I/O
accesses.
0 - Disable
1 - Enable

0x0

1 MEMEn Controls the GT-96100A�s response to
memory accesses.
0 - Disable
1 - Enable

0x0

2 MasEn Controls the GT-96100A�s ability to act as
a master on the PCI bus.
0 - Disable
1 - Enable

0x0

3 Reserved Read only. 0x0

4 MemWrInv Controls the GT-96100A�s ability to gener-
ate memory write and invalidate com-
mands on the PCI bus.
0 - Disable
1 - Enable

0x0

5 Reserved Read only. 0x0

6 PErrEn Controls the GT-96100A�s ability to
respond to parity errors on the PCI by
asserting the PErr* pin.
0 - Disable
1 - Enable

0x0

7 Reserved Read only. 0x0

8 SErrEn Controls the GT-96100A�s ability to assert
the SErr* pin.
0 - Disable
1 - Enable

0x0

19:9 Reserved Read only. 0x0

20 CapList Capability List Support Sampled at Rst* via
SDQM[0]* pin.

21 66MHzEn 66MHz Capable.
The GT-96100A PCI interface is capable
of running at 66MHz regardless of this bit
value.

Sampled at RESET via
the DAdr[9] pin.

22 Reserved Read only. 0x0
186 Revision 1.0

GT-96100A Advanced Communication Controller
NOTE: For bits 24 and 28 to 31, the user cannot set the bit. The user can only clear the bit by writing 1 to it.

23 TarFastBB Read only.
Indicates that the GT-96100A is capable of
accepting fast back-to-back transactions
on the PCI bus.

0x1

24 DataParDet This bit is set by the GT-96100A when it
detects a data parity error during master
operation.

0x0

26:25 DevSelTim These pins indicate that the GT-96100A�s
DevSel timing (medium), per the PCI stan-
dard.

0x1 Read only

27 Reserved Read only. 0x0

28 TarAbort This bit is set upon target abort. 0x0

29 MasAbort This pin is set upon master abort. 0x0

30 SysErr This pin is set upon system error. 0x0

31 DetParErr This pin is set upon detection of a parity
error in master or slave operations.

0x0

Table 175: PCI_1 Status and Command, Offset: 0x084 from
PCI_0 or CPU; 0x004 from PCI_1

Bits Field Name Function Init ial Value

19:0 Various Same as for PCI_0 status and command

20 CapList Capability List Support Sampled at Rst* via
SDQM[1]* pin.

31:21 CapList Same as for PCI_0 status and command

Table 174: PCI_0 Status and Command, Offset: 0x004 from
PCI_0 or CPU; 0x084 from PCI_1 (Continued)

Bits Field Name Function Init ial Value
Revision 1.0 187

GT-96100A Advanced Communication Controller

Table 176: PCI_0 Class Code and Revision ID, Offset: 0x008 from
PCI_0 or CPU; 0x088 from PCI_1

Bits Field Name Function Init ial Value

7:0 RevID Indicates the GT-96100A�s PCI_0 revision
number.

0x03

15:8 Reserved Read only. 0x0

23:16 SubClass Indicates the GT-96100A�s subclass.
0x00 - Host bridge device
0x80 - Memory device

0x80

31:24 BaseClass Indicates the GT-96100A�s base class.
0x02 - Network controller
0x05 - Memory device

Depends on value sam-
pled at reset on Bank-
Sel[0].

Table 177: PCI_1 Class Code and Revision ID,
Offset: 0x088 from PCI_0 or CPU; 0x008 from PCI_1

Bits Field Name Function Init ial Value

31:0 Various Same as for PCI_0 class code and revi-
sion ID

Depends on value sam-
pled at reset on Bank-
Sel[0].

Table 178: PCI_0 BIST, Header Type, Latency Timer, Cache Line,
Offset: 0x00c from PCI_0 or CPU; 0x08c from PCI_1

Bits Field Name Function Init ial Value

7:0 CacheLine Specifies the GT-96100A�s cache line
size.

0x00

15:8 LatTimer Specifies, in units of PCI bus clocks, the
value of the GT-96100A�s latency timer.

0x00

23:16 HeadType Specifies the layout of bytes 10h through
3fh.

0x00

31:24 BIST Built In Self Test
Reserved

0x00
188 Revision 1.0

GT-96100A Advanced Communication Controller

The BIST Field is reserved and is hardwired to 0.

Device and Vendor ID (0x000), Class Code and Revision ID (0x008), and Header Type (0x00e) fields are read
only from the PCI bus. These fields can be modified and read via the CPU bus.

NOTE: For more information on these fields, refer to the PCI specification.

Access of PCI masters to SDRAM banks, Devices and internal space is achieved once there is a match between
the address presented over the PCI bus and the space defined by the respective Base/Size register pair. The GT-
96100A incorporates three Swapped Base Address registers for SCS[1:0]*, SCS[3:2]*, CS[3]*, and BootCS*.
When the address matches a Swapped Base Address register x, the data transferred will undergo the opposite to
what is indicated by the ByteSwap bit (bit[0] of 0xc00). e.g. using this mechanism, one could write data directly
to SDRAM and read it byte-swapped without CPU processing.

NOTE: The address must not match its respective non-Swap Base Address register.

Table 179: PCI_1 BIST, Header Type, Latency Timer, Cache Line,
Offset: 0x08c from PCI_0 or CPU; 0x00c from PCI_1

Bits Field Name Function Init ial Value

31:0 Various As in PCI_0 BIST, Header Type, Latency
Timer, Cache Line.

0x00
Revision 1.0 189

GT-96100A Advanced Communication Controller
The Size registers cannot define a zero size space. In order to enable the system designer to use addresses which
are within a certain space without having the GT-96100A respond to these addresses, a Base Address Enable reg-
ister is incorporated. A disabled space will not trigger a device response if the address falls within the space
defined by its Base/Size register pair.

Table 180: PCI_0 SCS[1:0]* Base Address, Offset: 0x010 from
PCI_0 or CPU; 0x090 from PCI_1

Bits Field Name Function Init ial Value

0 MemSpace Memory Space Indicator
Read only.

0x0

2:1 Type Type
Read only.

0x0

3 Prefetch Prefetch 0x1

11:4 Reserved Read only. 0x0

31:12 Base Defines the address assignment of
SCS[1:0]*, see Table 138.
Reserved if this BAR is disabled through
PCI_0 Base Address registers� enable
setting.

0x00000

Table 181: PCI_1 SCS[1:0]* Base Address, Offset: 0x090 from
PCI_0 or CPU; 0x010 from PCI_1

Bits Field Name Function Init ial Value

31:0 Various Same as for PCI_0 SCS[1:0]* Base
Address

0x08
190 Revision 1.0

GT-96100A Advanced Communication Controller
Table 182: PCI_0 SCS[3:2]* Base Address, Offset: 0x014 from
PCI_0 or CPU; 0x094 from PCI_1

Bits Field Name Function Init ial Value

0 MemSpace Memory Space Indicator
Read only.

0x0

2:1 Type Type
Read only.

0x0

3 Prefetch Prefetch 0x1

11:4 Reserved Read only. 0x0

31:12 Base Defines the address assignment of
SCS[3:2]*, see Table 140.
Reserved if this BAR is disabled through
PCI_0 Base Address registers� enable
setting.

0x01000

Table 183: PCI_1 SCS[3:2]* Base Address, Offset: 0x094 from
PCI_0 or CPU; 0x014 from PCI_1

Bits Field Name Function Init ial Value

31:0 Various Same as for PCI_0 SCS[3:2]* Base
Address.

0x01000008

Table 184: PCI_0 CS[2:0]* Base Address, Offset: 0x018 from
PCI_0 or CPU; 0x098 from PCI_1

Bits Field Name Function Init ial Value

0 MemSpace Memory Space Indicator
Read only.

0x0

2:1 Type Type
Read only.

0x0

3 Prefetch Prefetch 0x0

11:4 Reserved Read only. 0x0

31:12 Base Defines the address assignment of
CS[2:0]*, see Table 142.
Reserved if this BAR is disabled through
PCI_0 Base Address registers� enable
setting.

0x1c000
Revision 1.0 191

GT-96100A Advanced Communication Controller
Table 185: PCI_1 CS[2:0]* Base Address, Offset: 0x098 from
PCI_0 or CPU; 0x018 from PCI_1

Bits Field Name Function Init ial Value

31:0 Various Same as for PCI_0 CS[2:0]* Base
Address

ox1c000000

Table 186: PCI_0 CS[3]* and Boot CS* Base Address,
Offset: 0x01c from PCI_0 or CPU; 0x09c from PCI_1

Bits Field Name Function Init ial Value

0 MemSpace Memory Space Indicator
Read only.

0x0

2:1 Type Type
Read only.

0x0

3 Prefetch Prefetch 0x0

11:4 Reserved Read only. 0x0

31:12 Base Defines the address assignment of CS[3]*
and Boot CS*, see Table 144.
Reserved if this BAR is disabled through
PCI_0 Base Address registers� enable
setting.

0x1f000

Table 187: PCI_1 CS[3]* and Boot CS* Base Address,
Offset: 0x09c from PCI_0 or CPU; 0x01c from PCI_1

Bits Field Name Function Init ial Value

31:0 Various Same as for PCI_0 CS[3]* and Boot CS*
Base Address.

0x1f000000
192 Revision 1.0

GT-96100A Advanced Communication Controller
Table 188: PCI_0 Internal Registers Memory Mapped Base Address,
Offset: 0x020 from PCI_0 or CPU; 0x0a0 from PCI_1

Bits Field Name Function Init ial Value

0 MemSpace Memory Space Indicator
Read only.

0x0

2:1 Type Type
Read only.

0x0

3 Prefetch Prefetch
Read only.

0x0

11:4 Reserved Read only. 0x0

31:12 MemMapBase Defines the address assignment of the
GT-96100A�s internal registers.
Reserved if this BAR is disabled through
PCI_0 Base Address registers� enable
setting.

0x14000

Table 189: PCI_1 Internal Registers Memory Mapped Base Address,
Offset: 0x0a0 from PCI_0 or CPU; 0x020 from PCI_1

Bits Field Name Function Init ial Value

31:0 Various Same as for PCI_0 Internal register�s
Memory Mapped Base Address.

0x14000000

Table 190: PCI_0 Internal Registers I/O Mapped Base Address,
Offset: 0x024 from PCI_0 or CPU; 0x0a4 from PCI_1

Bits Field Name Function Init ial Value

0 MemSpace IO Space Indicator 0x1

11:1 Reserved Read only. 0x0

31:12 IOMapBase Defines the address assignment of the
GT-96100A�s internal registers.
Reserved if this BAR is disabled through
PCI_0 Base Address registers� enable
setting.

0x14000
Revision 1.0 193

GT-96100A Advanced Communication Controller
Table 191: PCI_1 Internal Registers I/O Mapped Base Address,
Offset: 0x0a4 from PCI_0 or CPU; 0x024 from PCI_1

Bits Field Name Function Init ial Value

31:0 Various Same as for PCI_0 Internal register�s
I/O Mapped Base Address.

0x14000001

Table 192: PCI_0 Subsystem Device and Vendor ID, Offset: 0x02c from
PCI_0 or CPU; 0x0ac from PCI_1

Bits Field Name Function Init ial Value

15:0 VenID Provides the subsystem vendor Identifica-
tion number.

0x0

31:16 DevID Provides the subsystem device identifica-
tion number.

0x0

Table 193: PCI_1 Subsystem Device and Vendor ID,
Offset: 0x0ac from PCI_0 or CPU; 0x02c from PCI_1

Bits Field Name Function Init ial Value

31:0 Various Same as for PCI_0 subsystem device and
vendor ID.

0x0

Table 194: Expansion ROM Base Address Register,
Offset: 0x030 from PCI_0 or CPU; 0x0b0 from PCI_1

Bits Field Name Function Init ial Value

0 ERDecEn Expansion ROM Decode Enable
0 - Disable
1 - Enable

0x0

11:1 Reserved 0x0

31:12 ERBase Defines the address of the expansion
ROM memory space region assigned to
the GT-96100A. This is where the expan-
sion ROM code appears in system mem-
ory when bit 0 of this register contains a
value of 1 and bit 1 of this device�s Com-
mand Register contains a value of 1.
This register is reserved in case Expan-
sion ROM was not enabled at Reset
(DAdr[5] sampled 0).

0x1f000
194 Revision 1.0

GT-96100A Advanced Communication Controller
Table 195: PCI_0 Capability List Pointer Register,
Offset: 0x034 from PCI_0 or CPU, 0xb4 from PCI_11

1. Reserved if Power management is disabled

Bits Field Name Function Init ial Value

7:0 CapPtr Capability List Pointer.
Read only.

0x40

31:8 Reserved 0x0

Table 196: PCI_1 Capability List Pointer Register, Offset: 0x0b41 from
PCI_0 or CPU, 0x34 from PCI_1

Bits Field Name Function Init ial Value

7:0 CapPtr Capability List Pointer.
Read only.

0x40

31:8 Reserved 0x0

Table 197: PCI_0 Interrupt Pin and Line, Offset: 0x03c from
PCI_0 or CPU; 0x0bc from PCI_1

Bits Field Name Function Init ial Value

7:0 IntLine Provides interrupt line routing information. 0x0

15:8 IntPin Indicates which interrupt pin is used by the
GT-96100A.
NOTE: The GT-96100A uses INTA.

0x1

31:16 Reserved Read only. 0x0

Table 198: PCI_1 Interrupt Pin and Line, Offset: 0x0bc from
PCI_0 or CPU; 0x03c from PCI_1

Bits Field Name Function Init ial Value

31:0 Various Same as for PCI_0 interrupt pin and line. 0x00000100
Revision 1.0 195

GT-96100A Advanced Communication Controller

Table 199: PCI_0 PMC Register, Offset: 0x040 from
PCI_0 or CPU, 0x0c0 from PCI_11

1. Reserved if Power Management is disabled

Bits Field Name Function Init ial Value

7:0 CapID Capability ID
Read only from PCI.

0x1

15:8 NullPTR Null Pointer
Indicates that PMC is the last item in the
capability list.
Read Only from PCI

0x0

18:16 PMCVer PCI Power Management Spec Revision
Read only from PCI.

0x1

19 PMEClk PME Clock
Read only from PCI.

0x1

20 Reserved Read only from PCI. 0x0

21 DSI Device Specific Initialization
Read only from PCI.

0x0

24:22 AuxCur Auxulary Current Requirements
Read only from PCI.

0x0

25 D1Sup D1 Power Management State Support
Read only from PCI

0x0

26 D2Sup D2 Power Management State Support
Read only from PCI.

0x0

31:27 PMESup PME* Signal Support
Read Only from PCI.

0x0

Table 200: PCI_1 PMC Register, Offset: 0x0c0 from
PCI_0 or CPU, 0x040 from PCI_11

Bits Field Name Function Init ial Value

31:0 Various Same as for PCI_0 PMC register. 0x00090001
196 Revision 1.0

GT-96100A Advanced Communication Controller
Table 201: PCI_0 PMCSR Register, Offset: 0x044 from
PCI_0 or CPU, 0x0c4 from PCI_11

Bits Field Name Function Init ial Value

1:0 PState Power State 0x0

7:2 Reserved Read only from PCI. 0x0

8 PME_EN PME* Pin Assertion Enable
Read only from PCI.

0x0

12:9 DSel Data Select
Read only from PCI.

0x0

14:13 DScale Data Scale
Read only from PCI.

0x0

15 PME_Stat PME* Pin Status
Read only from PCI.

0x0

21:16 Reserved Read only from PCI. 0x0

22 B2_B3 B2/B3 Select
Read only from PCI.

0x0

23 BPCC_En Bus Power/Clock Control Enable Read
only from PCI.

0x0

31:24 Data State Data
Read only from PCI.

0x0

Table 202: PCI_1 PMCSR Register, Offset: 0x0c4 from
PCI_0 or CPU, 0x044 from PCI_1

Bits Field Name Function Init ial Value

31:0 Various Same as for PCI_0 PMCSR register. 0x0
Revision 1.0 197

GT-96100A Advanced Communication Controller
7.14.3 Function 1 Configuration Registers
The GT-96100A acts as two function device. It�s PCI slave interface responds to configuration transactions to
function number 0 or 1. Most of function 1 configuration registers are aliased to function 0 registers or reserved,
except of the 3 swap BARs. To access any of the Swap Base Address registers, a configuration access addressed
to function 1must be used with the appropriate offset. If an offset other than 0x010, 0x014, or 0x01c is accessed
when specifying function 1, the transaction accesses the corresponding offset register in function 0. Configura-
tion transactions to any other function number are ignored.

The GT-96100A acts as two function device regardless of multi-function bit (bit[7] in Header Type). However,
this bit value after reset is 0. In a PC environment, in order for a BIOS to recognize the GT-96100A as a multi-
function device (if swap BARs are required in the system), set this bit and enable the swap BARs (Base Address
Enable register) before BIOS starts. This can be done by programing by CPU software or by using the GT-
96100A�s Auto-Load option.

Table 203: Function1 PCI_0 Swapped SCS[1:0]* Base Address,
Offset: 0x110 from PCI_0 or CPU; 0x190 from PCI_1

Bits Field Name Function Init ial Value

0 MemSpace Memory Space Indicator
Read only.

0x0

2:1 Type Type
Read only.

0x0

3 Prefetch Prefetch 0x1

11:4 Reserved Read only. 0x0

31:12 Base Defines the address assignment of
Swapped SCS[1:0]*.
Reserved if this BAR is disabled through
PCI_0 Base Address registers� enable
setting.

0x0

Table 204: Function 1 PCI_1 Swapped SCS[1:0]* Base Address,
Offset: 0x190 from PCI_0 or CPU; 0x110 from PCI_1

Bits Field Name Function Init ial Value

31:0 Various Same as for PCI_0 Swapped SCS[1:0]*
Base Address

0x08

Table 205: Function 1 PCI_0 Swapped SCS[3:2]* Base Address,
Offset: 0x114 from PCI_0 or CPU; 0x194 from PCI_1

Bits Field Name Function Init ial Value

0 MemSpace Memory Space Indicator
Read only.

0x0
198 Revision 1.0

GT-96100A Advanced Communication Controller

2:1 Type Type
Read only.

0x0

3 Prefetch Prefetch 0x1

11:4 Reserved Read only. 0x0

31:12 Base Defines the address assignment of
Swapped SCS[3:2]*.
Reserved if this BAR is disabled through
PCI_0 Base Address registers� enable
setting.

0x01000

Table 206: Function 1 PCI_1 Swapped SCS[3:2]* Base Address,
Offset: 0x194 from PCI_0 or CPU; 0x114 from PCI_1

Bits Field Name Function Init ial Value

31:0 Various Same as for PCI_0 Swapped SCS[3:2]*
Base Address.

0x01000008

Table 207: Function 1 PCI_0 Swapped CS[3]* & Boot CS* Base Address,
Offset: 0x11c from PCI_0 or CPU; 0x19c from PCI_1

Bits Field Name Function Init ial Value

0 MemSpace Memory Space Indicator
Read only.

0x0

2:1 Type Type
Read only.

0x0

3 Prefetch Prefetch 0x0

11:4 Reserved Read only. 0x0

31:12 Base Defines the address assignment of CS[3]*
and Boot CS*, see Table 144.
Reserved if this BAR is disabled through
PCI_0 Base Address registers� enable
setting.)

0x1f000

Table 205: Function 1 PCI_0 Swapped SCS[3:2]* Base Address,
Offset: 0x114 from PCI_0 or CPU; 0x194 from PCI_1 (Continued)

Bits Field Name Function Init ial Value
Revision 1.0 199

GT-96100A Advanced Communication Controller

Table 208: Function 1 PCI_1 Swapped CS[3]* & Boot CS* Base Address,
Offset: 0x19c from PCI_0 or CPU; 0x11c from PCI_1

Bits Field Name Function Init ial Value

31:0 Various As in PCI_0 Swapped CS[3]* and Boot
CS* Base Address.

0x1f000000
200 Revision 1.0

GT-96100A Advanced Communication Controller
8. INTELLIGENT I/O (I2O) STANDARD SUPPORT
The GT-96100A includes hardware support for the Intelligent I/O (I2O) Standard.

This support includes all of the registers required for implementing the I2O Messaging Unit as defined in the I2O
Specification. This Messaging Unit (MU) is compatible with that found in Intel�s i960Rx processors. However,
the combination of MIPS processors and the GT-96100A delivers as much as 20 times the integer performance of
the i960RP.

The I2O hardware support found in the GT-96100A also provides designers of non-I2O embedded systems with
important benefits. For example, the circular queue support in the MU provides a simple, powerful mechanism
for passing queued messages between intelligent agents on a PCI bus. Even the simple message and doorbell reg-
isters improve the efficiency of communication between agents on PCI.

NOTE: Even if you have no intention of using the entire I2O �stack�, Galileo Technology recommends reading
this entire section to learn about improving the application of the hardware to the design.

8.1 Overview

The best source for an overview description of I2O support is in the I2O specification documentation.

The I2O specification defines a standard mechanism for passing messages between a host processor (a Pen-
tium�, for example) and intelligent I/O processors (a networking card based on the GT-96100A and a MIPS pro-
cessor, for example.) This same message passing mechanism is used to pass messages between peers in a system.

I2O is defined to be bus independent but, in the real world, it runs over the PCI. The basic process is quite simple:
1. A master wishing to post a message to a device, fetches a pointer from the device from a defined regis-

ter in the target devices PCI memory space (one of the I2O registers).
2. The master assembles the message in the targets memory space and then posts the fetched pointer into

another register in the target device. Posting the pointer generates an interrupt to the target�s processor.

The I2O specification documentation also defines a simpler mechanism for implementing message passing
through doorbell and message registers. The GT-96100A also includes this support.

8.2 I2O Registers

From the PCI side, the registers used to implement I2O support resides in the first 128 bytes of the memory
region defined by RAS[1:0] Base Address register in PCI function 0 of PCI interface 01. The I2O registers are
accessible from the CPU side through an offset from the CPU Internal Space Base register.

NOTE: Index registers are not supported in GT-96100A.

1. There is no I2O support on the PCI_1 interface.
Revision 1.0 201

GT-96100A Advanced Communication Controller
Table 209: I2O PCI and CPU Offsets

I2O Register PCI Side1 CPU Side2

Inbound Message Register 0 0x10 0x1c10

Inbound Message Register 1 0x14 0x1c14

Outbound Message Register 0 0x18 0x1c18

Outbound Message Register 1 0x1c 0x1c1c

Inbound Doorbell Register 0x20 0x1c20

Inbound Interrupt Cause Register 0x24 0x1c24

Inbound Interrupt Mask Register 0x28 0x1c28

Outbound Doorbell Register 0x2c 0x1c2c

Outbound Interrupt Cause Register 0x30 0x1c30

Outbound Interrupt Mask Register 0x34 0x1c34

Inbound Queue Port Virtual Register 0x40 0x1c40

Outbound Queue Port Virtual Register 0x44 0x1c44

Queue Control Register 0x50 0x1c50

Queue Base Address Register 0x54 0x1c54

Inbound Free Head Pointer Register 0x60 0x1c60

Inbound Free Tail Pointer Register 0x64 0x1c64

Inbound Post Head Pointer Register 0x68 0x1c68

Inbound Post Tail Pointer Register 0x6c 0x1c6c

Outbound Free Head Pointer Register 0x70 0x1c70

Outbound Free Tail Pointer Register 0x74 0x1c74

Outbound Post Head Pointer Register 0x78 0x1c78

Outbound Post Tail Pointer Register 0x7c 0x1c7c

RESERVED 0x80 to 4K -

SDRAM Ras[1:0] >4K -

1. Offset from BAR0 in PCI Memory Space

2. Offset from CPU Internal Space Base register (location in MIPS CPU memory space)
202 Revision 1.0

GT-96100A Advanced Communication Controller
8.3 Enabling I2O Support

The I2O registers are only visible from the PCI side when I2O support is enabled via the pin strapping option
shown in the RESET Configuration section.

When I2O support is disabled, the locations from BAR0+0x0 to BAR0+0x7F appear as SDRAM.

8.4 Register Map Compatibility with the i960Rx Family

The GT-96100A�s register map is compatible with the I2O specification. However, some of the registers found in
Intel�s i960Rx processors are not implemented. This information is shown in Table 210.

8.5 Message Registers

The GT-96100A uses the message registers to send and receive short messages over the PCI bus, without trans-
ferring data into local memory. When written, message registers may cause an interrupt to be generated either to
the MIPS CPU or to the PCI bus. There are two types of message registers:

� Inbound messages are sent by an external PCI bus agent and received by the GT-96100A
� Outbound messages are sent by the GT-96100A�s local CPU and received by an external PCI agent

The interrupt status for inbound messages is recorded in the Inbound Interrupt Cause register.

The interrupt status for outbound messages is recorded in the Outbound Interrupt Cause register.

8.5.1 Inbound Messages
There are two Inbound Message registers (IMRs).

When an IMR is written from the PCI side, a maskable interrupt request is generated in the Inbound Interrupt
Status register (IISR). If this request is unmasked, an interrupt request is issued to the MIPS CPU. The interrupt
is cleared when the CPU writes a value of 1 to the Inbound Message Interrupt bit in the IISR. The interrupt may
be masked through the mask bits in the Inbound Interrupt Mask register.

Table 210: Register Differences Between the GT-96100A and i960Rx

Register
Name GT-96100A i960Rx Comment

APIC Register
Select

Not implemented Implemented No APIC support required for the GT-
96100A, not a part of the I2O spec.

APIC Window
Select

Not implemented Implemented No APIC support required for the GT-
96100A, not a part of the I2O spec.

Index Registers Not implemented Implemented Index registers are not used for I2O mes-
sage passing so this is not a compatibility
issue. Index registers are implemented as
normal SDRAM in the GT-96100A.
Revision 1.0 203

GT-96100A Advanced Communication Controller
8.5.2 Outbound Messages
There are two Outbound Message registers (OMRs).

When an OMR is written from the CPU side, a maskable interrupt request is generated in the Outbound Interrupt
Status register (OISR). If this request is unmasked, an interrupt request is issued to the PCI_0 unit. The interrupt
is cleared when an external PCI agent writes a value of 1 to the Outbound Message Interrupt bit in the OISR. The
interrupt may be masked through the mask bits in the Outbound Interrupt Mask register.

8.6 Doorbell Registers

The GT-96100A uses the doorbell registers to request interrupts on the PCI and CPU buses. There are two types
of doorbell registers:

� Inbound doorbells are set by an external PCI bus agent to request interrupt service from the MIPS CPU
� Outbound doorbells are set by the GT-96100A�s local CPU and to request an interrupt on PCI

8.6.1 Outbound Doorbells
The local MIPS processor generates an interrupt request to the PCI bus by setting bits in the Outbound Doorbell
register (ODR). The interrupt may be masked in the OIMR register, however masking the interrupt does not pre-
vent the corresponding bit from being set in the ODR.

External PCI agents clear the interrupt by setting bits in the ODR to 1 through a write.

8.6.2 Inbound Doorbells
The PCI bus can generate an interrupt request to the local MIPS processor by setting bits in the Inbound Doorbell
register (IDR). The interrupt may be masked in the IIMR register, however masking the interrupt does not pre-
vent the corresponding bit from being set in the IDR.

The CPU clears the interrupt by setting bits in the IDR (writing a 1).

8.7 Circular Queues

The circular queues form the heart of the I2O message passing mechanism, and are also the most powerful part of
the MU built into the GT-96100A. There are four circular queues in the MU: two inbound and two outbound.

8.7.1 Inbound Message Queues
There are two inbound message queues:

� The Inbound Posts queue is for messages from other PCI agents for the MIPS CPU to process
� The Inbound Free queue is for messages from MIPS CPU to PCI agent in response to an incoming mes-

sage.
204 Revision 1.0

GT-96100A Advanced Communication Controller
The two inbound queues allow external PCI agents to post inbound messages for the local MIPS CPU in one
queue and receive free messages (no longer in use) returning from the MIPS CPU. The process is as follows:

1. An external PCI agent posts an inbound message.
2. The MIPS CPU receives and processes the message.
3. When the processing is complete, the MIPS CPU places the message back into the inbound free queue

so that it may be reused.

8.7.2 Outbound message queues
There are two outbound message queues:

� The Outbound Post queue is for messages from the MIPS CPU to other PCI agents to process.
� The Outbound Free queue is for messages are from PCI agent to the MIPS CPU in response to an outgo-

ing message.

The two outbound queues allow the MIPS CPU to post outbound messages for external PCI agents in one queue
and receive free messages (no longer in use) returning from external PCI agents. The process is as follows:

1. The MIPS CPU posts an outbound message.
2. The external PCI agent receives and processes the message.
3. When the processing is complete, the external PCI agent places the message back into the outbound free

queue so that it may be reused.

8.7.3 Memory for Circular Queues
Data storage for the circular queues must be allocated in local SDRAM.

The base address for the queues is set in the Queue Base Address register (QBAR). Each queue entry is a 32-bit
data value. The circular queue sizes range from 4K entries (16Kbytes) to 64K entries (256Kbytes) yielding a
total local memory allotment of 64Kbytes to 1Mbyte. All four queues must be the same size and be contiguous in
the memory space. Queue size is set in the Queue Control register.

The starting address of each queue is based on the QBAR address and the size of the queues as shown in the table
below.
Table 211: Circular Queue Starting Addresses

Queue Start ing Address

Inbound Free QBAR

Inbound Post QBAR + Queue Size

Outbound Post QBAR + 2*Queue Size

Outbound Free QBAR + 3*Queue Size
Revision 1.0 205

GT-96100A Advanced Communication Controller
Each queue has a head pointer and a tail pointer kept in the GT-96100A�s internal registers. These pointers are
offsets from the QBAR. Writes to a queue occur at the head of the queue; reads occur from the tail. The head and
tail pointers are incremented by either the CPU software or messaging unit hardware. The pointers wrap around
to the first address of a queue when they reach queue size.

PCI read/write from queue is always single-word. An attempt to burst from an I2O queue will result in disconnect
after 1st data transfer.

Figure 31: I2O Circular Queue Operation

Outbound

Free Queue

Outbound
Queue

Port
to

PCI

PCI Write

Outbound

Post Queue

PCI Read

Inbound

Post Queue

Inbound

Free Queue

PCI I/F

Inbound
Queue

Port
to

PCI

PCI Write

PCI Read

PCI I/F

Outbound Free Head
Pointer (0x70)

Outbound Free Tail
Pointer (0x74)

Outbound Post Head
Pointer (0x78)

Outbound Post Tail
Pointer (0x7C)

Inbound Post Head
Pointer (0x68)

Inbound Post Tail
Pointer (0x6C)

Inbound Free Head
Pointer (0x60)

Inbound Free Tail
Pointer (0x64) Incremented by GT-96100A

Incremented by local S/W

Incremented by GT-96100A

Incremented by local S/W

Incremented by GT-96100A

Incremented by local S/W

Incremented by GT-96100A

Incremented by local S/W

MIPS CPU fetches a free
outbound queue message here, then
increments the tail pointer.

MIPS CPU posts an outbound message
here, then increments the head pointer.

MIPS CPU fetches inbound message
here, then increments the tail pointer.

MIPS CPU writes free inbound message
here, then increments the head pointer.
206 Revision 1.0

GT-96100A Advanced Communication Controller
8.7.4 Inbound/Outbound Queue Port Register Function
The circular queues are accessed by external PCI agents through the Inbound and Outbound Queue Port virtual
registers in the I2O/PCI address space, decoded by BAR0.

NOTE: The Inbound and Outbound Queue Port virtual registers are not read/write physical registers within the
GT-96100A. These virtual registers are reading and writing pointers into the circular queues (located in
SDRAM) that are controlled by the GT-96100A. Refer to Figure 31.

8.7.4.1 Inbound Queue Port Reads and Writes
When Inbound Queue Port (IQP) is written from PCI, the written data is placed on the Inbound Post Queue. The
IQP is posting the message to the local CPU. An interrupt is generated to the MIPS CPU when the Inbound Post
Queue is written to alert the CPU that a message needs processing. When this register is read from the PCI side,
it is returning a free message from the tail of Inbound Free Queue.

8.7.4.2 The Outbound Queue Port
The Outbound Queue Port (OQP) returns data from the tail of the Outbound Post Queue when read from the PCI
side. The OQP is returning the next message requiring service by the external PCI agent. When this register is
written from PCI, the data for the write is placed on the Outbound Free Queue. This, in turn, returns a free mes-
sage for reuse by the local MIPS CPU.

8.7.5 Inbound Post Queue
The Inbound Post Queue holds posted messages from external PCI agents to the MIPS CPU. The MIPS CPU
fetches the next message process from the queue tail. External agents post new messages to the queue head. The
tail pointer is maintained in software by the MIPS CPU. The head pointer is maintained automatically by the GT-
96100A upon posting of a new inbound message.

PCI writes to the IQP are passed to local memory location at QBAR + Inbound Post Head Pointer. After this
write completes, the GT-96100A increments the Inbound Post Head Pointer by 4 bytes (1 word); it now points to
the next available slot for a new inbound message. An interrupt is also sent to the MIPS CPU to indicate the pres-
ence of a new message pointer.

From the time the PCI write ends till the data is actually written to DRAM, any new write to Inbound port will
result in RETRY. If queue is full, a new PCI write to the queue will result in RETRY.

Inbound messages are fetched by the MIPS CPU by reading the contents of the address pointed to by the Inbound
Post Tail Pointer. It is the CPUs responsibility to increment the tail pointer to point to the next unread message.

8.7.6 Inbound Free Queue
The Inbound Free Queue holds available inbound free messages for external PCI agents to use. The MIPS CPU
places free messages at the queue head; external agents fetch free messages from the queue tail. The head pointer
is maintained in software by the MIPS CPU. The tail pointer is maintained automatically by the GT-96100A
upon a PCI agent fetching a new inbound free message (except when there is an error, see below.)
Revision 1.0 207

GT-96100A Advanced Communication Controller
PCI reads from the Inbound Queue Port return data to the local memory location at QBAR + Inbound Free Tail
Pointer according to the following conditions:

� If the Inbound Free Queue is not empty (as indicated by Head Pointer not equal to Tail Pointer), then the
data pointed to by QBAR + Inbound Free Tail Pointer is returned.

� If the queue is empty (Head Pointer equals Tail Pointer), the value 0xFFFF.FFFF is returned. This indi-
cates there are no Inbound Message slots available (an error condition.)

The MIPS processor places free message buffers in the Inbound Free Queue by writing the pointer to the location
pointed to by the head pointer. It is the processor�s responsibility to then increment the head pointer.

8.7.7 Outbound Post Queue
The Outbound Post Queue holds outbound posted messages from the MIPS CPU to external PCI agents. The
MIPS CPU places outbound messages at the queue head; external agents fetch the posted messages from the
queue tail. The Outbound Post Tail Pointer is automatically incremented by the GT-96100A. The head pointer
must be incremented by the local MIPS CPU.

PCI reads from the Outbound Queue Port return the data pointed to by QBAR + Outbound Post Tail Pointer (the
next posted message in the Outbound Queue.) The following conditions apply:

� If the Outbound Post Queue is not empty (the head and tail pointers are not equal), the data is returned
as usual and the GT-96100A increments the Outbound Post Tail Pointer

� If the Outbound Post Queue is empty (the head and tail pointers are equal), the value 0xFFFF.FFFF is
returned

As long as the Outbound Post Head and Tail pointers are not equal, a PCI interrupt is requested. This is done to
indicate the need to have the external PCI agent read the Outbound Post Queue. When the head and tail pointers
are equal, no PCI interrupt is generated since no service is required on the part of the external PCI agent (or PCI
system host in the case of a PC server.) In either case, the interrupt can be masked in the OIMR register.

The MIPS CPU places outbound messages in the Outbound Post Queue by writing to the local memory location
pointed to by the Outbound Post Head Pointer. After writing this pointer, it is the CPU�s responsibility to incre-
ment the head pointer.

8.7.8 Outbound Free Queue
The Outbound Free Queue holds available outbound message buffers for the local MIPS processor to use. Exter-
nal PCI agents place free message at the queue head; the MIPS CPU fetches free message pointers from the
queue tail. The tail pointer in maintained in software by the MIPS CPU. The head pointer is maintained automat-
ically by the GT-96100A upon a PCI agent posting a new (�returned�) outbound free message.

PCI writes to the Outbound Queue Port result in the data being written to the local memory location at QBAR +
Outbound Free Head Pointer. After the write completes, the GT-96100A increments the head pointer.

From the time the PCI write ends till the data is actually written to DRAM, any new write to Outbound port will
result in RETRY. If the head pointer and tail pointer become equal (an indication that the queue is full), an inter-
rupt is sent to the MIPS CPU. If queue is full, a new PCI write to the queue will result in RETRY.
208 Revision 1.0

GT-96100A Advanced Communication Controller
The MIPS processor obtains free outbound message buffers from the Outbound Free Queue by reading data from
the location pointed to by the tail pointer. It is the processor�s responsibility to then increment the tail pointer.

8.8 I2O Support Registers

If I2O is enabled (i.e., DAdr[8] was sampled �0� at reset) its related registers are accessible from the CPU side
and the PCI_0 side. To access registers from the PCI_0 side, the address must be in the first 4KBytes of PCI_0
SCS[1:0]* Base register space. To access from CPU side, the address must be in the 4KBytes of CPU Internal
Space Base register space.

PCI_1 has no access to I2O registers. If PCI_1 address hits first 4KBytes of PCI_1 SCS[1:0]* BAR space, it
accesses SDRAM.

If accessed from the PCI_0 side, address offset is with respect to the PCI_0 SCS[1:0]* Base Address register
contents. If accessed from the CPU side, address offset is with respect to the CPU Internal Space Base register +
0x1c00.

Table 212: I2O Circular Queue Functional Summary

Queue
Name PCI Port

Generate
PCI
Interrupt?

Generate
CPU
Interrupt?

Head
Pointer
maintaine
d by.. .

Tail Pointer
maintained
by.. .

Inbound
Post

Inbound
Queue Port

No Yes, when queue is
written

GT-96100A MIPS CPU

Inbound
Free

No No MIPS CPU GT-96100A

Outbound
Post

Outbound
Queue Port

Yes, when
queue is not
empty

No MIPS CPU GT-96100A

Outbound
Free

No Yes, when queue is
full

GT-96100A MIPS CPU
Revision 1.0 209

GT-96100A Advanced Communication Controller
NOTE: I2O registers can be accessed from the CPU and PCI_0 sides (unless stated otherwise). If accessed from
the PCI_0 side, address offset is with respect to the PCI_0 SCS[1:0]* Base Address register contents. If
accessed from CPU side, the address offset is with respect to the CPU Internal Space Base Register +
0x1c00.

Table 213: I2O Support Register Map

Description Offset Page Number

Inbound Message Register 0 0x10 page 211

Inbound Message Register 1 0x14 page 211

Outbound Message Register 0 0x18 page 211

Outbound Message Register 1 0x1c page 211

Inbound Doorbell Register 0x20 page 212

Inbound Interrupt Cause Register 0x24 page 212

Inbound Interrupt Mask Register 0x28 page 213

Outbound Doorbell Register 0x2c page 213

Outbound Interrupt Cause Register 0x30 page 214

Outbound Interrupt Mask Register 0x34 page 214

Inbound Queue Port Virtual Register 0x40 page 215

Outbound Queue Port Virtual Register 0x44 page 215

Queue Control Register 0x50 page 215

Queue Base Address Register 0x54 page 216

Inbound Free Head Pointer Register 0x60 page 216

Inbound Free Tail Pointer Register 0x64 page 216

Inbound Post Head Pointer Register 0x68 page 216

Inbound Post Tail Pointer Register 0x6c page 217

Outbound Free Head Pointer Register 0x70 page 217

Outbound Free Tail Pointer Register 0x74 page 217

Outbound Post Head Pointer Register 0x78 page 218

Outbound Post Tail Pointer Register 0x7c page 218
210 Revision 1.0

GT-96100A Advanced Communication Controller

Table 214: Inbound Message Register 0, Offset: 0x10

Bits Field Name Function Init ial Value

31:0 InMsg0 Inbound Message Register_0
Read only from the CPU. When written, a
bit is set in the Inbound Interrupt Cause
register and an interrupt is generated to
the CPU (if unmasked). First register of
two intended for messages from PCI to
CPU.

0x0

Table 215: Inbound Message Register 1, Offset: 0x14

Bits Field Name Function Init ial Value

31:0 InMsg1 Inbound Message Register_1
Read only from the CPU.
When written, a bit is set in the Inbound
Interrupt Cause Register and an interrupt
is generated to the CPU (if unmasked).
Second register of two intended for mes-
sages from PCI to CPU.

0x0

Table 216: Outbound Message Register 0, Offset: 0x18

Bits Field Name Function Init ial Value

31:0 OutMsg0 Outbound Message Register_0
Read only from the PCI.
When written, a bit is set in the Outbound
Interrupt Cause register and an interrupt is
generated to the PCI (if unmasked). First
register of two intended for messages
from CPU to PCI.

0x0

Table 217: Outbound Message Register 1, Offset: 0x1c

Bits Field Name Function Init ial Value

31:0 OutMsg1 Outbound Message Register_1
Read only from the PCI.
When written, a bit is set in the Outbound
Interrupt Cause register and an interrupt is
generated to the PCI (if unmasked).
Second register of two intended for mes-
sages from CPUI to PCI.

0x0
Revision 1.0 211

GT-96100A Advanced Communication Controller

Table 218: Inbound Doorbell Register, Offset: 0x20

Bits Field Name Function Init ial Value

31:0 InDoor Inbound Doorbell Register
If not masked by Inbound Interrupt Mask
register, setting a bit in this register to 1 by
the PCI causes a CPU interrupt. Writing 1
to the bit by the CPU clears the bit (and
de-assert the interrupt).

0x0

Table 219: Inbound Interrupt Cause Register, Offset: 0x24

Bits Field Name Function Init ial Value

0 InMsg0Int Inbound Message_0 Interrupt
This bit is set when Inbound Message 0
register is written.
The CPU writes it with 1 to clear it.1

1. Unlike Intel�s i960RP, bits [8:6] and bit 3 are reserved since the GT-96100A does not support Index, APIC, or NMI
mechanisms.

0x0

1 InMsg1Int Inbound Message_1 Interrupt
This bit is set when Inbound Message_1
register is written. CPU writes it with 1 to
clear it.2

2. An interrupt to CPU is generated if any of the bits 0,1,2,4, or 5 is set to 1 given that its corresponding entry in the
Inbound Interrupt Mask Register is NOT set.

0x0

2 InDoorInt Inbound Doorbell Interrupt
This bit is set when at least one bit of
Inbound Doorbell register is set. This bit is
read only.

0x0

3 Reserved 0x0

4 InPQInt Inbound Post Queue Interrupt
This bit is set when the Inbound Post
Queue gets written.
The CPU writes it with 1 to clear it.

0x0

5 OutFQOvr Outbound Free Queue Overflow Interrupt
This bit is set when the Outbound Free
Queue is full.
The CPU writes it with 1 to clear it.

0x0

31:6 Reserved 0x0
212 Revision 1.0

GT-96100A Advanced Communication Controller

Table 220: Inbound Interrupt Mask Register, Offset: 0x28

Bits Field Name Function Init ial Value

0 InMsg0IntMsk Inbound Message_0 Interrupt Mask 0x0

1 InMsg1IntMsk Inbound Message_1 Interrupt Mask 0x0

2 InDoorIntMsk Inbound Doorbell Interrupt Mask 0x0

3 Reserved 0x0

4 InPQIntMsk Inbound Post Queue Interrupt Mask 0x0

5 OutFQOvrMsk Outbound Free Queue Overflow Interrupt
Mask
When set, no interrupt to CPU is gener-
ated for set OutFQOvr bit in Inbound Inter-
rupt Cause Register.

0x0

31:6 Reserved 0x0

Table 221: Outbound Doorbell Register, Offset: 0x2c

Bits Field Name Function Init ial Value

31:0 OutDoor Outbound Doorbell Register
Setting a bit in this register to 1 by the
CPU causes a PCI interrupt if not masked
by the Outbound Interrupt Mask register.1

Writing 1 to the bit by the PCI clears the bit
(and de-assert the interrupt).

1. Unlike Intel�s i960RP, there are no reserved bits for PCI interrupts INTA#, INTB#, INTC#, INTD#.

0x0
Revision 1.0 213

GT-96100A Advanced Communication Controller

Table 222: Outbound Interrupt Cause Register, Offset: 0x30

Bits Field Name Function Init ial Value

0 OutMsg0Int Outbound Message_0 Interrupt
This bit is set when Outbound Message_0
register is written.
The PCI writes it with 1 to clear it.
For the CPU, this bit is read only.

0x0

1 OutMsg1Int Outbound Message_1 Interrupt
This bit is set when Outbound Message_1
register is written.
PCI writes it with 1 to clear it.
For the CPU, this bit is Read Only.1

1. An interrupt to PCI is generated if any of the bits 0,1,2, or 3 is set to 1 given that its corresponding entry in the Out-
bound Interrupt Mask Register is NOT set.

0x0

2 OutDoorInt Outbound Doorbell Interrupt:
This bit is set when at least one bit of Out-
bound Doorbell register is set.
This bit is read only.

0x0

3 OutPQInt Outbound Post Queue Interrupt
This bit is set as long as Outbound Post
Queue is not empty.
This bit is read only.

0x0

31:4 Reserved 0x0

Table 223: Outbound Interrupt Mask Register, Offset: 0x34

Bits Field Name Function Init ial Value

0 OutMsg0IntMsk Outbound Message_0 Interrupt Mask. 0x0

1 OutMsg1IntMsk Outbound Message_1 Interrupt Mask. 0x0

2 OutDoorIntMsk Outbound Doorbell Interrupt Mask 0x0

3 OutPQIntMsk Outbound Post Queue Interrupt Mask:
When set, no interrupt to PCI is generated
for set OutPQInt bit in the Outbound Inter-
rupt Cause register.

0x0

31:4 Reserved 0x0
214 Revision 1.0

GT-96100A Advanced Communication Controller

Table 224: Inbound Queue Port Virtual Register, Offset: 0x40

Bits Field Name Function Init ial Value

31:0 InQPVReg Inbound Queue Port Virtual Register
A PCI write to this port results in a write to
the Inbound Post Queue.
A read from this port results in a read from
the Inbound Free Queue.
Reserved from the CPU side.

0x0

Table 225: Outbound Queue Port Virtual Register, Offset: 0x44

Bits Field Name Function Init ial Value

31:0 OutQPVReg Outbound Queue Port Virtual Register
A PCI write to this port results in a write to
the Outbound Free Queue.
A read from this port results in a read from
the Outbound Post Queue.
Reserved from the CPU side.

0x0

Table 226: Queue Control Register, Offset: 0x50

Bits Field Name Function Init ial Value

0 CirQEn Circular Queue Enable
If 0, a PCI write to this queue is ignored;
upon a PCI read from queue 0xffffffff is
returned.
Reserved from the PCI side.

0x0

5:1 CirQSize Circular Queue Size
00001 - 16 Kbytes
00010 - 32 Kbytes
00100 - 64 Kbytes
01000 - 128 Kbytes
10000 - 256 Kbytes
Reserved from PCI side.

0x1

31:6 Reserved 0x0
Revision 1.0 215

GT-96100A Advanced Communication Controller

Table 227: Queue Base Address Register, Offset: 0x54

Bits Field Name Function Init ial Value

19:0 Reserved 0x0

31:20 QBAR Queue Base Address Register
Reserved from the PCI side.

0x0

Table 228: Inbound Free Head Pointer Register, Offset: 0x60

Bits Field Name Function Init ial Value

1:0 Reserved 0x0

19:2 InFHPtr Inbound Free Head Pointer1

Reserved from the PCI side.

1. This register is maintained by CPU software. It is reserved for PCI accesses.

0x0

31:20 QBAR Queue Base Address Register
Read only.

0x0

Table 229: Inbound Free Tail Pointer Register, Offset: 0x64

Bits Field Name Function Init ial Value

1:0 Reserved 0x0

19:2 InFTPtr Inbound Free Tail Pointer1
Reserved from the PCI side.

1. This register is incremented by the GT-96100A after a PCI read from Inbound port. It is reserved for PCI accesses.

0x0

31:20 QBAR Queue Base Address Register
Read only.

0x0

Table 230: Inbound Post Head Pointer Register, Offset: 0x68

Bits Field Name Function Init ial Value

1:0 Reserved 0x0

19:2 InPHPtr Inbound Post Head Pointer1
Reserved from the PCI side.

1. This register is incremented by the GT-96100A after a PCI write to Inbound port. It is reserved for PCI accesses.

0x0

31:20 QBAR Queue Base Address Register
Read only.

0x0
216 Revision 1.0

GT-96100A Advanced Communication Controller

Table 231: Inbound Post Tail Pointer Register, Offset: 0x6c

Bits Field Name Function Init ial Value

1:0 Reserved 0x0

19:2 InPTPtr Inbound Post Tail Pointer1
Reserved from the PCI side.

1. This register is maintained by the CPU software. It is reserved for PCI accesses.

0x0

31:20 QBAR Queue Base Address Register
Read only.

0x0

Table 232: Outbound Free Head Pointer Register, Offset: 0x70

Bits Field Name Function Init ial Value

1:0 Reserved 0x0

19:2 OutFHPtr Outbound Free Head Pointer1

Reserved from the PCI side.

1. This register is incremented by the GT-96100A after PCI write to Outbound port. It is reserved for PCI accesses.

0x0

31:20 QBAR Queue Base Address Register
Read only.

0x0

Table 233: Outbound Free Tail Pointer Register, Offset: 0x74

Bits Field Name Function Init ial Value

1:0 Reserved 0x0

19:2 OutFTPtr Outbound Free Tail Pointer1

Reserved from the PCI side.

1. This register is maintained by CPU software. It is reserved for PCI accesses.

0x0

31:20 QBAR Queue Base Address Register
Read only.

0x0
Revision 1.0 217

GT-96100A Advanced Communication Controller

Table 234: Outbound Post Head Pointer Register, Offset: 0x78

Bits Field Name Function Init ial Value

1:0 Reserved 0x0

19:2 OutPHPtr Outbound Post Head Pointer1

Reserved from the PCI side.

1. This register is maintained by the CPU software. It is reserved for PCI accesses.

0x0

31:20 QBAR Queue Base Address Register
Read only.

0x0

Table 235: Outbound Post Tail Pointer Register, Offset: 0x7c

Bits Field Name Function Init ial Value

1:0 Reserved 0x0

19:2 OutPTPtr Outbound Post Tail Pointer1

Reserved from the PCI side.

1. This register is incremented by the GT-96100A after a PCI read from the Outbound port. It is reserved for PCI accesses.

0x0

31:20 QBAR Queue Base Address Register
Read only.

0x0
218 Revision 1.0

GT-96100A Advanced Communication Controller
9. INDEPENDENT DMA CONTROLLERS (IDMA CONTROLLERS)
The GT-96100A has four Independent DMA controllers. The IDMA controllers are used to optimize system per-
formance by moving large amounts of data without significant CPU intervention.

Rather than having the CPU read data from one source and write it to another, use the IDMA controllers to
directly transfer data independent of the CPU. This allows the CPU to continue executing other instructions
simultaneous to the movement of data.

It is possible for each IDMA controller to move data between peripherals on the SDRAM/Device Controller bus,
between devices on the PCI buses, or between peripherals on the SDRAM/Device Controller bus and devices on
the PCI buses.

Each IDMA transfer uses one of two internal 64-byte FIFOs for moving data. Data is transferred from the source
device into an internal FIFO, and from the internal FIFO to the destination device.

The IDMA controller can be programmed to move up to 64KBytes of data per transaction. The burst length of
each transfer of each IDMA can be set from 1 to 64 bytes. Accesses can be non-aligned both in the source and
the destination.

The GT-96100A has two �72-byte� FIFOs available for the utilization by the DMA engines. Although the maxi-
mum DMA burst size is 64 bytes, the extra eight bytes in the FIFO are required for non-double word aligned
transfers. Two FIFOs allow for concurrency between two DMA transactions. This means one DMA channel can
be reading data from the SDRAM into the first FIFO while another channel is writing data to a PCI target from
the second FIFO.

The DMA channels support chained mode of operation. The descriptors are stored in memory, and the DMA
engine moves the data until the Null Pointer is reached.

Fly-By DMA transfers are also supported. This type of DMA transfers greatly increase memory bandwidth. Fly-
By transfers are permitted to and from a device or to and from SDRAM.

The DMA can be initiated by the CPU writing a register, an external request via a DMAReq* pin, or from a
timer/counter. In cases where the transfer needs to be externally terminated, an End of Transfer (EOT[3:0]) pin
must be asserted (driven low) for the corresponding DMA channel.

9.1 DMA Channel Registers

Each DMA Channel record consists of the following registers. These registers can be written by the CPU, PCI, or
IDMA controller in the process of fetching a new record from memory.

9.1.1 Byte Count Register
The Byte Count Register consists of four registers at offsets 0x800 - 0x80c.

This register is programmed with a 16-bit number containing the number of data bytes this channel must DMA.
The maximum number of bytes the DMA controller can be configured to transfer is 64K-1. This register decre-
ments at the end of every burst of transmitted data from source to destination.

When the byte count register is 0, or the End of Transfer pin is asserted, the DMA transaction is finished or ter-
minated.
Revision 1.0 219

GT-96100A Advanced Communication Controller
9.1.2 Source Address Register
The Source Address Register is at offset 0x810 - 0x81c.

This register is programmed with a 32-bit address. This is the source address for data and can be from the
SDRAM/Device controller or from PCI.

This register either increments, decrements, or holds the same value according to bits [3:2] of the Channel Con-
trol register, see Table 236 .

9.1.3 Destination Address Register
The Destination Address register is at offset 0x820 - 0x82c.

This register is programmed with a 32-bit address. This is the destination address for data. It can be programmed
to the SDRAM/Device or to PCI.

This register either increments, decrements, or holds the same value according to bits [5:4] of the Channel Con-
trol register, see Table 236 .

9.1.4 Pointer to the Next Record Register
The Pointer to the Next Record Register is at offset 0x830 - 0x83c.

The register contains a 32-bit address where the values for the next DMA Channel record can be loaded for
chained operation. This can be from the SDRAM/Device controller or from PCI. The byte count, source address,
and destination address must be located at sequential addresses.

NOTE: The next record pointer must be 16 bytes aligned. This means bits [3:0] must be set to 0.

A value of 0 (NULL) for this register indicates that this is the last record in the chain.This register is only used
when the channel is configured for Chained Mode, see Table 236 .

9.1.5 Channel Registers
The Channel Register is at offset 0x840 - 0x84c.

This register controls the DMA operation modes. A detailed description of this register�s bits is in Table 9.2 .
220 Revision 1.0

GT-96100A Advanced Communication Controller
9.2 DMA Channel Control Register (0x840 - 0x84c)

Each DMA channel has its own unique control register where certain DMA modes can be programmed. Table
236 provides the bit descriptions for each field in the control register and describes the functionality of the DMA
Control Register in certain modes. See Table 264 for further information.
Table 236: DMA Channel Control Register (0x840 - 0x84c)

Function Description

FlyByEn bit FlyByEn determines whether or not a DMA transfer uses an internal DMA FIFO to
host the data from the source, prior to transferring it to the destination.
The SDRAM address must always be programmed in the Source Address register
when performing a fly-by DMA whether the DMA source or destination is the
SDRAM.

R/W bit This bit is meaningful only in Fly-By mode, FlyByEn bit set to 1.
R/W indicates whether the DMA transaction with the SDRAM is a read or write.

SrcDir, bits[3:2] The SrcDir field contains information about how the source address for the DMA
transfer is handled.

DestDir, bits[5:4] The DestDir field contains information about how the destination address for the
DMA transfer is handled.

DatTransLim, bits[8:6] The DatTransLim field contains the burst limit of each data transfer. The burst limit
can vary from one to 64 bytes in module-2 steps (i.e. 1, 2, 4, 8,..., 64).

ChainMod, bit 9 ChainMod determines whether this channel is set in chained mode or not.
In chained mode, the channel record�s parameters for the current transac-
tion (Byte Count, Source, Destination, and Next Record Pointer) must be
initialized in SDRAM/Device memory space or PCI devices. The address
of the first record must be initialized by writing it to the channel�s Next
Record Pointer register.
In non-chained mode the Byte Count, Source, and Destination Registers must be
initialized prior to enabling the channel.

IntMode, bit 10 IntMode controls when this channel asserts the DMAComp (DMA Complete) Inter-
rupt.
If chained mode is disabled, the setting of IntMode is irrelevant and DMAComp
Interrupt will be asserted every time the Byte Count reaches 0.

TransMod, bit 11 TransMod indicates whether the channel is set to operate in demand mode or
block mode.

ChanEn, bit 12 ChanEn enables or disables the DMA channel.
The DMA channel is enabled or disabled via ChanEn if the channel is in Demand
or Block Mode.

FetNexRec, bit 13 FetNexRec is a field which is significant only when chained mode is enabled for the
channel.
Revision 1.0 221

GT-96100A Advanced Communication Controller
DMAActSt, bit 14 (Read
Only)

DMAActSt is a read only field that can be polled to see the DMA activity status of
the channel.
In non-chain mode, this bit is de-asserted when Byte_Count reaches zero. In
chain-mode, this bit is de-asserted when the pointer to next record is NULL and
Byte_Count reaches zero.
This bit is reset if the CPU sets chanEn to 0 during DMA transfer.

SDA, Source/Destina-
tion Alignment, bit 15

The SDA bit determines whether address alignment is done for source or destina-
tion.
When a device such as a FIFO is the destination of a DMA, it is recommended to
use Destination Alignment to avoid destructive writes. Likewise, if a device such as
a FIFO is the source of a DMA, it is recommended to use Source Alignment to
avoid destructive reads.
If both the DMA Source and Destination addresses are aligned, the meaning of this
bit is irrelevant.

Mask DMA Requests,
MDREQ, bit 16

Some slower devices require extra time in order to de-assert a DMA request sig-
nal. This bit can be used to provide this extra time.

Close Descriptor
Enable, CDE, bit 17

A DMA transfer may be halted (by an EOT signal or FetchNextRec is asserted)
with some data remaining in the buffer pointed at by the current descriptor. This bit
allows writing the remaining byte count in bits 31:16 of the Byte_Count field of the
descriptor (located in memory).
By writing this field, ownership of the descriptor is returned to the CPU. The CPU
then calculates the total number of bytes transferred by the DMA channel by sub-
tracting the remaining byte count from the original Byte_Count.

End Of Transfer
Enable, EOTE, bit 18

This bit provides devices which have access to a DMA engine to stop a DMA trans-
fer prior to its completion. In chain mode, this causes fetching a new descriptor
from memory (if pointer to next record is not equal to NULL) and executing the next
DMA. If the DMA channel is in non-chain mode, then the current DMA transfer is
stopped without further action.

End Of Transfer Inter-
rupt Enable, EOTE, bit
19

EOTIE enables or disables interrupts due to End Of Transfer (EOT) signal activa-
tion.

Abort DMA, ABR, bit 20 It is possible that the CPU may need to abort a DMA transfer and reprogram the
DMA. This bit flushes internal indications which would normally not get flushed by
a mere channel disable.
The ABR bit must be used together with En/Dis if CDE and/or EOT are enabled
and the CPU requires to abort a transfer for reprogramming.

SLP (bits [22:21]), DLP
(bits [24:23]), RLP (bits
[26:25])

SLP, DLP, and RLP bits are used to redefine address space of source, destination,
or record address location. These enable overriding the local address space with
PCIMem0 or PCIMem1address space.

Table 236: DMA Channel Control Register (0x840 - 0x84c) (Continued)

Function Description
222 Revision 1.0

GT-96100A Advanced Communication Controller

Table 237: Location of Source Address, SLP

SLP ([22:21]) Function

00 Source address is in local address space.

01 Source address is in PCI_0 memory space.

10 Source address is in PCI_1 memory space.

11 Reserved.

Table 238: Location of Destination Address, DLP

DLP ([24:23]) Function

00 Destination address is in local address space.

01 Destination address is in PCI_0 memory space.

10 Destination address is in PCI_1 memory space.

11 Reserved.

Table 239: Location of Record Address, RLP

RLP ([26:25]) Function

00 Record address is in local address space.

01 Record address is in PCI_0 memory space.

10 Record address is in PCI_1 memory space.

11 Reserved.
Revision 1.0 223

GT-96100A Advanced Communication Controller
Figure 32: Chained Mode DMA

9.3 Restarting a Disabled Channel

In Non-Chained mode, ChanEn must be set to 1.

In Chained mode, the software must find out if the first fetch took place. If it did, only ChanEn is set to 1. If it did
not, the FetNexRec is also be set to 1.

9.4 Reprogramming an Active Channel

To reprogram an active channel, the channel must first be disabled by setting ChanEn to 0.
If CDE and/or EOTE are set, then ABR must also be set. Then it must be assured that the channel is no longer
active (for example by polling the DMAActSt of the channel).

New DMA parameters must be programmed prior to re-enabling the channel via setting ChanEn to 1.

GT-64010 Channel 0 DMA Registers
Byte Count (ByteCt)

Source Address (SrcAdd)
Destination Address (DestAddr)

Next Record Pointer (NextRecPtr): 0x10

ByteCt
SrcAdd

DestAddr
NextRecPtr: 0x100

0x10
0x14
0x18
0x1c

x
x
x
x

0x100
0x104
0x108
0x10c

Transfer #1

Transfer #2

Transfer #n

ByteCt
SrcAdd

DestAddr
NextRecPtr: y

ByteCt
SrcAdd

DestAddr
NULL Pointer: 0x0

GT-96100A
224 Revision 1.0

GT-96100A Advanced Communication Controller
9.5 Arbitration

The DMA controller has a programmable arbitration scheme between its four channels. The channels are
grouped into two groups:

� One group includes channel 0 and 1
� The other group includes channels 2 and 3.

The channels in each group are programmed to have priority so that a selected channel has the higher priority or
the same priority in round robin.

The priority between the two groups is programmed in a similar way so that a selected group has a higher priority
or to have the same priority in round robin.

The priority scheme has additional flexibility with the programmable Priority Option. With the Priority Option,
the DMA bandwidth allocation is divided in a fairer way.

The DMA arbiter control register can be reprogrammed any time regardless of the channels� status (active or not
active).

9.6 Current Descriptor Pointer Registers

Each DMA channel has a current descriptor pointer register (CDPTR) associated with it. They are located at off-
sets 0x870-0x7c.

These descriptor pointers are read/write registers, however, the CPU should not write them. When the NPTR
(Next pointer) is written by the CPU, then the CDPTR reloads itself with the same value written to NPTR.

After processing a descriptor, the DMA channel updates the current descriptor using CDPTR, saves NPTR into
CDPTR, and fetches a new descriptor. This register is used for closing the current descriptor before fetching the
next descriptor.

9.7 Design Information

The following sections contain more detailed information about the GT-96100A�s IDMA controllers. The follow-
ing definitions are used throughout this section:
Table 240: IDMA Controller Design Information Terms and Definitions

Term Definit ion

Device A device located on the memory bus mapped to one of the
GT-96100A�s Chip Selects (including BootCS).

PCI Agent Any device located on the PCI bus.

SDRAM SDRAM memory located on the memory bus.
Revision 1.0 225

GT-96100A Advanced Communication Controller
9.7.1 DMA in Demand Mode
Demand mode is especially designed for transferring data between Memory (Device, SDRAM, PCI agent) and a
Device. This is because the DMAAck* is asserted only when the GT-96100A is accessing a Device.

In this mode, the transfer initiator (usually a Device) asserts DMAReq* to signal the GT-96100A that a new
DMA transfer should begin. As an acknowledgment response, the GT-96100A asserts the DMAAck* to signal
that the asserted DMAReq* is currently being processed.

In each DMA transfer, the DMA attempts to read the amount of DatTranLim bytes from the source address and
writes it to destination address. In the source direction, at the beginning and end of the DMA, there may be less
than DatTranLim bytes if the address is not aligned or the remaining Byte Count to be transferred is smaller then
the DatTranLim. In the destination direction, the DMA writes all data that was read from the source to the desti-
nation. This may happen in two DMA accesses if the destination address is not aligned.

The channel stays active until the Byte Count reaches the terminal count or until the CPU disables the channel.

NOTE: If the DMAReq* is always asserted, then this is equivalent to transfer data in Block Mode.

9.7.1.1 Asserting and Deasserting DMAReq*
The DMAReq* must be asserted as long as the transfer initiator has at least DatTranLim of bytes to provide (in
case that it is the source) or as long as it has space to absorb at least DatTranLim of bytes (in case that it is the
destination).

The DMAReq* should be deasserted by the source when the transfer initiator sees that it does not have at least
DatTranLim of bytes to provide (i.e. FIFO empty). DMAReq* should also be deasserted by the destination when
it does not have enough space to absorb at least DatTranLim of bytes (i.e. FIFO full) AND DMAAck* is asserted
LOW.

9.7.1.2 Asserting DMAAck*
The DMAAck* is asserted only when the GT-96100A accesses a device. It is asserted when ALE is asserted.

9.7.1.3 DMAReq* Sampling
The DMAReq* is sampled all the time but it influences arbitration only in the DMA arbitration cycle or when all
channels are idling. The DMA arbitration cycle is the cycle in which the destination unit inside the GT-96100A
acknowledges the last written data from the DMA unit.
226 Revision 1.0

GT-96100A Advanced Communication Controller
9.7.1.4 Transferring data examples/recommendations

9.7.1.5 DMA in Block Mode
In block mode, no hand shake signals are used to initiate DMA transfers. The DMA unit completes the transfer
once the CPU has programmed the DMA and enabled it.

9.7.2 Non-Chain Mode
In non-chain mode, the CPU or PCI master initiates the DMA channel parameters (Source, Destination Byte
Count and command Registers).The DMA starts to transfer data after the enable bit in the Command register is
set to 1. The DMA remains in an active state until the Byte Count reaches a terminal count or until the channel is
disabled.

Table 241: Source and Data Transfer Examples

Source Destination Description

SDRAM/PCI SDRAM/PCI In this case it is better to use BlockMode cause Memory is typi-
cally ready all the time and DMAAck* is NOT asserted. If you
choose to work in Demand mode, DMAAck* should be externally
generated (i.e., polling accesses of the GT-96100A to certain
addresses).

Device SDRAM or PCI The Device transfer initiator asserts a DMAReq* when it has at
least DatTranLim number of bytes to give. It must de-assert the
DMAReq* when no more data is ready and DMAAck* is asserted.
Even if another master drives the DMAReq*, the DMAAck* can
signal to that master that the GT-96100A is currently accessing
the device for read.

SDRAM or PCI Device The Device transfer initiator asserts a DMAReq* when it has
enough room for DatTranLim number of bytes to be written to it
and DMAAck* is asserted. Even if another master drives the
DMAReq*, the DMAAck* can signal the master that the GT-
96100A is currently accessing the device for write.
NOTE: In this situation, the GT-96100A asserts the DMAAck*

when its accessing the device for write. This is problem-
atic if DatTranLimit is smaller than or equals eight bytes.
The DMAAck* is seen outside late, and due to this the
de-assertion of the DMAReq*, is NOT seen in the DMA
arbitration cycle. Although the device does not want to
be accessed, a new transfer may begin.

� If DatTranLimit is bigger then eight bytes there is no
problem. In this case, it is recommended to have a
device that can accepts bursts.

� A solution when using one channel only and DatTran-
Lim is less or equal to eight bytes is to set the MDREQ
bit.
Revision 1.0 227

GT-96100A Advanced Communication Controller
9.7.3 Chain Mode
In chain mode, the DMA channel parameters (Source, Destination Byte Count and Pointer to Next Record) are
read from records located in Memory, Device, or PCI. The DMA channel stays in the active state until Pointer to
Next Record is NULL and the Byte Count reaches the terminal count.

In this mode, an interrupt can be asserted every time the byte count reaches the terminal count or when BOTH the
Byte Count reaches the terminal count and the Pointer to Next Record is NULL.

9.7.4 Dynamic DMA chaining
Dynamic chaining is when DMA records are added to a chain that an IDMA controller is actively working on.
The main issue is to synchronize between when the GT-96100A reads the last chain record (the NULL pointer) to
the time the CPU changes the current last DMA record. Following is an algorithm which provides this synchroni-
zation mechanism.

1. Prepare the new record.
2. Change the last record's Pointer to Next Record to point to the new record.
3. Read the DMA control register.

If the DMAActSt bit is 0 (NOT active) {

Update the Pointer to Next Record in the GT-96100A

assert the FetNexRec bit

}

else {

read the Pointer to Next Record the GT-96100A.

If it's equal to NULL {

Mark (by using a flag) that in the next DMA chain complete interrupt

you'll need to {

Update the NRP register in the GT-64010

Write the Fetch Next Record

}

}

}

9.7.5 Fly-by DMA
Fly-by is a way to move data directly from the source of the data to its destination. While the source drives the
data onto the data bus, the destination immediately latches it into its buffers/memory. The data does not pass
through the GT-96100A. This saves at least half of the AD bus bandwidth. Fly-by cycles are requested by the
DMA channel and controlled by the memory unit.

9.7.5.1 FlyBy in the GT-96100A
During fly-by, the GT-96100A supplies the full information to the SDRAM involved in the transaction. This
includes all control signals (SRAS*, SCAS*, SWr*, SCS* and SDQM) and the address lines (DAdr, BA0, BA1).
For the Device, it supplies the control signals (CSTiming*, DmaAck* and DevRdWr*) that support the same
waveforms as if the device were not working in fly-by mode. This means that the DmaAck* and DevRdWr* are
228 Revision 1.0

GT-96100A Advanced Communication Controller
latched using ALE. The external logic will have to form the address to the device (if needed) and correct write
signals to the device if the device is the destination.

The fly-by cycle is totally compliant with the SDRAM waveforms and the device has to keep up with its speed.

NOTE: The �device parameter register� is ignored during flyby transaction.

9.7.5.2 How to program the GT-96100A for Fly-By
The DMA control register has two bits for Fly-by indications:

9.7.5.3 Design Considerations
1. Device (FIFOs, FPGA) must be fast enough to maintain read/write at SDRAM burst speed.
2. For RAS to CAS setting of 3 DMAReq* must be deasserted within 3 TClk cycles following CSTiming*

assertion.
3. For RAS to CAS setting of 2 DMAReq* must be deasserted within 2 TClk cycles following CSTiming*

assertion.

9.7.5.4 Determining CS during Fly-By
Bits [29:26,22] in the DeviceX (Bank0, Bank1, Bank2, Bank3 and Boot) parameter registers are used to deter-
mine which CS (Chip Select) are activated during FlyBy.

� DMA channel 0 uses bits [29:26,22] of Bank0 parameter register.
� DMA channel 1 uses bits [29:26,22] of Bank1.
� DMA channel 2 uses bits [29:26,22] of Bank2
� DMA channel 3 uses bits [29:26,22] of Bank3.

 The interpretation of bits [29:26,22] is as follows:
� Bit 22 Low - BootCS* are the active CS.
� Bit 26 Low - CS0* are the active CS.
� Bit 27 Low - CS1* are the active CS.
� Bit 28 Low - CS2* are the active CS.
� Bit 29 Low - CS3* are the active CS.

NOTE: As a consequence of the nature of this mechanism, only one bit within bits [29:26,22] should be Low.

By default, bit 26 is low. This means CS0 is the active CS unless otherwise programmed.

Table 242: Fly-By Bits

Bit Description

FlyByEn DMA accesses are Fly-by, i.e., the data does not enter the internal FIFO.

FlyByDir Determines if the device is the source or the destination. This bit affects the DevRdWr*
towards the device.
NOTE: The SDRAM address must be written to the source register of the DMA channel,

regardless of whether the SDRAM is the source or the destination.
Revision 1.0 229

GT-96100A Advanced Communication Controller
9.8 Initiating a DMA from a Timer/Counter

Each channel can be programmed to have the DMAReq* sourced from the external DMAReq* pin or from the
associated timer/counter. For example, DMA channel 0 can only be enabled by Timer/Counter 0, DMA channel
1 can only be enabled by Timer/Counter 1, etc. If bit 28 in the DMA command register is set to 1, then when the
timer/counter reaches the terminal count, an internal DMAReq* is set and a new DMA transfer is initiated.
When this bit is set to 1, DMAReq* is ignored. When set to 0, DMAs are initiated by asserting DMAReq*. Initi-
ating DMA from timer/counter is enabled only in demand mode.

9.9 DMA Restrictions

1. In order to reprogram a channel after it has been enabled, it must first be checked that the DMAActSt bit
is set to NOT ACTIVE (see Table 236). If working in CDE mode or EOTE mode then ABR bit must be
set to 1 along with En/Dis bit.

2. When Source or Destination address is decremented, both addresses must be double-word-aligned (that
is, A2. A1 and A0 should be all zero), and Byte Count must be a multiple of eight (this applies for burst
limits greater than eight bytes).

3. Burst reads of more than two double-words from PCI devices have all Byte Enables (BEs) active. This
implies that DMA read from PCI I/O space must be aligned or with a burst limit no bigger that eight
bytes, in order to avoid PCI spec violation (PCI spec defines correlation between two LSB address bits
and byte enables on I/O transaction).

4. When using the address hold option in the source direction (see Table 236), and SDA bit is set to 1, the
source and destination addresses must be double-word aligned.

5. When using the address hold option in the destination direction, both source and destination addresses
must be double-word aligned.

6. Records addresses (NPTR) must be a multiple of 16 bytes. In chained mode, if the descriptors are
stored in a device, the device must be 32 or 64 bit. If the descriptors are stored in SDRAM or in PCI
memory, there are no restrictions on the width of the resource.

NOTE: All descriptors must reside on word-aligned addresses.

7. No support for destination alignment (SDA has no affect) when burst limit is 1, 2, or 4 bytes.
8. When DMA accesses an unmapped address (see Section 3.4 �Address Space Decoding Errors� on page

63), it results in unpredictable behavior and the DMA channel might need to be stopped by clearing the
activate bit of the channel control register.

9. If the DMA state machine has a pending read of the next descriptor AND the descriptor is located in the
PCI space, any PCI accesses to the DMA registers are stopped.

10. If the PCI master accessing the GT-96100A DMA registers and the DMA descriptors resides on the far
side of a PCI-to-PCI bridge, a lock-up may occur because the PCI requires that all writes must occur
before any reads can take place across a PCI-to-PCI bridge.
230 Revision 1.0

GT-96100A Advanced Communication Controller
9.9.1 Fly-by Mode DMA Restrictions
1. The device and SDRAM must be the same width, 32 or 64 bit.
2. In Fly-By transfers, Byte_Count must be a multiple of eight and source address must be word aligned.
3. The SDRAM CAS latency must be programmed to 2.
4. SRASPrchg in all SDRAM parameter registers must pre-programed to 1(e.g. 3 cycles).

9.10 DMA Control Registers
Table 243: DMA Control Register Map

Description Offset Page Number

DMA Record

Channel 0 DMA Byte Count 0x800 page 232

Channel 1 DMA Byte Count 0x804 page 232

Channel 2 DMA Byte Count 0x808 page 232

Channel 3 DMA Byte Count 0x80c page 233

Channel 0 DMA Source Address 0x810 page 233

Channel 1 DMA Source Address 0x814 page 233

Channel 2 DMA Source Address 0x818 page 233

Channel 3 DMA Source Address 0x81c page 233

Channel 0 DMA Destination Address 0x820 page 233

Channel 1 DMA Destination Address 0x824 page 234

Channel 2 DMA Destination Address 0x828 page 234

Channel 3 DMA Destination Address 0x82c page 234

Channel 0 Next Record Pointer 0x830 page 234

Channel 1 Next Record Pointer 0x834 page 234

Channel 2 Next Record Pointer 0x838 page 235

Channel 3 Next Record Pointer 0x83c page 235

Channel 0 Current Descriptor Pointer 0x870 page 235

Channel 1 Current Descriptor Pointer 0x874 page 235

Channel 2 Current Descriptor Pointer 0x878 page 235

Channel 3 Current Descriptor Pointer 0x87c page 236

Channel 0 Control 0x840 page 236

Channel 1 Control 0x844 page 239
Revision 1.0 231

GT-96100A Advanced Communication Controller
9.10.1 DMA Record

DMA Record

Channel 2 Control 0x848 page 239

Channel 3 Control 0x84c page 239

DMA Arbiter

Arbiter Control 0x860 page 240

Table 244: Channel 0 DMA Byte Count, Offset: 0x800

Bits Field Name Function Init ial Value

15:0 ByteCt The number of bytes that are left in DMA
transfers.

0x0

31:16 ByteRemain If CDE is set to 1 and the DMA engine
owns the descriptor (i.e. DMA is currently
in progress), the remaining bytes to trans-
fer will be written.
If the CPU owns the descriptor, these
bytes can be written to any value.

0x0

Table 245: Channel 1 DMA Byte Count, Offset: 0x804

Bits Field Name Function Init ial Value

31:0 Various Functions as in Channel 0 DMA Byte
Count.

0x0

Table 246: Channel 2 DMA Byte Count, Offset: 0x808

Bits Field Name Function Init ial Value

31:0 Various Functions as in Channel 0 DMA Byte
Count.

0x0

Table 243: DMA Control Register Map (Continued)

Description Offset Page Number
232 Revision 1.0

GT-96100A Advanced Communication Controller

Table 247: Channel 3 DMA Byte Count, Offset: 0x80c

Bits Field Name Function Init ial Value

31:0 Various Functions as in Channel 0 DMA Byte
Count.

0x0

Table 248: Channel 0 DMA Source Address, Offset: 0x810

Bits Field Name Function Init ial Value

31:0 SrcAdd The address from which the IDMA control-
ler reads the data.

0x0

Table 249: Channel 1 DMA Source Address, Offset: 0x814

Bits Field Name Function Init ial Value

31:0 SrcAdd The address from which the IDMA control-
ler reads the data.

0x0

Table 250: Channel 2 DMA Source Address, Offset: 0x818

Bits Field Name Function Init ial Value

31:0 SrcAdd The address from which the IDMA control-
ler reads the data.

0x0

Table 251: Channel 3 DMA Source Address, Offset: 0x81c

Bits Field Name Function Init ial Value

31:0 SrcAdd The address from which the IDMA control-
ler reads the data.

0x0

Table 252: Channel 0 DMA Destination Address, Offset: 0x820

Bits Field Name Function Init ial Value

31:0 DestAdd The address to which the IDMA controller
writes the data.

0x0
Revision 1.0 233

GT-96100A Advanced Communication Controller

Table 253: Channel 1 DMA Destination Address, Offset: 0x824

Bits Field Name Function Init ial Value

31:0 DestAdd The address to which the IDMA controller
writes the data.

0x0

Table 254: Channel 2 DMA Destination Address, Offset: 0x828

Bits Field Name Function Init ial Value

31:0 DestAdd The address to which the IDMA controller
writes the data.

0x0

Table 255: Channel 3 DMA Destination Address, Offset: 0x82c

Bits Field Name Function Init ial Value

31:0 DestAdd The address to which the IDMA controller
writes the data.

0x0

Table 256: Channel 0 Next Record Pointer, Offset: 0x830

Bits Field Name Function Init ial Value

31:0 NextRecPtr The address for the next record of DMA. A
value of 0 means a NULL pointer (end of
the chained list).
NOTE: The next record pointer must be

16 bytes aligned. This means bits
[3:0] must be set to 0.

0x0

Table 257: Channel 1 Next Record Pointer, Offset: 0x834

Bits Field Name Function Init ial Value

31:0 NextRecPtr The address for the next record of DMA. A
value of 0 means a NULL pointer (end of
the chained list).
NOTE: The next record pointer must be

16 bytes aligned. This means bits
[3:0] must be set to 0.

0x0
234 Revision 1.0

GT-96100A Advanced Communication Controller

Table 258: Channel 2 Next Record Pointer, Offset: 0x838

Bits Field Name Function Init ial Value

31:0 NextRecPtr The address for the next record of DMA. A
value of 0 means a NULL pointer (end of
the chained list).
NOTE: The next record pointer must be

16 bytes aligned. This means bits
[3:0] must be set to 0.

0x0

Table 259: Channel 3 Next Record Pointer, Offset: 0x83c

Bits Field Name Function Init ial Value

31:0 NextRecPtr The address for the next record of DMA. A
value of 0 means a NULL pointer (end of
the chained list).
NOTE: The next record pointer must be

16 bytes aligned. This means bits
[3:0] must be set to 0.

0x0

Table 260: Current Descriptor Pointer 0, Offset: 0x870

Bits Field Name Function Init ial Value

31:0 CDPTR0 Channel 0 Current Address Descriptor
Pointer

0x0

Table 261: Current Descriptor Pointer 1, Offset: 0x874

Bits Field Name Function Init ial Value

31:0 CDPTR1 Channel 1 Current Address Descriptor
Pointer

0x0

Table 262: Current Descriptor Pointer 2, Offset: 0x878

Bits Field Name Function Init ial Value

31:0 CDPTR2 Channel 2 Current Address Descriptor
Pointer

0x0
Revision 1.0 235

GT-96100A Advanced Communication Controller

9.10.2 DMA Channel Control

Table 263: Current Descriptor Pointer 3, Offset: 0x87c

Bits Field Name Function Init ial Value

31:0 CDPTR3 Channel 3 Current Address Descriptor
Pointer

0x0

Table 264: Channel 0 Control, Offset: 0x840

Bits Field Name Function Init ial Value

0 FlyByEn Data Internal/External to DMA FIFO
0 - Internal
Data is read from source address into
DMA FIFO and written to destination
address
1 - External (Fly By)
Data is transferred to/from devices on
SDRAM bus from/to SDRAM

0x0

1 RdWrFly SDRAM Read/Write
Meaningful only in Fly-by mode.
0 - Read from SDRAM
1 - Write to SDRAM

0x0

3:2 SrcDir Source Direction.
00 - Increment source address
01 - Decrement source address
10 - Hold in the same value
11 - Reserved

0x0

5:4 DestDir Destination Direction.
00 - Increment destination address
01 - Decrement destination address
10 - Hold in the same value
11 - Reserved

0x0

8:6 DatTransLim Data Transfer Limit in each DMA access.
101 - 1 Byte
110 - 2 Bytes
010 - 4 Bytes
000 - 8 Bytes
001 - 16 Bytes
011 - 32 Bytes
111 - 64 bytes

0x0
236 Revision 1.0

GT-96100A Advanced Communication Controller
9 ChainMod Chained Mode
0 - Chained mode
When a DMA access is terminated, the
parameters of the next DMA access
comes from a record in memory that is
pointed to by the NextRecPtr register.
1 - Non-Chained mode
Only uses the values programmed by the
CPU (or PCI) directly into the ByteCt,
SrcAdd, and DestAdd registers.

0x0

10 IntMode Interrupt Mode
0 - Interrupt asserted every time the DMA
byte count reaches terminal count.
1 - Interrupt every NULL pointer (in
Chained mode).

0x0

11 TransMod Transfer Mode
0 - Demand
1 - Block

0x0

12 ChanEn Channel Enable
0 - Disable
1 - Enable

0x0

13 FetNexRec Fetch Next Record
1 - Forces a fetch of the next record, even
if the current DMA has not ended.
This bit is reset after fetch is completed
and is only meaningful in Chained mode.

0x0

14 DMAActSt DMA Activity Status
Read only.
Assertion of this bit is caused by asserting
ChanEn (bit 12).
0 - Channel is not active.
1 - Channel is active.

0x0

15 SDA Source Destination Alignment
0 - Alignment is towards the source
address.
1 - Alignment is towards the destination
address
NOTE: No support for destination align-

ment when burst limit is 1, 2, or
4 bytes.

0x0

Table 264: Channel 0 Control, Offset: 0x840 (Continued)

Bits Field Name Function Init ial Value
Revision 1.0 237

GT-96100A Advanced Communication Controller
16 MDREQ Mask DMA Requests
0 - Don�t mask
1 - Mask DMA requests for 3 cycles start-
ing DMA arbitration cycle.

0x0

17 CDE Close Descriptor Enable
If enabled, DMA writes remaining byte
count to bits [31:16] of ByteCount field in
the descriptor.
0 - Disable
1 - Enable

0x0

18 EOTE End Of Transfer Enable
If enabled, DMA transfer can be stopped
in the middle of transfer using the EOT
signal. If DMA channel is working in chain
mode, this will cause fetching a new
descriptor, otherwise the DMA transfer is
stopped.
0 - Disable
1 - Enable

0x0

19 EOTIE End Of Transfer Interrupt Enable
If enabled and EOT pin is asserted, DMA
generates an interrupt.
0 - Disable
1 - Enable

0x0

20 ABR Abort DMA Transfer
This bit must be set if the CPU wants to
stop and re-program DMA, and CDE (bit
17) and/or EOTE (bit 19) is set to 1. When
the CPU issues this command, it must
also set ChanEn (bit 12) to 0.
0 - No influence on channel behavior.
1 - Abort DMA.

0x0

22:21 SLP Override Source Address
00 - No override. Use local address space
for source
01 - Source address is in PCI_0 memory
space.
10 - Source address is in PCI_1 memory
space.
11 - Reserved

0x0

Table 264: Channel 0 Control, Offset: 0x840 (Continued)

Bits Field Name Function Init ial Value
238 Revision 1.0

GT-96100A Advanced Communication Controller

24:23 DLP Override Destination Address
00 - No override. Use local address space
for destination.
01 - Destination address is in PC_0 mem-
ory space.
10 - Destination address is in PCI_1 mem-
ory space.
11 - Reserved

0x0

26:25 RLP Override Record Address
00 - No override. Use local address space
for record.
01 - Record address is in PCI_0 memory
space.
10 - Record address is in PCI_1 memory
space.
11 - Reserved

0x0

27 Reserved 0x0

28 DMAReqSrc DMA Request Source
0 - Request taken from DMAReq* pin.
1 - Request taken from timer/counter.

0x0

31:29 Reserved 0x0

Table 265: Channel 1 Control, Offset: 0x844

Bits Field Name Function Init ial Value

31:0 Various Fields function as in Channel 0 Control. 0x0

Table 266: Channel 2 Control, Offset: 0x848

Bits Field Name Function Init ial Value

31:0 Various Fields function as in Channel 0 Control. 0x0

Table 267: Channel 3 Control, Offset: 0x84c

Bits Field Name Function Init ial Value

31:0 Various Fields function as in Channel 0 Control. 0x0

Table 264: Channel 0 Control, Offset: 0x840 (Continued)

Bits Field Name Function Init ial Value
Revision 1.0 239

GT-96100A Advanced Communication Controller
9.10.3 DMA Arbiter
Table 268: Arbiter Control, Offset: 0x860

Bits Field Name Function Init ial Value

1:0 PrioChan1/0 Priority between Channel 0 and Channel
1.
00 - Round robin
01 - Priority to channel 1 over channel 0
10 - Priority to channel 0 over channel 1
11 - Reserved

0x0

3:2 PrioChan3/2 Priority between Channel 2 and Channel
3.
00 - Round robin
01 - Priority to channel 3 over 2
10 - Priority to channel 2 over 3
11 - Reserved

0x0

5:4 PrioGrps Priority between the group of channels 0/1
and the group of channels 2/3.
00 - Round robin
01 - Priority to channels 2/3 over 0/1
10 - Priority to channels 0/1 over 2/3
11 - Reserved

0x0

6 PrioOpt Priority Option Enabled/Disable
0 - High priority device relinquishes the
bus for a requesting device for one DMA
transaction after it was serviced.
1 - High priority device is granted as long
as it requests the bus.

0x0

31:7 Reserved 0x0
240 Revision 1.0

GT-96100A Advanced Communication Controller
10. PCI ARBITER
The GT-96100A integrates two PCI arbiter functions. One is dedicated for PCI_0 and the other for PCI_1. The
PCI_0 arbiter handles up to six external agents and one internal agent (PCI_0 master). The PCI_1 arbiter sup-
ports a total of four external agents in addition to the internal PCI_1 master 1.

The PCI arbiters implement a priority based weighted Round Robin (RR) arbitration mechanism. Each agent is
assigned a programmable priority tag (either high or low), and the arbitration is done according to these priori-
ties. A simple Round Robin arbitration is performed within each priority level, while a weighted function is
implemented for arbitrating between the high priority and the low priority groups.

10.1 Interface

Figure 33: PCI Arbiter�s Interface Diagram

1. The internal design of the PCI arbiter logic handles a total of 7 request/grant pairs for each of the arbiters. But, due to package limitations, the GT-
96100A is limited to a total of nine external request/grant pairs. These are divided between PCI_0 arbiter and PCI_1 arbiter. Thus, the user cannot
connect six external agents to PCI_0 arbiter and four external agents to PCI_1 arbiter at the same time (it�s either 6 to PCI_0 and 3 to PCI_1, or 5
to PCI_0 and 4 to PCI_1).

Table 269: PCI Arbiter�s Interface

Signal Description

PClk PCI Clock

Reset Master Reset

Interrupt Interrupt
NOTE: This signal is asserted when the arbiter recognizes a �Broken� Master (i.e. a master

which does not respond to a grant signal assertion).

Gnt_[6:0] GRANT# output signals
NOTE: Gnt_[0] of PCI_0 arbiter is internally connected PCI_0 master. The same holds for

PCI_1.

Req_[6:0] Input REQ# signals.
NOTE: Req_[0] of PCI_0 arbiter is internally connected PCI_0 master. The same holds for

PCI_1.

Gnt_[6:0]Req_[6:0]

Frame_

IRdy_

PCI
Interrupt

PClk Reset

ARBITER
Revision 1.0 241

GT-96100A Advanced Communication Controller
10.2 Arbitration Scheme

As noted above, each of the PCI arbiter�s requests has a user programmable priority level associated with it. Two
levels of priority are supported: High and Low. PCI Bandwidth allocation per priority is programmable as well,
enabling the user to optimize the PCI to application needs.

Arbitration flow is shown in Figure 34.

Figure 34: PCI Arbitration Flow

Frame_ PCI FRAME# signal.

IRdy_ PCI IRDY# signal.

Table 269: PCI Arbiter�s Interface (Continued)

Signal Description

High_req?

High_gnt
High_cnt--

High_cnt>0? yes

yes

no

Low_req?

Low_gnt

yes

no

no
242 Revision 1.0

GT-96100A Advanced Communication Controller
In relation to Figure 34, the following points should be noted:

� The two request signals (High_req, Low_req) are generated by �ANDing� each of the request lines with
its respective priority attribute, and ORing the results. For example:
High_req = (req_[0] AND (req_prio[0]==high)) OR...

(req_[1] AND (req_prio[1]==high)) OR...
� There is a counter associated with the priority scheme - High_cnt. The counter is used to assign differ-

ent weights to each priority level. This is a count down counter that decrements each time a high priority
request (High_req) is granted. When High_cnt expires, a slot is opened for low priority requests, and the
counter is set to its preset value.

� Each time a low priority request (Low_req) is granted, High_cnt counter is preset.

10.3 Arbitration Parking

The PCI arbiter is designed to perform a default parking on the last agent granted. In order to overcome problems
that happen with some PCI devices that do not handle parking properly, there is an option to disable parking on a
per PCI master basis. This is done via the PCI_Arbiter_Configuration register PD[6:0] bits.

NOTE: In addition to disabling parking to avoid issues with some problematic devices, the user must also dis-
able parking on any unused request/grant pair. This is required to avoid possible parking on non existent
PCI masters. For example, if only 3 external agents are connected to PCI_0 arbiter (using REQ0/GNT0,
REQ1/GNT1, REQ2/GNT2 pins), then PD[6:4] should be set to 1.

10.4 PCI Arbiter Configuration Register
Table 270: PCI_0 Arbiter Configuration Register, Offset: 0x101AE0

Bits
Field
Name Function

Init ial
Value

0 GCen Gap Cycle enable
When this bit is set to 1, the PCI arbiter forces grant to be asserted only
after the PCI bus is idle. This guarantees two turn around cycles.

0

1 BDen Broken Detection enable
Setting this bit to 1 enables the detection of broken master. A master is said
to be broken if it fails to respond to grant assertion within a window speci-
fied in BV (see BV description above).

0

Revision 1.0 243

GT-96100A Advanced Communication Controller
2 PAen Priority Arbitration Enable
When this bit is set to 1, weighted round robin arbitration is performed
between high priority and low priority groups.
When this bit is reset, no round robin arbitration takes place and low priority
requests are granted only when no high priority request is pending.
NOTE: If HPPV is set to zero value and PAen is 1, priority scheme is

reversed. This means that high priority requests are granted only
if no low priority request is pending.

NOTE: Gap Cycle must be enabled in the PCI Arbiter when working with
priority Arbitration.

0

6:3 BV Broken Value
This value sets the maximum number of cycles that the arbiter waits for a
PCI master to respond to its grant assertion. If a PCI master fails to assert
FRAME* within this time, the PCI arbiter aborts the transaction and per-
forms a new arbitration cycle. In addition, a maskable interrupt is gener-
ated.
NOTE: The PCI arbiter waits for the current transaction to end before

starting to count the wait-for-broken cycles.

0

13:7 P[6:0] Priority
These bits assign priority levels to the requests connected to the PCI arbi-
ter. When a PM bit is set to 1, priority of the associated request is high.
The mapping between P bits and the request/grant pairs is similar to the
one shown for PD bits above.

0

20:14 PD[6:0] Parking Disable
These bits can be used to disable parking on any of the PCI masters.
When a PD is set to 1, parking on the associated PCI master is disabled.
The mapping between the PD bits and the request/grant pairs is as follows:

� PD[0] - internal PCI master unit
� PD[1] - external REQ0/GNT0
� PD[2] - external REQ1/GNT1
� PD[3] - external REQ2/GNT2
� PD[4] - external REQ3/GNT3
� PD[5] - external REQ4/GNT4
� PD[5] - external REQ5/GNT5

NOTE: The arbiter parks on the last master granted unless disabled
through the PD bit. Also, if PD bits are all 1, the PCI arbiter parks
on the internal PCI master.

0

28:21 HPPV High Priority Preset Value
This is the preset value of the high priority counter (High_cnt). This counter
decrements each time a high priority request is granted. When the counter
reaches zero, it reloads with this preset value. The counter also reloads
when a low priority request is granted.

0

Table 270: PCI_0 Arbiter Configuration Register, Offset: 0x101AE0 (Continued)

Bits
Field
Name Function

Init ial
Value
244 Revision 1.0

GT-96100A Advanced Communication Controller

29 AR6en Arbiter Request 6 enable
Setting this bit enables the 6th request/grant pair connection to PCI_0 arbi-
ter.
0 - pins PB[4], PB[5] are connected to PCI_1 arbiter and function as
PARB1_Gnt4, PARB1_Req4.
1 - pins PB[4], PB[5] are connected to PCI_0 arbiter and function as
PARB0_Gnt6, PARB0_Req6.

0

30 GNT/
CLK

Grant or OTSClk
This bit controls the function of pin PB6.
0 - this pin to function as OTSCLK1.
1- PB6 functions as PABR0_GNT4.

0

31 EN Enable
Setting this bit to 1 enables operation of the arbiter. When the arbiter is
enabled, the internal PCI_0 master is connected to it.
The arbiter configuration must be set before the arbiter is enabled. This
means two writes must be made to this register. The first write sets the
arbiter configuration and must be done with the enable bit set to 0. With the
second write, set the enable bit to 1 to enable operation of the arbiter.
NOTE: When the arbiter is enabled, PCI REQ* and GNT* pins change

their function: REQ* becomes Grant (PCI arbiter output) and
GNT* becomes Req (PCI arbiter input). For example, enabling
PCI_0 arbiter causes (req0*,gnt0*) pair to function as
(PARB0_GNT1, PARB0_REQ1) respectively.
BV must be set to a value greater than zero, or else there will
always be a break detection, as the arbiter waits 0 cycles for
FRAME* assertion.

0

Table 271: PCI_1 Arbiter Configuration Register, Offset: 0x101AE4

Bits Field Name Function
Init ial
Value

31:0 Various Similar to PCI_0 arbiter configuration register (except for bit 30:29
which are reserved).

0

Table 270: PCI_0 Arbiter Configuration Register, Offset: 0x101AE0 (Continued)

Bits
Field
Name Function

Init ial
Value
Revision 1.0 245

GT-96100A Advanced Communication Controller
11. COMMUNICATION INTERFACE UNIT (CIU)
The GT-96100A�s IDMA, Ethernet ports, and SDMA engines have one common interface with the other units
within the GT-96100A. These other units include the CPU interface unit (Punit), the memory control unit (Dunit),
and the PCI unit (Lunit). The common interface supports a single master, meaning that only one agent can gain
control and access the memory (through the Dunit) or the PCI (through the Lunit) at a time.

In order to support this shared interface, the GT-96100A provides an arbitration mechanism, which arbitrates
between requests generated by the IDMA, SDMA, and Ethernet. The arbitration logic supports multiple priority
levels as well as different weights assigned to each priority level. The priority is programmable per request and
the weights are programmable per priority.

This arbitration mechanism also handles MASTER type requests. MASTER requests originate within the com-
munication unit and are targeted at other units in the GT-96100A. For example, a request generated by one of the
Ethernet units and is targeted at the Dunit (for SDRAM read/write access) is a MASTER request. Similarly, a
request generated by the IDMA and is targeted at the PCI unit is also a MASTER request. The transactions asso-
ciated with MASTER requests are referred to as MASTER transactions.

In addition to handling MASTER type requests and MASTER transactions, the arbiter also handles SLAVE
transactions, which originate from other units within the GT-96100A (e.g. Punit, Lunit) and are targeted at the
communication unit. SLAVE requests are used by the other units to access internal registers within the communi-
cation unit. Arbitration between SLAVE type requests is fixed and gives the highest priority to the Punit (i.e.
requests from CPU).

The MASTER/SLAVE arbiter and the associated logic that handle the MASTER/SLAVE transactions are collec-
tively called the Communication Interface Unit (CIU).

This section provides details about the arbitration scheme as well as high level design aspects of the CIU.
246 Revision 1.0

GT-96100A Advanced Communication Controller
11.1 CIU Connectivity

Figure 35 shows a block diagram of the connectivity between the CIU and the communication unit agents.

Figure 35: CIU Connection Diagram

a2ise_ad[63:0]

ise2a_ad[63:0]

a2idma_oe
a2idma_req
idma2a_ack
a2idma_ack
idma2a_req

a2e1_oe
a2e1_req
e12a_ack
a2e1_ack
e12a_req

a2e2_oe
a2e2_req
e22a_ack
a2e2_ack
e22a_req

a2sdma_oe
a2sdma_req
sdma2a_ack
a2sdma_ack
sdma2a_req

B

B

B

B

IDMA (from 64120)

Ether1

Ether2

SDMA

a2x_ad[63:0]

p2x_ad[63:0]

p2a_req
a2p_ack

d2x_ad[63:0]

a2d_req
d2a_ack

l2x_ad[63:0]

a2l0_req
l02a_ack
l02a_req
a2l0_ack

a2l1_req
l12a_ack
l12a_req
a2l1_ack

B

a2c_oe
a2c_req
c2a_ack

MPSCs

Punit

Dunit

PCI_0

PCI_1

CIU
p2x_ad[63:0]

a2x_ad[63:0]

p2a_req
a2p_ack
x2a_ack
a2x_req

p2x_ad[63:0]

e2x_ad[63:0]

p2e_req
e2p_ack
x2e_ack
a2x_req

p2x_ad[63:0]

e2x_ad[63:0]

p2e_req
e2p_ack
x2e_ack
a2x_req

p2x_ad[63:0]

a2x_ad[63:0]

p2a_req
a2p_ack
x2a_ack
a2x_req

p2x_ad[63:0]

c2x_ad[63:0]

p2c_req
c2p_ack
Revision 1.0 247

GT-96100A Advanced Communication Controller
11.2 Address Decoding and PCI Override (MASTER)

The GT-96100A�s CIU supports two types of MASTER transactions - normal and PCI override.

For normal transactions, the CIU performs address decoding and access either the SDRAM/DEVICE or PCI_0/
PCI_1 based on the decoding result. See Section 3. �Address Space Decoding� on page 56 for a description of
the address decoding scheme.

The PCI override feature allows the user to direct all transactions from a specific communication agent to the
PCI_0 direction, overriding address decoding. The override feature is programmable for the IDMA, Ethernet,
SDMA units. For information on activating this feature, see:

� IDMA: Table 236.
� Ethernet: Table 296.
� SDMA: Table 316.

11.2.1 Address Decoding Errors

The CIU is capable of handling transactions, which result in address decoding errors. If an address decoding
error occurs, the CIU performs a dummy transaction with the initiating unit, discards the data, and sets the
DMAout bit in the interrupt Main_Cause register, see Table 391.

11.3 Arbitration Scheme

The CIU arbiter is designed to handle one transaction at a time. This could be either a MASTER or SLAVE trans-
action. Priority at the MATER/SLAVE level is fixed and gives higher priority to SLAVE type transactions. The
priorities are listed below (from high to low):

� Punit - slave request from CPU (highest priority).
� L0unit - slave request from PCI_0.
� L1unit - slave request from PCI_1.
� MASTER requests (lowest priority).

Arbitration within the MASTER level is very flexible and is detailed in the following sections.

11.3.1 Master Arbitration
The arbiter supports MASTER requests from the following sources within the communication unit:

� IDMA,
� Ethernet 1,
� Ethernet 2,
� SDMA 1,
� SDMA 2.

Figure 36 depicts the arbiters� logical connectivity, for MASTER requests.
248 Revision 1.0

GT-96100A Advanced Communication Controller
Figure 36: Arbiter Connectivity

Each of the requests shown in Figure 36 has a user programmable priority level associated with it. The three lev-
els of priority are High, Medium, Low. In addition, bandwidth allocation per priority is programmable as well,
providing the user with the capability to optimize memory access to application needs.

Arbitration flow is shown in Figure 37.

IDMA_req

IDMA_ack

Ether1_req

Ether1_ack

Ether2_req

Ether2_ack

SDMA1_req

SDMA1_ack

SDMA2_req

SDMA2_ack

MEM_req

MEM_ack (to Dunit)

MASTER PCI0_req

PCI0_ack (to Lunit)ARBITER

PCI1_req

PCI1_ack (to Lunit)
Revision 1.0 249

GT-96100A Advanced Communication Controller
Figure 37: MASTER Arbitration Flow

High_req?

High_gnt
High_cnt--

High_cnt>0? yes

yes

Med_req?

Med_gnt
Med_cnt--

Med_cnt>0?

yes

no

yes

Low_req?

Low_gnt

yes

no

no

no

no
250 Revision 1.0

GT-96100A Advanced Communication Controller
In relation to Figure 37, note the following:

� The three request signals (High_req, Med_req, Low_req) are generated by ANDing each of the request
lines shown in Figure 36 with its respective priority attribute, and ORing the results. For example -

� High_req = (IDMA_req AND (IDMA_prio=high)) OR (SDMA_req1 AND (SDMA_prio1=high))
OR...

� There are two counters associated with the priority scheme - High_cnt and Med_cnt. These counters are
used to assign different weights to each priority level. The counters are countdown based on the request
being granted. Each time a high priority request (High_req) is granted, the high priority counter
(High_cnt) is decrement. When High_cnt reaches zero, a slot is opened for lower priority requests, and
the counter is set to its preset value. The same holds for Med_cnt.

� Each time a lower priority request is granted, the higher level counters are preset. When a medium pri-
ority request (Med_req) is granted, High_cnt counter is preset. When a low priority request is granted,
both High_cnt and Med_cnt are preset.

11.4 CIU Arbiter Configuration Register

Table 272: CIU Arbiter Configuration Register, Offset: 0x101AC0

Bits Field Name Function Init ia l Value

1:0 IPL IDMA Priority Level
These bits assign the priority to the IDMA request
according to the following:
11 - High priority
10 - Medium priority
01 - Low priority
00 - Disabled (Request is masked.)

0

3:2 EPL1 Ethernet port Priority Level 1 0

5:4 EPL2 Ethernet port Priority Level 2 0

7:6 SPL1 SDMA Priority Level 1
These bits assign the priority to the SDMA request 1.
See the IPL bit description in this table for details on pri-
ority assignment.

0

9:8 SPL2 SDMA Priority Level 2
These bits assign the priority to the SDMA request 2.
See the IPL bit description in this table for details on pri-
ority assignment.

0

15:10 Reserved 0
Revision 1.0 251

GT-96100A Advanced Communication Controller
18:16 MPPV Medium Priority Preset Value
This is the preset value of the medium priority counter
(Med_cnt). When the counter reaches zero, it reloads
with this preset value.
NOTE: If the medium priority counter is enabled

(MPCE bit set to 1), MPPV value must not be
set to zero. A value of zero in MPPV is allowed
only when the counter is disabled (i.e. when
MPCE = 0).

0

19 MPCE Medium Priority Counter Enable
When set, enables operation of the medium priority
counter (Med_cnt).
 When reset, the medium priority counter is disabled
and low priority requests are only granted only when no
medium priority request is pending.

0

22:20 HPPV High Priority Preset Value
This is the preset value of the high priority counter
(High_cnt). When the counter reaches zero, it reloads
with this preset value.
NOTE: If the high priority counter is enabled (HPCE bit

set to 1), HPPV value must not be set to zero.
A zero value in HPPV is allowed only when the
counter is disabled (i.e. when HPCE = 0).

0

23 HPCE High Priority Counter Enable
When set, enables operation of the high priority counter
(High_cnt).
When reset, the high priority counter is disabled and
lower priority requests are only granted when no high
priority request is pending.

0

24 E0R Ethernet Unit 0 Software Reset
0 - resets the Ethernet_1 unit

0

25 E1R Ethernet Unit 1 Software Reset
0 - resets the Ethernet_1 unit w

0

30:26 Reserved Reserved. 0

31 BLED Big Little Endian for Descriptors
0 - Big Endian
1 - Little Endian
This bit controls the endianess of all descriptors han-
dled by the Ethernet DMA and the Serial DMA (SDMAs)
engines. It does not affect the data portion - endianess
of the data is controlled via the various DMA configura-
tion registers.

1

Table 272: CIU Arbiter Configuration Register, Offset: 0x101AC0 (Continued)

Bits Field Name Function Init ial Value
252 Revision 1.0

GT-96100A Advanced Communication Controller
12. 10/100MB ETHERNET UNIT

12.1 Functional Overview

The 10/100Mb Ethernet unit handles all functionality associated with moving packet data between local memory
or PCI and the Ethernet ports. The unit in the GT-96100A is designed to support two independent 10/100Mb
Ethernet ports.

Each 10/100 Mbit port is fully compliant with the IEEE 802.3 and 802.3u standards and integrates the MAC
function and a dual speed MII interface. The port�s speed (10 or 100Mb/s) as well as the duplex mode (half or
full duplex) is auto-negotiated through the PHY and does not require user intervention. The port also features
802.3x flow-control mode for full-duplex and backpressure mode for half duplex.

Integrated address filtering logic provides support for up to 8K MAC addresses. The address table resides in
memory and a proprietary hash function is used for address table management. The address table functionality
supports Multicast as well as Unicast address entries.

An important feature related to the address recognition is IGMP packet trapping mode. In this mode layer 3 hard-
ware analysis is performed in order to check if a packet being received is an IGMP packet. Each packet identified
as IGMP is queued in the high priority queue of the port from which it was received. The IGMP analysis is per-
formed on the fly, so it does not impact bandwidth capability.

Another important feature related to priority queues is the Type of Service queuing algorithm. This algorithm is
based on the decoding in layer 3 of the DSCP field from the IP header. If enabled, the decoded field indexes a 64
entry IPT Table in the Ethernet register space. The 2-bit output of this table sets the priority queue of the received
packet.

The Ethernet unit integrates powerful DMA engines, which automatically manage data movement between
buffer memory and the ports, and guarantee wire-speed operation on all ports (even when all ports are in 100Mb
full-duplex mode). There are two DMA engines per port - one dedicated for receive and the other for transmit.

The DMA logic handles multiple priority queues per port, providing support for priority sensitive data in both
directions. There are four receive priority queues and two transmit priority queues per port. Priority information
for received packets is either extracted from the packet tag (if the packet is VLAN tagged) or from the destina-
tion address entry in the address table (if the packet is not tagged) of the IP parameters as described above. The
priority function is MAX (ip_parameters, vlan_tag, address_entry).
Revision 1.0 253

GT-96100A Advanced Communication Controller
12.2 Port Features

The 10/100Mb Ethernet port provides the following features:
� IEEE 802.3 compliant MAC layer function.
� IEEE 802.3u compliant MII interface.
� 10/100Mb operation - half and full duplex.
� Flow control features:

 - IEEE 802.3x flow-control for full-duplex operation mode.
 - Backpressure for half duplex operation mode.

� Internal and external loopback modes.
� Transmit functions:

 - Short frame (less than 64 bytes) zero padding.
 - Long frames transmission (limited only by external memory size).
 - Programmable values for IPG and Blinder timers.
 - CRC generation (programmable per packet).
 - Automatic frame retransmission upon collision (with programmable retransmit limit).
 - Backoff algorithm execution.
 - Error report.

� Receive functions:
 - 1/2k or 8k address filtering capability.
 - Address filtering modes:

 - Perfect filtering.
 - Reverse filtering.
 - Promiscuous mode.
 - Broadcast reject mode.

- IGMP packet trapping (layer 3 analysis in hardware).
- Automatic discard of errored frames, short (less than 64 bytes) or collided.
- Reception of long frames (programmable up to 64Kbytes).
- CRC checking.
- Pass bad frames mode.
- Error report.
254 Revision 1.0

GT-96100A Advanced Communication Controller
12.3 Operational Description

12.3.1 General Overview
The Ethernet unit provides multiple Ethernet ports functionality, with each port capable of running at either 10 or
100Mb/s (half or full-duplex) independently of the other port. Each port interfaces a MII PHY on its serial side
and manages packet data transfer between memory and MII. The data is stored in memory buffers, with any sin-
gle packet spanning multiple buffers if necessary. Upon completion of packet transmission or reception, a status
report, which includes error indications, is written by the Ethernet unit to the first or last descriptor associated
with this packet.

The buffers are allocated by the CPU and are managed through chained descriptor lists. Each descriptor points to
a single memory buffer and contains all the relevant information relating to that buffer (i.e. buffer size, buffer
pointer, etc.) and a pointer to the next descriptor. Data is read from buffer or written to the buffer according to
information contained in the descriptor. Whenever a new buffer is needed (end of buffer or end of packet), a new
descriptor is automatically fetched and the data movement operation is continued using the new buffer.

Figure 38 shows an example of memory arrangement for a single packet using three buffers.

Figure 38: Ethernet Descriptors and Buffers

The following sections provide detailed information about the operation and user interface of the Ethernet unit
and its logic subsections.

12.3.2 Transmit Operation
In order to initialize a transmit operation, the CPU must do the following:

1. Prepare a chained list of descriptors and packet buffers.

command/status

buffer pointer
next descriptor pointer

buffer size/byte count

031
command/status

buffer pointer
next descriptor pointer

buffer size/byte count

031

packet 1 - buffer 1

packet 1 - buffer 2

command/status

buffer pointer
next descriptor pointer

buffer size/byte count packet 1 - buffer 3

Descriptor 1

Descriptor 2

Descriptor 3
Revision 1.0 255

GT-96100A Advanced Communication Controller
NOTE: The TxDMA supports two priority transmit queues - high and low. If the user wants to take advantage of
this capability, a separate list of descriptors and buffers must be prepared for each of the priority queues.

2. Write the pointer to the first descriptor to the DMA�s current descriptor registers (TxCDP) associated
with the priority queue to be started. If both priority queues are needed, initialize TxCDP for each
queue.

3. Initialize and enable the Ethernet port by writing to the port�s configuration and command registers.
4. Initialize and enable the DMA by writing to the DMA�s configuration and command registers.

After completing these steps, the DMA starts and performs arbitration between the transmit queues according to
the value programmed in Port_Configuration_Extend<PRIOtx> (see Table 289 for more details). The DMA then
fetches the first descriptor from the specific queue it decided to serve, and starts transferring data from memory
buffer to the TX-FIFO. When either 384 bytes of packet data are in the FIFO or when the entire packet is in the
FIFO (for packets shorter than 384 bytes), the port initiates transmission of the packet across the MII. While data
is read from the FIFO, new data is written into the FIFO by the DMA.

For packets that span more than one buffer in memory, the DMA will fetch new descriptors and buffers as neces-
sary.

When transmission is completed, status is written to the first longword of the last descriptor. The Next Descrip-
tor�s address, which belongs to the next packet in the queue, is written to the current descriptor pointer register.

This process (starting with DMA arbitration) is repeated as long as there are packets pending in the transmit
queues.

Figure 39 shows how the TX descriptors are managed when a two buffers packet is transmitted.
256 Revision 1.0

GT-96100A Advanced Communication Controller
Figure 39: Ethernet Packet Transmission Example

1. TxCDP = Transmit Current Descriptor Pointer

031
command (F=1)

buffer pointer

next descriptor ptr

byte count

031
command (L=1)

buffer pointer

next descriptor ptr

byte count

031
command (F=1)

buffer pointer

next descriptor ptr

byte count

pkt 1
buf 1

pkt 1
buf 2

pkt 2
buf 1

TxCDP(1)

031
command

buffer pointer

next descriptor ptr

byte count

031
command

buffer pointer

next descriptor ptr

byte count

031
command

buffer pointer

next descriptor ptr

byte count

31

pkt 1
buf 1

pkt 1
buf 2

pkt 2
buf 1TxCDP

031
command

buffer pointer

next descriptor ptr

byte count

031
status

buffer pointer

next descriptor ptr

byte count

31
command

buffer pointer

next descriptor ptr

byte count

31

pkt 1
buf 1

pkt 1
buf 2

pkt 2
buf 1TxCDP

1. Packet 1 - transmitting 1st buffer

2. Packet 1 - transmitting 2nd buffer

3. Packet 2 - transmitting 1st buffer

1 11

0 1 1

0 0 1
Revision 1.0 257

GT-96100A Advanced Communication Controller
Ownership of any descriptor other than the last is returned to CPU upon completion of data transfer from the
buffer pointed by that descriptor. The Last descriptor, however, is returned to CPU ownership only after the
actual transmission of the packet is completed. While changing the ownership bit of the last descriptor, the DMA
also writes status information, which indicates any errors that might have happened during transmission of this
packet.

12.3.2.1 Retransmission (Collision)
Full collision support is integrated into the Ethernet port for half duplex operation mode.

In half duplex operation mode, a collision event is indicated each time receive and transmit are active simulta-
neously. When that happens, active transmission is stopped, jam pattern is transmitted and collision count for the
packet increments. The packet is retransmitted after a waiting period, which conforms to the binary Backoff algo-
rithm specified in the IEEE 802.3 standard. Retransmit process continues for multiple collision events as long as
a specified limit is not reached. This retransmit limit, which sets the maximum number or transmit retries for a
single packet, is defined by the IEEE 802.3 as 16. However, the user can program a different value (see Table 296
for more details). The event of a single packet colliding 16 times is known as EXCESSIVE COLLISION.

As long as a packet is being retransmitted, its last descriptor is kept under port ownership. When a successful
transmission takes place (i.e. no collision), a status word containing collision information is written to the last
descriptor and ownership is returned to CPU.

If a retransmit limit is reached with no successful transmission, a status word with error indication is written to
the packet�s last descriptor, and the transmit process continuous with the next packet.

It is important to note that collision is considered legal only if it happens before transmitting the 65th byte of a
packet. Any collision event that happens outside the first 64 byte window is known as LATE COLLISION, and
is considered a fatal network error. Late collision is reported to the CPU through packet status, and no retransmis-
sion is done.

NOTE: A collision occurring during the transmission of the transmit packet�s last two bytes are not detected.

12.3.2.2 Zero Padding (for short packets)
Zero Padding is a term used to denote the operation of adding zero bytes to a packet. This feature is used for CPU
off-loading.

The Ethernet port offers a per packet padding request bit in the TX descriptor. This causes the port logic to
enlarge packets shorter than 64 bytes by appending zero bytes. When this feature is used, only packets equal or
larger than 64 bytes are transmitted as is. Packets smaller than 64 bytes are zero padded and transmitted as 64
byte packets.

12.3.2.3 CRC Generation
Ethernet CRC denotes four bytes of Frame-Check-Sequence appended to each packet.

CRC logic is integrated into the port and can be used to automatically generate and append CRC to a transmitted
packet. One bit in the TX descriptor is used for specifying if CRC generation is required for a specific packet.
258 Revision 1.0

GT-96100A Advanced Communication Controller
12.3.2.4 TX DMA Descriptors
Figure 40 depicts the format of TX DMA descriptors. The following set of restrictions apply to TX descriptors:

� Descriptor length is 4LW and it must be 4LW aligned (i.e. Descriptor_Address[3:0]=0000).
� Descriptors may reside anywhere is CPU address space except for NULL address (0x00000000), which

is used to indicate end of descriptor chain.
� Last descriptor in the linked chain must have a NULL value in its NextDescriptorPointer field.
� TX buffers associated with TX descriptors are limited to 64K bytes and can reside anywhere in mem-

ory. However, buffers with a payload smaller than 8 bytes must be aligned to 64-bit boundary. Figure 41
illustrates possible alignments for 5 byte payload.

Figure 40: Ethernet TX Descriptor

Figure 41: Ethernet TX Buffer Alignment Restrictions (5 byte payload)

Table 273 through Table 276 provide detailed information about the TX descriptor.

1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1

Command / Status

ReservedByte Count

Buffer Pointer

Next Descriptor Pointer 0000

07
xx000000

xx001000

xx010000

xx011000

07 07

Supported

07

Alignment
Unsupported

Alignment
Unsupported

Alignment
Supported
Alignment

Binary
Addresses
Revision 1.0 259

GT-96100A Advanced Communication Controller
Table 273: Ethernet TX Descriptor - Command/Status word

Bits Name Description

31 O Ownership bit
When set to �1�, the buffer is �owned� by the device.
When set to �0�, the buffer is owned by the CPU. Buffers owned by the CPU are not pro-
cessed by the DMA.

30 AM Auto Mode
When set, the DMA does not clear the Ownership bit at the end of buffer processing.

29:24 Reserved.

23 EI Enable Interrupt
The device generates a maskable TxBuffer interrupt upon closing the descriptor.
NOTE: In order to limit the number of interrupts and prevent an interrupt per buffer situ-

ation, the user should set this bit only in descriptors associated with LAST buff-
ers. If this is done, TxBuffer interrupt will be set only when transmission of a
frame is completed.

22 GC Generate CRC
When set, CRC is generated and appended to this packet.
NOTE: Valid only if L (bit 16) is set.

21:19 Reserved.

18 P Padding
When this bit is set, zero bytes are appended to the packet if the packet is smaller than
60 bytes. Use this feature to prevent transmission of fragments.
NOTE: Valid only if L (bit 16) is set.

17 F First
Indicates first buffer of a packet.

16 L Last
Indicates last buffer of a packet.

15 ES Error Summary
ES = LC or UR or RL
Set by the device to indicate an error event that occured during packet the packet.
NOTE: Valid only if L (bit 16) is set.

14 Reserved.

13:10 RC[3:0] Retransmit Count. Indicates actual number of retransmits for this packet.
RC is valid only if L (bit 16) is set.

9 COL Collision
When set, indicates that at least one collision event occured during transmission of the
packet.
NOTE: Valid only if L (bit 16) is set.
260 Revision 1.0

GT-96100A Advanced Communication Controller

8 RL Retransmit Limit (Excessive Collision) error
Indicates that retransmit count reached the limit specified in the DMA configuration regis-
ter, see Table 296).
NOTE: Valid only if L (bit 16) is set.

7 Reserved.

6 UR Under-Run error
Indicates that part of the packet�s data was not available while transmission was in
progress, probably due to memory access delays).
NOTE: Valid only if L (bit 16) is set.

5 LC Late Collision error
Collision occurred outside the collision window (i.e. more than 512 bits were transmitted
before collision assertion).
NOTE: Valid only if L (bit 16) is set.

4:0 Reserved

Table 274: Ethernet TX Descriptor - Byte Count

Bits Name Description

31:16 Byte
Count

Number of bytes to be transmitted from associated buffer. This is the payload size in
bytes.

15:0 Reserved.

Table 275: Ethernet TX Descriptor - Buffer Pointer

Bits Name Description

31:0 Buffer
Pointer

32-bit pointer to the beginning of the buffer associated with this descriptor.
NOTE: The alignment restrictions for buffers that have Byte-Count smaller than 8 bytes

(see Figure 41 on page 259).

Table 276: Ethernet TX Descriptor - Next Descriptor Pointer

Bits Name Description

31:0 Next
Descriptor
Pointer

32-bit pointer that points to the beginning of next descriptor. Bits [3:0] must be set to 0.
DMA operation is stopped when a NULL (all zero) value in the Next Descriptor Pointer
field is encountered.

Table 273: Ethernet TX Descriptor - Command/Status word (Continued)

Bits Name Description
Revision 1.0 261

GT-96100A Advanced Communication Controller
12.3.2.5 TX DMA Pointer Registers
The TX DMA employs a single 32-bit pointer register per queue: TxCDP.

� TxCDP - TX DMA Current Descriptor Pointer.

TxCDP is a 32-bit register used to point to the current descriptor of a transmit packet. The CPU must
initialize this register before enabling DMA operation. The value used for initialization should be the
address of the first descriptor to use.

12.3.2.6 TX DMA Notes
Transmit DMA process is packet oriented. The transmit DMA does not close the last descriptor of a packet, until
the packet has been fully transmitted. When closing the last descriptor, the DMA writes packet transmission sta-
tus to the Command/Status word and resets the ownership bit. A TxBuffer maskable interrupt is generated if the
EI bit in the last descriptor is set.

Transmit DMA stops processing a TX queue whenever a descriptor with a NULL value in the Next Descriptor
Pointer field is reached or when a CPU owned descriptor is fetched. When that happens, a Tx_End maskable
interrupt is generated. In order to restart the queue, the CPU should issue a Start_Tx command by writing �1� to
the Start_Tx bit in the DMA command register. 1

The transmit DMA does not expect a NULL Next Descriptor Pointer or a CPU owned descriptor in the middle of
a packet. When that happens, the DMA aborts transmission and stops queue processing. A TX_Resource_Error
maskable interrupt is generated. In order to restart the queue, the CPU should issue a Start_Tx command.

A transmit underrun occurs when the DMA can not access the memory fast enough and packet data is not trans-
ferred to the FIFO before the FIFO gets empty. In this case, the DMA aborts transmission and closes the last
descriptor with a UR bit set in the status word. Also, a Tx_Underrun maskable interrupt is generated. Transmit
process continues with the next packet.

In order to stop DMA operation before the DMA reaches the end of descriptor chain, the CPU should issue a
STOP command by writing �1� to the Stop_Tx bit in the DMA command register. The DMA stops queue pro-
cessing as soon as the current packet transmission is completed and its last descriptor returned to CPU owner-
ship. In addition, a Tx_End maskable interrupt is generated. In order to restart this queue, the CPU should issue a
Start_Tx command.

NOTE: Most of the terms used to denote either DMA commands (Start_Tx and Stop_Tx) or interrupts
(TxBuffer, Tx_End, TX_Resource_Error) actually reflect multiple terms (one per queue). For example,
the GT-96100A provides two Start_Tx commands. There is a separate Start_Tx_High command, associ-
ated with the high priority queue, and a Start_Tx_low command that is related to the low priority queue.
The same applies to the other commands and interrupts listed above.

1. When the DMA stops due to NULL descriptor pointer, the CPU has to write TxCDP before issuing a Start_Tx command. Otherwise, TxCDP
remains NULL and the DMA can not restart queue processing.
262 Revision 1.0

GT-96100A Advanced Communication Controller
12.3.3 Receive Operation
In order to initialize a receive operation, the CPU must do the following:

1. Prepare a chained list of descriptors and packet buffers.
NOTE: The RxDMA supports four priority queues. If the user wants to take advantage of this capability, a sep-

arate list of descriptors and buffers should be prepared for each of the priority queues.

2. Write the pointer to the first descriptor to the DMA�s first and current descriptor registers (RxFDP,
RxCDP) associated with the priority queue to be started. If multiple priority queues are needed, the user
has to initialize TxFDP and TxCDP for each queue.

3. Initialize and enable the Ethernet port by writing to the port�s configuration and command registers.
4. Initialize and enable the DMA channel by writing to the DMA�s configuration and command registers.

After completing these steps, the port starts waiting for a receive frame to arrive at the MII interface. When this
occurs, receive data is packed and transferred to the RxFiFO. At the same time, address filtering test is done in
order to decide if the packet is destined to this port. If the packet passes address filtering check, a decision is
made regarding the destination queue to which this packet should be transferred. When this is done, actual data
transfer to memory takes place.

NOTE: Packets which fail address filtering are dropped and not transferred to memory.

For packets that span more than one buffer in memory, the DMA will fetch new descriptors as necessary. How-
ever, the first descriptor pointer will not be changed until packet reception is done.

When reception is completed, status is written to the first longword of the first descriptor, and the Next Descrip-
tor�s address is written to both first and current descriptor pointer registers. This process is repeated for each
received packet.

NOTES:The RxCDP and RxFDP point to the same descriptor whenever the DMA is ready for receiving a new
packet. RxFDP is not modified during packet reception and points to the first descriptor. Only after the
packet had been fully received and status information was written to the first LW of the first descriptor,
will the ownership bit be reset (i.e. descriptor returned to CPU ownership).

Ownership of any descriptor other than the first is returned to CPU upon completion of data transfer to
the buffer pointed by that descriptor. This means that the first descriptor of a packet is the last descrip-
tor to return to CPU ownership (per packet).

12.3.3.1 RX DMA Descriptors
Figure 42 shows the format of RX DMA descriptors.

The following set of restrictions apply to RX descriptors:

� Descriptor length is 4LW and it must be 4LW aligned (i.e. Descriptor_Address[3:0]=0000).
� Descriptors reside anywhere in the CPU address space except NULL address, which is used to indicate

end of descriptor chain.
� RX buffers associated with RX descriptors are limited to 64K bytes and must be 64-bit aligned. Mini-

mum size for RX buffers is 8 bytes.
Revision 1.0 263

GT-96100A Advanced Communication Controller
Figure 42: Ethernet RX DMA Descriptor

Table 277: Ethernet RX Descriptor - Command/Status word

Bits Name Description

0 CE CRC Error
Received CRC does not match calculated CRC for the received packet.
NOTE: Valid only if F (bit 17) is set.

3:1 Reserved.

4 COL Collision
Collision was sensed during packet reception.
NOTE: In normal operation mode collided packets are automatically discarded by the

port (being shorter than 64 bytes). Collided packets are accepted only when
PBF is set in the Port Configuration register (see Table 288).

Valid only if F (bit 17) is set.

5 LC Reserved.

6 OR Overrun Error
Indicates that the RX DMA was unable to transfer data from RxFiFO to memory fast
enough, causing data overrun in the FIFO.
NOTE: Valid only if F (bit 17) is set.

7 MFL Max Frame Length Error
Indicates that a frame longer than MAX_FRAME_LEN was received. The maximum
frame length is programmable (see Table 289).
NOTE: Valid only if F (bit 17) is set.

8 SF Short Frame Error
Indicates that a frame shorter than 64 bytes was received.
In normal operation mode short packets are automatically discarded by the port. Short
packets are accepted only when PBF is set in the Port Configuration register (see Table
288).
NOTE: Valid only if F (bit 17) is set.

10:9 Reserved.

1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1

Byte CountBuffer Size

Buffer Pointer

Next Descriptor Pointer 000 0

00

Command / Status

0

000
264 Revision 1.0

GT-96100A Advanced Communication Controller
11 FT Frame Type
� 1 - 802.3
� 0 - Ethernet

Set to �1� when the Type/Length field in the received packet has a value not bigger than
1500 (decimal).
NOTE: Valid only if F (bit 17) is set.

12 M Missed Frame
� 0 - Match
� 1 - Miss

Set to indicate that this packet�s destination address is not found in the address table.
This bit may be set if HDM or PM are set in the Port Configuration register (see Table
288).
Also, set to receive broadcast packets regardless of the HDM or PM settings in the Port
Configuration register.
NOTE: This bit is valid only if F (bit 17) is set.

13 HE Hash Table Expired
Set to indicate that hash process was not completed in time. This means there is no defi-
nite answer as to whether this packet�s address is in the hash table or not.
Also, set when there is no room in the table for this address.
NOTE: Valid only if F (bit 17) is set.

14 IGMP Set to indicate that this packet has been identified as an IGMP packet.
NOTE: Valid only if F (bit 17) is set.

15 ES Error Summary
ES = CE or COL or LC or OR or MFL or SF
NOTE: Valid only if F (bit 17) is set.

16 L Last
Indicates last buffer of a packet.

17 F First
Indicates first buffer of a packet.

22:18 Reserved.

23 EI Enable Interrupt
The device generates a maskable interrupt upon closing the descriptor.
NOTE: In order to limit the number of interrupts and prevent an interrupt per buffer situ-

ation, the user should set the EI bits in all the Rx descriptors and set RIFB bit in
the DMA Configuration register (see Table 296). The RxBuffer interrupt is set
only on frame (rather than buffer) boundaries.

29:24 Reserved.

30 AM Auto Mode
When set, the DMA does not clear the Ownership bit at the end of buffer processing.

Table 277: Ethernet RX Descriptor - Command/Status word (Continued)

Bits Name Description
Revision 1.0 265

GT-96100A Advanced Communication Controller

31 O Ownership bit.
When set to �1�, the buffer is �owned� by the device. When set to �0�, the buffer is owned
by CPU.

Table 278: Ethernet RX Descriptor - Buffer Size / Byte Count

Bits Name Description

15:0 Byte
Count

When the descriptor is closed this field is written by the device with a value indicating
number of bytes actually written by the DMA into the buffer.

31:16 Buffer
Size

Buffer Size in Bytes
When number of bytes written to this buffer is equal to Buffer Size value, the DMA closes
the descriptor and moves to the next descriptor.
NOTE: Bits [18:16] must be set to 0.

Table 279: Ethernet RX Descriptor - Buffer Pointer

Bits Name Description

31:0 Buffer
Pointer

32-bit Pointer to The Beginning of the Buffer Associated with The Descriptor
RX buffers have to be 64-bit aligned, so bits [2:0] must be set to 0.

Table 280: Ethernet RX Descriptor - Next Descriptor Pointer

Bits Name Description

31:0 Next
Descriptor
Pointer

32-bit Next Descriptor Pointer to the Beginning of Next Descriptor
Bits [3:0] must be set to 0.
DMA operation is stopped when a NULL value in the Next Descriptor Pointer field is
encountered.

Table 277: Ethernet RX Descriptor - Command/Status word (Continued)

Bits Name Description
266 Revision 1.0

GT-96100A Advanced Communication Controller
12.3.3.2 RX DMA Pointer Registers
The RX DMA employs two 32-bit pointer registers per queue: RxFDP and RxCDP.

� RxFDP - RX DMA First Descriptor Pointer.

RxFDP is a 32-bit register used to point to the first descriptor of a receive packet. The CPU must initial-
ize this register before enabling DMA operation. The value used for initialization should be the address
of the first descriptor to use.

� RxCDP - RX DMA Current Descriptor Pointer.

RxCDP is a 32-bit register used to point to the current descriptor of a receive packet. The CPU must ini-
tialize this register before enabling DMA operation. The value used for initialization should be the same
as the value used for initializing RxFDP (i.e. address of first descriptor to use).

12.3.3.3 Type of Service Queueing
The Type of Service queuing algorithm is based on the decoding of the DSCP field from the IP header. The
DSCP field is located in the 6-MSB bits of the second byte in the IP header (See Figure 43). This field indexes
the 64 IPT Table entries, which reside in the GT-96100A Ethernet register space. The 2-bit priority output of this
table is referred to in the algorithm as tos_priority.

The tos_priority is valid only if the tos2prio enable bit 21 in the Ethernet Port Configuration Extend register,
referred to in the algorithm as tos2prio_en, is set.

If a VLAN tag exists in the packet, the VLAN priority tag is decoded from the 3-MSB bits of the 2nd word in the
VLAN tag. This field is the index to the 8 entries in the VPT Table, which reside in the GT-96100A Ethernet reg-
ister space. The 2-bit priority output of this table is referred to in the algorithm as vlan_priority.

The GT-96100A can decode BPDU and IGMP protocol packets. These packets are referred to in the algorithm as
frame_bpdu and frame_igmp respectively. Protocol detection is controlled by the SPAN and IGMP bits in the
Ethernet Port Configuration Extend register, referred to in the algorithm as bpdu_captue and igmp_capture
respectively.

BPDU and IGMP protocol packets are sent to the highest value queue unless protocol detection is turned off.

The PRIOrx Override bit in the Ethernet Port Configuration Extend register, referred to in the algorithm as
overide_priority, takes precedence over tos_priority or vlan_priority. If this bit is set, ALL packets (except
frame_bpdu and frame_igmp) are sent to the default_priority queue. The algorithm notation for the PRIOrx 2-
bit field in the Ethernet Port Configuration Extend register is default_priority.

The packet type is checked after checking the source address, VLAN tag (if it exists), and LLC-SNAP (if it
exists). The packet type is compared to 0x8100, referred to in the algorithm as vlan_type, or to 0x800, referred
to in the algorithm as ip_type. If vlan_type or ip_type with VALID tos_priority, or both, are found on the
packet, the packet is referred to in the algorithm as frame_tagged.

Broadcast packets, which are referred to in the algorithm as frame_broadcast and are not marked as
frame_tagged are also sent to the default_priority queue.

If the packet is marked as frame_tagged, the GT-96100A sends the packet to the tos_priority queue or
vlan_priority queue. If both tos_priority and vlan_priority are extracted from the packet, the GT-96100A
sends the packet to the higher value queue.
Revision 1.0 267

GT-96100A Advanced Communication Controller
If both tos_priority and vlan_priority are missing from the packet, the GT-96100A uses the priority value found
in the matched Hash Table entry. The Hash Table entry match, referred to in the algorithm as da_found, occurs
when the destination address matches the entry�s address and the entry is valid.

The 2-bit priority value, referred to in the algorithm as ht_priority, is located on bits 52:51 of the Hash Table
entry. The address to be compared is located on bits 50:3 of the Hash Table entry. The validity of the entry is
stated in bits 2:0.

When the Hash Table entry does not return a priority value, the packet is sent to the default_priority queue.

Figure 43: Type of Service Queueing Algorithm

Ethernet Packet

DA

SA

VLAN (opt.)

Type/Length

LLC-SNAP (opt.)

IP Header

DATA

CRC

63 0

Hash Table Entry (in Memory)

15 0 15 0

0x8100

vlan_priority[1:0]

 VPT Table entry
 (in 96100 registers)

Bits15:13
Priorityindex

7 0 7 0 15 0

version Length

tos_priority[1:0]

 IPT Table entry
 (in 96100 registers)

Bits7:2
Priority

index
if ((frame_bpdu & bpdu_capture) |
 (frame_igmp & igmp_capture))
 queue = 3; // highest
else if (overide_priority ||
 (frame_broadcast & !tagged_frame))
 queue = default_priority;
else if (tagged_frame)
 queue = (tos_priority > vlan_priority)?

tos_priority : vlan_priority;
else if (da_found)
 queue = ht_priority;
else queue = default_priority;

frame_bpdu = (DA == bpdu address)
frame_broadcast = (DA == broadcast address)

frame_igmp =
(IP Header == igmp protocol)

bpdu_capture, igmp_capture, overide_priority,
and default_priority are option bits in the 96100
registers.

da_found = Bit2:0
&& (DA == Bits50:3)

Bits52:51
ht_priority[1:0]

frame_tagged = (vlan_type found
|| (ip_type found && tos2prio_en))

Type of Service Receive queuing Algorithm

in the GT-96100A registry

in the GT-96100A registry

GT-96100A
268 Revision 1.0

GT-96100A Advanced Communication Controller
12.3.3.4 RX DMA notes
The Receive DMA process is packet oriented. The DMA does not close the first descriptor of a packet, until the
last descriptor of the packet is closed. When closing the first descriptor, the DMA writes status to the Command/
Status word and resets the ownership bit. A RxBuffer maskable interrupt is generated if the EI bit in the first
descriptor is set.

The receive DMA never expects a NULL next descriptor pointer or a CPU owned descriptor during normal oper-
ation. It is assumed that whenever the receive DMA needs a buffer, a buffer is ready for it. If this is not the case,
the RxDMA engine stops serving the current priority queue and a Rx_resource_error maskable interrupt is gen-
erated. To resume operation of the stopped queue, the following must be performed:

1. Read the RxCDP associated with the stopped queue.
2. If RxCDP is not NULL, it means that the error is due to a CPU owned descriptor. In this case, flip the

ownership bit of the descriptor pointed by RxCDP.
3. If RxCDP is NULL, it means that the error is due to a NULL descriptor pointer. In this case, re-initialize

the queue by writing a valid pointer to both RxCDP and RxFDP.

Stopping RX DMA operation is possible using the RX_ABORT command (see Table 297).

12.3.4 Ethernet Address Recognition
The following chapter describes the Hash algorithm and Hash table data structure. The CPU must build this table
for the GT-96100A before enabling the Ethernet port.

12.3.4.1 Hash Table Structure
The GT-96100A Hash table is a data structure prepared by the CPU and resides in the system DRAM. Its location
is identified by a 32 bit pointer stored in the GT-96100A EHTP internal register (addresses 0x84828 and
0x88828). The Hash table must be octet-byte aligned. The lowest three bits of the EHTP register are hard wired
to �0�.

There are two possible sizes for the Hash table. Table size is selected by the HS bit in the Ethernet Configuration
Register (PCR, address 0x84800 and 0x88800).

� 8K address table. 256KByte of DRAM required (4 x 64KByte banks)
� 1/2K address table. 16KByte of DRAM required (4 x 4KByte banks)

A multiple of 4 banks are used in order to reduce the number of addresses that are mapped to the same table
entry.

NOTE: The user must initialize the Hash table before enabling the Ethernet Controller.

Each Address entry is a two word data field (64 bits) as shown below:
Revision 1.0 269

GT-96100A Advanced Communication Controller
Figure 44: Ethernet Hash Table Entry

The following table describes the Hash table entry fields.
Table 281: Hash Table Entry Fields

Bit Command Usage

0 Valid Indicates Valid Entry

1 Skip Skip empty entry in a chain

2 Receive/Discard (RD) 0 - Discard packet upon match
1 - Receive packet upon match

6:3 Ethernet Address[3:0] Mapped to Ethernet MAC address[43:40].

11:7 Ethernet Address[7:4] Mapped to Ethernet MAC address[47:44].

14:11 Ethernet Address[11:8] Mapped to Ethernet MAC address[35:32].

18:15 Ethernet Address[15:12] Mapped to Ethernet MAC address[39:36].

22:19 Ethernet Address[19:16] Mapped to Ethernet MAC address[27:24].

26:23 Ethernet Address[23:20] Mapped to Ethernet MAC address[31:28].

30:27 Ethernet Address[27:24] Mapped to Ethernet MAC address[19:16].

34:31 Ethernet Address[31:28] Mapped to Ethernet MAC address[23:20].

38:35 Ethernet Address[35:32] Mapped to Ethernet MAC address[11:8].

42:39 Ethernet Address[39:36] Mapped to Ethernet MAC address[15:12].

46:43 Ethernet Address[43:40] Mapped to Ethernet MAC address[3:0].

50:47 Ethernet Address[47:44] Mapped to Ethernet MAC address[7:4].

52:51 Priority The priority queue of a packet sent to this
Ethernet address, in case there are no other priority signals (i.e. ToS or
VLAN).

63:53 Reserved Fill With �0�

ADD+0x4
ADD+0x0

Entry Parameters Ethernet Address Reserved (Fill with �0�)

031

3263
270 Revision 1.0

GT-96100A Advanced Communication Controller
12.3.4.2 Hash Modes
There are two Hash functions in the GT-96100A; Hash Mode 1 and Hash Mode 0.

12.3.4.3 Hash Mode 0
In Hash mode 0, the Hash entry address is calculated in the following manner:

hashResult[14:0] = hashFunc0(ethernetADD[47:0])

� hashResult is the 15 bits Hash entry address.
� ethernetADD is a 48 bit number, which is derived from the Ethernet MAC address, by nibble swapping

in every byte; i.e. MAC address of 0x123456789abc translates to ethernetADD of 0x21436587a9cb.
� inverse every nibble; i.e. ethernetADD of 0x21436587a9cb translates to 0x482c6a1e59d

hashFunc0 calculates the hashResult in the following manner:

� hashResult[14:9] = ethernetADD[7:2]
� hashResult[8:0]= ethernetADD[14:8,1,0] XOR ethernetADD[23:15] XOR ethernetADD[32:24]

12.3.4.4 Hash Mode 1
In Hash mode 1, the Hash entry address is calculated in the following manner:

hashResult[14:0] = hashFunc1(ethernetADD[47:0])

� hashResult is the 15 bits Hash entry address.
� ethernetADD is a 48 bit number, which is derived from the Ethernet MAC address, by nibble swapping

in every byte (i.e MAC address of 0x123456789abc translates to ethernetADD of 0x21436587a9cb).
� inverse every nibble; i.e. ethernetADD of 0x21436587a9cb translates to 0x482c6a1e59d

hashFunc1 calculates the hashResult in the following manner:

� hashResult[14:9] = ethernetADD[0:5]
� hashResult[8:0]= ethernetADD[6:14] XOR ethernetADD[15:23] XOR ethernetADD[24:32]

12.3.4.5 Hash Entry
For each Ethernet address, the Hash table entry address is the lower 13 bits of the hashResult for the 8KByte
address table, or the lower 9 bits for the 0.5KByte address table. The entry is an offset from the address base and
is octet-byte aligned. The address entry is therefore:

� 8K Address Table: tblEntryAdd = EHTP + {hashResult[14:0],000}
� 1/2K Address Table:tblEntryAdd = EHTP + {hashResult[10:0],000}

12.3.4.6 Hash Table Numbers

12.3.4.7 Table Filling
When preparing the Hash table data structure, the CPU must first (typically at boot time) initialize the Hash table
memory to �0�.

The table filling algorithm is described below. The hopNumber should be selected and initialized before entering
this routine. The Hash table hopNumber (Number of Hops) is 12. After 12 tries to identify an address, the GT-
96100A passes the address to the CPU and sets the HE (Hash Expired) bit in the descriptor status field. There-
fore, the hopNumber is the number of times the CPU will attempt to write a newly learned Ethernet address into
the Hash table.
Revision 1.0 271

GT-96100A Advanced Communication Controller

27
� Calculate tblEntryAdd according to mode of operation (Hash Mode 1 or Hash Mode 0).
� Check that tblEntry is empty (Valid Bit is "0").
� If the tblEntry is empty, Write the hashEntry (Valid, Skip and RD bits and Ethernet Address).
� If the tblEntry is occupied (i.e. Valid bit is 1 and Skip bit is 0), move to tblEntry+1.
� If less than hopNumber tries, Repeat to Step c.

If after hopNumber failed tries, the CPU has been unable to located a free table entry. The CPU can then:

� Defragment the table.
� Create a new Hash table using the alternate Hash Mode, which may redistribute the addresses more

evenly in the table.
In cases where more than one address is mapped to the same table entry, an address chain is created. In this case,
when the CPU needs to erase an address that is part of an address chain, it cannot clear its Valid bit since this
would cut the chain. Instead, the CPU should set the Skip bit to �1�. This is shown in Table 45 .

Figure 45: Address Chain

12.3.4.8 Address Recognition Process
The following terms are used when referring to the address recognition process.

� Match - Address is found in the table
� Miss - Address is not found in the table
� Hit - Address is in the table and RD bit is 1 (receive), or address is not in table and HDM (Hash Default

Mode) is 1 (receive).
� Occupied Entry - A valid Hash table entry that is occupied by another address, or an entry that has its

Skip bit set,
� Promiscuous Mode - When enabled, all packets are passed to the CPU. The GT-96100A still executes

the Hash process reporting to the CPU, regardless whether the address is in the Hash table or not.
The GT-96100A address recognition process is described below, and is illustrated by Figure 46 on page 274.

The process starts with the GT-96100A fetching the address from the calculated table entry.

Add1

Add2

Add3

Add6

Add4

Add5

Add1

Add2

Add3

Add6

Add4

Add5

A B

In case A where Add1-6 has the same Hash function,
and thus start with the same tblEntry, the CPU allo-
cates them in the table by increasing tblEntry by one
entry each time. Add1 is the first address to be writ-
ten into the table and Add6 is the last.

When the CPU is required to remove Add2 from the
table, it cannot clear its valid bit since that would
break the chain from Add1 to Add3. Instead, it sets
Add2�s Skip bit to �1� (denoted as). It is also rec-
ommended that the CPU defragments the table from
time to time.
2 Revision 1.0

GT-96100A Advanced Communication Controller
� If Occupied Entry is encountered, the GT-96100A proceeds to the next Hash table entry.
� After hopNumber failed tries, the GT-96100A passes the packet to the CPU and marks it by setting the

HE bit in the descriptor. The same process is used in case the Discard Window is over, or the frame ends
before the GT-96100A accomplishes the Hash process (which happens in rare situations when the GT-
96100A cannot gain enough access to the DRAM).

� When the GT-96100A finds the address in the table there is a Match.
� When the GT-96100A encounters an empty entry, there is a Miss, meaning that the address is not in the

table.
� In case of a Match, and if the RD bit is set, then there is a Hit. The GT-96100A marks the packet by set-

ting the M bit of the receive descriptor.
� In case of a Miss, and if the HDM bit is set, then there is also a Hit. The GT-96100A marks the packet by

setting the M bit of the receive descriptor.
� If there was no Hit, then the packet should be discarded. However, packets will pass if Promiscuous

Mode is enabled.
Revision 1.0 273

GT-96100A Advanced Communication Controller
Figure 46: Address Filtering Process

Start

Not Valid Entry
OR Skip?

hopNumber
Expired?

Set HE bit in
Descriptor

Pass Frame

End

Address Found
in Table
(Match)

RD bit set in
table entry

HDM set?

Promiscous
Mode?

Discard Frame

Set M bit in
Descriptor

No No

Yes

Yes

Yes

Yes
Yes

No NoNo

Yes

Calculate Hash
and Fetch
Address

No
274 Revision 1.0

GT-96100A Advanced Communication Controller
The GT-96100A uses the HE (Hash Expired) and M (Match) bits in the descriptor for reporting the packet filter-
ing status. Table 282 describes the various reports and summarizes their meaning.

12.4 Ethernet Port

12.4.1 Network Interface
The Ethernet port interfaces directly to a MII (Media Independent Interface) PHY compliant with the IEEE stan-
dard (please refer to IEEE 802.3u Fast Ethernet standard for detailed interface and timing information). The MII
port has the following characteristics:

� Capable of supporting both 10 Mbps and 100 Mbps data rates in half or full duplex modes.
� Data and delimiters are synchronous to clock references.
� Provides independent 4-bit wide transmit and receive paths.
� Uses TTL signal levels.
� Provides a simple management interface (common to all ports).
� Capable of driving a limited length of shielded cable.

The port incorporates all the required digital circuitry to interface with a 100BaseTX, 100BaseT4, and
100BaseFX MII PHYs.

12.4.1.1 10/100 MII/RMII Compatible Interface
The port�s MAC (Media Access Control) logic supports connection to a 10Mbps or 100Mbps network.

The MII interface consists of a separate nibble-wide stream for both transmit and receive data. Data transfers are
clocked by the 25 MHz transmit and receive clocks in 100 Mbps operation, or by 2.5 MHz transmit and receive
clocks in 10 Mbps operation. The clock inputs are driven by the PHY, which controls the clock rate according to
the network connection speed.

The RMII interface consists of a separate 2bit-wide stream for both transmit and receive data. Data transfers are
clocked by the 50 MHz clock in both 100 Mbps and 10 Mbps operation. The clock input is driven by an external
source.

Table 282: Packet Filtering Status

HE M Condition

0 0 Hash Table No Hit
The address was not found in the Hash table, but Promiscuous Mode is
enabled

0 1 Hash Table Hit
Either by an address found in the Hash table and RD bit set
OR by an address that was not found in the Hash table, in case that
HDM bit is set

1 0 Hash Table Expired
The hopNumber expired before the address was found in the Hash table

1 1 UnUsed
Revision 1.0 275

GT-96100A Advanced Communication Controller
12.4.1.2 Media Access Control (MAC)
The MAC logic performs all of the functions of the 802.3 protocol such as frame formatting, frame stripping, col-
lision handling, deferral to link traffic, etc. It also ensures that any outgoing packet complies with the 802.3 spec-
ification in terms of preamble structure - 56 preamble bits are transmitted before Start of Frame Delimiter (SFD).

The MAC operates in half duplex or full duplex modes. In half duplex mode, the MAC�s transmit logic checks
that there is no competitor for the network media before transmission.

In addition to waiting for idle before transmitting, the port handles collisions in a predetermined way. If two
nodes attempt to transmit at the same time, the signals collide and the data on the line is garbled. The port listens
while it is transmitting, and can detect a collision. If a collision is detected, �JAM� pattern is transmitted and
retransmission is delayed for a random time period determined by the Backoff algorithm. In full-duplex mode,
the port transmits unconditionally.

12.4.1.3 Auto-Negotiation for Duplex Mode
The port�s duplex operation mode (either half or full duplex) can be auto-negotiated or set by the CPU.

In order to enable auto-negotiation for duplex, the CPU must set the Port_Configuration_Extend<DPLXen> bit.
When auto-negotiation for duplex is enabled, the port decodes the duplex mode from the values of the PHY�s
Auto-Negotiation Advertisement register and Auto-Negotiation Link Partner Ability register at the end of the
Auto-Negotiation process. Once the duplex mode is resolved, Port_Status<Duplex> bit is updated accordingly.

In order to resolve the duplex mode, the following operations are continuously performed:

1. Read the PHY�s Auto-Negotiation Complete status as reported by the PHY bit 1.5 (Register 1, bit 5). If
this bit is '0' switch to Half-Duplex mode and continue to read PHY register bit 1.5. Continue to step 2
when PHY bit 1.5 is '1', indicating that Auto-Negotiation is complete.

NOTE: Steps 2 through 6 are performed once for every transition of PHY bit 1.5 from '0' to '1'. Once PHY bit
1.5 remains '1' and PHY registers 4 and 5 have already been read, the port will continue to read PHY
register 1, and monitor PHY bit 1.5. However, if after Rst* deassertion, the PHY bit 1.5 is already read
as '1', steps 2 to 6 are performed at least once in order to update the port�s duplex mode.

PHY bit 1.2 (Link Status) is read and latched during this same register read operation, regardless of the
Auto-Negotiation status.

2. Read the Auto-Negotiation Advertisement register, PHY register 4. Continue to step 3.
3. Read the Auto-Negotiation Link Partner Ability register, PHY register 5. Continue to step 4.
4. Resolve the highest common ability of the two link partners in the following manner (according to the

802.3u Priority Resolution clause 28B.3):

if (bit 4.8 AND bit 5.8) == '1' then ability is 100BASE-TX Full Duplex

 else if (bit 4.9 AND bit 5.9) == '1' then ability is 100BASE-T4 Half Duplex

 else if (bit 4.7 AND bit 5.7) == '1' then ability is 100BASE-TX Half Duplex

 else if (bit 4.6 AND bit 5.6) == '1' then ability is 10BASE-T Full Duplex

 else ability is 10BASE-T Half Duplex;

Continue to step 5.
276 Revision 1.0

GT-96100A Advanced Communication Controller
5. Resolve the duplex mode of the two link partners in the following manner:

if ((ability == �100BASE-TX Full Duplex�) or (ability == �10BASE-T Full Duplex�)) then
 duplex mode = FULL DUPLEX
else
 duplex mode = HALF DUPLEX;

Continue to step 6.
6. Update the Port_Status register by writing the correct duplex mode bit. Continue with step 1.

12.4.1.4 Auto-Negotiation for Flow Control
Flow control mode (either enabled or disabled) can be auto-negotiated or set by the CPU. In order to enable auto-
negotiation for flow-control, the CPU should set Port_Configuration_Extend<FCTLen> bit.

If Port_Configuraion_Extend<FCTLen>=1, then auto-negotiation is initiated in the following cases:
� After RESET.
� After link fail (phy register 1 bit 2).

NOTE: The user may force the port to implement Flow-control by disabling auto-negotiation for flow-control
and programming Port_Configuration_Extend<FCTL>=1.

Auto-negotiation for flow-control is done in two stages:
1. Setting Phy advertise word to support Flow Control.

This is done by writing Phy register 4 in order to set advertise bit 10 (phy-reg4 bit 10 - Enable FC). The
flow of such a cycle is:
- Read Phy register 1. If link_status=1 and was 0 in the last cycle - continue.
- Read Phy register 4.
- Write Phy register 4 with bit 10 set.

2. Reading Phy Flow-Control status and determine result.
This is done by constantly reading PHY�s register 4 and register 5 in order to determine if Flow-control
is supported or not. Only if both link partners support FC (registers 4.10 and 5.10 are both SET),
Port_Status<FCTL> is set to �1�, and the port will send PAUSE packets when instructed to do so by the
CPU. Otherwise, Port_Status<FCTL> is set to �0�, indicating that the support for 802.3x flow-control is
disabled.

12.4.1.5 Backoff Algorithm Options
The port implements the truncated exponential Backoff algorithm defined by the 802.3 standard. Aggressiveness
of the Backoff algorithm used is controlled by Serial Parameters Register<Limit4> bit.

Limit4 function controls the number of consecutive packet collisions that will occur before the collision counter
is reset.

When Limit4 feature is disabled, the port resets its collision counter after 16 consecutive retransmit trials and
restarts the Backoff algorithm. Retransmission is done using the data already stored in the FIFO.

When Limit4 feature is enabled, the port will reset its collision counter and restart the Backoff algorithm after 4
consecutive transmit trials. This makes the port more aggressive in getting hold of the media following a colli-
sion. This may result better overall throughput in standardized tests.
Revision 1.0 277

GT-96100A Advanced Communication Controller
12.4.1.6 Data Blinder
The data blinder field (DataBlind in the Serial_Parameters register) sets the period of time during which the port
does not sense the wire before transmission (inhibit time). The default value is 32 bit times.

12.4.1.7 Inter Packet Gap (IPG)
IPG is the minimum idle time between transmission of any two successive packets from the same port. The
default (from the standard) is 9.6uS for 10Mbps Ethernet and 960nsec for 100-Mbps Fast Ethernet. Note that the
IPG can be made smaller or larger than standard definition by programming the Serial_Parameters register.

12.4.1.8 10/100 Mbps MII Transmission
When the port has a frame ready for transmission, it samples link activity indicators. If the CrS signal is inactive
(no activity on the link), and the Inter-packet gap (IPG) timer had expired, frame transmission begins. The data is
transmitted via pins TxD[3:0] of the transmitting port, clocked on the rising edge of TxClk. The signal TxEn is
asserted at this same time. In the case of collision, the PHY asserts the CoL signal causing the port to stop trans-
mitting the frame and append a jam pattern to the transmitted bit stream. At the end of a collided transmission,
the port will back off and attempt to retransmit once the Backoff counter expires. Per the IEEE 802.3 specifica-
tion, the clock to output delay must be a minimum of 0ns and a maximum of 25ns as shown in Figure 48.

12.4.1.9 10/100 Mbps RMII Transmission
The port starts transmission when it has a frame ready, and Inter-packet gap (IPG) timer has expired.

If in half_duplex mode, it also samples CRS_DV indicator for no activity. The data is transmitted via pins
TXD[1:0] of the transmitting port, clocked on the rising edge of REF_CLK and the signal TX_EN is asserted.

In half_duplex mode, in the case of collision (TX_EN asserted with CRS_DV), the port stops transmitting the
frame and appends a jam pattern to the transmitted bit stream. At the end of a collided transmission, the port
backs off and attempts to retransmit once the Backoff counter expires. As the REF_CLK frequency is 10 times
the data rate in 10 Mbps, the value on TXD[1:0] shall be valid so that it may be sampled every 10th cycle. For the
RMII, transmission of each octet shall be done a di-bit at a time as per the order described in the Figure 47.

12.4.1.10 10/100 Mbps RMII Reception
Frame reception starts with the assertion of CRS_DV by the PHY. The port begins sampling incoming data on
pins RxD[1:0] on the rising edge of REF_CLK. Reception ends when CRS_DV is deasserted by the PHY. The
last di-bit sampled by the port is the data present on RxD[1:0] on the last REF_CLK rising edge in which
CRS_DV is still asserted. CRS_DV is continuously asserted during reception. If an error is detected while
CRS_DV is asserted, the decoded data is replaced in the receiving stream with "01" until the end of carrier activ-
ity. By replacing the data in the remainder of the frame, the CRC check is guaranteed to reject the packet as an
error. When no reception takes place, CRS_DV should remain de-asserted. As the REF_CLK frequency is 10
times the data rate in 10 Mbps, the value of each octet shall be valid so that it may be sampled every 10th cycle.
For the RMII, reception of each octet shall be done a di-bit at a time as per the order described in Figure 47.
278 Revision 1.0

GT-96100A Advanced Communication Controller
The RMII transmission and reception of each octet is described in Figure 47.

Figure 47: RMII Di-Bit Stream

Figure 48: MII Transmit Signal Timing

12.4.1.11 10/100 Mbps MII Reception
Frame reception starts with the assertion of CrS (while the port is not transmitting) by the PHY.

Once RxDV is asserted, the port begins sampling incoming data on pins RxD[3:0] on the rising edge of RxClk.
Reception ends when RxDV is deasserted by the PHY. The last nibble sampled by the port is the nibble present
on RxD[3:0] on the last RxClk rising edge in which RxDV is still asserted. During reception RxDV is continu-
ously asserted. If, while RxDV is asserted, RxEr is asserted, it designates current packet as corrupted. When no
reception takes place, RxDV should remain deasserted. The input setup time should be a minimum of 10ns and
the input hold time must be a minimum of 10ns and shown in Figure 49.

D0 D1 D2 D3 D4 D5 D6 D7

MAC's Serial Bit Stream
First Bit

First
Nibble

Second
Nibble

D0

D1

TXD[0]/RXD[0]

TXD[1]/RXD[1]

RMII
Di-Bit

Stream

0ns MIN
25ns MAX

TxClk

TxD, TxEn

Vihmin

Vilmax

Vihmin

Vilmax
Revision 1.0 279

GT-96100A Advanced Communication Controller
Figure 49: MII Receive Signal Timing

12.4.1.12 10/100 Mbps Full-Duplex Operation
When operating in Full-duplex mode the port can transmit and receive frames simultaneously.

In full-duplex mode, the CrS signal is associated with received frames only and has no effect on transmitted
frames. The Col signal is ignored while in Full-duplex mode. Transmission starts when TxEn goes active. Trans-
mission starts regardless of the state of CrS. Reception starts when the CrS signal is asserted indicating traffic on
the receive port of the PHY.

12.4.1.13 Back Pressure
The port implements a back pressure algorithm, which is only for use when the port is operating in half duplex
mode. It is enabled through Port_Command<FJ> bit.

While in backpressure mode, the port transmits a JAM pattern for a programmable period of time
(JAM_LENGTH). The IPG between two consecutive JAM patterns (or between the last transmit and the first
JAM) is also a programmable value (JAM_IPG). The values are set in Serial_Parameters register.

12.4.1.14 Flow Control
IEEE 802.3x flow control is enabled while in full-duplex mode. Activating this mode is done by setting the
Port_Configuration_Extend<FCTL> bit or by enabling auto-negotiation for Flow-Control, see Section 12.4.1.4
�Auto-Negotiation for Flow Control� on page 277.

The port supports 802.3x flow-control (PAUSE packets, in the standard term), if it is operating in full-duplex and
if Port_Configuration_Extend<FCTL>=1.

When the port receives a PAUSE packet, it does not transmit a new packet for a period of time specified in this
PAUSE packet.

A received packet is recognized as flow control PAUSE, if it was received without errors and is either of the fol-
lowing:

� DA = 01-80-C2-00-00-01 and type=88-08 and MAC_Control_Opcode=01
� DA = (The port address) and type=88-08 and MAC_Control_Opcode=01. The 48-bit port address is in

the registers Source_Address_Low, Source_Address_High. This address is also used as source address
for PAUSE packets that the port generates (to DA=01-80-C2-00-00-01)

PAUSE packets are sent by the port when instructed to do so by the CPU. This is done by setting
Port_Command<FJ> bit.

10ns
MIN

RxClk

RxD, RxDV,
RxEr

10ns
MIN

Vihmin

Vilmax

Vihmin

Vilmax
280 Revision 1.0

GT-96100A Advanced Communication Controller
12.4.2 MII Serial Management Interface (SMI)
The Ethernet unit has an integrated MII Serial Management Interface (SMI) logic for controlling MII compliant
PHYs. This interface consists of two signals: serial data (MDIO); and, clock (MDC).

These signals enable control and status parameters to be passed between the PHYs and the port logic (or CPU).
Multiple PHY devices can be controlled using this simple 2-pin interface.

Typically, the SMI unit continuously queries the PHY devices for their link status, without the need for CPU
intervention. The PHY addresses for the link query operation are programmable per port in the PHY_Address
register.

A CPU can write/read to/from all PHY addresses/registers by writing and reading to/from the SMI control regis-
ter. The SMI allows the CPU to directly control a MII compatible PHY device via the SMI control register. This
enables the driver software to program the PHY into specific operation mode such as Full Duplex, Loopback,
Power Down, 10/100 speed selection as well as control of the PHY device�s Auto-Negotiation function, if it
exists. The CPU writes commands to the SMI register and the SMI unit performs the actual data transfer via
MDIO, which is a bi-directional data pin. These serial data transfers are clocked by the MDC clock output.

12.4.2.1 MII Management Frame Structure
The GT-96100A�s SMI cycles support the MII management frame structure.

Frames transmitted on the MII management interface have a structure that is shown in Table 283 and the order of
bit transmission is from left to right.

The format of the bit transmission�s parts is as follows:

Table 283: MII Management Frame Format

PRE ST OP PhyAd RegAd TA Data IDLE

READ 1...1 01 10 AAAAA RRRRR Z0 D...D(16) Z

WRITE 1...1 01 01 AAAAA RRRRR 10 D...D(16) Z

Table 284: Bit Transmission Parts

Part Descript ion

PRE (Preamble) At the beginning of each transaction, the port sends a sequence of 32 contigu-
ous logic one bits on MDIO with 32 corresponding cycles on MDC to provide
the PHY with a pattern that it can use to establish synchronization.

ST (Start of Frame) A Start of Frame pattern of 01.

OP (Operation Code) 10 - Read; 01 - Write.

PhyAd (PHY Address) A 5 bit address of the PHY device (32 possible addresses). The first PHY
address bit transmitted by the port is the MSB of the address.

RegAd (Register Address) A 5 bit address of the PHY register (32 possible registers in each PHY). The
first register address bit transmitted by the port is the MSB of the address. The
port always queries the PHY device for status of the link by reading register 1
bit 2.
Revision 1.0 281

GT-96100A Advanced Communication Controller
12.4.3 SMI Timing Requirements
When the MDIO signal is driven by the PHY, it is sampled synchronously with respect to the rising edge of
MDC. Per IEEE 802.3 specification, the MDC to output delay must be a minimum of 0ns and a maximum of
300ns as shown in Figure 10. Further, when the MDIO signal is driven by the port, it has a minimum of 10ns
setup time and minimum of 10ns hold time as shown in Figure 50 and Figure 51.

Figure 50: MDIO Output Delay

Figure 51: MDIO Setup and Hold Time

TA (Turn Around) The turnaround time is a 2 bit time spacing between the Register Address field
and the Data field of the SMI frame to avoid contention during a read transac-
tion. During a Read transaction the PHY should not drive MDIO in the first bit
time and drive �0� in the second bit time. During a write transaction, the port
drives a �10� pattern to fill the TA time.

Data (Data) The data field is 16 bits long. The PHY drives the data field during Read trans-
actions. The port drives the data field during write transactions. The first data
bit transmitted and received shall be bit 15 of the PHY register being accessed.

IDLE (Idle) The IDLE condition on MDIO is a high impedance state. The MDIO driver is
disabled and the PHY should pull-up the MDIO line to a logic one.

Table 284: Bit Transmission Parts

Part Descript ion

0ns MIN
300ns MAX

MDC

MDIO

Vihmin

Vilmax

Vihmin

Vilmax

10ns
MIN

MDC

MDIO

10ns
MIN

Vihmin

Vilmax

Vihmin

Vilmax
282 Revision 1.0

GT-96100A Advanced Communication Controller
12.4.3.1 Link Detection and Link Detection Bypass (ForceLinkPass)
Typically, the port continuously queries the PHY devices for their link status without CPU intervention.

The PHY addresses used for the link query are determined by the PHY_Address register and are programmable
for each port. The port alternately reads register 1 from the PHYs and updates the internal link bits according to
the value of bit 2 of register 1. In the case of �link down� (i.e. bit 2 is �0�), that port will enter link test fail state.

 In this state, all of the port�s logic is reset. The port exits from link test fail state only when the �link is up� (i.e.
bit 2 of register 1 is read from the port�s PHY as �1�).

There is an option to disable the link detection mechanism by forcing the link state of a specific port. This is done
by setting Port_Configuration_Extend<FLP> bit.

12.5 Internal Control Registers

Table 285: Ethernet Unit Register Map

Description Offset Page Numbers

Ethernet PHY Address Register (EPAR) 0x080800 page 285

Ethernet SMI Register (ESMIR) 0x080810 page 286

Ethernet0

Ethernet0 Port Configuration Register (E0PCR) 0x084800 page 286

Ethernet0 Port Configuration Extend Register (E0PCXR) 0x084808 page 288

Ethernet0 Port Command Register (E0PCMR) 0x084810 page 291

Ethernet0 Port Status Register (E0PSR) 0x084818 page 291

Ethernet0 Serial Parameters Register (E0SPR) 0x084820 page 292

Ethernet0 Hash Table Pointer Register (E0HTPR) 0x084828 page 293

Ethernet0 Flow Control Source Address Low (E0FCSAL) 0x084830 page 293

Ethernet0 Flow Control Source Address High (E0FCSAH) 0x084838 page 294

Ethernet0 SDMA Configuration Register (E0SDCR) 0x084840 page 294

Ethernet0 SDMA Command Register (E0SDCMR) 0x084848 page 295

Ethernet0 Interrupt Cause Register (E1ICR) 0x084850 page 296

Ethernet0 Interrupt Mask Register (E0IMR) 0x084858 page 299

Ethernet0 IP Differentiated Services CodePoint to Priority0
low (E0DSCP2P0L)

0x84860 page 299

Ethernet0 IP Differentiated Services CodePoint to Priority0
high (E0DSCP2P0H)

0x84864 page 299
Revision 1.0 283

GT-96100A Advanced Communication Controller
Ethernet0 (Continued)

Ethernet0 IP Differentiated Services CodePoint to Priority1
low (E0DSCP2P1L)

0x84868 page 299

Ethernet0 IP Differentiated Services CodePoint to Priority1
high (E0DSCP2P1H)

0x8486c page 299

Ethernet0 VLAN Priority Tag to Priority (E0VPT2P) 0x84870 page 299

Ethernet0 First Rx Descriptor Pointer 0 (E0FRDP0) 0x084880 page 263

Ethernet0 First Rx Descriptor Pointer 1 (E0FRDP1) 0x084884

Ethernet0 First Rx Descriptor Pointer 2 (E0FRDP2) 0x084888

Ethernet0 First Rx Descriptor Pointer 3 (E0FRDP3) 0x08488C

Ethernet0 Current Rx Descriptor Pointer 0 (E0CRDP0) 0x0848A0

Ethernet0 Current Rx Descriptor Pointer 1 (E0CRDP1) 0x0848A4

Ethernet0 Current Rx Descriptor Pointer 2 (E0CRDP2) 0x0848A8

Ethernet0 Current Rx Descriptor Pointer 3 (E0CRDP3) 0x0848AC

Ethernet0 Current Tx Descriptor Pointer 0 (E0CTDP0) 0x0848E0 page 255

Ethernet0 Current Tx Descriptor Pointer 1 (E0CTDP1) 0x0848E4

Ethernet0 MIB Counters 0x085800 -
0x0858FF

page 302

Ethernet1

Ethernet1 Port Configuration Register (E1PCR) 0x088800 page 286

Ethernet1 Port Configuration Extend Register (E1PCXR) 0x088808 page 288

Ethernet1 Port Command Register (E1PCMR) 0x088810 page 291

Ethernet1 Port Status Register (E1PSR) 0x088818 page 291

Ethernet1 Serial Parameters Register (E1SPR) 0x088820 page 292

Ethernet1 Hash Table Pointer Register (E1HTPR) 0x088828 page 293

Ethernet1 Flow Control Source Address Low (E1FCSAL) 0x088830 page 293

Ethernet1 Flow Control Source Address High (E1FCSAH) 0x088838 page 294

Ethernet1 SDMA Configuration Register (E1SDCR) 0x088840 page 294

Ethernet1 SDMA Command Register (E1SDCMR) 0x088848 page 295

Ethernet1 Interrupt Cause Register (E1ICR) 0x088850 page 296

Ethernet1 Interrupt Mask Register (E1IMR) 0x088858 page 299

Table 285: Ethernet Unit Register Map (Continued)

Description Offset Page Numbers
284 Revision 1.0

GT-96100A Advanced Communication Controller

Ethernet1 (Continued)

Ethernet IP Differentiated Services CodePoint to Priority0 low
(E0DSCP2P0L)

0x88860 page 299

Ethernet IP Differentiated Services CodePoint to Priority0
high (E0DSCP2P0H)

0x88864 page 299

Ethernet IP Differentiated Services CodePoint to Priority0 low
(E0DSCP2P1L)

0x88868 page 299

Ethernet IP Differentiated Services CodePoint to Priority0
high (E0DSCP2P1H)

0x8886c page 299

Ethernet1 VLAN Priority Tag to Priority (E0VPT2P) 0x88870 page 299

Ethernet1 First Rx Descriptor Pointer 0 (E1FRDP0) 0x088880 page 264

Ethernet1 First Rx Descriptor Pointer 1 (E1FRDP1) 0x088884 page 266

Ethernet1 First Rx Descriptor Pointer 2 (E1FRDP2) 0x088888 page 266

Ethernet1 First Rx Descriptor Pointer 3 (E1FRDP3) 0x08888C page 266

Ethernet1 Current Rx Descriptor Pointer 0 (E1CRDP0) 0x0888A0

Ethernet1 Current Rx Descriptor Pointer 1 (E1CRDP1) 0x0888A4

Ethernet1 Current Rx Descriptor Pointer 2 (E1CRDP2) 0x0888A8

Ethernet1 Current Rx Descriptor Pointer 3 (E1CRDP3) 0x0888AC

Ethernet1 Current Tx Descriptor Pointer 0 (E1CTDP0) 0x0888E0 page 260

Ethernet1 Current Tx Descriptor Pointer 1 (E1CTDP1) 0x0888E4 page 261

Ethernet1 MIB Counters 0x089800 -
0x0898FF

page 302

Table 286: PHY Address Register, Offset: 0x080800

Bits Field Name Function Init ial Value

4:0 PhyAD0 PHY device address for port 0. 00100

9:5 PhyAD1 PHY device address for port 1. 00101

Table 285: Ethernet Unit Register Map (Continued)

Description Offset Page Numbers
Revision 1.0 285

GT-96100A Advanced Communication Controller

Table 287: SMI Register (SMIR), Offset: 0x080810

Bits Field Name Function Init ial Value

15:0 Data � SMI READ operation
Two transactions are required: (1) write to the SMI
register with OpCode = 1, PhyAd, RegAd with the
Data being any value; (2) read from the SMI regis-
ter. When reading back the SMI register, the Data is
the addressed Phy register contents if the Read-
Valid bit (#27) is 1. The Data remains undefined as
long as ReadValid is 0.

� SMI WRITE operation
One transaction is required. Write to the SMI regis-
ter with OpCode = 0, PhyAd, RegAd with the Data
to be written to the addressed Phy register.

0

20:16 PhyAd PHY Device Address 0

25:21 RegAd PHY Device Register Address 0

26 OpCode 0 - Write
1 - Read

1

27 ReadValid 1 - indicates that the Read operation has been completed for
the addressed RegAd register, and the data is valid on the
Data field.

0

28 Busy 1 - indicates that an operation is in progress and that CPU
must not write to the SMI register at this time.

0

31:29 N/A These bits must be written as 0 for any write to the SMI reg-
ister.

0

Table 288: Port Configuration Register (PCR),
Offset: 0x084800 for Ethernet_0; 0x088800 for Ethernet_1

Bits Field Name Function Init ial Value

0 PM Promiscuous mode
0 - Normal mode. Frames are received only if destination
address is found in hash table.
1 - Promiscuous mode. Frames are received regardless of
their destination address. Errored frames are discarded
unless PBF is set.

0

286 Revision 1.0

GT-96100A Advanced Communication Controller
1 RBM Reject Broadcast Mode
0 - Receive Broadcast address.
1 - Reject Frames with broadcast address. Overridden by
promiscuous mode.

0

2 PBF Pass Bad Frames
0 - Normal mode.
1 - Pass bad Frames. The Ethernet receiver will pass to CPU
errored frames, which are normally rejected, like fragments
and collided packets. Frames are passed only if they pass
address filtering successfully.

0

6:3 Reserved Reserved. 0

7 EN Enable
0 - Disabled.
1 - Enable. Ethernet port is ready to transmit/receive.

0

9:8 LPBK Loop Back Mode
00 - Normal mode.
01 - Internal Loopback mode. TX data is looped back to the
RX lines. No transition is seen on the interface pins.
10 - External Loopback mode. TX data is looped back to the
RX lines and also transmitted out to the MII interface pins.
11 - Reserved.

0

10 FC Force Collision
0 - Normal mode.
1 - Force Collision on any TX frame. For RXM test (in Loop-
back mode).

0

11 Reserved. 0

12 HS Hash Size
0 - 8K address filtering (256KB of memory space required).
1 - 1/2K address filtering (16KB of memory space required).

0

13 HM Hash Mode
0 - Hash Function 0.
1 - Hash Function 1.

0

14 HDM Hash Default Mode
0 - Discard addresses not found in address table.
1 - Pass addresses not found in address table.

0

Table 288: Port Configuration Register (PCR),
Offset: 0x084800 for Ethernet_0; 0x088800 for Ethernet_1 (Continued)

Bits Field Name Function Init ial Value
Revision 1.0 287

GT-96100A Advanced Communication Controller

15 HD Duplex Mode
0 - Half Duplex.
1 - Full Duplex.
NOTE: Valid only when Auto-Negotiation for duplex mode

is disabled.

0

27:16 Reserved

30:28 0x6 ISL Enabled
0x0 ISL Disabled
NOTE: When ISL is enabled, bit 31 must set to 0.

31 ACCS Accelerate Slot Time
0 - Normal mode.
1 - Reserved.

0

Table 289: Port Configuration Extend Register (PCXR),
Offset: 0x084808 for Ethernet_0; 0x088808 for Ethernet_1

Bits Field Name Function Init ial Value

0 IGMP IGMP packets capture enable.
0 - IGMP packets are treated as normal Multicast packets.
1 - IGMP packets on IPv4/IPv6 over Ethernet/802.3 are
trapped and sent to high priority RX queue.

0

1 SPAN Spanning Tree packets capture enable.
0 - BPDU (Bridge Protocol Data Unit) packets are treated as
normal Multicast packets.
1 - BPDU packets are trapped and sent to high priority RX
queue.

0

2 PAR Partition enable.
When more than 61 collisions occur while transmitting, the
port enters Partition mode. It waits for the first good packet
from the wire, and then goes back to Normal mode. Under
Partition mode it continues transmitting, but it does not
receive.
0 - Normal mode.
1 - Partition mode.

0

Table 288: Port Configuration Register (PCR),
Offset: 0x084800 for Ethernet_0; 0x088800 for Ethernet_1 (Continued)

Bits Field Name Function Init ial Value
288 Revision 1.0

GT-96100A Advanced Communication Controller
5:3 PRIOtx Priority weight in the round-robin between high and low prior-
ity TX queues:
000 - 1 pkt transmitted from HIGH, 1 pkt from LOW.
001 - 2 pkt transmitted from HIGH, 1 pkt from LOW.
010 - 4 pkt transmitted from HIGH, 1 pkt from LOW.
011 - 6 pkt transmitted from HIGH, 1 pkt from LOW.
100 - 8 pkt transmitted from HIGH, 1 pkt from LOW.
101 - 10 pkt transmitted from HIGH, 1 pkt from LOW.
110 - 12 pkt transmitted from HIGH, 1 pkt from LOW.
111 - All pkt transmitted from HIGH, 0 pkt from LOW. LOW
will be served only if HIGH is empty.
If HIGH queue is emptied before finishing the count, the
count will be reset until next first HIGH comes in.

0

7:6 PRIOrx Default priority for packets received on this port:
00 - Lowest priority.
11 - Highest priority.

0

8 PRIOrx_
Override

Override priority for packets received on this port:
0 - Do not override.
1 - Override with <PRIOrx> field.

0

9 DPLXen Enable auto-negotiation for duplex mode:
0 - Enable.
1 - Disable.

0

10 FCTLen Enable auto-negotiation for 802.3x flow-control:
0 - Enable.
NOTE: When enabled, 1 is written (through SMI access) to

PHY�s register 4 bit 10 to advertise flow-control
capability.

1 - Disable.
NOTE: Only enable flow control after the PHY address is

set by the CPU. When changing the PHY address
the flow control auto-negotiation must be disabled.

1

11 FLP Force Link Pass
0 - Force Link Pass.
1 - Do NOT Force Link pass.

1

12 FCTL Flow-Control Mode
0 - Enable IEEE 802.3x flow-control.
1 - Disable IEEE 802.3x flow-control.
NOTE: Valid only when auto negotiation for flow control is

disabled.

0

13 Reserved Reserved. 0

Table 289: Port Configuration Extend Register (PCXR),
Offset: 0x084808 for Ethernet_0; 0x088808 for Ethernet_1 (Continued)

Bits Field Name Function Init ial Value
Revision 1.0 289

GT-96100A Advanced Communication Controller
15:14 MFL Max Frame Length. Maximum packet allowed for reception
(including CRC):
00 - 1518 bytes
01 - 1536 bytes
10 - 2048 bytes
11 - 64K bytes

0

16 MIBclrMode MIB counters clear Mode. Setting this bit causes the
counters to reset when the CPU performs a counter read
operation. In order to reset all MIB counters, the CPU should
set this bit and read all the counters.

0

17 MIBctrMode Reserved. 0

18 Speed Port Speed
0 - 10Mbit/Sec.
1 - 100Mbit/sec.
NOTE: Valid only if SpeedEn bit is set.

0

19 SpeedEn Enable Auto-negotiation for Speed
0 - Enable.
1 - Disable.

0

20 RMIIen RMII enable
0-Port MII1 functions as MII port 1
1-Port MII1 functions as RMII port 0 and RMII port 1

0

21 DSCPen DSCP enable
0-IP DSCP field decoding is disabled
1-IP DSCP field decoding is enabled

0

27:22 Reserved Reserved. 0

31:28 Test These bits must be set to 0 for proper operation of the Ether-
net port.

0

Table 289: Port Configuration Extend Register (PCXR),
Offset: 0x084808 for Ethernet_0; 0x088808 for Ethernet_1 (Continued)

Bits Field Name Function Init ial Value
290 Revision 1.0

GT-96100A Advanced Communication Controller

Table 290: Port Command Register (PCMR), Offset: 0x084810 for
Ethernet_0; 0x088810 for Ethernet_1

Bits Field Name Function Init ial Value

14:0 Reserved Reserved. 0

15 FJ Force Jam / Flow Control.
When in halfduplex, the CPU uses this bit to force collisions
on the Ethernet segment. When the CPU recognizes that it
is going to run out of receive buffers, it can force the trans-
mitter to send jam frames, forcing collisions on the wire. The
CPU must clear the FJ bit when more resources are avail-
able in order to allow transmission on the Ethernet segment.
When in full-duplex and flow-control is enabled, this bit
causes the port�s transmitter to send flow-control PAUSE
packets. The CPU should reset this bit when more resources
are available.

0

31:16 Reserved Reserved. 0

Table 291: Port Status Register (PSR), Offset: 0x084818 for
Ethernet_0; 0x088818 for Ethernet_1

Bits Field Name Function Init ial Value

0 Speed Indicates port speed.
0 - 10Mbit/s.
1 - 100Mbit/s.
This bit is read-only.

0

1 Duplex Indicates port duplex mode.
0 - Half duplex.
1 - Full duplex.
This bit is read-only.

0

2 Fctl Indicates Flow-control mode.
0 - Flow-control mode enabled.
1 - Flow-control mode disabled.
This bit is read-only.

0

3 Link Indicates link status.
0 - Link is down.
1 - Link is up.
This bit is read-only.

0

Revision 1.0 291

GT-96100A Advanced Communication Controller

4 Pause Indicates that the port is in flow-control disabled state. This
bit is set when an IEEE 802.3x flow-control PAUSE (XOFF)
packet is received (assuming that flow-control is enabled and
the port is in full-duplex mode).
Reset when XON is received, or when the XOFF timer has
expired.
This bit is read-only.

0

5 TxLow Tx Low priority status. Indicates the status of the low priority
transmit queue:
0 - Stopped.
1 - Running.
This bit is read-only.

0

6 TxHigh Tx High priority status. Indicates the status of the high priority
transmit queue:
0 - Stopped.
1 - Running.
This bit is read-only.

0

7 TXinProg TX in Progress. Indicates that the port�s transmitter is in an
active transmission state.
This bit is read-only.

0

31:8 Reserved Reserved. 0

Table 292: Serial Parameters Register (SPR), Offset: 0x084820 for
Ethernet_0; 0x088820 for Ethernet_1

Bits Field Name Function Init ial Value

1:0 JAM_LENGTH Two bits to determine the JAM Length (in Backpressure) as
follows:
00 = 12K bit-times.
01 = 24K bit-times.
10 = 32K bit-times.
11 = 48K bit-times.

11 (48K bit time)

6:2 JAM_IPG Five bits to determine the JAM IPG. The step is four bit-times.
The JAM IPG varies between 4 bit time to 124.

01000 (32 bit
time)

11:7 IPG_JAM_TO_
DATA

Five bits to determine the IPG JAM to DATA. The step is four
bit-times. The value may vary between 4 bit time to 124.

10000 (64 bit
time)

Table 291: Port Status Register (PSR), Offset: 0x084818 for
Ethernet_0; 0x088818 for Ethernet_1 (Continued)

Bits Field Name Function Init ial Value
292 Revision 1.0

GT-96100A Advanced Communication Controller

16:12 IPG_DATA Inter-Packet Gap (IPG): The step is 4 bit-times. The value
may vary between 12 bit time to 124.
NOTE: These bits may be changed only when all Ethernet

port is disabled.

11000 (96 bit
time)

21:17 Data_Blind Data Blinder
The number of nibbles from the beginning of the IPG, in
which the IPG counter is restarted when detecting a carrier
activity. Following this value, the port enters the Data Blinder
zone and does not reset the IPG counter. This ensures fair
access to the medium.
Value should be written in hexadecimal format.
The default is 0x19 (64 bit time -2/3 of the default IPG). The
step is 4bit (nibble) time. Valid range is 0xc to 0x1f.
NOTE: These bits may be changed only when the Ethernet

port is disabled.

11001 (64 bit
time)

22 Limit4 The number of consecutive packet collisions that will occur
before the collision counter is reset.
0- The port resets its collision counter after 16 consecutive
retransmit trials and restarts the Backoff algorithm.
1- The port will reset its collision counter and restart the
Backoff algorithm after 4 consecutive transmit trials.

0

31:23 Reserved Reserved 0

Table 293: Hash Table Pointer Register (HTPR),
Offset: 0x084828 for Ethernet_0; 0x088828 for Ethernet_1

Bits Field Name Function Init ial Value

31:0 HTP 32-bit pointer to the address table. Bits [2:0] must be set to
zero.

0x0

Table 294: Flow Control Source Address Low (FCSAL),
Offset: 0x084830 for Ethernet_0; 0x088830 for Ethernet_1

Bits Field Name Function Init ial Value

15:0 SA[15:0] Source Address
The least significant bits of the source address for the port.
This address is used for Flow Control.

0

Table 292: Serial Parameters Register (SPR), Offset: 0x084820 for
Ethernet_0; 0x088820 for Ethernet_1 (Continued)

Bits Field Name Function Init ial Value
Revision 1.0 293

GT-96100A Advanced Communication Controller

Table 295: Flow Control Source Address High (FCSAH),
Offset: 0x084838 for Ethernet_0; 0x088838 for Ethernet_1

Bits Field Name Function Init ial Value

31:0 SA[47:16] Source Address
The most significant bits of the source address for the port.
This address is used for Flow Control.

0

Table 296: SDMA Configuration Register (SDCR), Offset: 0x084840 for
Ethernet_0; 0x088840 for Ethernet_1

Bits Field Name Function Init ial Value

1:0 Reserved Reserved. 0

5:2 RC Retransmit Count
Sets the maximum number of retransmits per packet. After
executing retransmit for RC times, the TX SDMA closes the
descriptor with a Retransmit Limit error indication and pro-
cesses the next packet.
When RC is set to 0, number of retransmits in unlimited. In
this case, retransmit process is terminated only if CPU
issues an Abort command.

1111

6 BLMR Big/Little endian Receive Mode
The DMA supports big or little endian configurations per
channel. The BLMR bit only affects data transfer to memory.
0 - Big endian.
1 - Little endian.

1

7 BLMT Big/Little endian Transmit Mode
The DMA supports big or little endian configurations per
channel. The BLMT bit only affects data transfer from mem-
ory.
0 - Big endian.
1 - Little endian.

1

8 POVR PCI Override
When set, causes the SDMA to direct all its accesses in
PCI_0 direction and overrides normal address decoding
process.

0

9 RIFB Receive Interrupt on Frame Boundaries
When set, the SDMA Rx generates interrupts only on frame
boundaries (i.e. after writing the frame status to the descrip-
tor).

0

11:10 Reserved Reserved. 0
294 Revision 1.0

GT-96100A Advanced Communication Controller

13:12 BSZ Burst Size
Sets the maximum burst size for SDMA transactions:
00 - Burst is limited to 1 64bit words.
01 - Burst is limited to 2 64bit words.
10 - Burst is limited to 4 64bit words.
11 - Burst is limited to 8 64bit words.

0

31:14 Reserved Reserved. 0

Table 297: SDMA Command Register (SDCMR), Offset: 0x084848 for
Ethernet_0; 0x088848 for Ethernet_1

Bits Field Name Function Init ial Value

6:0 Reserved Reserved. 0

7 ERD Enable RX DMA.
Set to �1� by the CPU to cause the SDMA to start a receive
process.
Cleared when the CPU issues an Abort Receive command.

0

14:8 Reserved Reserved. 0

15 AR Abort Receive
Set to �1� by the CPU to abort a receive SDMA operation.
When the AR bit is set, the SDMA aborts its current opera-
tion and moves to IDLE. No descriptor is closed.
AR bit is cleared upon entering IDLE.
After setting AR bit, the CPU should poll it in order to verify
that the abort sequence is completed.

0

16 STDH Stop TX High
Set to �1� by the CPU to stop the transmission process from
the high priority queue at the end of the current frame. An
interrupt is generated when the stop command has been
executed.
Writing �1� to STDH resets TXDH bit.
Writing �0� to this bit has no effect.

0

17 STDL Stop TX Low
Set to �1� by the CPU in order to stop the transmission pro-
cess from the low priority queue at the end of the current
frame. An interrupt is generated when the stop command
has been executed.
Writing �1� to STDL resets TXDL bit.
Writing �0� to this bit has no effect.

0

Table 296: SDMA Configuration Register (SDCR), Offset: 0x084840 for
Ethernet_0; 0x088840 for Ethernet_1 (Continued)

Bits Field Name Function Init ial Value
Revision 1.0 295

GT-96100A Advanced Communication Controller

22:18 Reserved Reserved. 0

23 TXDH Start Tx High
Set to �1� by the CPU in order to cause the SDMA to fetch
the first descriptor and start a transmit process from the high
priority Tx queue.
Writing �1� to TXDH resets STDH bit.
Writing �0� to this bit has no effect.

0

24 TXDL Start Tx Low
Set to �1� by the CPU to cause the SDMA to fetch the first
descriptor and start a transmit process from the low priority
Tx queue.
Writing �1� to TXDL resets STDL bit.
Writing �0� to this bit has no effect.

0

30:25 Reserved Reserved. 0

31 AT Abort Transmit
Set to �1� by the CPU to abort a transmit DMA operation.
When the AT bit is set, the SDMA aborts its current opera-
tion and moves to IDLE. No descriptor is closed.
Cleared upon entering IDLE.
After setting AT bit, the CPU must poll it in order to verify
that the abort sequence is completed.

0

Table 298: Interrupt Cause Register (ICR), Offset: 0x084850 for
Ethernet_0; 0x088850 for Ethernet_1

Bits Field Name Function Init ial Value

0 RxBuffer Rx Buffer Return
Indicates a Rx buffer returned to CPU ownership or that the
port finished reception of a Rx frame in either priority
queues.
NOTE: In order to get a Rx Buffer return per priority queue,

use bit 19:16. This bit is set upon closing any Rx
descriptor which has its EI bit set. In order to limit
the interrupts to frame (rather than buffer) bound-
aries, the user should set SDCR<RIFB> bit. When
RIFB is set, an interrupt will be generated only upon
closing the first descriptor of a received packet if
this descriptor has it EI bit set.

0

1 Reserved Reserved. 0

Table 297: SDMA Command Register (SDCMR), Offset: 0x084848 for
Ethernet_0; 0x088848 for Ethernet_1 (Continued)

Bits Field Name Function Init ial Value
296 Revision 1.0

GT-96100A Advanced Communication Controller
2 TxBufferHigh Tx Buffer for High priority Queue
Indicates a Tx buffer returned to CPU ownership or that the
port finished transmission of a Tx frame.
NOTE: This bit is set upon closing any Tx descriptor which

has its EI bit set. In order to limit the interrupts to
frame (rather than buffer) boundaries, the user
should set EI only in the last descriptor.

0

3 TxBufferLow Tx Buffer for Low Priority Queue
Indicates a Tx buffer returned to CPU ownership or that the
port finished transmission of a Tx frame.
NOTE: This bit is set upon closing any Tx descriptor which

has its EI bit set. In order to limit the interrupts to
frame (rather than buffer) boundaries, the user
should set EI only in the last descriptor.

0

5:4 Reserved Reserved. 0

6 TxEndHigh Tx End for High Priority Queue
Indicates that the Tx DMA stopped processing the high prior-
ity queue after stop command, or that it reached the end of
the high priority descriptor chain.

0

7 TxEndLow Tx End for Low Priority Queue
Indicates that the Tx DMA stopped processing the low prior-
ity queue after stop command, or that it reached the end of
the low priority descriptor chain.

0

8 RxError Rx Resource Error
Indicates a Rx resource error event in either priority queues.
NOTE: In order to get a Rx Resource Error Indication per

priority queue, use bit 23:20. event

0

9 Reserved Reserved. 0

10 TxErrorHigh Tx Resource Error for High Priority Queue
Indicates a Tx resource error event during packet transmis-
sion from the high priority queue.

0

11 TxErrorLow Tx Resource Error for Low Priority Queue
Indicates a Tx resource error event during packet transmis-
sion from the low priority queue.

0

12 RxOVR Rx Overrun
Indicates an overrun event that occured during reception of a
packet.

0

13 TxUdr Tx Underrun
Indicates an underrun event that occured during transmis-
sion of packet from either queue.

0

Table 298: Interrupt Cause Register (ICR), Offset: 0x084850 for
Ethernet_0; 0x088850 for Ethernet_1 (Continued)

Bits Field Name Function Init ial Value
Revision 1.0 297

GT-96100A Advanced Communication Controller
16 RxBuffer-
Queue[0]

Rx Buffer Return in Priority Queue[0], Indicates a Rx buffer
returned to CPU ownership or that the port completed recep-
tion of a Rx frame in a receive priority queue[0]

0

17 RxBuffer-
Queue[1]

Rx Buffer Return in Priority Queue[1], Indicates a Rx buffer
returned to CPU ownership or that the port completed recep-
tion of a Rx frame in a receive priority queue[1]

0

18 RxBuffer-
Queue[2]

Rx Buffer Return in Priority Queue[2], Indicates a Rx buffer
returned to CPU ownership or that the port completed recep-
tion of a Rx frame in a receive priority queue[2]

0

19 RxBuffer-
Queue[3]

Rx Buffer Return in Priority Queue[3], Indicates a Rx buffer
returned to CPU ownership or that the port completed recep-
tion of a Rx frame in a receive priority queue[3]

0

20 RxError-
Queue[0]

Rx Resource Error in Priority Queue[0], Indicates a Rx
resource error event in receive priority queue[0]

0

21 RxError-
Queue[1]

Rx Resource Error in Priority Queue[1], Indicates a Rx
resource error event in receive priority queue[1]

0

22 RxError-
Queue[2]

Rx Resource Error in Priority Queue[2], Indicates a Rx
resource error event in receive priority queue[2]

0

23 RxError-
Queue[3]

Rx Resource Error in Priority Queue[3], Indicates a Rx
resource error event in receive priority queue[3]

0

27:24 Reserved Reserved. 0

28 MIIPhySTC MII PHY Status Change
Indicates a status change reported by the PHY connected to
this port.
Set when the MII management interface block identifies a
change in PHY�s register 1.

0

29 SMIdone SMI Command Done
Indicates the SMI completed a MII management command
(either read or write) that was initiated by the CPU writing to
the SMI register.

0

30 Reserved Reserved. 0

31 EtherIntSum Ethernet Interrupt Summary
This bit is a logical OR of the (unmasked) bits [30:4] in the
Interrupt Cause register.

0

Table 298: Interrupt Cause Register (ICR), Offset: 0x084850 for
Ethernet_0; 0x088850 for Ethernet_1 (Continued)

Bits Field Name Function Init ial Value
298 Revision 1.0

GT-96100A Advanced Communication Controller

Table 299: Interrupt Mask Register (IMR), Offset: 0x084858 for
Ethernet_0; 0x088858 for Ethernet_1

Bits Field Name Function Init ial Value

31:0 Various Mask bits for Interrupt Cause register. 0x0

Table 300: IP Differentiated Services CodePoint to Priority0 low (DSCP2P0L)

Bits Field Name Function Init ial Value

31:0 Priority0 low The LSB priority bit for DSCP[31:0] entries. 0x0

Table 301: IP Differentiated Services CodePoint to Priority0 high (DSCP2P0H)

Bits Field Name Function Init ial Value

31:0 Priority0 high These bits are the LSB priority bit for DSCP[63:32] entries. 0x0

Table 302: IP Differentiated Services CodePoint to Priority1 low (DSCP2P1L)

Bits Field Name Function Init ial Value

31:0 Priority1 low These bits are the MSB priority bit for DSCP[31:0] entries. 0x0

Table 303: IP Differentiated Services CodePoint to Priority1 high (DSCP2P1H)

Bits Field Name Function Init ial Value

31:0 Priority1 high These bits are the MSB priority bit for DSCP[63:32] entries. 0x0

Table 304: VLAN Priority Tag to Priority (VPT2P)

Bits Field Name Function Init ial Value

Initial
Value
7:0

Priority0 These bits are the LSB priority bit for VLAN Priority[7:0]
entries.

0xcc

15:8 Priority1 These bits are the MSB priority bit for VLAN Priority[7:0]
entries.

0xf0

31:16 Reserved. 0x0
Revision 1.0 299

GT-96100A Advanced Communication Controller
12.5.1 Defining a priority queue to the IP DSCP or VLAN Entry
To define a priority queue to the IP DSCP or VLAN entry, the entry's priority 0 and priority 1 bits must be
defined.

Table 305 and Table 306 describe the writing of IP DSCP and VLAN entries respectively for a few set exam-
ples. Table 307 describes three example cases for mixed priority queueing.

Table 305: Writing IP DSCP Priority Example

IP DSCP Value Priority MSB bit Priori ty LSB bit

0 DSCP2P1L[0] DSCP2P0L[0]

16 DSCP2P1L[16] DSCP2P0L[16]

31 DSCP2P1L[31] DSCP2P0L[31]

32 DSCP2P1H[0] DSCP2P0H[0]

48 DSCP2P1H[16] DSCP2P0H[16]

63 DSCP2P1H[31] DSCP2P0H[31]

Table 306: Writing VLAN Priority Example

VLAN Priority Value Priori ty MSB bit Priori ty LSB bit

0 VPT2P[8] VPT2P[0]

4 VPT2P[12] VPT2P[4]

7 VPT2P[15] VPT2P[7]
300 Revision 1.0

GT-96100A Advanced Communication Controller

12.6 Ethernet MIB Counters

The Ethernet unit includes a set of counters that are used to count events occurring on the segment to which the
port is connected to. All counters are 32 bit wide.

The CPU must read all the MIB counters during initialization in order to reset the counters to �0�. The counters
will only be reset to �0� if MIBclrMode bit in the Port_Configuration_Extend register is set to �0� (default). If
MIBclrMode bit is �1�, reading the MIB counters will have no effect on their value.

NOTE: Table 309 lists definitions of terms used in the counter descriptions.

Table 307: Writing IP DSCP and VLAN Priority Example

Case IPDSCP All Others VLAN Tag Packets

A 0x0 and 0x3f (63) directed to pri-
ority queue 3

directed to priority queue 0 ignored

B <0x20 (32) directed to priority
queue 2

directed to priority queue 1 directed to priority queue 3

C 0x1f (31) and 0x20 (32) directed
to priority queue 3
0x0 and 0x3f (63)directed to pri-
ority queue 0<0x1f (31) directed
to priority queue 1

directed to priority queue 2 >3 and IP DSCP 0x1f or
0x20 directed to priority
queue 2
other tags are ignored

Table 308: Writing IP DSCP and VLAN Priority Register mapping Example

Register Case A Case B Case C

DSCPC2P0L 0x00000001 0x00000000 0xFFFFFFFE

DSCP2P0H 0x80000000 0xFFFFFFFF 0x00000001

DSCP2P1L 0x00000001 0xFFFFFFFF 0x80000000

DSCP2P1H 0x80000000 0x00000000 0x7FFFFFFF

VPT2P 0x00000001 0x0000FFFF 0x0000F000

Table 309: Terms Used in MIB Counters Descriptions

Term Definit ion

Packet Data Section All data bytes in the packet following the SFD until the end of the packet.

Packet Data Length The number of data bytes in the packet data section.

Data Octet A single byte from the packet data section.

Nibble 4 bits (half byte) of a data octet.

Misaligned Packet A packet with an odd number of nibbles.

≠

Revision 1.0 301

GT-96100A Advanced Communication Controller

Received Good Packet A received packet which is well formed.

Received Bad Packet A received packet which has an error such as bad CRC, Rx Error Event, Invalid
size (too short or too long).

Transmitted Packet Any transmitted packet (not including collision fragments).

Collision Event Any collision event that is indicated by assertion of MII_COL signal within the col-
lision window interval.

Late Collision Event Any collision event that is indicated by assertion of MII_COL signal outside the
collision window interval.

Rx Error Event An error event that is indicated by assertion of MII_RX_ERR signal.

Dropped Packet A received packet which is dropped by the port due to lack of resources (e.g. no
Rx buffers available).

MIBctrMode MIBctrMode bit in the Port Configuration Extend register.

MaxFrameSize 1518, 1536, 2 K or 64Kbytes depending on the setting in the Port Configuration
Extend register.

Table 310: Ethernet MIB Counters, Offset: 0x085800�0x0858FF for
Ethernet_0; 0x089800�0x0898FF for Ethernet_1

Address
for Port 0

Address
for Port 1

Counter
Name Function

Init ial
Value

0x085800 0x089800 Bytes Received This counter increments once for every
data octet of good packets (Unicast +
Multicast + Broadcast) received by the
port.

-

0x085804 0x089804 Bytes Sent This counter increments once for every
data octet of transmitted packets sent
by the port.

-

0x085808 0x089808 Frames Received This counter increments once for every
good packet (Unicast + Multicast +
Broadcast) received by the port.

-

0x08580C 0x08980C Frames Sent This counter increments once for every
transmitted packet sent by the port.

-

Table 309: Terms Used in MIB Counters Descriptions (Continued)

Term Definit ion
302 Revision 1.0

GT-96100A Advanced Communication Controller
0x085810 0x089810 Total Bytes
Received

This counter increments once for every
data octet of all received packets. This
includes data octets of BAD packets,
which might be automatically rejected
by the port (e.g fragments). This
counter reflects all the data octets
received from the line.
NOTE: A nibble is NOT counted as a

whole byte.

-

0x085814 0x089814 Total Frames
Received

This counter increments once for every
received packet. This includes BAD
packets. This counter reflects all pack-
ets received from the line.

-

0x085818 0x089818 Broadcast
Frames Received

This counter increments once for every
good broadcast packet received.

-

0x08581C 0x08981C Multicast Frames
Received

This counter increments once for every
good Multicast packet received.
This counter does not count Broadcast
packets.

-

0x085820 0x089820 CRC Error This counter increments once for every
received packet which meets all the fol-
lowing conditions (i.e. logical AND of
the following conditions):

� Packet data length is between
64 and MaxFrameSize bytes
inclusive (i.e. valid packet
data length per IEEE std).

� Packet has invalid CRC.
� Collision Event has not been

detected.
� Late Collision Event has not

been detected.
� Rx Error Event has not been

detected.

-

Table 310: Ethernet MIB Counters, Offset: 0x085800�0x0858FF for
Ethernet_0; 0x089800�0x0898FF for Ethernet_1 (Continued)

Address
for Port 0

Address
for Port 1

Counter
Name Function

Init ial
Value
Revision 1.0 303

GT-96100A Advanced Communication Controller
0x085824 0x089824 Oversize Frames This counter increments once for every
received packet which meets all the fol-
lowing conditions (i.e. logical AND of
the following conditions):

� Packet data length is greater
than MaxFrameSize.

� Packet has valid CRC.
� Rx Error Event has not been

detected.

-

0x085828 0x089828 Fragments This counter increments once for every
received packet which meets all the fol-
lowing conditions (i.e. logical AND of
the following conditions):

� Packet data length is less
than 64 bytes -OR- packet
without SFD and is less than
64 bytes in length.

� Collision Event has not been
detected.

� Late Collision Event has not
been detected.

� Rx Error Event has not been
detected.

� Packet has INVALID CRC.

-

0x08582c 0x08982c Jabber This counter increments once for every
received packet which meets all the fol-
lowing conditions (i.e. logical AND of
the following conditions):

� Packet data length is greater
than MaxFrameSize.

� Packet has invalid CRC.
� Rx Error Event has not been

detected.

-

0x085830 0x089830 Collision This counter increments once for every
received packet which meets both of
the following conditions (i.e. logical
AND of the following conditions):

� Collision Event has been
detected.

� Rx Error Event has not been
detected.

-

Table 310: Ethernet MIB Counters, Offset: 0x085800�0x0858FF for
Ethernet_0; 0x089800�0x0898FF for Ethernet_1 (Continued)

Address
for Port 0

Address
for Port 1

Counter
Name Function

Init ial
Value
304 Revision 1.0

GT-96100A Advanced Communication Controller
0x085834 0x089834 Late Collision This counter increments once for every
received packet which meets both of
the following conditions (i.e. logical
AND of the following conditions):

� Late Collision Event has been
detected.

� Rx Error Event has not been
detected.

-

0x085838 0x089838 Frames 64 Bytes This counter increments once for every
received and transmitted packet with
size of 64 bytes. This counter does not
count BAD received packets.

-

0x08583c 0x08983c Frames 65-127
Bytes

This counter increments once for every
received and transmitted packet with
size of 65 to 127 bytes. This counter
does not count BAD received packets.

-

0x085840 0x089840 Frames 128-255
Bytes

This counter increments once for every
received and transmitted packet with
size of 128 to 255 bytes. This counter
does not count BAD received packets.

-

0x085844 0x089844 Frames 256-511
Bytes

This counter increments once for every
received and transmitted packet with
size of 256-511 bytes. This counter
does not count BAD received packets.

-

0x085848 0x089848 Frames 512-1023
Bytes

This counter increments once for every
received and transmitted packet with
size of 512-1023 bytes. This counter
does not count BAD received packets.

-

0x08584c 0x08984c Frames 1024-
MaxFrameSize
Bytes

This counter increments once for every
received and transmitted packet with
size of 1024 to MaxFrameSize bytes.
This counter does not count BAD
received packets.

-

0x085850 0x089850 Rx Error This counter increments once for every
received packet in which the Rx Error
Event has been detected. When a Rx
Error event occurs, the following
counters do not increment: CRC Error,
Oversize Frames, Fragments, Jabbers,
Collision and Late Collision.

-

0x085854 0x089854 Dropped Frames Reserved. -

Table 310: Ethernet MIB Counters, Offset: 0x085800�0x0858FF for
Ethernet_0; 0x089800�0x0898FF for Ethernet_1 (Continued)

Address
for Port 0

Address
for Port 1

Counter
Name Function

Init ial
Value
Revision 1.0 305

GT-96100A Advanced Communication Controller
0x085858 0x089858 Out Multicast
Frames

The number of Multicast frames sent
by the port.
This counter does not count Broadcast
packets.

-

0x08585C 0x08985C Out Broadcast
Frames

The number of Broadcast frames sent
by the port.

-

Out Unicast
Frames

Calculated from:
� "Frames Sent"
� "Out Multicast Frames"
� "Out Broadcast Frames"

0x085860 0x089860 Undersize
Frames

This counter increments once for every
received packet which meets all the fol-
lowing conditions (i.e. logical AND of
the following conditions):

� Packet data length is less
than 64 bytes.

� Collision Event has not been
detected.

� Late Collision Event has not
been detected.

� Rx Error Event has not been
detected.

� Packet has valid CRC.

-

Table 310: Ethernet MIB Counters, Offset: 0x085800�0x0858FF for
Ethernet_0; 0x089800�0x0898FF for Ethernet_1 (Continued)

Address
for Port 0

Address
for Port 1

Counter
Name Function

Init ial
Value
306 Revision 1.0

GT-96100A Advanced Communication Controller
13. SERIAL DMA (SDMA)

13.1 Overview

There are 16 SDMA channels on the GT-96100A that are dedicated for moving data between the serial communi-
cations channels (MPSCs) and memory buffers. Each SDMA channel consists of a DMA engine for receiving
and one for transmitting.

The 16 SDMA channels are logically divided in two identical groups. Each group consists of 8 SDMA channels
- one SDMA channel per MPSC. In both groups SDMA channel 0 is allocated to data transfer from/to MPSC0,
SDMA1 is tied to MPSC1 and so on. Each MPSC can be programmed to use a specific SDMA channel from one
of the groups, making it possible to split the serial data flow into two logical streams. These streams can be
assigned a different priority tag at the CIU level.

Each SDMA channel has two dedicated FIFOs for data buffering (for a total of 32 FIFOs). All FIFOs are 256
bytes deep.

For receive operations, the MPSC moves received data into the dedicated FIFO of the corresponding SDMA.
Then, using descriptors set up by the user, the SDMA moves the data into memory buffers. For transmit opera-
tions, the SDMA uses descriptors set up by the user to move data out of buffers into the dedicated FIFO. The
MPSC moves the data down to the serial communications link.

The SDMA channel descriptors use a chained data structure. They work without CPU interference after appro-
priate initialization. SDMA channels can be programed to generate interrupts on buffer or frame boundaries.

When enabled, he receive SDMAs run freely and expect to find a valid descriptor, when one is required. When a
receive SDMA channel accesses an invalid descriptor, the receive SDMA process halts with a resource error sta-
tus indication.

When enabled, the transmit SDMAs run freely until the end of the descriptor chain is reached. When a transmit
SDMA accesses an invalid descriptor and the last descriptor was not marked as an end of frame descriptor, the
transmit SDMA process halts with resource error status indication.

The SDMAs in each group arbitrate for accessing the descriptors and buffers. A standard round-robin scheme is
used for arbitration within the group. The arbitration between the groups is done at the CIU level, which supports
a programmable, weighted round-robin algorithm.

SDMA buffers and descriptor reside either in SDRAM space or in PCI space. Address decoding is automatic and
does not require user intervention. However, the user may choose to override the address decoding and force one
(or more) of the SDMAs to direct all its accesses to the PCI.
Revision 1.0 307

GT-96100A Advanced Communication Controller
13.2 SDMA Descriptors

All SDMA data transfers are done via a chained link of descriptors. The following rules must be followed when
using the GT-96100A SDMA descriptors:

� Descriptor length is 4LW and it must be 4LW aligned (i.e. Descriptor_Address[3:0]=0000).
� Descriptors may reside anywhere in CPU address space except NULL address, which is used to indicate

end of descriptor chain.
� In normal mode (HDLC and Transparent) RX buffers associated with RX descriptors must be 64-bit

aligned. Minimum size for RX buffers is 8 bytes. In low latency, or byte, mode (BISYNC, UART, and
Transparent) RX buffers have no alignment restrictions.

� Tx buffers associated with TX descriptors can start in any byte location.
� SDMA RX and TX buffers are limited to 64Kbytes.

Figure 52: SDMA Descriptor Format

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Command / Status

Buffer Pointer

Rx Descriptor

+0

+4

+8

Tx Descriptor

= Reserved

Next Descriptor Pointer

Byte CountBuffer Size

+C

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Command / Status

Buffer Pointer

+0

+4

+8

Next Descriptor Pointer

Shadow Byte Count

+C

000

000

0

0

Byte Count

00

= Any Value in Byte Mode

Offset

0

000
308 Revision 1.0

GT-96100A Advanced Communication Controller
Table 311 through Table 315 provide detailed information about the descriptor fields.
Table 311: SDMA Descriptor - Command/Status word

Bits Field Name Function

31:0 Command/Sta-
tus

Contains commands bits that instruct the SDMA how to process a buffer and sta-
tus bits that the SDMA updates upon closing a descriptor. The CPU uses the sta-
tus bits to evaluate the buffer status. Except for bits 31, 30, 23, 17, and 16, the
definition of the bits vary depending on which mode is being used. See:

� Section 14.5.2 �SDMAx Command/Status Field for HDLC Mode� on
page 338.

� Section 14.6.3 �SDMAx Command/Status Field for BISYNC Mode� on
page 350.

� Section 14.7.2 �SDMAx Command/Status Field for UART Mode� on
page 362.

� Section 14.8.1 �SDMAx Command/Status Field for Transparent Mode�
on page 374.

31 O Owner Bit
When set to�1�, the buffer can be processed by the GT-96100A.
When set to �0�, the buffer can be processed by the CPU. An SDMA process will
halt when a descriptor with owner bit set to �0� is fetched.

30 AM Auto Mode
When set, the SDMA won�t clear the Owner bit of the descriptor at the end of
buffer processing.

29:24 Reserved Determined by the mode selected.

23 EI Enable Interrupt
The GT-96100A generates a maskable interrupt when closing descriptor with EI
bit set.
NOTE: If the RIFB bit is set in the SDMA configuration register, a Rx interrupt is

generated only if this is the last descriptor associated with a received
frame. In this case, EI bit setting is masked for intermediate descriptors.

22:18 Determined by the mode selected.

17 F First Bit
Indicates first buffer of a frame.

16 L Last Bit
Indicates last buffer of a frame.

15:0 Determined by the mode selected.
Revision 1.0 309

GT-96100A Advanced Communication Controller
Table 312: SDMA Descriptor - Buffer Size, Byte Count (Rx Descriptor)

Bits Field Name Function

31:16 Buffer Size The buffer size field is valid only in receive descriptors and is reserved in transmit
descriptors.The field is written by the CPU and read by the GT-96100A. When the
buffer byte counter of a SDMA receive channel reaches the buffer size value, the
SDMA will close the buffer descriptor and will move to the next buffer.
Buffer Size must be a multiple of 8 when the MPSC is programmed to work in nor-
mal mode (HDLC and Transparent). Buffer Size can be arbitrary when working in
low bandwidth mode (BISYNC, UART, and Transparent).

15:0 Byte Count The number of bytes that were actually written by the SDMA into the buffer. This
number is never greater than Buffer Size. The CPU must initialize the Byte Count
field with 0x0000.

Table 313: SDMA Descriptor - Byte Count, Shadow Byte Count (Tx Descriptor)

Bits Field Name Function

31:16 Byte Count Byte count is the number of bytes to be transmitted.
Zero byte counters are not supported with retransmission. Do not use zero byte
buffers with LAP-D protocol.

15:0 Shadow Byte
Count

The CPU must initialize this field with a value identical to the Byte Count field. The
GT-96100A subtracts the number of bytes actually transmitted from this parame-
ter.
Usually the GT-96100A writes �0� in this field when closing a descriptor. However,
when the transmit SDMA halts due to a transmit error, this number can be used to
determine the number of bytes that were fetched into the GT-96100A.
Setting both the Byte Count and Shadow Byte Count to �0� will cause the SDMA to
close the descriptor and move to the next descriptor, if both or neither of the F and
L bits are set. Setting Byte Count and Buffer Size to �0� in transmit descriptors with
one of the F or L bits set will lead to unpredictable behavior.

Table 314: SDMA Descriptor - Buffer Pointer

Bits Field Name Function

31:0 Buffer Pointer 32-bit pointer to the beginning of the buffer associated with the descriptor. The
buffer can reside anywhere in memory or PCI address space.
310 Revision 1.0

GT-96100A Advanced Communication Controller
13.3 SDMA Configuration Register (SDC)

Each SDMA has a dedicated configuration register (SDCx). The SDC must be initialized before enabling the
SDMA channel.

Figure 53: SDMAx Configuration Register (SDCx)

Table 315: SDMA Descriptor - Next Descriptor Pointer

Bits Field Name Function

31:4 Next Descriptor
Pointer

32-bit Next Descriptor pointer to the beginning of the next descriptor in the
chain. A descriptor can reside anywhere in memory or PCI space. Bits [3:0]
must be set to�0�.
DMA operation is stopped when a NULL value in the Next Descriptor Pointer is
encountered.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

R
FT

SF
M

BL
M

R

RC

PO
VR

BL
M

T

BS
Z

R
IF

B

Revision 1.0 311

GT-96100A Advanced Communication Controller

Table 316: SDMA Configuration Register (SDCx), Offset: 0x000900

Bits Field Name Function Init ial Value

0 RFT Receive FIFO Threshold
� 0 - 8 bytes
� 1 - Half FIFO (128 bytes)

NOTES:When working with an 8-bit data path, the threshold
is always one byte regardless of the RFT value. It is
recommended that RFT bit be set to �0� in this case.

When RFT is set to �0�, the SDMA will not burst. It
will transfer one word (64 bits) on each transfer.

0

1 SFM Single Frame Mode
� 0 - Multi frame mode. The GT-96100A will read as

many frames as needed into the FIFO in order to
keep the transmit FIFO full. The FIFO can handle
more than one frame at a time.

� 1 - Single frame mode. The first descriptor will not
be fetched before the current frame�s last descriptor
is closed.

NOTES:The SFM bit must be set to �1� for HDLC Collision
mode, BISYNC and UART protocols.

When the SFM bit is set to �0�, CTS Lost cannot be
reported in the correct descriptor/frame. In LAN
HDLC mode SFM must be set for proper operation.

0

5:2 RC Retransmit Count
In collision modes (LAP-D), after executing a backoff proce-
dure RC times, the Tx SDMA will close the buffer with a
Retransmit Limit (RL) error, a maskable interrupt will be gen-
erated, and the SDMA will go to OFF state. A new Transmit
Demand command should be issued in order to start a new
transmission process.
When RC field is 0000, the GT-96100A will try to retransmit
forever. The CPU needs to issue an abort command in order
to stop the retransmit process.

1111

6 BLMR Rx Big Little/Endian Receive Mode
The GT-96100A supports big or little endian configuration per
channel for maximum system flexibility. The BLMR bit only
affects data movements.

� 0 - Big endian convention.
� 1 - Little endian convention

1

312 Revision 1.0

GT-96100A Advanced Communication Controller
13.4 SDMA Command Register (SDCMx)

Each SDMA has a dedicated SDMA Command Register (SDCMx) register to control its DMA process.

Figure 54: SDMA Command Register (SDCMx)

7 BLMT Tx Big/Little Endian Transmit Mode
The GT-96100A supports big or little endian configuration per
channel for maximum system flexibility. The BLMT bit only
affects data movements.1

� 0 - Big endian convention.
� 1 - Little endian convention.

1

8 POVR PCI Override
When set, causes the SDMA to direct all its accesses in
PCI_0 direction, overriding normal address decoding pro-
cess.

0

9 RIFB Receive Interrupt on Frame Boundaries
When set, the SDMA Rx generates interrupts only on frame
boundaries (i.e. after writing the frame status to the descrip-
tor).

0

11:10 Reserved Reserved. 0

13:12 BSZ Burst Size
Sets the maximum burst size for SDMA transactions:

� 00 - Burst is limited to 1 64bit words.
� 01 - Burst is limited to 2 64bit words.
� 10 - Burst is limited to 4 64bit words.
� 11 - Burst is limited to 8 64bit words.

0

31:14 Reserved. 0

1. The user can define the SDMA descriptors as big or little endian through the CIU Configuration register.

Table 316: SDMA Configuration Register (SDCx), Offset: 0x000900 (Continued)

Bits Field Name Function Init ial Value

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

ER
D

TX
D

ARAT ST
D

Revision 1.0 313

GT-96100A Advanced Communication Controller
Table 317: SDMA Command Register (SDCMx), Offset: 0x000908

Bits Field Name Function Init ial Value

6:0 Reserved Reserved. 0

7 ERD Enable Rx DMA
When set to �1�, the Rx SDMA will fetch the 1st descriptor and
will be ready for a receive frame. The GT-96100A clears ERD
when the GT-96100A receive SDMA has a resource error or
when the CPU issues an abort command.

0

14:8 Reserved Reserved. 0

15 AR Abort Receive
The CPU sets the AR bit when it needs to abort a receive
SDMA channel operation. When the AR bit is set, the SDMA
aborts its operation and goes to IDLE state. No descriptor is
closed. The GT-96100A clears both the AR and ERD bits
when entering IDLE state. The CPU must poll bit 15. When it
is �0�, the GT-96100A has completed the abort sequence.
After an abort the CPU should write the 1st descriptor
address and then set ERD bit to �1�.

0

16 STD Stop Tx
The SDMA stops transmission at the end of frame (i.e. at the
end of buffer with L bit set to �1�). After transmitting the last
buffer, the transmit SDMA goes to IDLE state. The GT-
96100A clears the TXD bit when entering IDLE state. After
the SDMA stops, the CPU must write the first descriptor
address and than set the TXD bit to �1�. The GT-96100A sig-
nals the CPU with interrupt when the stop procedure is
accomplished.

0

22:17 Reserved Reserved. 0

23 TXD Tx Demand
When this bit is set to �1�, the Tx DMA will fetch the first
descriptor and will start the transmission process. The GT-
96100A clears TXD when it successfully ends an SDMA
transmit process. It also clears TXD when a resource error
occurs, when the transmit process is halted due to channel
error (i.e. CTS# lost), or when the CPU issues an abort com-
mand.

0

30:24 Reserved Reserved 0
314 Revision 1.0

GT-96100A Advanced Communication Controller
13.5 SDMA Group Configuration Register

Use this register to assign a specific SDMA channel from one of the SDMA groups to handle the data stream
associated with the corresponding MPSC.

NOTE: MPSC�s receive and transmit data flows does not have to be assigned to the same SDMA group. For
example, there is no problem with assigning MPSC0 transmit to SDMA channel 0 of group 0, while
MPSC0 receive flow is handled by SDMA channel 0 of group 1. Moreover, for certain asymmetric pro-
tocols, like ADSL, the bandwidth requirements for Rx and Tx are different, and splitting the data
streams between the SDMA groups may be critical for controlling bandwidth allocation.

31 AT Abort Transmit
The CPU sets the AT bit to �1� when it needs to abort a trans-
mit SDMA channel operation. When the AT bit is set, the
SDMA aborts its operation and goes to IDLE state. No
descriptor is closed. The GT-96100A clears both the AT and
TXD bits when entering IDLE state.
The CPU must poll bit 31. When it is �0�, the GT-96100A has
completed the abort sequence. After an abort, the CPU must
write the first descriptor address and than set TXD bit to �1�.

0

Table 318: SDMA Group Register (SGC), Offset: 0x101AF0

Bits Field Name Function Init ial Value

7:0 RxSG[7:0] Rx Group
These bits are used to assign one of the SDMA groups to
the RX data of each MPSC. RxSG[0] controls MPSC0,
RxSG[1] controls MPSC1 and so on.

� 0 - Receive data from the MPSC is handled by
SDMA group 0.

� 1 - Receive data from the MPSC is handled by
SDMA group 1.

0

15:8 TxSG[7:0] Tx SDMA Group
These bits are used to assign one of the SDMA groups to
the TX data of each MPSC. TxSG[0] controls MPSC0,
TxSG[1] controls MPSC1 and so on.

� 0 - Transmit data to the MPSC is handled by
SDMA group 0.

� 1 - Transmit data to the MPSC is handled by
SDMA group 1.

0

31:16 Reserved Reserved. 0

Table 317: SDMA Command Register (SDCMx), Offset: 0x000908 (Continued)

Bits Field Name Function Init ial Value
Revision 1.0 315

GT-96100A Advanced Communication Controller
13.6 SDMA Descriptor Pointer Registers

Each SDMA channel has three 32-bit registers that reside in a special descriptor�s Dual Port memory located in
the internal address space of the GT-96100A.

Figure 55: SDMA Descriptor Pointer Registers

13.6.1 SDMA Current Receive Descriptor Pointer (SCRDP)
SCRDPx points to the current receive descriptor in memory. The CPU must write this register with the first
descriptor address before enabling the SDMA receive channel. When a SDMA receive channel is enabled it will
fetch the first descriptor pointed to by SCRDPx as part of its SDMA starting procedure.

13.6.2 SDMA Current Transmit Descriptor Pointer (SCTDP)
SCTDPx points to the current transmit descriptor in memory. The CPU must write this register with the first
descriptor address before enabling the SDMA transmit channel. When a SDMA transmit channel is enabled it
will fetch the first descriptor pointed to by SCRDPx as part of its SDMA starting procedure.

13.6.3 SDMA First Transmit Descriptor Pointer (SFTDP)
SFTDPx points to the first descriptor in a transmit frame. The CPU must write this register with the first descrip-
tor address before enabling the SDMA transmit channel. The SDMA transmit controller uses the SFTDP when it
needs to restart a transmission after collision (HDLC mode only). The GT-96100A updates the content of SFTDP
each time it fetches a descriptor with the F (first) bit set to �1�.

NOTE: The CPU must write the same value to both SCTDP and SFTDP before enabling the corresponding
SDMA transmit channel.

13.7 Transmit SDMA

13.7.1 Transmit SDMA Definitions
� SOF (Start Of Frame descriptor): Descriptor with F (First) bit set to �1�.
� EOF (End Of Frame descriptor): Descriptor with L (Last) bit set to �1�.

F and L bits are set by the CPU before releasing a descriptor to the GT-96100A for transmission.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

SDMAx Current Receive Descriptor Pointer (SCRDPx)

SDMAx First Transmit Descriptor Pointer (SFTDPx)

SDMAx Current Transmit Descriptor Pointer (SCTDPx)
316 Revision 1.0

GT-96100A Advanced Communication Controller
A frame starts with a SOF descriptor and ends with a EOF descriptor. A frame can consist of one buffer or split
over many buffers. If a frame is stored in one buffer, the associated descriptor will have both the F and L bits set
to �1�. In a non-frame oriented protocol (e.g. BISYNC or UART), it is recommended that both F and L bits be set
to �1� for each buffer.

13.7.2 Transmit SDMA Flow
The following steps are executed during a normal transmit SDMA process:

1. Before enabling a SDMA Tx channel the CPU must prepare a valid descriptor with the owner bit set to
�1�.

2. The CPU must then write the first descriptor address to both SCTDP and SFTDP registers.
3. The CPU issues a Transmit Demand command. The SDMA controller will then fetch the first descriptor

and will start the SDMA process.
4. When buffer transmission is completed, the SDMA will close the buffer descriptor by setting the correct

transmit status and writing �0� in the Owner Bit, returning the buffer to the CPU.

13.7.3 Retransmit in HDLC (LAP-D) mode
When working in collision mode (see MPSC section), the GT-96100A retransmits if collision occurs before the
SDMA fetches the 3rd descriptor. If the frame consists of more than two buffers, the user must assure that there
is enough data in the first two buffers to compensate for this behavior. The GT-96100A can buffer up to 256 bytes
in its internal Tx FIFO. This should be considered when preparing a LAP-D transmit frame.

13.7.4 Transmit SDMA Notes
The transmit SDMA process is frame oriented.

The Transmit SDMA does not clear the frame�s first descriptor ownership bit until the last descriptor associated
with this frame is closed. The transmit SDMA then writes �0� to the first descriptor Owner bit and generate an
interrupt if the EI bit of the first descriptor is set.

The transmit SDMA stops the DMA process whenever it reaches a descriptor with NULL (0x00000000) value in
the NextDescriptorPointer (NDP) field or when it fetches a descriptor with Owner Bit set to �0�.

When the transmit SDMA controller encouters a NULL NDP value or a Not-Owned descriptor with it's First
field bit set, after the last descriptor of a frame, the transmit idles. The TxD bit is cleared and the transmit SDMA
controller return to IDLE state.

When the transmit SDMA controller encouter a NULL NDP value, or a Not-Owned descriptor with it's First
field bit set, in the middle of a frame or a Not-Owned descriptor with it's First field bit reset, after the last descrip-
tor of a frame, the transmit aborts. The TxD bit is cleared, a Tx RESOURCE ERROR maskable interrupt is gen-
erated and the transmit SDMA controller return to IDLE state.

When the transmit SDMA controller encouters a Not-Owned descriptor with it's First field bit reset, in the mid-
dle of a frame, the transmit stops. The TxD bit is not cleared and the transmit SDMA controller waits for an
Abort transmit command. In such cases, the SDMA controller clears the TxD bit before returning to IDLE state.

In normal operation, the transmit SDMA never expects to find a NULL NextDescriptorPointer or Not-Owned
descriptor in the middle of a frame. When this occurs, the transmit SDMA controller aborts, the TxD bit is
cleared and a Tx RESOURCE ERROR maskable interrupt is generated.
Revision 1.0 317

GT-96100A Advanced Communication Controller
NOTE: In collision mode, if a collision occurs exactly one clock cycle after a resource error, the GT-96100A
ignores the resource error and retransmit the frame.

When the CPU needs to interfere with the transmit process without corrupting the ongoing transmit process, it
can issue a STOP command by writing �1� to the STD bit in the SDMA command register. The transmit SDMA
controller stops after completing the transmission of the active frame.

When issuing an STD command TXD is reset to �0� upon entering IDLE state. The CPU can then issue a new
Transmit Demand command to restart the SDMA process.

13.8 Receive SDMA

13.8.1 Receive SDMA Definitions

F and L bits are set by the CPU before releasing a descriptor to the GT-96100A.

A frame starts with an SOF descriptor and ends with an EOF descriptor. A frame can be contained in one buffer
or split over many buffers. If a frame is stored in one buffer, the associated descriptor will have both F and L bits
set to �1�.

13.8.2 Receive SDMA Flow
The following steps are executed during a normal transmit SDMA process:

1. Before enabling a SDMA Rx channel the CPU must prepare a valid descriptor with the owner bit set to
�1�.

2. The CPU must then write the descriptor address to the SCRDP register before enabling the receive
SDMA channel.

3. The CPU writes �1� to the ERD bit in the SDCM register, enabling the receive SDMA channel.
4. Normally the receive SDMA controller will then run continuously, processing received data from the

MPSC.

NOTES:The receive SDMA controller never expects to encounter a descriptor with owner bit set to �0� or a
NULL value (0x00000000) in the NDP field. If this occurs, the receive SDMA aborts and a maskable
Rx RESOURCE ERROR interrupt is generated.
Use the receive abort command for the CPU to stop the receive SDMA. It is the CPU�s responsibility to
properly restart the descriptor chain.

Table 319: SDMA Definitions

Term Definit ion

SOF Start Of Frame descriptor
Descriptor with F (First) bit set to �1�.

EOF End Of Frame descriptor
Descriptor with L (Last) bit set to �1�.
318 Revision 1.0

GT-96100A Advanced Communication Controller
13.9 SDMA Interrupt and Mask register (SDI and SDM)

Each SDMA channel has two maskable interrupt sources. One is for Resource Error events and the other one is
for descriptor closed events.

13.9.1 Resource Error Interrupt
When a receive SDMA encounters a NULL descriptor pointer or a not owned descriptor, a Resource Error inter-
rupt is generated. A Resource Error interrupt is generated whenever a transmit SDMA encounters a NULL
descriptor pointer or a not-owned descriptor in a middle of a frame.

NOTE: When the GT-96100A encounters a descriptor with Owner bit set to 0, it still expects to find that all the
other fields of the descriptor are legitimate. A descriptor with Owner bit set to 0, with non-legitimate
fields (such as Start Of Frame descriptor with F (First) bit not set to �1�) can lead to unpredictable
behavior.

13.9.2 Descriptor/Frame Closed Interrupt
When a SDMA channel closes a descriptor with the EI (Enable Interrupt) bit set to �1�, a Descriptor Closed inter-
rupt is generated.

NOTES:In case the RIFB bit is set in the SDMA configuration register, an interrupt is generated by the Rx chan-
nel only on receive frame boundaries.

The correct operation of the frame level interrupt requires all Rx descriptors to have their EI bit set.

13.10 SDMA in Auto Mode

The CPU can set bit 30 in the command/status field of transmit or receive descriptors directing the GT-96100A to
work in Auto Mode.

When working with an Auto Mode descriptor, the GT-96100A SDMA works as usual except that it does not clear
the Ownership bit when closing the descriptor. The CPU can use this for example to cause the GT-96100A to
transmit endlessly (until CPU intervention).
Revision 1.0 319

GT-96100A Advanced Communication Controller
Figure 56: Using Auto Mode to Create Idle Loop

13.11 SDMA Registers
Table 320: SDMA Group 0 Register Map

Description Offset Page Number

SDMA Group Configuration Register 0x101AF0 page 315

Channel0

Channel0 Configuration Register (S0DC0) 0x000900 page 312

Channel0 Command Register (S0DCM0) 0x000908 page 314

Channel0 Rx Descriptor 0x008900 - 0x00890F Not to be accessed dur-
ing normal operation.

Channel0 Current Rx Descriptor Pointer (S0CRDP0) 0x008910 page 316

Channel0 Tx Descriptor 0x00C900 - 0x00C90F Not to be accessed dur-
ing normal operation.

Channel0 Current Tx Descriptor Pointer (S0CTDP0) 0x00C910 page 316

Channel0 First Tx Descriptor Pointer (S0FTDP0) 0x00C914 page 316

Bit 31=1
Bit 30 =0

Bit 31=1
Bit 30 =0

Bit 31=1
Bit 30 =1

Bit 31=1
Bit 30 =1

Bit 31=1
Bit 30 =1

Bit 31=1
Bit 30 =1

Idle Loop
320 Revision 1.0

GT-96100A Advanced Communication Controller
Channel1

Channel1 Configuration Register (S0DC1) 0x010900 For a description of the
Channel1 registers, see
the descriptions for the
Channel 0 registers.

Channel1 Command Register (S0DCM1) 0x010908

Channel1 Rx Descriptor 0x018900 - 0x01890F

Channel1 Current Rx Descriptor Pointer (S0CRDP1) 0x018910

Channel1 Tx Descriptor 0x01C900 - 0x01C90F

Channel1 Current Tx Descriptor Pointer (S0CTDP1) 0x01C910

Channel1 First Tx Descriptor Pointer (S0FTDP1) 0x01C914

Channel2

Channel2 Configuration Register (S0DC2) 0x020900 For a description of the
Channel2 registers, see
the descriptions for the
Channel 0 registers.

Channel2 Command Register (S0DCM2) 0x020908

Channel2 Rx Descriptor 0x028900 - 0x02890F

Channel2 Current Rx Descriptor Pointer (S0CRDP2) 0x028910

Channel2 Tx Descriptor 0x02C900 - 0x02C90F

Channel2 Current Tx Descriptor Pointer (S0CTDP2) 0x02C910

Channel2 First Tx Descriptor Pointer (S0FTDP2) 0x02C914

Channel3

Channel3 Configuration Register (S0DC3) 0x030900 For a description of the
Channel3 registers, see
the descriptions for the
Channel 0 registers.

Channel3 Command Register (S0DCM3) 0x030908

Channel3 Rx Descriptor 0x038900 - 0x03890F

Channel3 Current Rx Descriptor Pointer (S0CRDP3) 0x038910

Channel3 Tx Descriptor 0x03C900 - 0x03C90F

Channel3 Current Tx Descriptor Pointer (S0CTDP3) 0x03C910

Channel3 First Tx Descriptor Pointer (S0FTDP3) 0x03C914

Table 320: SDMA Group 0 Register Map (Continued)

Description Offset Page Number
Revision 1.0 321

GT-96100A Advanced Communication Controller
Channel4

Channel4 Configuration Register (S0DC4) 0x040900 For a description of the
Channel4 registers, see
the descriptions for the
Channel 0 registers.

Channel4 Command Register (S0DCM4) 0x040908

Channel4 Rx Descriptor 0x048900 - 0x04890F

Channel4 Current Rx Descriptor Pointer (S0CRDP4) 0x048910

Channel4 Tx Descriptor 0x04C900 - 0x04C90F

Channel4 Current Tx Descriptor Pointer (S0CTDP4) 0x04C910

Channel4 First Tx Descriptor Pointer (S0FTDP4) 0x04C914

Channel5

Channel5 Configuration Register (S0DC5) 0x050900 For a description of the
Channel5 registers, see
the descriptions for the
Channel 0 registers.

Channel5 Command Register (S0DCM5) 0x050908

Channel5 Rx Descriptor 0x058900 - 0x05890F

Channel5 Current Rx Descriptor Pointer (S0CRDP5) 0x058910

Channel5 Tx Descriptor 0x05C900 - 0x05C90F

Channel5 Current Tx Descriptor Pointer (S0CTDP5) 0x05C910

Channel5 First Tx Descriptor Pointer (S0FTDP5) 0x05C914

Channel6

Channel6 Configuration Register (S0DC6) 0x060900 For a description of the
Channel6 registers, see
the descriptions for the
Channel 0 registers.

Channel6 Command Register (S0DCM6) 0x060908

Channel6 Rx Descriptor 0x068900 - 0x06890F

Channel6 Current Rx Descriptor Pointer (S0CRDP6) 0x068910

Channel6 Tx Descriptor 0x06C900 - 0x06C90F

Channel6 Current Tx Descriptor Pointer (S0CTDP6) 0x06C910

Channel6 First Tx Descriptor Pointer (S0FTDP6) 0x06C914

Table 320: SDMA Group 0 Register Map (Continued)

Description Offset Page Number
322 Revision 1.0

GT-96100A Advanced Communication Controller

Channel7

Channel7 Configuration Register (S0DC7) 0x070900 For a description of the
Channel7 registers, see
the descriptions for the
Channel 0 registers.

Channel7 Command Register (S0DCM7) 0x070908

Channel7 Rx Descriptor 0x078900 - 0x07890F

Channel7 Current Rx Descriptor Pointer (S0CRDP7) 0x078910

Channel7 Tx Descriptor 0x07C900 - 0x07C90F

Channel7 Current Tx Descriptor Pointer (S0CTDP7) 0x07C910

Channel7 First Tx Descriptor Pointer (S0FTDP7) 0x07C914

Table 321: SDMA Group 1 Register Map

Description Offset Page Number

Channel0

Channel0 Configuration Register (S1DC0) 0x100900 page 312

Channel0 Command Register (S1DCM0) 0x100908 page 314

Channel0 Rx Descriptor 0x108900 - 0x10890F Not to be accessed dur-
ing normal operation.

Channel0 Current Rx Descriptor Pointer (S1CRDP0) 0x108910 page 316

Channel0 Tx Descriptor 0x10C900 - 0x10C90F Not to be accessed dur-
ing normal operation.

Channel0 Current Tx Descriptor Pointer (S1CTDP0) 0x10C910 page 316

Channel0 First Tx Descriptor Pointer (S1FTDP0) 0x10C914 page 316

Channel1

Channel1 Configuration Register (S1DC1) 0x110900 For a description of the
Channel1 registers, see
the descriptions for the
Channel 0 registers.

Channel1 Command Register (S1DCM1) 0x110908

Channel1 Rx Descriptor 0x118900 - 0x11890F

Channel1 Current Rx Descriptor Pointer (S1CRDP1) 0x118910

Channel1 Tx Descriptor 0x11C900 - 0x11C90F

Channel1 Current Tx Descriptor Pointer (S1CTDP1) 0x11C910

Channel1 First Tx Descriptor Pointer (S1FTDP1) 0x11C914

Table 320: SDMA Group 0 Register Map (Continued)

Description Offset Page Number
Revision 1.0 323

GT-96100A Advanced Communication Controller
Channel2

Channel2 Configuration Register (S1DC2) 0x120900 For a description of the
Channel2 registers, see
the descriptions for the
Channel 0 registers.

Channel2 Command Register (S1DCM2) 0x120908

Channel2 Rx Descriptor 0x128900 - 0x12890F

Channel2 Current Rx Descriptor Pointer (S1CRDP2) 0x128910

Channel2 Tx Descriptor 0x12C900 - 0x12C90F

Channel2 Current Tx Descriptor Pointer (S1CTDP2) 0x12C910

Channel2 First Tx Descriptor Pointer (S1FTDP2) 0x12C914

Channel3

Channel3 Configuration Register (S1DC3) 0x130900 For a description of the
Channel3 registers, see
the descriptions for the
Channel 0 registers.

Channel3 Command Register (S1DCM3) 0x130908

Channel3 Rx Descriptor 0x138900 - 0x13890F

Channel3 Current Rx Descriptor Pointer (S1CRDP3) 0x138910

Channel3 Tx Descriptor 0x13C900 - 0x13C90F

Channel3 Current Tx Descriptor Pointer (S1CTDP3) 0x13C910

Channel3 First Tx Descriptor Pointer (S1FTDP3) 0x13C914

Channel4

Channel4 Configuration Register (S1DC4) 0x140900 For a description of the
Channel4 registers, see
the descriptions for the
Channel 0 registers.

Channel4 Command Register (S1DCM4) 0x140908

Channel4 Rx Descriptor 0x148900 - 0x14890F

Channel4 Current Rx Descriptor Pointer (S1CRDP4) 0x148910

Channel4 Tx Descriptor 0x14C900 - 0x14C90F

Channel4 Current Tx Descriptor Pointer (S1CTDP4) 0x14C910

Channel4 First Tx Descriptor Pointer (S1FTDP4) 0x14C914

Table 321: SDMA Group 1 Register Map (Continued)

Description Offset Page Number
324 Revision 1.0

GT-96100A Advanced Communication Controller
Channel5

Channel5 Configuration Register (S1DC5) 0x150900 For a description of the
Channel5 registers, see
the descriptions for the
Channel 0 registers.

Channel5 Command Register (S1DCM5) 0x150908

Channel5 Rx Descriptor 0x158900 - 0x15890F

Channel5 Current Rx Descriptor Pointer (S1CRDP5) 0x158910

Channel5 Tx Descriptor 0x15C900 - 0x15C90F

Channel5 Current Tx Descriptor Pointer (S1CTDP5) 0x15C910

Channel5 First Tx Descriptor Pointer (S1FTDP5) 0x15C914

Channel6

Channel6 Configuration Register (S1DC6) 0x160900 For a description of the
Channel6 registers, see
the descriptions for the
Channel 0 registers.

Channel6 Command Register (S1DCM6) 0x160908

Channel6 Rx Descriptor 0x168900 - 0x16890F

Channel6 Current Rx Descriptor Pointer (S1CRDP6) 0x168910

Channel6 Tx Descriptor 0x16C900 - 0x16C90F

Channel6 Current Tx Descriptor Pointer (S1CTDP6) 0x16C910

Channel6 First Tx Descriptor Pointer (S1FTDP6) 0x16C914

Channel7

Channel7 Configuration Register (S1DC7) 0x170900 For a description of the
Channel7 registers, see
the descriptions for the
Channel 0 registers.

Channel7 Command Register (S1DCM7) 0x170908

Channel7 Rx Descriptor 0x178900 - 0x17890F

Channel7 Current Rx Descriptor Pointer (S1CRDP7) 0x178910

Channel7 Tx Descriptor 0x17C900 - 0x17C90F

Channel7 Current Tx Descriptor Pointer (S1CTDP7) 0x17C910

Channel7 First Tx Descriptor Pointer (S1FTDP7) 0x17C914

Table 321: SDMA Group 1 Register Map (Continued)

Description Offset Page Number
Revision 1.0 325

GT-96100A Advanced Communication Controller
14. MULTI PROTOCOL SERIAL CONTROLLER (MPSC)
The GT-96100A includes eight MPSCs that support:

� Bit oriented protocols (e.g. HDLC)
� Byte oriented protocols (e.g. BISYNC)
� Transparent protocols
� The UART (Start/Stop) mode.

All eight MPSCs can operate simultaneously. Four MPSCs can operate up to a guaranteed bit rate of 55Mbps
while the remaining MPSCs can work up to guaranteed bit rate of 2Mbps (in NRZ/NRZI).

All eight MPSCs can be routed out via serial interface ports which implement interfaces like EIA-232 and V.34.

Alternatively, the MPSCs can be connected to the GT-96100A�s FlexTDMs. A FlexTDM can also be used to con-
nect the various MPSCs to a PCM highway bus or any other time slot assigner bus. See Section 15. �FlexTDM
Units (FTDM)� on page 379 for a description of the FlexTDM.

14.1 DPLL

Each MPSC has a dedicated transmit and receive digital phase lock loop (DPLL).

The transmit DPLL encodes the transmit bit stream to the selected code and monitors the transmit clock for
glitches. If a clock glitch is detected and the Glitch Detect Enable (GDE) bit in the Main Configuration register
(MMCR) is set to �1�, a maskable interrupt is generated.

The receive DPLL decodes the incoming bit stream according to the selected mode. If a code violation is
detected (for example, no transition in Manchester code) the DE (Decoding Error) in the receive descriptor is set.
The receive DPLL also performs clock recovery from the incoming bit stream and monitors the receive clock for
glitches. If a clock glitch is detected and the Glitch Detect Enable (GDE) bit in the Main Configuration register
(MMCR) is set to �1�, a maskable interrupt is generated.
326 Revision 1.0

GT-96100A Advanced Communication Controller
14.1.1 Data Encoding/Decoding
Figure 57 shows the data encoding and decoding schemes The GT-96100A DPLL supports.

Figure 57: MPSC DPLL Encoding/Decoding Schemes

14.1.2 DPLL Clock Source
Each received DPLL uses the MPSC receive clock input and each transmit DPLL uses the MPSC transmit clock
input as its source clock.

NOTE: The GT-96100A DPLLs can accept a clock source of up to 83MHz. This allows the GT-96100A to have a
bit rate of up to 5MHz using a 16X clock rate scheme.

1 1 0 0 1 0

NRZ

NRZI Mark

NRZI Space

FM1
(BiPhase Mark)

FM0
(BiPhase Space)

Manchester

Differential
Manchester
Revision 1.0 327

GT-96100A Advanced Communication Controller
14.1.3 Receive DPLL Clock Recovery
When a MPSC is programmed to work in Asynchronous mode, sampling rate on the DPLL Rx clock is config-
urable between 8, 16, 32, which means that the user should supply the MPSC with a clock source that is 8x, 16x,
32x of the bit rate, respectively. The clock source for the MPSC's RX can be the SCLK associated with that
MPSC or one of the internal BRG's outputs. Selection of the MPSC's RX input clock is done using the RCRR
register (see chapter 20, "physical signal routing" in the data sheet).

When not synchronized, the DPLL hunts for a start bit or edge. In UART mode, the DPLL hunts for start bit. In
HDLC BISYNC and Transparent mode, the DPLL hunts for an edge. If hunting for a start bit (UART), the DPLL
hunts for a falling edge, assuming it to be the beginning of a start bit. It then samples RxD at the middle of the bit,
calculated from the falling edge of the start bit (8 ticks in x16 mode), to see that it is still �0�. If not, it is consid-
ered noise. A modulo 16 counter (for a 16x over-sampling rate) generates the receive clock RCLK.

In HDLC, BISYNC, and Transparent modes, the DPLL tries to lock itself on the transitions of the receive bit
stream. When synchronization is achieved, the DPLL continuously monitors for rising and falling edges as
defined in the MPSC Main Configuration Register (MMCR). When detecting an edge, the edge-compare logic
gives the counter shift_left or shift_right commands to maintain lock on the received data.

14.2 MPSCx Main Configuration Register (MMCRx)

Each MPSC has an MPSC Main Configuration Register (MMCRx). The MMCRx is a 64 bit register used to con-
figure common MPSC features. It is protocol independent. The MMCRx consists of two 32 bits registers,
MMCRHx and MMCRLx, as shown below.

Figure 58: MPSC Main Configuration Register (MMCRx)

Unless otherwise specified:

� �1� means set
� �0� means not set
� �0� is the default value after reset.

C
D

M

R
EV

D

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Base

Base + 4

EN
T

MODE

C
TS

M

C
TS

S
C

D
S

R
TS

M

TC
I

TI
D

L

TI
N

V

TS
YN

EN
R

TR
X

TT
X

R
IN

V

G
D

E

TSNS LPBK

TPLTPPTTCDVTDEC

CRCM

RSLRCDVRENCSEDG

MMCRLx

MMCRHx

TR
VD

R
R

VD

C
D

M
R

D
W

GDW

N
LM
328 Revision 1.0

GT-96100A Advanced Communication Controller
14.2.1 MPSCx Main Configuration Register Low (MMCRLx)
Table 322: MPSCx Main Configuration Register Low (MMCRLx), Offset: 0x000A00, 0x008A00,

0x010A00, 0x018A00, 0x020A00, 0x028A00, 0x030A00, 0x038A00
(where x is the port number 0 to 7)

Bits
Field
Name Function

Init ial
Value

2:0 MODE Mode
000 -HDLC (default)
001 -Reserved
010 -Reserved
011 -Reserved
100 -UART
101 -BISYNC
110 -Reserved
111 -Reserved

0

3 TTX Transparent Transmitter
0 - Normal Mode. (default)
1 - Transparent Mode. (Transparent Mode overrides the program mode in
MODE bits.)

0

4 TRX Transparent Receiver
0 - Normal Mode (default)
1 - Transparent Mode. (Transparent Mode overrides the program mode in
MODE bits.)

0

5 Reserved. 0

6 ET Enable Transmit
0 - Disabled. The Tx channel is in Low Power Mode.
1 - Enable. The Tx controller is ready for data. When the SDMA has data to
transmit it loads the data to the Tx controller, that will transmit the data in the
selected protocol.

0

7 ER Enable Receive
0 - Disabled. The Rx channel is in Low Power Mode.
1 - Enable. The Rx controller is ready to receive data.

0

9:8 LPBK Loop Back (for diagnostic) mode
00 -Normal Operation, no loopback (Default)
01 -Loopback
10 -Echo
11 -Loop Back + Echo
In loopback mode, which is only for diagnostic purposes, the transmitted data
on TxD is fed into RxD. In this mode, the same clock source should be used
for both Rx and TX.
Echo mode re-transmits received data on RxD (with one clock delay) on TxD.
If CD* is asserted, the receiver also receives the incoming data.

00
Revision 1.0 329

GT-96100A Advanced Communication Controller
10 NLM Null Modem
0 - Normal operation. The MPSC uses the CD* and CTS* inputs to control
the data flow
1 - Null Modem. The MPSC CD* and RTS* internal signals are always
asserted. The external pin status can be still read from the Event Register.
NOTE: For information about the behavior of the Event Register in different

modes, see:
� Section �The ESR register holds information on the transmit/

receive channel condition.� on page 345.
� Section 14.6.5.6 �CHR10 - BISYNC Event Status Register (ESR)�

on page 360.
� Section 14.7.5.7 �CHR10 - UART Event Status Register (ESR)� on

page 371.
� Section 14.8.2.3 �CHR10 - Transparent Event Status Register

(ESR)� on page 378.

0

11 Reserved. 0

12 TSYN Transmitter Synchronize to Receiver
Setting this bit synchronizes the transmitter to receiver byte boundaries. This
is particularly important in the X.21 protocol.
0 - No synchronization assumed.
1 - Transmit bit stream is synchronized to the receive bit stream. This bit
affects only a transparent transmitter. Transmitter will start transmission
nx8 bit period after the receive data arrives. If CTS* is already asserted, the
transparent transmitter will start transmit 8 clocks after the receiver starts to
receive data.
NOTE: Only this bit when transmit and receive clocks are equal and TCDV

and RCDV are set to �00�.

0

13 Reserved. 0

Table 322: MPSCx Main Configuration Register Low (MMCRLx), Offset: 0x000A00, 0x008A00,
0x010A00, 0x018A00, 0x020A00, 0x028A00, 0x030A00, 0x038A00
(where x is the port number 0 to 7) (Continued)

Bits
Field
Name Function

Init ial
Value
330 Revision 1.0

GT-96100A Advanced Communication Controller
15:14 TSNS Transmit Sense.
Defines the number of bit times the internal sense signal will stay active after
last transition on the RXD line occurs. It is useful for AppleTalk protocol to
avoid the spurious CD* change interrupt that would otherwise occur during
the frame synchronization sequence that precedes the opening flag. The
delay is a function of RCDV (clock divider) setting.
00 (RCDV = 0) - Infinite (Carrier Sense is always active - default)
00 (RCDV ≠ 0) - Infinite (Carrier Sense is always active - default)
01 (RCDV = 0) - 14 bit times
01 (RCDV ≠ 0) - 6.5 bit times
10 (RCDV = 0) - 4 bit times (normal AppleTalk)
10 (RCDV ≠0) - 2.5 bit times (normal AppleTalk)
11 (RCDV = 0) - 3 bit times
11 (RCDV ≠ 0) - 1 bit time

0

16 TIDL Transmit Idles
0 - TxD is encoded during data transmission (including preamble and flags/
sync patterns). TxD is in MARK during idle. (Default.)
1 - TxD is encoded all the time, even when idles are transmitted. Table 323 .

0

17 RTSM RTS* Mode
This bit may be changed on the fly.
0 - Send IDLE between frames. RTS* is negated between frames. IDLE pat-
tern is defined by the protocol and TIDL bit.
1- Send flags/syncs between frames according to the protocol. RTS* is
always asserted. Refer to Table 323 .

0

18 Reserved. 0

19 CTSS CTS* Sampling Mode
0 - Asynchronous CTS*. CTS* is synchronized inside the GT-96100A. Trans-
mission starts after synchronization is achieved with a few cycles delay to the
external CTS*. (Default)
1 - Synchronous CTS*. CTS* is synchronized to the Rx clock. This mode is
recommended when connecting an MPSC to a FlexTDM.
NOTE: Synchronous CTS* must be used for ISDN D channels.

0

20 CDS CD* Sampling mode
0 - Asynchronous CD*. CD* is synchronized internally in the GT-96100A and
then data is received. (Default)
1 - Synchronous CD*. CD* is synchronized to the Rx clock. This mode is rec-
ommended when connecting an MPSC to a Flex-TDM.

0

Table 322: MPSCx Main Configuration Register Low (MMCRLx), Offset: 0x000A00, 0x008A00,
0x010A00, 0x018A00, 0x020A00, 0x028A00, 0x030A00, 0x038A00
(where x is the port number 0 to 7) (Continued)

Bits
Field
Name Function

Init ial
Value
Revision 1.0 331

GT-96100A Advanced Communication Controller
21 CTSM CTS* Operating Mode
0 - Normal mode. (Envelop Mode). CTS* should envelop the frame. Deasser-
tion of CTS* during transmission will cause a CTS lost error.
1- Pulse Mode. Once CTS* is sampled low, synchronization has been
achieved. Further transitions of CTS* have no effect. CTS* synchronization
will be lost when RTS* is deasserted.

0

22 CDM CD* Operating Mode
0- Normal mode. (Envelop Mode). CD* should envelop the frame. Deasser-
tion of CD* during reception will cause a CD lost error.
1- Pulse Mode. Once CD* is sampled low, synchronization has been
achieved. Further transitions of CD* have no effect.

0

25:23 CRCM CRC Mode
000 - CRC16-CCITT (HDLC based protocols, e.g. X.25) (Default)
001 - CRC-16 (BISYNC)
010 - CRC32-CCITT (HDLC based protocols, e.g. LAP-D. Identical to the
Ethernet CRC)
011 - Reserved
1XX- Reserved

010

27:26 Reserved. 0

28 TRVD Transmit Reverse Data
0 - Normal Mode. (Default)
1 - Reverse Data Mode. MSB is shifted out first.

0

29 RRVD Receive Reverse Data
0 - Normal Mode. (Default)
1 - Reverse Data Mode. MSB is shifted in first.

0

30 Reserved. 0

31 GDE Glitch Detect Enable
0 - Normal mode. No glitch detect. (Default)
1 - When glitch is detect, a maskable interrupt is generated.
When this bit is set the MPSC looks for glitches in the external receive and
transmit clocks.
NOTE: The GT-96100A tries to clean the input clocks by receiving them via

a Schmitt trigger input buffer.

0

Table 322: MPSCx Main Configuration Register Low (MMCRLx), Offset: 0x000A00, 0x008A00,
0x010A00, 0x018A00, 0x020A00, 0x028A00, 0x030A00, 0x038A00
(where x is the port number 0 to 7) (Continued)

Bits
Field
Name Function

Init ial
Value
332 Revision 1.0

GT-96100A Advanced Communication Controller
The following table summarizes the relationship between the TIDL and RTSM

14.2.2 MPSCx Main Configuration Register High (MMCRHx)

Table 323: TIDL/RTSM Relationship

RTSM/TIDL TxD RTS* TxD RTS*

00 �1� Not Encoded 1 Data Encoded 0

01 �1� Encoded 1 Data Encoded 0

10 Flags/Not Encoded 0 Data Encoded 0

11 Flags/Encoded 0 Data Encoded 0

Table 324: MPSCx Main Configuration Register High (MMCRHx), Offset: 0x000A04, 0x008A04,
0x010A04, 0x018A04, 0x020A04, 0x028A04, 0x030A04,0x038A04
(where x is the port number 0 to 7)

Bits
Field
Name Function

Init ial
Value

0 TCI Transmit Clock Invert
0 - Normal operation - Data is shifted out on the falling edge. (Default.)
1 -The internal transmit clock is inverted by the MPSC before it is used. This
allows the MPSC to clock data out half a cycle earlier on the rising edge of
the clock.

0

1 TINV Transmit bit stream inversion
0 - No invert.
1 - Invert the data before it is sent to the DPLL. Setting TINV to �1� generates
FM1 from FM0, NRZI mark from NRZI space, etc. It also inverts the bit
stream in NRZ mode.

0

4:2 TPL Transmit Preamble Length
Determines the number of preamble bytes the transmitter sends before it
starts to transmit data. The send pattern is defined by the TPPT bits.
000 - No Preamble (Default)
001 - 1 byte
010 - 2 bytes
011 - 4 bytes
100 - 6 bytes
101 - 8 bytes
110 - 16 bytes
111 - Reserved

0

8:5 TPPT Transmit Preamble Pattern
Defines a character sent as a preamble sequence. Two TPPT characters
form a preamble byte. The number of preamble bytes sent is defined by the
TPL field. The receiving DPLL uses the preamble pattern to lock on the
receiving signal.

0

Revision 1.0 333

GT-96100A Advanced Communication Controller
10:9 TCDV Transmit Clock Divider
Defines the transmit clock divider. The transmit bit rate is the rate of the clock
entering the MPSC Tx machine (from external pin or a BRG) divided by the
TCDV field. For FM0, FM1, Manchester, and Differential Manchester, one of
the 8x, 16x, or 32x options must be set.
00 - 1x clock mode (Default. For NRZ and NRZI only.)
01 - 8x clock mode
10 - 16x clock mode
11 - 32x clock mode

0

13:11 TDEC Transmit Encoder
Specifies the encoding method for the dedicated Tx channel DPLL.
000 - NRZ (default)
001 - NRZI (mark, can be set to Space by setting TINV bit)
010 - FM0 (can be set to FM1 by setting the TINV bit)
011 - Reserved
100 - Manchester
101 - Reserved
110 - Differential Manchester
111 - Reserved

0

15:14 Reserved. 0

16 RINV Receive Bit Stream Inversion.
0 - No invert.
1 - Inverts the data before it is sent from the DPLL to the MPSC data path.
Setting RINV to �1� decodes FM1 and NRZI mark when the RENC field is
programed to FM0 and NRZI space etc. It also inverts the received bit
stream in NRZ mode.

0

20:17 GDW Clock Glitch Width
When the GDE bit is set, the MPSC will consider Tx/Rx clock pulses that are
narrower than GDW system clocks as a glitch.

0

21 Reserved. 0

Table 324: MPSCx Main Configuration Register High (MMCRHx), Offset: 0x000A04, 0x008A04,
0x010A04, 0x018A04, 0x020A04, 0x028A04, 0x030A04,0x038A04
(where x is the port number 0 to 7) (Continued)

Bits
Field
Name Function

Init ial
Value
334 Revision 1.0

GT-96100A Advanced Communication Controller
22 RDW Receive Data Width
0 - Normal mode. The MPSC data path is 16 bits wide. Upon receiving 16
bits, the data is transferred into the SDMA FIFOs. Buffers must be 64-bit
word aligned. DMA bursts are enabled.
NOTE: Normal Mode must be used for HDLC based protocols.
1 - Low latency operation. Data is transferred to the FIFOs after 8 bits are
received. Logical FIFO width is one byte.
NOTE: This mode allows byte aligned buffers. This mode must be chosen

for BISYNC and UART modes. DMA bursts are disabled. The
SDMA writes one byte per DRAM access. Setting RDW also
bypasses the receive FIFO threshold. The SDMA arbitrates for
DMA access as soon as the FIFO has one byte in it.

0

24:23 RSYL Receive Sync Length (BISYNC and Transparent Modes)
00 - External sync (CD* assertion)
01 - 4-bit sync
10 - 8-bit sync (MonoSYNC)
11 - 16-bit sync (BISYNC)

0

26:25 RCDV Receive Clock Divider
Defines the receive clock divider. The receive bit rate is the rate of the clock
entering the MPSC Rx machine (from external pin or a BRG) divided by the
RCDV field. For FM0, FM1, Manchester, and Differential Manchester, one of
the 8x, 16x, or 32x options must be set.
00 - 1x clock mode (Default. For NRZ and NRZI only.)
01 - 8x clock mode
10 - 16x clock mode
11 - 32x clock mode

0

29:27 RENC Receive Encoder
Specifies the encoding method for the dedicated Rx channel DPLL.
000 - NRZ (default)
001 - NRZI (Mark, can be set to Space by setting RINV bit)
010 - FM0 (can be set to FM1 by setting the RINV bit)
011 - Reserved
100 - Manchester
101 - Reserved
110 - Differential Manchester
111 - Reserved

0

Table 324: MPSCx Main Configuration Register High (MMCRHx), Offset: 0x000A04, 0x008A04,
0x010A04, 0x018A04, 0x020A04, 0x028A04, 0x030A04,0x038A04
(where x is the port number 0 to 7) (Continued)

Bits
Field
Name Function

Init ial
Value
Revision 1.0 335

GT-96100A Advanced Communication Controller
31:30 SEDG Synchronization Clock Edge
The clock edge used by the DPLL for adjusting the receive sample point due
to drift in the receive signal.
00 - Both rising and falling edges. (Default.)
01 - Rising edge
10 - Falling edge
11 - No adjustment

0

Table 324: MPSCx Main Configuration Register High (MMCRHx), Offset: 0x000A04, 0x008A04,
0x010A04, 0x018A04, 0x020A04, 0x028A04, 0x030A04,0x038A04
(where x is the port number 0 to 7) (Continued)

Bits
Field
Name Function

Init ial
Value
336 Revision 1.0

GT-96100A Advanced Communication Controller
14.3 MPSCx Protocol Configuration Registers (MPCRx)

Each MPSC has a dedicated Protocol Configuration Register (MPCRx).

The MPCRx registers are located at base+08 relative to the corresponding MPSC Main Configuration Register
(MMCRx). The functionality of the MPCRx is protocol dependent. Detailed descriptions of the MPCRs are
given in the following protocol sections.

14.4 Channel Registers (CHxRx)

Each MPSC and the ethernet controller has ten dedicated Channel Registers (CHxRx) to program the MPSC or
ethernet controller.

The CHxRx registers are located at base+0xC0 through base+0x30 relative to the corresponding MPSC Main
Configuration Register (MMCRx). The functionality of the CHxRx is protocol dependent. Detailed descriptions
of the CHRs are given in the following protocol sections.

14.5 HDLC Mode

14.5.1 HDLC Receive/Transmit Operation
In HDLC mode, an MPSC performs the following protocol functions:

� Flag generation and stripping
� Bit stuffing and stripping
� Address recognition (up to 16 bit addresses)
� CRC generation and checking
� Line condition monitoring
� LocalTalk preamble generation
� LocalTalk trailing abort generation

Figure 59: Typical HDLC Frame

Figure 60: Typical LocalTalk Frame

FLAG ADDRESS CONTROL INFORMATION CRC FLAG

8 Bits 8/16/8N Bits 8/16 Bits 8N Bits (Optional) 16/32 Bits 8 Bits

CRC FLAG

8 Bits 8bits 8 Bits 0 -598 Bytes 16 Bits 8 Bits

Des ADD Src ADDFLAG LLAP Type Length DataPPulse

10 Bits8bits> 3 Bits

At least the preamble bit is not decoded.

Abort

12-18 Bits

FLAG

8 Bits

6 Reserved Bits
Revision 1.0 337

GT-96100A Advanced Communication Controller
14.5.2 SDMAx Command/Status Field for HDLC Mode
When an MPSC is in HDLC mode, the Command/Status field in the corresponding SDMAx descriptor has the
following format:
Table 325: SDMAx Command/Status Field for HDLC Mode

Bit Rx - Function Tx - Function

0 CE - CRC Error Reserved

1 CDL - CD Loss CTSL - CTS Loss

2 DE - Decoding Error Reserved

3 NO - Non Octet Frame D-deferred. Transmission was deferred due to
busy channel.

4 ABR - Abort Sequence/Residue[0] Reserved

5 Residue[1] Reserved

6 OR - Data Overrun/Residue[2] UR - Data Underrun

7 MFL - Max Frame Length Err Reserved

8 SF - Short Frame RL - Retransmit Limit Error

9 Reserved COL - Collision Occurred

13:10 Reserved RC-Retransmit Count (LAN HDLC mode only)

14 Reserved Reserved

15 ES - Error Summary
ES = CE || CDL || DE || NO || ABR || OR || MFL
|| SF1

1. �||� means logical OR.

Error Summary
ES = CTSL || UR || RL1

16 L - last L - Last

17 F - First F - First

21:18 Reserved Reserved

22 Reserved GC - Generate CRC

23 EI - Enable Interrupt EI - Enable Interrupt

29:24 Reserved Reserved

30 AM - Auto Mode AM - Auto Mode

31 O -Owner O - Owner
338 Revision 1.0

GT-96100A Advanced Communication Controller
14.5.3 MPSCx Protocol Configuration Register (MPCRx) for HDLC

Figure 61: MPSCx Protocol Configuration Register (MPCRx) for HDLC

Table 326: MPSCx Protocol Configuration Register (MPCRx) for HDLC, Offset: 0x000A08,

0x008A08, 0x010A08, 0x018A08, 0x020A08, 0x028A08, 0x030A08, 0x038A08
(where x is the port number 0 to 7)

Bits
Field
Name Function

Init ial
Value

1:0 Reserved. 0

2 LCT Local Talk
When set, the following LocalTalk support is added to the HDLC controller:

� Two abort sequences will be generated at the end of frame follow-
ing its closing flag.

� A preamble will be generated. No encoding will be done for the last
preamble bit

When working with LocalTalk, the FM0 Encoding Scheme should be set by
writing �010� to RENC and TDEC in the MMCRx. The user should also set
TPPT to 0xF and TPL to �1� (one byte preamble). The last preamble bit is not
decoded. This must be done for LocalTalk RTS frames. Setting TPL to �0�
leads to a frame without preamble. This can be used with LocalTalk data
frames. Setting TPL to other values leads to unpredictable results.

0

3 Reserved. 0

4 CCM CRC Compliance Mode.
In HDLC, the TX side uses bit stuffing to prevent a data/CRC pattern from
looking like an HDLC control flag. The CCM tells the Rx side how to handle
frames that were received with mistakes in bit stuffing, when they occur
immediately before the end flag. This is a borderline condition that may or
may not present a problem in actual systems.
0 - Compatible Mode. If the Rx side receives a frame that is missing a
stuffed bit that is supposed to be immediately before the End Flag, then
mark in the descriptor that the frame has a good CRC, and pass the good
CRC along to the buffer.
1 - Compliance Mode. If the Rx side receives a frame that is missing a
stuffed bit that is supposed to immediately proceed the End Flag, then mark
in the descriptor that the frame has a bad CRC, and pass the errored CRC
to the buffer.

5 Reserved. 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Base + 08 MPCRxNOF C
LM

D
R

T

LC
T

C
C

M

Revision 1.0 339

GT-96100A Advanced Communication Controller
6 DRT Disable Rx on Tx
When DRT is set to �1� the Rx path is closed during Tx. This is useful in mul-
tidrop configurations when a user doesn�t want to receive its own frames.

0

8:7 Reserved. 0

9 CLM Collision Mode.
When set to �1�, the MPSC transceiver tries to retransmit a frame after a CTS
lost. This mode allows automatic collision resolution for an ISDN LAP-D type
channel.

0

11:10 Reserved. 0

15:12 NOF Number of Flags
Specifies the number of flags transmitted between consecutive frames.
Setting NOF to �0� specifies shared flag mode. In shared flag mode, the clos-
ing flag of a frame is used as the opening flag of the following frame. This
setting also puts the receiver in back-to-back mode.
The default value is 1.

1

31:16 Reserved. 0

Table 326: MPSCx Protocol Configuration Register (MPCRx) for HDLC, Offset: 0x000A08,
0x008A08, 0x010A08, 0x018A08, 0x020A08, 0x028A08, 0x030A08, 0x038A08
(where x is the port number 0 to 7) (Continued)

Bits
Field
Name Function

Init ial
Value
340 Revision 1.0

GT-96100A Advanced Communication Controller
14.5.4 Channel Registers (CHxRx) for HDLC Mode

Figure 62: Channel Registers (CHxRx) for HDLC

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Base + 0C

Base + 10

CHR1 - SYNR

CHR2 - CR

Base + 14 CHR3 - MFLR

Base + 30

Base + 18 CHR4 - ADFR

Base + 1C CHR5

Base + 20 CHR6 - ADLR

Base + 24 CHR7 - ADHR

Base + 28 CHR8

Base + 2C

SYNC

Max Frame Length

AD2

AD4 AD3

AD1

BCE

EH A A

B N

Abort

CHR9

CHR10 - ESR

Short
Frames

C
TSC
D

TI
D

LE

R
H

S

R
LI

D
L

D
PC

S
R

R
F

Revision 1.0 341

GT-96100A Advanced Communication Controller
Unless otherwise specified:

� �1� means set.
� �0� means not set.
� �0� is the default value after reset.

Table 327: CHxR1 - Sync/Abort Register (SYNR), Offset: 0x000A0C, 0x008A0C, 0x010A0C,
0x018A0C, 0x020A0C, 0x028A0C, 0x030A0C, 0x038A0C (where x is channel 0 to 7)

Bits
Field
Name Function

Init ial
Value

7:0 SYNC Holds the synchronization pattern for the receive machine and opening/
closing flag/sync-pattern for the transmit machine.
This is an HDLC Abort Pattern so no additional programing is needed for
the HDLC protocol.

7E

15:8 Reserved 0

23:16 Abort The abort pattern is transmitted upon receiving an abort command or
when an UnderRun event occurs.
This is an HDLC Abort Pattern so no additional programing is needed for
the HDLC protocol.

FE

31:24 Reserved 0

Table 328: CHxR2 - Command Register (CR), Offset: 0x000A10, 0x008A10, 0x010A10,
0x018A10, 0x020A10, 0x028A10, 0x030A10, 0x038A10 (where x is channel 0 and 7)

Bits
Field
Name Function

Resetv
Value

6:0 Reserved. 0

7 A Abort Transmission
Abort transmission immediately and go to IDLE. The descriptor is not
closed or incremented.
NOTE: Command is not synchronized to byte.

0

22:8 Reserved. 0

23 A Abort Reception
Abort receive immediately and go to IDLE. The descriptor is not closed or
incremented. The processor must issue enter hunt command after abort
command in order to enable reception. The bit is cleared upon entering
IDLE state.
After executing an Abort Reception, the CPU must disable the Tx SDMA
channel. The CPU then needs to execute a normal initialization process to
the MPSC.

0

30:24 Reserved. 0
342 Revision 1.0

GT-96100A Advanced Communication Controller
NOTES:The ET bit in the Main Configuration Register must be set to �1� before issuing the following Transmit
Demand, Stop Transmission, or Abort Transmission commands.

The ER bit in the Main Configuration Register must be set to �1� before issuing the Enter Hunt or Abort
Reception commands.

When the ET or ER bits are deasserted, the MPSCx transmit/receive channel is in low power mode (NO
CLOCK). Issuing one of the above commands in this state will lead to unpredictable results.

31 EH Enter Hunt
Upon receiving the Enter Hunt command, the receive machine moves to
HUNT state and continuously searches for an opening flag. If enter hunt
mode command is issued during frame reception, the current descriptor is
closed with CRC error1. The EH bit is cleared upon entering Hunt state.

0

N/A TD Transmit Demand
Fetch a descriptor and start transmission.
Issued through the SDMAx Command Register.

N/A Stop Stop
Complete frame transmission and stop. (Go to IDLE).
Issued through the SDMAx Command Register.

1. The reception process for this purpose begins after proper address recognition is allowed. Before achieving an address
match, the receiver goes to Enter Hunt state without closing the descriptor.

Table 329: CHxR3 - Maximum Frame Length Register (MFLR), Offset: 0x000A14, 0x008A14,
0x010A14, 0x018A14, 0x020A14, 0x028A14, 0x030A14, 0x038A14
(where x is channel 0 and 7)

Bits
Field
Name Function

Init ial
Value

15:0 FLBR Frame Length Buffer Register
Holds the maximum allowed frame length. When a frame exceeds the num-
ber written in the FLBR, the remainder of the frame is discarded. The HDLC
controller waits for a closing flag and then returns the frame status with bit 7
(MFLE) set to �1�.

0xFFFF

31:16 Reserved. 0

Table 328: CHxR2 - Command Register (CR), Offset: 0x000A10, 0x008A10, 0x010A10,
0x018A10, 0x020A10, 0x028A10, 0x030A10, 0x038A10 (where x is channel 0 and 7)

Bits
Field
Name Function

Resetv
Value
Revision 1.0 343

GT-96100A Advanced Communication Controller
Table 330: CHxR4 - Address Filtering Register (ADFR), Offset: 0x000A18, 0x008A18, 0x010A18,
0x018A18, 0x020A18, 0x028A18, 0x030A18, 0x038A18 (where x is channel 0 and 7)

Bits
Field
Name Function

Init ial
Value

15:0 BCE Bit Comparison Enable Bits
Setting �1� in one of the BCE bits enables the address comparison for this
bit:

� For 16-bit LAP-D like address recognition, write 0xFFFF in ADFR.
� For 8-bit HDLC/LAP-B like address recognition, write 0x00FF in

ADFR.
� For reception of a predefined address group, write �0� to the appro-

priate bits to disable address comparison on these bits.

0

28:16 Reserved. 0

29 N Null Enable
Enables the reception of HDLC NULL address (0x0000 or 0x00 depending
on the BCE setting)

0

30 Reserved. 0

31 B Broadcast Enable
Enables the reception of HDLC broadcast address (0xFFFF or 0xFF,
depending on the BCE setting).

0

Table 331: CHxR5 - Short Frame Register (SHFR), Offset: 0x000A1C, 0x008A1C, 0x010A1C,
0x018A1C, 0x020A1C, 0x028A1C, 0x030A1C, 0x038A1C (where x is channel 0 and 7)

Bits
Field
Name Function

Init ial
Value

2:0 SHFR Short Frame Register
Setting SHFR to �1� enables the Short Frame Error report. Short Frames
are frames with byte count less than 3+SHFR.

0

31:3 Reserved. 0

Table 332: CHxR6 - Address 1 and 2 Register (ADLR), Offset: 0x000A20, 0x008A20, 0x010A20,
0x018A20, 0x020A20, 0x028A20, 0x030A20, 0x038A20 (where x is channel 0 and 7)

Bits
Field
Name Function

Reset
Value

15:0 AD1 Address 1
A 16-bit address that can be used for receive address recognition.

0

31:16 AD2 Address 2
A 16-bit address used for receive address recognition.

0

344 Revision 1.0

GT-96100A Advanced Communication Controller

The ESR register holds information on the transmit/receive channel condition.

CHR10 can be read by the CPU for channel condition resolution. Some changes in the channel condition can
generate maskable interrupts, as shown below.

Table 333: CHxR7 - Address 3 and 4 Register (ADHR), Offset: 0x000A24, 0x008A24, 0x010A24,
0x018A24, 0x020A24, 0x028A24, 0x030A24, 0x038A24 (where x is channel 0 and 7)

Bits
Field
Name Function

Reset
Value

15:0 AD3 Address 3
A 16-bit address that can be used for receive address recognition.

0

31:16 AD4 Address 4
A 16-bit address that can be used for receive address recognition.

0

Table 334: CHxR8 - Reserved, Offset: 0x000A28, 0x008A28, 0x010A28, 0x018A28, 0x020A28,
0x028A28, 0x030A28, 0x038A28 (where x is channel 0 and 7)

Bits
Field
Name Function

Init ial
Value

31:0 Reserved.
NOTE: Do not access this register in the HDLC mode.

0

Table 335: CHxR9 - Reserved, Offset: 0x000A2C, 0x008A2C, 0x010A2C, 0x018A2C, 0x020A2C,
0x028A2C, 0x030A2C, 0x038A2C (where x is channel 0 and 7)

Bits
Field
Name Function

Reset
Value

31:0 Reserved.
NOTE: Do not access this register in the HDLC mode.

0

Revision 1.0 345

GT-96100A Advanced Communication Controller
Table 336: CHxR10 - Event Status Register (ESR), Offset: 0x000A30, 0x008A30, 0x010A30,
0x018A30, 0x020A30, 0x028A30, 0x030A30, 0x038A30 (where x is channel 0 and 7)

Bits
Field
Name Function

Init ial
Value

0 CTS Clear To Send Signal
An interrupt is generated when this signal is deasserted during transmit.

0

1 CD Carrier Detect Signal
An interrupt is generated when this signal is deasserted during receive.

0

2 Reserved. 0

3 TIDLE Tx in IDLE state.
An interrupt is generated upon entering IDLE state.

0

4 Reserved. 0

5 RHS Rx in HUNT state. 0

10:6 Reserved. 0

11 RLIDL 1 = Rx IDLE Line 0

12 DPCS 1 = DPLL Carrier Sense. 0

13 RRF 1 = Rx Receiving Flags. 0

31:14 Reserved. 0
346 Revision 1.0

GT-96100A Advanced Communication Controller
14.6 BISYNC Mode

The GT-96100A BISYNC controller was designed to reduce CPU overhead by executing most of the protocol
requirements for BISYNC/MonoSYNC mode without CPU interference.

When Auto Transparent mode is enabled, the GT-96100A automatically switches to the transparent receive mode
upon receiving a DLE STX sequence.

Other features are controlled by programming the bank of control registers.

Figure 63: Typical BISYNC/MonoSYNC Frames

14.6.1 BISYNC Transmit Operation
In BISYNC mode an MPSC handles the following protocol functions:

� Leading SYNC character transmission before a buffer with F bit set.
� Optional 32-bit transmission before the SYNC transmission.
� DLE transmission before a buffer with the TD bit set.
� BCC generation:

- BCC (CRC-16, VRC/LRC and VRC/CRC-16) is calculated.
- Buffers with BCE set to �0� are excluded from BCC calculation.
- CRC reset is controlled from the RC bit in Tx descriptor.
- The calculation of BCC is sent or discarded according to the GC bit in the Tx descriptor.

� Automatic stuffing of DLE when transmitting a transparent buffer (buffer with TR bit set).
� SYNC transmission if underrun occurs.

BISYNC transmission is descriptor chain oriented. Transmission starts when the CPU issues a Transmit Demand
command and continues until the channel�s SDMA reaches a NULL pointer or a �not owned� descriptor.

HEADER TEXT BCCSYN
ETX

SOH STX or
ETB

BISYNC Text With Header

DATA CRCSYN

MONOSYNC

SYN

TEXT BCCSYN
ETX

STX or
ETB

BISYNC Text Without Header

SYN

TEXT BCCSYN
ETX

DLE DLE or
ETB

BISYNC Transparent

SYN STX
Revision 1.0 347

GT-96100A Advanced Communication Controller
14.6.2 BISYNC Receive Operation
There are two major operating modes in the BISYNC receiver.

14.6.2.1 BISYNC Normal Receive Mode
In Normal Mode, the BISYNC receiver handles the following protocol functions:

� BISYNC, MonoSYNC, NibbleSYNC or External SYNC synchronization.
� Auto SYNC stripping in text mode.
� Auto DLE-SYNC stripping in transparent text mode.
� Auto SYNC stripping after receiving DLE ITB in transparent mode.
� Automatic exit of transparent mode after receiving DLE-ETX/ETB (if RTR bit in the MPCRx was

cleared).
� Marking of buffers that contain transparent data by setting the TB bit in the descriptor.
� BCC generation:

- BCC (CRC-16, VRC/LRC and VRC/CRC-16) is calculated.
- In transparent text mode, CRC-16 always overrides the VRC.
- SYNC (DLE-SYNC) is not included in the BCC calculation.

� Buffer closing at the reception of ETX, ETB, ITB and ENQ.
� Maintaining SYNC (stay in text mode) after ITB.
� Protocol correctness checking:

- Test for �1� padding at the end of block reception. (The CPU should ignore a padding error reported
after ITB, and can use it when testing for proper NAK or EOT.)

- Test for DLE-CTL after receiving DLE-ITB in transparent text mode. If another sequence arrives
(except SYNCs), buffer is closed with DLE error.

Table 337: BISYNC Receiver Operating Modes

Mode Function

Normal Mode The CPU must monitor each received byte and manage each BISYNC opera-
tion (e.g., moving into transparent mode) manually.

Auto Transparent Mode The GT-96100A handles transparent mode automatically.
This mode reduces the CPU burden since it can monitor the incoming data
buffer-by-buffer and not byte-by-byte.
348 Revision 1.0

GT-96100A Advanced Communication Controller
14.6.2.2 BISYNC Auto Transparent Receive Mode
In Auto Transparent Mode, the BISYNC receiver handles the following protocol functions:

� BISYNC, MonoSYNC, NibbleSYNC, or External SYNC synchronization.
� Auto SYNC stripping in text mode.
� Auto DLE-SYNC stripping in transparent text mode.
� Auto SYNC stripping after receiving DLE ITB in transparent mode.
� Automatic switch to transparent mode after receiving DLE-STX.
� Automatic exit of transparent mode after receiving DLE-ETX/ETB.
� Marking of buffers that contain transparent data by setting the TB bit in the descriptor.
� BCC generation:

- BCC (CRC-16, VRC/LRC and VRC/CRC-16) is calculated.
- In transparent text mode, CRC-16 always overrides the VRC.
- SYNC (DLE-SYNC) is not included in the BCC calculation.
- Opening STX/SOH (DLE-STX) are discarded from BCC calculations.

� Buffer closing at the reception of ETX, ETB, ITB, and ENQ.
� Maintaining SYNC (stay in text mode) after ITB.
� Buffer closing after SYN-SYN-DLE-CHAR (when char is not STX).
� Protocol correctness checking:

- Test for �1� padding at the end of block reception. (The CPU should ignore a padding error reported
after ITB, and can use it when testing for proper NAK or EOT.)

- Test for DLE-CTL (CTL is a control character with B or H set) after receiving DLE-ITB in
transparent text mode. If another sequence arrives (except SYNCs), buffer is closed with a DLE
error.

The BISYNC receive process is block oriented. A block starts after a buffer was closed due to control character
reception, overrun, protocol error, parity error, or line error (i.e. CD deassertion).

The first descriptor in a block is marked with F bit set to �1�. The last descriptor in block is marked with L bit set
to �1�. The last descriptor also includes the actual status report for the block. Intermediate descriptors can be rec-
ognized by having both F and L bit set to �0�.
Revision 1.0 349

GT-96100A Advanced Communication Controller
14.6.3 SDMAx Command/Status Field for BISYNC Mode
When an MPSC is in BISYNC mode the Command/Status field in the corresponding SDMAx descriptor has the
following format:
Table 338: SDMAx Command/Status Field for BISYNC Mode

Bits Rx - Function Tx - Function

0 CE - CRC/LRC Error Reserved

1 CDL - CD Loss CTSL - CTS Loss

2 DE - Decoding Error Reserved

3 DLE - DLE Error. While in transparent mode,
this indicates a DLE was received and the fol-
lowing byte was not a valid control character.

Reserved

4 PR - Parity Error. Last byte in buffer has parity
error.

Reserved

5 Reserved Reserved

6 OR - Data Overrun Reserved

8:7 Reserved Reserved

9 PDR - Pad Report. This is set if there were no
four consecutive �1�s after the block reception.

Reserved

10 Reserved Reserved

11 TB - Transparent Buffer. Buffer contains trans-
parent data.

Reserved

12 Reserved Reserved

13 C - Last bytes in buffer is a user defined control
character.

Reserved

14 B - Last bytes in buffer are BCC. Reserved

15 ES - Error Summary
ES = CDL || DE || DLE || PR || OR

ES - Error Summary
ES = CTSL

16 L - Last L - Last
NOTE: Transmit Bit 22 is used only if L bit is

set to �1�. If L bit is set to �0�, no BCC is
sent at the end of this buffer transmis-
sion.

17 F - First F - First
350 Revision 1.0

GT-96100A Advanced Communication Controller
14.6.4 MPSCx Protocol Configuration Register (MPCRx) for BISYNC

Figure 64: MPSCx Protocol Configuration Register (MPCRx) for BISYNC

18 Reserved TR - Transparent mode.
� 0 - Normal mode. SYNC will be sent in

case of underrun
� 1 - Transparent Mode. DLE-SYNC will

be sent in case of underrun. CRC-16
will be used.

19 Reserved TD - Transmit DLE before transmitting the
buffer. This bit is valid only for transparent buff-
ers. The preceding DLE is not included in the
BCC calculations.

20 Reserved BCE - BCC Enable
� 0 - Buffer must be excluded from BCC

calculations
� 1 - Buffer must be included in BCC

calculation

21 Reserved RC - Reset BCC
� 0 - BCC/LRC is accumulated.
� 1 - BCC/LRC is reset.

22 Reserved GC - Generate BCC/LRC.

23 EI - Enable Interrupt EI - Enable Interrupt

29:24 Reserved Reserved

30 AM - Auto Mode AM - Auto Mode

31 O - Owner O - Owner

Table 338: SDMAx Command/Status Field for BISYNC Mode (Continued)

Bits Rx - Function Tx - Function

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Base + 08 MPCRxD
R

T

TS
M

AT
M

R
D

B
R

TR

TR
P

Revision 1.0 351

GT-96100A Advanced Communication Controller
Table 339: MPSCx Protocol Configuration Register (MPCRx) for BISYNC, Offset: 0x000A08,
0x008A08, 0x010A08, 0x018A08, 0x020A08, 0x028A08, 0x030A08, 0x038A08
(where x is the port number 0 to 7)

Bits
Field
Name Function

Init ial
Value

1:0 Reserved. 0

2 ATM Auto Transparent Mode
0 - Normal Mode.
1 - Receiver switches to transparent mode after receiving DLE-STX and
exits transparent mode upon receiving a DLE-ETB or DLE-ETX sequence.
When switching to transparent mode, new buffers are opened for transpar-
ent data. When the ATR bit is set to �1� the following characters should be
programed into CTL1-8:

� CTL3 - STX
� CTL4 - SOH

NOTE: When entering transparent mode either automatically or by issu-
ing an RTR command, the Receiver will strip automatically lead-
ing DLEs. The TB bit in the descriptor will be set to signal the
software that the buffer contains transparent data.

0

5:3 Reserved. 0

6 DRT Disable Rx on Tx
When DRT is set to �1� the Rx path is closed during Tx. This is useful in a
multidrop configuration when a user doesn�t want to receive its own frames.

0

9:7 Reserved. 0

10 TRP Trailing Pad
When set, the BISYNC transmitter sends a PAD character (0xFF) at the
end of each outgoing frame (i.e. after a buffer with L bit set.)

0

12:11 Reserved. 10

13 RTR Receive Transparent Mode
0 - The receiver is placed in normal mode with sync stripping and control
character recognition operative.
1 - The receiver is placed in transparent mode. Syncs DLEs and control
characters are recognized only after leading DLE characters. CRC16 is cal-
culated even in VRC/LRC mode while in transparent mode.
NOTE: When entering transparent mode either automatically or by issu-

ing an RTR command, the receiver automatically strips leading
DLEs. The TB bit in the descriptor is set to signal the software that
the buffer contains transparent data.

0

352 Revision 1.0

GT-96100A Advanced Communication Controller
14.6.5 Channel Registers (CHxRx) for BISYNC Mode

Figure 65: Channel Registers (CHxRx) for BISYNC

14 RDB Receive Discard From BCC
When this bit is set, the received byte is not included in the BCC. The soft-
ware must set this bit within the byte time window that starts when the char-
acter is in the Rx machine internal buffer. (The software can use the
BISYNC interrupts for proper synchronization.) This bit is used in software
to control BISYNC. The GT-96100A clears the RDBCC bit after discarding
the required byte from BCC.

0

15 TSM Tx SYNC Mode
0 - Two SYNC characters are transmitted.
1 - 32 SYNC characters are transmitted.
NOTE: The Tx machine sends at least two bytes even in MonoSYNC or

NibbleSYNC modes.

0

31:16 Reserved 0

Table 339: MPSCx Protocol Configuration Register (MPCRx) for BISYNC, Offset: 0x000A08,
0x008A08, 0x010A08, 0x018A08, 0x020A08, 0x028A08, 0x030A08, 0x038A08
(where x is the port number 0 to 7) (Continued)

Bits
Field
Name Function

Init ial
Value

1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0Base +0C

Base + 10

CHR1 - SDR

CHR2 - CR

Base + 14 CHR3

CHR10

Base + 18 CHR4 - CFR

Base + 1C CHR5 - CTLR1

Base + 20 CHR6 - CTLR2

Base + 24 CHR7 - CTLR3

Base + 2C CHR8 - CTLR4
Base + 30 CHR9

SYNC

CTL4/SOH

CTL6 CTL5

CTL3/STX

BCE

A

DLE

TE
L

EH A

CTL2 CTL1

Base + 34 Event

CTL8 CTL7

R
BC

C
R

D

TPMRPM R
EV TE

V

R
EL

VV

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

TL
R

M

R
LR

M

Revision 1.0 353

GT-96100A Advanced Communication Controller
Unless otherwise specified:

� �1� means set
� �0� means unset.
� �0� is the default value after reset.

14.6.5.1 CHR1 - SYNC/DLE Register (SDR)
CHR1[7:0] holds the SYNC character and CHR1[23:16] holds the DLE character for the channel. After reset it
holds the value of 7E in the SYNC field and FE in the DLE field. The user must write the appropriate values
before enabling the Rx/Tx machines.

If bit 15 is set, the BISYNC receive machine discards the SYNC patterns received in a middle of a message.

NOTE: This usually happens when the transmitter experiences underrun.

If bit [15] is �0� the SYNC characters is transferred to the receive buffer.

If bit 31 is �1�, the first DLE received in transparent mode is discarded. If bit 31 is �0�, the BISYNC receiver is
not discard DLE in transparent mode.

A BISYNC transmitter always stuffs the leading DLE before transmitting the DLE that is part of a transparent
buffer (transmit descriptor with TR bit set). In order to send DLE ETX, for example, the CPU must either prepare
a buffer that contains DLE ETX and set TR=�0�, or prepare a buffer with ETX and program the transmitter to
send a leading DLE by setting the TD bit in the descriptor.

A BISYNC transmitter always transmits SYNC-SYNC at the beginning of a frame. This is true in MonoSYNC
and NibbleSYNC modes.

When a BISYNC transmitter experiences underrun it transmits continuous SYNC patterns in text mode or DLE-
SYNC in transparent mode. The BISYNC transmitter exits this state upon receiving new data or when the CPU
issues a Stop or Abort command.

The receiver SYNC length is programmable. The actual length is determined according to the value of the RSYL
bits in the MMCRx. If the RSYL bits equal #00b, the synchronization is done externally and the receiver will
start receiving when CD* is asserted.

In NibbleSync mode, bits [7:4] are used by the receiver for sync recognition. Bits [3:0] should return the SYNC
pattern in order to assure proper SYNC transmission.
354 Revision 1.0

GT-96100A Advanced Communication Controller
14.6.5.2 CHR2 - Command Register (CR)
Table 340: CHxR2 - Command Register (CR), Offset: 0x000A10, 0x008A10, 0x010A10,

0x018A10, 0x020A10, 0x028A10, 0x030A10, 0x038A10 (where x is channel 0 and 7)

Bits
Field
Name Function

Init ial
Value

0 TEL Tx Enable Longitudinal Redundancy Check
0 - LRC is disabled.
1 - LRC is enabled. (TEL default value is 0 and the CPU must write �1� to it
in order to enable LRC). When set, TEL overrides the CRC mode that was
programed in the CRCM field in the MMCRx.

0

1 TEV Tx Enable Vertical Redundancy Check (Parity Bit)
0 - VRC is disabled.
1 - VRC is enabled. (TEV default value is �0� and the CPU must write �1� to it
in order to enable VRC).

0

3:2 TPM Transmit Parity Mode
00 - Odd
01 - Low (always �0�)
10 - Even
11 - High (always �1�)

0

4 TLRM Transmit Longitudinal Redundancy Mode
0 - Odd
1 - Even

1

6:5 Reserved. 0

7 A Abort Transmission
Abort transmission immediately and go to IDLE. The descriptor is not
closed or incremented.
NOTE: Command is not synchronized to byte.

0

15:8 Reserved. 0

16 REL Rx Enable Longitudinal Redundancy Check.
0 - LRC is disabled.
1 - LRC is enabled. This is the normal mode for BISYNC. When set, REL
overrides the CRC mode that was programed in the CRCM field in the
MMCRx.

0

17 REV Rx Enable Vertical Redundancy Check (parity bit).
0 - VRC (parity) is disabled.
1 - VRC is enabled. This is the normal mode for BISYNC.

0

19:18 RPM Receive Parity Mode
00 - Odd
01 - Low (always �0�)
10 - Even
11 - High (always �1�)

0

Revision 1.0 355

GT-96100A Advanced Communication Controller
20 RLRM Receive Longitudinal Redundancy Mode
0 - Odd
1 - Even

1

22:21 Reserved. 0

23 A Abort Reception
Abort receive immediately and go to IDLE. The descriptor is not closed or
incremented. The processor must issue an enter hunt command after an
abort command to enable reception.
The A bit is cleared upon entering IDLE state.

0

24 Reserved. 0

25 CRD Close Rx Descriptor
When the CPU issues a CRD command the current receive descriptor is
closed and the following received data is SDMA�d into a new buffer. If there
is no active receive in process, no action takes place.

0

28:26 Reserved. 0

29 RBC Reset BCC
The CPU issues an RBC command in order to manually reset the CRC-
LRC/VRC generator. The BCC calculation starts with the next byte. The
GT-96100A clears the RBC bit after resetting BCC.

0

30 Reserved. 0

31 EH Enter Hunt
Upon receiving an enter hunt command, the receive machine will move to a
hunt state and will continuously search for an opening SYNC or external
SYNC. If an enter hunt mode command is issued during frame reception,
the current descriptor will be closed with a CRC error.
The EH bit will be cleared upon entering a hunt state.

0

NA TD Transmit Demand
Fetch a descriptor and start transmission.
Issued through the SDMAx Command Register.

NA Stop Stop Transmission
Complete frame transmission and stop. (Go to IDLE).
Issued through the SDMAs Command Register.

Table 340: CHxR2 - Command Register (CR), Offset: 0x000A10, 0x008A10, 0x010A10,
0x018A10, 0x020A10, 0x028A10, 0x030A10, 0x038A10 (where x is channel 0 and 7)

Bits
Field
Name Function

Init ial
Value
356 Revision 1.0

GT-96100A Advanced Communication Controller
The ET bit in the Main Configuration Register must be set to �1� before issuing any of the following commands:

� Transmit Demand.
� Stop Transmission.
� Abort Transmission.

The ER bit in the Main Configuration Register must be set to �1� before issuing any of the following commands:

� Enter Hunt
� Reset BCC
� Close Rx Descriptor
� Abort Reception.

When the ET or ER bits are deasserted, the MPSCx transmit/receive channel is in low power mode (NO
CLOCK).

NOTE: Issuing one of the above commands in this state will lead to unpredictable results.

Setting TEL=�0�, TEV=�1� and CRCM=�001�, or setting REL=�0�, REV=�1� and CRCM=�001�, will set the
BISYNC transmitter/receiver to work in VRC+CRC16 mode. The calculated parity bit is considered part of the
data that the CRC-16 checks.

When a BISYNC transmitter transmits a transparent buffer, it automatically switches to the CRC that was pro-
grammed in the CRCM field in MMCRx. When a receiver enters transparent mode, it automatically switches to
the CRC that was programed in CRCM field in MMCRx. In both cases, CRCM must be programed to �001� in
order to meet the BISYNC CRC-16 specifications.

14.6.5.3 CHR4 - Control Filtering Register (CFR)
Bits 7:0 of the CFR register are the Bit Comparison Enable bits. Setting �1� in one of the BCE bits enables the
control comparison for this bit

14.6.5.4 CHR5-8 - BISYNC Control Character Registers
Figure 66 shows a BISYNC control register format.

The CHAR field holds the pattern for the control character while bits 8-15 are used to control the GT-96100A
behavior when the control character is recognized.

Figure 66: BISYNC Control Character Register Format

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

CHARV B H I ST
X

SO
H

IT
T

Revision 1.0 357

GT-96100A Advanced Communication Controller

The BISYNC Control Character programming recommendations for Auto Transparent Mode and CPU Con-
trolled Operation are shown in the following tables.

Table 341: BISYNC Control Character Register Format

Bits
Field
Name Function

Init ial
Value

7:0 CHAR The Control Character To Sync On
NOTE: Bit 7 must be programmed according to the parity method in use.

See Table 340.

0

8 Reserved. 0

9 SOH SOH Character
0 - Normal Mode.
1 - SOH character. In Auto Transparent mode the characters following SOH
including STX are part of the BCC calculations.

0

10 STX STX Character
0 - Normal character.
1 - STX character. In Auto Transparent mode, an STX character is expected
after the first DLE in order to enter transparent mode.

0

11 ITT Ignore While Receiving in Text Mode
0 - Normal control character.
1 - Ignore this character after entering text mode (i.e. after receiving SYN-
SYN-STX/SOH).

0

12 I Interrupt
0 - No interrupt.
1 - Generate interrupt upon receiving this CHAR.

0

13 H Hunt
0 - Close buffer and maintain SYNC.
1 - Close buffer and move to HUNT state.

0

14 B BCC Next
0 - Close buffer.
1 - BCC is next. Receive BCC and than close buffer.

0

15 V Valid.
0 - Entry is not valid.
1 - Entry is valid.

0

358 Revision 1.0

GT-96100A Advanced Communication Controller

14.6.5.5 CHR9 - Reserved
This register is reserved.

Do not access this register in the BISYNC mode.

Table 342: Auto Transparent Programming

Control Character V B H I ITT STX SOH

STX1

1. CTL3 must be use to hold STX

1 0 0 X 1 1 0

SOH2

2. CTL4 must be use to hold SOH

1 0 0 X 1 0 1

ETX 1 1 1 X 0 0 0

ITB 1 1 0 X 0 0 0

ETB 1 1 1 X 0 0 0

ENQ 1 0 1 X 0 0 0

EOT 1 0 1 X 1 0 0

NACK 1 0 1 X 1 0 0

Table 343: CPU Controlled Operation

Control Character V B H I ITT STX SOH

ETX 1 1 1 X 0 0 0

ITB 1 1 0 X 0 0 0

ETB 1 1 1 X 0 0 0

ENQ 1 0 1 X 0 0 0

EOT 1 0 1 X 1 0 0

NACK 1 0 1 X 1 0 0

Other Entry

Other Entry
Revision 1.0 359

GT-96100A Advanced Communication Controller
14.6.5.6 CHR10 - BISYNC Event Status Register (ESR)
The ESR register holds information on the transmit/receive channel condition.

CHR10 can be read by the CPU for channel condition resolution. Some changes in the channel condition can
generate maskable interrupts, as shown below.

NOTE: PERR will be set in transparent mode during SYN stripping when a non DLE or SYN character is
received. This is a protocol violation. The receiver moves to hunt mode and a maskable interrupt is gen-
erated. The received character is discarded.

Table 344: CHxR10 - BISYNC Event Status Register (ESR), Offset: 0x000A30, 0x008A30,
0x010A30, 0x018A30, 0x020A30, 0x028A30, 0x030A30, 0x038A30
(where x is channel 0 and 7)

Bits
Field
Name Event

0 CTS Clear To Send Signal1

1. Interrupt is generated when signal is deasserted during transmit

1 CD Carrier Detect Signal2

2. Interrupt is generated when signal is deasserted during receive

2 Reserved

3 TIDLE Tx in Idle State3

3. Interrupt is generated upon entering IDLE state

5 RHS Rx in HUNT state

10:6 Reserved

11 RLIDL 1 = Rx IDLE Line4

4. Interrupt is generated upon change in line status

12 DPCS 1 = DPLL Carrier Sense

15:13 Reserved.

23:16 RCRn Received Control Character n
When the BISYNC receiver recognizes a control character it sets the corresponding
RCRn bit. Bit 16 (RCR1) corresponds to CTL1. Bit 23 (RCR8) corresponds to CTL8.
RCRn bits are cleared by writing �1� to the bit. RCRn is set if the corresponding control
character arrives, and both its Valid bit and Interrupt bit are also set (e.g., bit 16 will be
set if CTL1 arrives, and both CTL1�s �V� bit is set, and CTL1�s �I� bit is also set.)
360 Revision 1.0

GT-96100A Advanced Communication Controller
14.7 UART Mode

14.7.1 UART Receive/Transmit Operation
In UART mode an MPSC performs the following protocol functions:

� Start/Stop bit framing.
� Programmable data lengths (5-8 bits).
� Synchronous and asynchronous support.
� Message oriented data support.
� Parity detection and generation.
� Frame error, noise error, break, and idle detection.
� Support for HDLC over asynchronous control-octet transparency protocol.
� Multidrop operation with address recognition of up to two different addresses.

Figure 67 shows a typical UART frame format. A frame with a start bit is followed by 5-8 data bits. The address
and parity bits are optional.

Figure 67: Typical UART Frame

At the end of a frame there are 1�2 stop bits before the transmitter can start to transmit the next frame. If there is
nothing to transmit, a continuous �1� is transmitted. This indicates that the line is idle.

The GT-96100A�s UART samples each bit three times near its central point to define the bit value. A new start bit
can be recognized only after the last stop bit sample is received. For example, at a 16x clock rate, the receiver can
receive a start bit after a 9/16 bit time long stop bit.

When in UART mode, the RDW bit in the MMCRx should be set to configure the MPSCx data path to 8 bits.

A UART transceiver can work in Asynchronous or Isochronous modes.

14.7.1.1 Asynchronous Mode
In Asynchronous mode, the DPLL encoding must be set to RNZ and the clock sampling rate is set to 8x, 16x, or
32x of the data rate. The DPLL is synchronized by the falling edge of the start bit. If no error occurs, it maintains
synchronization until the last bit in a frame is received.

Start Bit

ADD Bit (Optional)

PAR Bit (Optional)

Stop Bit

Data 5-8Bbits
Revision 1.0 361

GT-96100A Advanced Communication Controller
Each bit is sampled three times around it�s middle point. The bit value is determined by a majority vote. This fea-
ture helps to filter out noise from received data.

14.7.1.2 Isochronous Mode
In Isochronous mode, the DPLL sampling rate will be 1x the data rate. The receive data must be synchronized to
the receive clock.

14.7.2 SDMAx Command/Status Field for UART Mode
When an MPSC is in UART mode the Command/Status field in the corresponding SDMAx descriptor has the
following format:
Table 345: SDMAx Command/Status Field for UART Mode

Bit Rx - Function Tx - Function

0 PE - Parity Error. Last byte in buffer has parity
error.

Reserved

1 CDL - CD Loss CTSL - CTS Loss

2 Reserved Reserved

3 FE - Framing Error Reserved

5:4 Reserved Reserved

6 OR - Data Overrun Reserved

8:7 Reserved Reserved

9 BR - Break Received while receiving data into
this buffer

Reserved

10 MI - Max Idle. Buffer was closed due to
Max_Idle timer expiration.
NOTE: When this bit is set, the status of bit 0

is disregarded.

Reserved

11 A - Address. First byte in the buffer is an
address. (Valid only in multidrop mode, �0� in
point to point mode.)

Reserved

12 AM - Address match. This bit will be set to �1�
when a match occurred even if the V bit of the
address is disabled.

Reserved

13 CT - The last byte in the buffer was precede by
a transparency control octet.

Reserved

14 C - The last byte in a buffer is a user define
control character.

Reserved

15 ES - Error Summary
ES = PE || CDL || FE || OR

ES - Error Summary
ES = CTSL

16 L - Last L- Last
362 Revision 1.0

GT-96100A Advanced Communication Controller
14.7.3 MPSCx Protocol Configuration Register (MPCRx) for UART Mode

Figure 68: MPSCx Protocol Configuration Register (MPCRx) for UART Mode

17 F - First F - First

18 Reserved P - Preamble. When set, the UART will send an
IDLE preamble before buffer data. If data
length is 0, only preamble IDLE will be send.

19 Reserved A - Address. When set, buffer content will be
sent with address bit on. Valid only in multidrop
mode.

20 Reserved NS - No Stop Bit. When set, data will be sent
without stop bit.

22:21 Reserved Reserved

23 EI - Enable Interrupt EI - Enable Interrupt

29:24 Reserved Reserved

30 AM - Auto Mode AM - Auto Mode

31 O - Owner O - Owner

Table 345: SDMAx Command/Status Field for UART Mode (Continued)

Bit Rx - Function Tx - Function

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Base + 08 MPCRFR
Z

D
R

T

FL
C

SB
L

CL UM R
ZS IS
O

Revision 1.0 363

GT-96100A Advanced Communication Controller
Table 346: MPSCx Protocol Configuration Register (MPCRx) for UART Mode, Offset: 0x000A08,
0x008A08, 0x010A08, 0x018A08, 0x020A08, 0x028A08, 0x030A08, 0x038A08
(where x is the port number 0 to 7)

Bits
Field
Name Function

Init ial
Value

5:0 Reserved. 0

6 DRT Disable Rx on Tx. When DRT is set to �1� the Rx path is closed during Tx.
This is useful in multidrop configurations when a user doesn�t want to
receive its own frames

0

7 ISO Isochronous Mode
0 - Asynchronous Mode. Start and stop bits are expected. RENC in the
MMCRx should be programmed to NRZ and RCDV should be programmed
to x8, x16 or x32 mode. (x16 is recommended for most applications).
1 - Isochronous Mode. The receive bit stream is assumed to be synchro-
nous to the receive clock. RCDV should be programmed to x1 mode.

0

8 RZS Receive Zero Stop Bit
0 - Normal Mode. At least one stop bit is expected.
1 - Zero Stop Bit. The receiver continues reception when a stop bit is miss-
ing. If a �0� is received when stop bit is expected, this bit is considered a
start bit. The FE (Framing Error) bit is set and the next bit to be received is
considered to be data.

0

9 FRZ Freeze Tx
0 - Restart Tx after freeze (normal operation). Transmission continues from
the place it stopped.
1 - Freeze Tx at the end of the current character.

0

11:10 UM UART Mode
00 - Normal Mode. Multidrop is disabled and IDLE line wake up is selected.
A UART receiver wakes up after entering hunt mode upon receiving an
IDLE character (all one character).
01 - Multi Drop Mode. In multidrop mode, there is an additional Address/
Data bit in each character. Upon receiving an address character, the UART
receiver compares it to two 8-bit addresses stored in it�s channel registers.
If a match occurs, the receiver transfers the address and the following char-
acters into a new buffer. If there is a no match, the character is discarded
and the receiver is set to the hunt mode. If none of the addresses is valid (V
bit in both address register is set to �0�), there is always a match and all the
characters are transferred into the DRAM. Addresses are always be placed
in a new buffer (Regardless of the V bit). The receiver receives characters
until a new address is received, an abort character is received, an enter
hunt command is issued, or until max idle counter expiration. Upon max
idle counter expiration, the receiver is set to the hunt mode.
10 - Reserved.
11 - Reserved.

0

364 Revision 1.0

GT-96100A Advanced Communication Controller
NOTE: When CD* is deasserted during frame reception UART behavior is different for multidrop and normal
modes. In normal mode the UART hunts for an IDLE character (hunting starts when CD* is asserted
again) before receiving valid start bit. In this mode, transmitting from a GT-96100A model to another
should be with the �P� bit in the buffer descriptor set. In multidrop mode, the UART receiver hunts for a
start bit as soon as CD* is asserted again.

14.7.4 UART Stop Bit Reception and Framing Error
The UART receiver always expects to find a stop bit at the end of a character. If no stop bit is detected, the Fram-
ing Error (FE) bit is set in the receive descriptor. After a framing error, the reception process is controlled by the
RZS and UM bits in the UART MPCRx. The various options are summarized in the table bellow.

13:12 CL Character Length
00 - 5 data bits
01 - 6 data bits
10 - 7 data bits
11 - 8 data bits

01

14 SBL Stop Bit Length
0 - One stop bit
1 - Two stop bits

0

15 FLC Flow Control
0 - Normal Mode. The CTSM bit in the MMCRx determines the CTS* pin
behavior.
1 - Asynchronous Mode. When CTS* is negative, transmission stops at the
end of the current character. When CTS* is asserted again the transmission
starts from the place it stopped. No CTS* lost is reported. Line is IDLE
(MARK) during CTS* deassertion period.

0

31:16 Reserved 0

Table 347: UART Stop Bit Reception and Framing Error

UM RZS Operation
Break
Recognition

00 0 Go to hunt after missing a stop bit. The receiver is enabled after
receiving a new IDLE char.

Single Break

00 1 The receiver tries to synchronize itself. The missing stop bit is
considered as the following start bit and the reception process
continues.

Two Break Sequence

Table 346: MPSCx Protocol Configuration Register (MPCRx) for UART Mode, Offset: 0x000A08,
0x008A08, 0x010A08, 0x018A08, 0x020A08, 0x028A08, 0x030A08, 0x038A08
(where x is the port number 0 to 7) (Continued)

Bits
Field
Name Function

Init ial
Value
Revision 1.0 365

GT-96100A Advanced Communication Controller
01 0 Goes to hunt after missing stop bit. The receiver is enabled after
receiving new address character.

Single Break

01 1 The receiver tries to synchronize itself. The missing stop bit is
considered as the following start bit and the reception process
continues.

Two Break Sequence

Table 347: UART Stop Bit Reception and Framing Error (Continued)

UM RZS Operation
Break
Recognit ion
366 Revision 1.0

GT-96100A Advanced Communication Controller
14.7.5 Channel Registers (CHxRx) for UART Mode
The MPSCx Channel Registers (CHxRx) are protocol dependent.

Figure 69 shows the CHxRx format in UART mode.

Figure 69: Channel Registers (CHxRx) for UART Mode

Unless otherwise specified:

� �1� means set.
� �0� means unset.
� �0� is the default value after reset.

14.7.5.1 CHR1 - UART Break/Stuff Register (UBSR)
The UART Break/Stuff register has two fields: Break Count (BRK)(CHR1[23:16]) and Control Stuff Character
(TCS) (CHR1[7:0]).

With the BRK field, the UART transmitter will starts to transmit break characters after receiving an abort com-
mand. The number for the break character to send is programmed into the BRK field.

For example, when BRK equals �0�, no break character is transmitted. When BRK equals �1�, one break charac-
ter is transmitted.

A break character is a character with all �0�s including it�s stop bit.

Upon issuing a TCS command, the transmitter sends a TCS character after the current transmitting character.
This allows a transmitter to bypass the normal pipeline when a special control character must be send (e.g. XON/
XOFF).

Upon receiving a break character, the UART stops the reception process and moves to the hunt state. In a point to
point configuration, the receiver is hunting for a new IDLE character. In a multidrop configuration, the receiver
hunts for a new address character.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Base +0C

Base + 10
CHR1 - UBSR

CHR2 - CR
Base + 14 CHR3 - MIR

CHR10 - ESR

Base + 18 CHR4 - CFR
Base + 1C CHR5 - CTLR1
Base + 20 CHR6 - CTLR2
Base + 24 CHR7 - CTLR3
Base + 28 CHR8 - CTLR4
Base + 2C CHR9 - ADR

TCS

CTL4

CTL6 CTL5

CTL3

A

BRK

EH A

CTL2 CTL1

Base + 30 Event

CTL8 CTL7

AD2 AD1

TC
S

C
R

D RPM TPMR
EV TE

V

MIR

CFR

V V
Revision 1.0 367

GT-96100A Advanced Communication Controller
When the UART is in RZS=0 mode after receiving a break sequence, the descriptor is closed with BR bit (bit 9)
set. In addition, a �break descriptor� also has the FE bit (bit 3) set and, if in odd parity, the PE bit (bit 0) is also
set.

When the UART in RZS=1 mode, two consecutive break sequences are needed for proper break recognition. The
first break character is not recognized. Instead, the UART receiver closes the descriptor with the FE bit (bit 3) set
and, if in odd parity, the PE bit (bit 0) will also be set. The second break will be recognized as a break and a
descriptor will be closed with the BR bit (bit 9) set. In addition, a �break descriptor� will also have the FE bit (bit
3) set and, if in odd parity, the PE bit (bit 0) will also be set.

14.7.5.2 CHR2 - Command Register (CR)
Table 348: CHxR2 - Command Register (CR), Offset: 0x000A10, 0x008A10, 0x010A10,

0x018A10, 0x020A10, 0x028A10, 0x030A10, 0x038A10 (where x is channel 0 and 7)

Bits
Field
Name Function

Init ial
Value

0 Reserved. 0

1 TEV Tx Enable Vertical Redundancy Check
0 - VRC (parity) is disabled.
1 - VRC is enabled.

0

3:2 TPM Transmit Parity Mode
00 - Odd
01 - Low (always 0)
10 - Even
11 - High (always 1)

0

6:4 Reserved. 0

7 A Transmit Abort
Aborts the transmission immediately (on byte boundaries) and goes to
IDLE. The descriptor is not closed or incremented.
After receiving an abort command, the GT-96100A halts the transmit pro-
cess and starts sending a break sequence according to the BRK field in
CHR1.
NOTE: Command is not synchronized to byte.

0

8 Reserved. 0

9 TCS Transmit TCS Character.
The TCS character is transmitted after the current transmitted character.
The transmitter then continues with the normal Tx sequence.
The TCS command can be used to send out of band characters such as
XOFF and XON.

0

16:10 Reserved. 0

17 REV Rx Enable Vertical Redundancy Check
0 - VRC (parity) is disabled.
1 - VRC is enabled.

0

368 Revision 1.0

GT-96100A Advanced Communication Controller
19:18 RPM Receive Parity Mode.
00 - Odd
01 - Low (always �0�)
10 - Even
11 - High (always �1�)

0

22:20 Reserved. 0

23 A Receive Abort
Abort receive immediately and go to IDLE. The descriptor is not closed or
incremented. The processor must issue a enter hunt command after an
abort command in order to enable reception.
The A bit is cleared upon entering IDLE state.

0

24 Reserved. 0

25 CRD Close Rx Descriptor
When the CPU issues a CRD command the current receive descriptor is
closed and subsequent received data is DMA�d into a new buffer. If there is
no active receive process, no action takes place. The GT-96100A clears the
CRD bit upon closing the buffer status.1

0

30:26 Reserved. 0

31 EH Enter Hunt
Upon receiving an enter hunt command, the receive machine moves to a
hunt state and continuously searches for an opening character. An opening
character is considered an IDLE char in point to point mode (UM=00) or a
matched address in multidrop mode.
The EH bit is cleared upon entering a hunt state.

0

N/A TD Transmit Demand
Fetch a descriptor and start transmission.
Issued through the SDMAx Command Register.

N/A Stop Stop
Complete frame transmission and stop. (Go to IDLE).
Issued through the SDMAx Command Register.

1. Usually, it takes a few cycles from the time the CRD bit is closed until the SDMAx actually closes the buffer. The
SDMAx generates a maskable interrupt when closing a buffer if programed to do so.

Table 348: CHxR2 - Command Register (CR), Offset: 0x000A10, 0x008A10, 0x010A10,
0x018A10, 0x020A10, 0x028A10, 0x030A10, 0x038A10 (where x is channel 0 and 7)

Bits
Field
Name Function

Init ial
Value
Revision 1.0 369

GT-96100A Advanced Communication Controller
The ET bit in the Main Configuration Register must be set to �1� before issuing any of the following commands:
� Transmit Demand
� Stop Transmission
� Transmit TCS Character
� Abort Transmission

The ER bit in the Main Configuration Register must be set to �1� before issuing any of the following commands:
� Enter Hunt
� Close Rx Descriptor
� Abort Reception

When the ET or ER bits are deasserted, the MPSCx transmit/receive channel is in low power mode (NO
CLOCK).

NOTE: Issuing one of the above commands in this state leads to unpredictable results.

The CRCM in the MMCR must be set to 011 for LRC/VRC mode.

14.7.5.3 CHR3 - Max Idle Register (MIR)
This 16-bit value (CHR3[15:0]) defines the number of IDLE characters the receiver waits before it closes a
descriptor and a maskable interrupt is generated.

When set to �0�, the counter is disabled.

The counter is preloaded every time a non-IDLE character is received.

14.7.5.4 CHR4 - Control Filtering Register (CFR)
Bits 7:0 of the CFR register are the Bit Comparison Enable bits.

Setting a �1� in one of the BCE bits enables the control comparison for this bit.

14.7.5.5 CHR5-8 - UART Control Character Registers
Figure 70 shows a UART control register format.

The CHAR field holds the pattern for the control character while bits 8-15 are used to control the GT-96100A�s
behavior when the control character is recognized.

Figure 70: UART Control Character Register Format

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

CHARV R C
O

IN
T

370 Revision 1.0

GT-96100A Advanced Communication Controller

14.7.5.6 CHR9 - Address Register (ADR)
CHR9 holds the UART addresses for multidrop operation. The GT-96100A UART supports up to 2 addresses.

Upon receiving an address, the UART transfers the previous frame status to the SDMA. This causes the SDMA
to close the previous frame descriptor and to locate the address in a new buffer.

There are two modes for address recognition operation. The first mode, setting of �1�, allows the address and fol-
lowing characters to be transferred to the SDMA only if there is a match. The second mode, setting of �0�, allows
all frames to be passed to the SDMA. The CPU can use the AM bit in the last frame descriptor to check if a
match occurred.

14.7.5.7 CHR10 - UART Event Status Register (ESR)
The ESR register holds information on the transmit/receive channel condition. CHR10 can be read by the CPU
for channel condition resolution.

Some changes in the channel condition can generate maskable interrupts, as shown in Table 350.

Table 349: UART Control Character Register Format

Bits
Field
Name Function

Reset
Value

7:0 CHAR The control character to sync on. 0

11:8 Reserved. 0

12 INT Interrupt
0 - No interrupt.
1 - Generate interrupt upon receiving this CHAR.

0

13 CO Control Octet (ISO 3309 Control Octet)
Upon receiving a control octet, the control octet is discarded and the 6th bit
(i.e. bit 5 in CHR5) of the following octet is complemented. The current
buffer is closed with the CO bit asserted.
NOTE: When the CO bit is set, the CHAR field must be programmed with

�10111110� in order to be ISO-3309 compatible.

0

14 R Reject
0 - Receive character and close the buffer.
1 - Reject character. The character is discarded, the buffer is closed and a
maskable interrupt is generated.

0

15 V Valid.
0 - Entry is not valid.
1 - Entry is valid.

0

Revision 1.0 371

GT-96100A Advanced Communication Controller

14.8 Transparent Protocol

In transparent mode, the GT-96100A does not perform any protocol dependent data processing.

However, it gives the processor hardware assistance for bit reception, using the GT-96100A�s powerful SDMA
engines, and some assistance in synchronization, interrupt generation, and frame construction. The CPU also
uses the built-in CRC engine for CRC generation and checking. In any case, CRC bits are transferred into mem-
ory for CPU use.

In transparent mode, the channel is fully configured from the MMCRx and no mode is defined by the channel
registers.

A transparent channel is synchronous.If it is not serviced on time, underrun and overrun errors can occur.

Table 350: CHR10 - UART Event Status Register (ESR), Offset: 0x000A30, 0x008A30, 0x010A30,
0x018A30, 0x020A30, 0x028A30, 0x030A30, 0x038A30 (where x is channel 0 and 7)

Bits
Field
Name Event

0 CTS Clear To Send Signal1

1. Interrupt is generated when signal is deasserted during transmit.

1 CD Carrier Detect Signal2

2. Interrupt is generated when signal is deasserted during receive.

2 Reserved.

3 TIDLE Tx in Idle State3

3. Interrupt is generated upon entering IDLE state.

4 Reserved.

5 RHS Rx in HUNT State

6 Reserved.

7 RLS Rx Line Status

10:8 Reserved.

11 RLIDL 1 = Rx IDLE Linec

15:12 Reserved.

23:16 RCRn Received Control Char n
When the UART receiver recognizes a control character it sets the corresponding RCRn
bit. (bit 16 (RCR1) corresponds to CTL1... bit 23 (RCR8) corresponds to CTL8). RCRn
bits are cleared by write a 1 to the bit.
372 Revision 1.0

GT-96100A Advanced Communication Controller
The receiver can use external sync using the CD* input or synchronize itself on a SYNC sequence according to
the RSYL bits in the MMCRx.
Revision 1.0 373

GT-96100A Advanced Communication Controller
14.8.1 SDMAx Command/Status Field for Transparent Mode
When an MPSC is in Transparent mode the Command/Status field in the corresponding SDMAx descriptor has
the following format:
Table 351: SDMAx Command/Status Field for Transparent Mode

Bit Rx - Function Tx - Function

0 CE - CRC/LRC Error Reserved.

1 CDL - CD Loss CTSL - CTS Loss

2 DE - Decoding Error Reserved.

3 Reserved. Reserved.

4 Reserved. Reserved.

5 Reserved. Reserved.

6 OR - Data Overrun UR - Data Underrun

14:7 Reserved. Reserved.

15 ES - Error Summary
ES = CE || CDL || DE || OR

ES - Error Summary
ES = CTSL || UR

16 L - Last L - Last

17 F - First F - First

21:18 Reserved. Reserved.

22 Reserved. GC - Generate BCC/LRC.

23 EI - Enable Interrupt EI - Enable Interrupt

29:24 Reserved. Reserved.

30 AM - Auto Mode AM - Auto Mode

31 O - Owner O - Owner
374 Revision 1.0

GT-96100A Advanced Communication Controller
14.8.2 Channel Registers (CHxRx) for Transparent Mode

Figure 71: Channel Registers (CHxRx) for Transparent Mode

Unless otherwise specified:

� �1� means set.
� �0� means unset.
� �0� is the default value after reset.

14.8.2.1 CHR1 - SYNC Register (SYNR)
The SYNC Register holds the synchronization for the channel receiver. After reset it holds the value of 7E in the
SYNC field. The user should right the appropriate values before enabling the Rx/Tx machines.

There are two basic synchronization options for a transparent channel: Transparent Mode Synchronization and
Transmitter Synchronization. The Transparent Mode Synchronization has two synchronization options, selected
by setting RSYL[24:23] in the MMCRx.

The Transparent Mode Synchronization has two synchronization options. They are also selected by setting the
RSYL [24:23] bits in the MMCRx.

NOTE: For more information about setting RSYL[24:23], see Table 324.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Base +0C

Base +10

CHR1 - SYNR

CHR2 - CR

Base + 14 CHR3

CHR10 - ESR

Base + 18 CHR4

Base +1C CHR5

Base + 20 CHR6

Base + 24 CHR7

Base + 28 CHR8
Base + 2C CHR9

SYNC

AEH A

Base +30 Event

C
R

D
V

Revision 1.0 375

GT-96100A Advanced Communication Controller
There are two mode of transmit synchronization in transparent mode. They are selected by setting TSYN[12} in
the MMCRx, see Table 322.

Table 352: Transparent Mode Synchronization Options

Synchronization Option Description

External Synchronization (RSYL = �00�)
The receiver starts to receive data whenever CD* is asserted and
stops receiving data when CD* is deasserted (if CDM=0) or when the
CPU issues an Enter Hunt Command.

Sync Hunt RSYL = �01�, �10�, or �11� (nibble, byte or two bytes sync)
The receiver hunts for the sync pattern, as defined by RSYL.
When the synch pattern is recognized, the receiver starts to receive
data. The receive process stops when CD* is deasserted and CDM=0
or when the CPU issues an enter hunt command.
If bit 15 is set, there is no transfer of the SYNC characters to the
receiver. The syncs are stripped until the first data character is
received, and are not calculated in the packet CRC. If bit 15 is reset,
sync characters that appear after the sync pattern is recognized are
regarded as data.
On the transmitter side, in sync hunt mode, two sync characters are
always sent at the beginning of a frame.
NOTE: When RSYL equals 01, the Sync pattern is defined by bits

[7:4] of the Sync Register.

Table 353: Transmitter Mode Synchronization Options

Synchronization Option Description

TSYN = 0 Synchronization is achieved whenever CTS* is asserted.

TSYN=1 Synchronization is achieved after receiver synchronization and CTS*
is asserted. The transmitter always starts to transmit on the receive
byte boundaries. In external synchronization, when CTS* is asserted,
the transmitter starts to transmit 8 bits after CD* assertion. In sync
hunt mode, when CTS* is asserted, the transmitter starts to transmit 8
bits after sync recognition. If CTS* is deasserted after the receiver
gains synchronization, the transmitter waits to the byte boundary
before it starts to transmit.
376 Revision 1.0

GT-96100A Advanced Communication Controller
14.8.2.2 CHR2 - Command Register (CR)

The ET bit in the Main Configuration Register must be set to �1� before issuing any of the following commands:
� Transmit Demand
� Stop Transmission
� Abort Transmission

Table 354: CHxR2 - Command Register (CR), Offset: 0x000A10, 0x008A10, 0x010A10,
0x018A10, 0x020A10, 0x028A10, 0x030A10, 0x038A10 (where x is channel 0 and 7)

Bits
Field
Name Function Init ial Value

6:0 Reserved Reserved. 0

7 A Abort Transmission
Aborts the transmission immediately (on byte boundaries) and goes
to IDLE. The descriptor is not closed or incremented.
NOTE: Command is not synchronized to byte.

0

22:8 Reserved Reserved. 0

23 A Abort Reception
Abort receive immediately and go to IDLE. The descriptor is not
closed or incremented. The processor must issue an enter hunt
command after an abort command in order to enable reception.
The A bit is cleared upon entering IDLE state.

0

24 Reserved Reserved. 0

25 CRD Close Rx Descriptor
When the CPU issues a CRD command the current receive
descriptor is closed and the following received data is SDMA�d into
a new buffer. If there is no active receive in progress, no action
takes place.

0

30:26 Reserved Reserved. 0

31 EH Enter Hunt
Upon receiving an enter hunt command, the receive machine
moves to a hunt state and continuously searches for an opening
sync or an external sync. If the enter hunt command is received
during a frame reception, the current descriptor is closed with a
CRC error.
The EH bit is cleared upon entering a hunt state.

0

N/A TD Transmit Demand
Fetch a descriptor and start transmission.
Issued at SDMAx Command Register.

N/A Stop Stop
Complete frame transmission and stop. (Go to IDLE).
Issued at SDMAx Command Register.
Revision 1.0 377

GT-96100A Advanced Communication Controller
The ER bit in the Main Configuration Register must be set to �1� before issuing any of the following commands:
� Enter Hunt
� Close Rx Descriptor
� Abort Reception

When the ET or ER bits are deasserted, the MPSCx transmit/receive channel is in low power mode (NO
CLOCK).

NOTE: Issuing one of the above commands in this state leads to unpredictable results.

14.8.2.3 CHR10 - Transparent Event Status Register (ESR)
The ESR register holds information on the transmit/receive channel condition. CHR10 can be read by the CPU
for channel condition resolution. Some changes in the channel condition can generate maskable interrupts, as
shown Table 355.
Table 355: CHR10 - Transparent Event Status Register (ESR), Offset: 0x000A30, 0x008A30,

0x010A30, 0x018A30, 0x020A30, 0x028A30, 0x030A30, 0x038A30
(where x is channel 0 and 7)

Bits
Field
Name Event

0 CTS Clear To Send Signal1

1. Interrupt is generated when signal is deasserted during transmit

1 CD Carrier Detect Signal2

2. Interrupt is generated when signal is deasserted during receive

2 Reserved.

3 TIDLE Tx in Idle State3

3. Interrupt is generated upon entering IDLE state

4 Reserved.

5 RHS Rx in HUNT state

11:6 Reserved.

12 DPCS 1 = DPLL Carrier Sense

15:13 Reserved.

23:16 RCRn Received Control Character n
When the transparent receiver recognizes a control character it sets the corresponded
RCRn bit (bit 16 (RCR1) corresponds to CTL1... bit 23 (RCR8) correspond to CTL8).
RCRn bits are cleared by writing �1� to the bit.
378 Revision 1.0

GT-96100A Advanced Communication Controller
15. FLEXTDM UNITS (FTDM)
There are four FlexTDM units (also called time slot assigners) in the GT-96100A. Each unit is capable of sup-
porting IOM-1/2 (GCI), PCM highway, T1/CEPT lines, as well as other proprietary time slot assigned buses.

The time slot assignment is configured by programming an internal dual port RAM (DPRAM). This DPRAM
supports static and dynamic configurations. The DPRAM based design provides the flexibility to program the
FlexTDM to any of the common time slot buses (i.e. GCI, PCM) or to a proprietary bus.

The FlexTDM unit consists of a transmit and a receive section. Each has a dedicated 256 entry dual port RAM.
Figure 72 shows a block diagram of a FlexTDM unit.

Figure 72: FlexTDM Architecture

RX DPRAM
256x27

TX DPRAM
256x27

RxD

MUX

MPSC RX Bus MPSC TX Bus

Aux Channels
A and B

RD

WR

CTL

RSYNC

CLK CTL

RCLK

MASK
1/2

MASK

TxDTxD_OE

CTL
RD

WR

MUX

Aux Channels
A and B

CLK CTL

TCLK

1/2

TSYNC STRB TOCLK
Revision 1.0 379

GT-96100A Advanced Communication Controller
15.1 FlexTDM Architecture

The FlexTDM architecture is based on two dual-port RAM (DPRAM) arrays. one RAM array is for receiving
and one is for transmitting. The frame structure of a time slot assigned bus is configured by programming this
DPRAM.

The FlexTDM incorporates two auxiliary channels: AUXA and AUXB. These channels are customized for the
IOM Monitor and C/I channels.

The eight MPSCs and two auxiliary channels are time multiplexed on the TxD and RxD lines using two dedi-
cated muxes. The mux select lines are controlled through DPRAM programming. A MPSC connected to a
FlexTDM gets it�s receive and transmit signals from the FlexTDM. The actual bit rate of the MPSC is defined by
the FlexTDM programming and the time slots that are assigned to this MPSC.

The FlexTDM supports independent transmit and receive clocks and frame syncs. Either 1x or 2x input clocks
are allowed (the 2x clock is required for IOM bus interface). Selection of clock edges (rising/falling) for frame
sync and data is supported as well.

15.2 FlexTDM DPRAM

The FlexTDM DPRAM is a 256x27 dual port RAM array that controls the FlexTDM behavior. The DPRAM can
be configured dynamically during FlexTDM operation.

Table 356 shows the FlexTDM DPRAM field assignments.
Table 356: Flex TDM DPRAM Entry

Bits
Field
Name Function

Reset
Value

26 FTINT FlexTDM Interrupt
An interrupt is generated if FTINT bit is set in the current entry and reset in
the last TDM entry that was executed.

X

25 L Last Entry in Frame
The TDM read pointer returns to entry 0 or entry 128 (address 0 or 128 of
the TDM DPRAM) after reading this entry. Control of which entry is executed
next - either 0 or 128 - is done through R2HALF and T2HALF bits in TCR
(see Section 15.4 �FlexTDM Configuration Register (TCR)� on page 384).

X

24:23 RPT Number of times entry is repeated before moving to the next entry.
The FlexTDM repeats execution of this entry according to the value pro-
grammed in RPT. 1

00 - Entry not repeated (i.e. it is executed once).
01 - Entry repeated once.
10 - Entry repeated twice.
11 - Entry repeated three times (i.e. it is executed four times).

X

22:21 Reserved. X
380 Revision 1.0

GT-96100A Advanced Communication Controller
20:19 STRB This field controls the TDSTRB output of the TDM.
00 - 0
01 - Z (tri-state)
10 - Toggle (strobe state is inverted every cycle this entry is executed)
11 - 1
NOTE: The FlexTDM provides a single external strobe signal, which is

shared between the receive and transmit sections. The strobe pin
is driven according to the logical OR of the internally generated
strobe signals. For example, if transmit strobe is Z and receive
strobe is 0, external strobe will be 0. If transmit strobe is 1 and
receive strobe is 0, external strobe will be 1.

X

18 B Byte
Defines byte/bit resolution for this entry.
0 - Bit.
Data width associated with this entry is 1 bit.
1 - Byte.
Data width associated with this entry is 1 byte (8 bits).
NOTE: When B=1, indicating byte resolution, the DPRAM entry is exe-

cuted 8 times (once for each bit in the byte). 1

X

17:13 Reserved. X

12:8 CH Channel Select
Controls which of the serial controllers is assigned to the current data group.
00000 - MPSC0
00001 - MPSC1
00010 - MPSC2
00011 - MPSC3
00100 - MPSC4
00101 - MPSC5
00110 - MPSC6
00111 - MPSC7
11110 - AUXA
11111 - AUXB
NOTE: CH values not listed above are reserved and are not to be used.

X

Table 356: Flex TDM DPRAM Entry (Continued)

Bits
Field
Name Function

Reset
Value
Revision 1.0 381

GT-96100A Advanced Communication Controller
7:0 MASK Mask pattern for the current data.
Definition of this field is dependent on B (byte/bit) setting.
B=1 (byte mode)
In byte mode each bit in the MASK field defines the mask for the corre-
sponding bit in the data.

� 1 - TDM transmit data is driven out, receive data is processed nor-
mally.

� 0 - TDM transmit data is not driven out (transmit output is tri-
stated), receive data is ignored.

B=0 (bit mode)
In bit mode only bits 5:0 are valid. Bits 7:6 must be set to �0�.
Bits 1:0 define the mask for the current bit:

� 00 - Z
Transmit output is tri-state. Receive data is ignored.

� 01 - 0
Transmit output is forced low. Receive data is ignored.

� 10 - D
Transmit data driven out. Receive data is processed normally.

� 11 - 1 (transmit output is forced high, receive data is ignored)
Bit 2 serves as the D channel bit. Setting this bit to �1� marks this time slot as
a D channel time slot. This bit identifies the MPSC to which the TDM must
assert or de-assert the internal CTS signal based on the recent sampled
value of the Dgrant bit (see below).

� If Dgrant is sampled low, CTS is asserted.
� If Dgrant is sampled high, CTS is deasserted.
� If Dgrant is deasserted while a D channel frame is being transmit-

ted, the MPSC connected to the D channel stops transmission (due
to CTS lost) and initiates a collision resolution procedure.

Bit 3 - Dgrant/Dreq
In a received frame, this bit serves as the Dgrant bit. An IOM (GCI) PHY
uses this bit to signal the GT-96100A that it has access to the D channel. In
a transmit frame, it serves as the Dreq bit. The GT-96100A drives the Dreq
bit to �0� when sending data on the D channel. When not sending data on the
D channel, Dreq is driven according to the value programmed in MASK[1:0]
bits.
Bit 4 identifies the current bit as the IOM-2 MX bit. The GT-96100A recog-
nizes an inactive-to-active transition of received MX bit as an indication that
valid IOM-2 monitor data is driven by the PHY.
Bit 5 identifies the current bit as the IOM-2 MR bit. The GT-96100A recog-
nizes an inactive-to-active transition of received MR bit as an indication that
IOM-2 monitor data, sent by the GT-96100A, have been sampled by the
PHY.

X

Table 356: Flex TDM DPRAM Entry (Continued)

Bits
Field
Name Function

Reset
Value
382 Revision 1.0

GT-96100A Advanced Communication Controller
NOTES:When the FlexTDM is disabled, the CPU accesses the DPRAM for both reads and writes. When the
FlexTDM is enabled, the FlexTDM DPRAM is write only.

After reset the dual port RAM entries are undefined. Users must explicitly program the required entries
in order to ensure correct and consistent system operation.

15.3 FlexTDM Programing Modes

After enabling the FlexTDM, there are two ways the user can dynamically program the DPRAM: Single Array
Mode and Split Array Mode.

In Single Array Mode, the FlexTDM read pointer ALWAYS returns to entry 0 after receiving a SYNC or reading
the last entry (entry with L bit set). The entire range of 256 entries is available for programing a TDM frame. The
user can dynamically make changes in the DPRAM but precautions must be made not to write to the same
address from which the FlexTDM is reading. This can be done by checking the read pointer before accessing the
DPRAM array.

In Split Array mode, the TDM frame is limited to 128 DPRAM entries. The user programs the FlexTDM frame
in entries 0-127 and enables the FlexTDM. When a change in programming is needed, the user first programs the
new frame in entries 128-255 and than sets the R2HALF (read as �Return To Half�) bit in the TCR. When the
next SYNC or last entry occurs, the FlexTDM starts processing the frame as programmed in entries 128-255.
The user can then re-program entries 0-127. This process of switching between one half of the DPRAM and the
other half simplifies on-the-fly DPRAM changes.

NOTE: If a frame structure is changed (e.g. a change in frame length) while the FlexTDM is enabled, the
FlexTDM can lose synchronization. This can lead to a CD lost error and a CTS lost error for all chan-
nels that are connected to the FlexTDM.

1. The total number of times that a DPRAM entry is actually repeated is set by both the RPT (bits 24:23) and B (bit 18) fields. The range is 1 (B=0,
RPT=00) to 32 (B=1, RPT=11).
Revision 1.0 383

GT-96100A Advanced Communication Controller
15.4 FlexTDM Configuration Register (TCR)
Table 357: FlexTDMx Configuration Register (TCR), Offset: 0x008B08, 0x018B08, 0x028B08,

0x038B08 (where x is FlexTDM 0 to 3)

Bits
Field
Name Function

Reset
Value

6:0 Reserved

7 TDDCHG TDM Delay for D_Channel Grant,
0-low priority
1-high priority

1

10:8 TDTT TDM Delay for Transparent Transmit
TDTT must be set to �101� for proper operation.

101

13:11 TDTR TDM Delay for Transparent Receive
TDTR must be set to �100� for proper operation.

100

14 TTM TDM Transparent Mode
TTM must be set to �0� for proper operation.

0

15 RR2HALF Receive Return to Half.
This bit is used for dynamic programming of the TDM receive frame.
0 - Return to 0.
After sync or last, the FlexTDM receive read pointer returns to entry 0 in
the Rx DPRAM.
1 - Return to 128.
After Sync or Last, the FlexTDM receive read pointer returns to entry 128
in the Rx DPRAM.

0

16 TR2HALF Transmit Return to Half
Used for dynamic programming of the TDM transmit frame.
0 - Return to 0.
After sync or last, the FlexTDM transmit read pointer returns to entry 0 in
the Tx DPRAM.
1 - Return to 128.
After sync or last, the FlexTDM transmit read pointer returns to entry 128
in the Tx DPRAM.

0

19:17 TM TDM Mode
000 - PCM
001 - Reserved
010 - IOM1
011 - Reserved
100 - IOM2-TE
101 - Reserved
110 - IOM2-LC
111 - Reserved

0

384 Revision 1.0

GT-96100A Advanced Communication Controller
20 SE Sync Edge (for TRSYNC and TTSYNC)
0 - Sync signals are sampled on falling edge of the clock.
1 - Sync signals are sampled on rising edge of the clock.

0

21 DE Driving Edge.
0 - Transmit data is sent on rising edge, receive data is sampled on fall-
ing edge of the clock.
1 - Transmit data is sent on falling edge, receive data is sampled on ris-
ing edge of the clock.

0

22 STZ Set Tx to Zero
When set, the TDM transmit output (TTXD) is forced to zero until a serial
clock is available. (IOM-2 mode)

0

23 CRT Common Receive and Transmit pins
0 - Separate receive and transmit pins.
1 - Common receive and transmit pins.
The transmit section of the FlexTDM uses the FlexTDM�s Rx clock and
Rx sync signals. In this mode, TTCLK and TTSYNC pins are used as
general purpose pins.

0

24 CLKDV Divide CLK by Two
0 - normal (1x) clock mode
1 - double (2x) clock mode
Input clock is twice the bit clock. (IOM-2 mode)

0

26:25 TSD Transmit Sync Delay
Specifies the delay (in number of bits) between transmit sync and the first
bit of the transmit frame.
00 - No bit delay (IOM-2 mode).
01 - 1-bit delay
10 - 2-bit delay
11 - 3-bit delay

0

28:27 RSD Receive Sync Delay
Specifies the delay (in number of bits) between receive sync and the first
bit of the receive frame.
00 - No bit delay (IOM-2 mode)
01 - 1-bit delay
10 - 2-bit delay
11 - 3-bit delay

0

Table 357: FlexTDMx Configuration Register (TCR), Offset: 0x008B08, 0x018B08, 0x028B08,
0x038B08 (where x is FlexTDM 0 to 3) (Continued)

Bits
Field
Name Function

Reset
Value
Revision 1.0 385

GT-96100A Advanced Communication Controller
15.5 FlexTDM Synchronization

After enable, the FlexTDM needs to receive one received sync to achieve synchronization. Until synchronization
is achieved, the FlexTDM transmit and receive paths are disabled.

After gaining synchronization, the FlexTDM always predicts when the next sync is expected. If the sync signal is
not asserted when expected, the FlexTDM executes a synchronization lost procedure and a maskable interrupt is
generated. All the MPSCs that are connected to the FlexTDM experience a CD loss and a CTS loss and all the
transmit and receive processes are halted until synchronization is gained again.

30:29 TDIAG TDM Diagnostic
00 - Normal Operation
The received input is connected to the FlexTDM receive pin (TRXD) and
transmit output is connected to the FlexTDM transmit pin (TTXD).
01 - Echo
TDM receive input is echoed on TDM output with one clock delay. The
received bit stream is processed normally according to DPRAM program-
ming.
10 - Loopback
Transmit data is driven on TDM output, as in normal operation, and is
also connected internally to the TDM receive line. The received bit
stream is processed normally according to DPRAM programming. Trans-
actions on TRXD are not seen by the FlexTDM.
11 - Internal Loopback (transmit output is inactive)
TDM transmit output is internally connected to the TDM receive input.
This mode is useful for TDM loopback testing without affecting the exter-
nal lines.
NOTE: Proper operation of the echo and loopback modes requires that

an identical clock is supplied to the TDM�s transmit and receive
sections. If a TDM entry in the DPRAM is in byte mode (bit
18,�B� is set to 1) and configured for a MPSC channel in Trans-
parent mode, bits 6 and 7 must never be masked simulta-
neously. For example, a MASK (bits 7:0 of the TDM entry) of
0b00xx xxxx (where x means �don�t care�), DPRAM entry for
MPSC channel in Transparent mode is not allowed in byte
mode.

0

31 TEN Enable FlexTDM
0 - FlexTDM disabled.
Transmit output is Z.
1 - FlexTDM enabled.

0

Table 357: FlexTDMx Configuration Register (TCR), Offset: 0x008B08, 0x018B08, 0x028B08,
0x038B08 (where x is FlexTDM 0 to 3) (Continued)

Bits
Field
Name Function

Reset
Value
386 Revision 1.0

GT-96100A Advanced Communication Controller
15.6 IOM (GCI) Mode

The GCI bus, also known as the IOM-2 bus, is a super set of an older bus known as IOM-1.

While IOM-1 is well suited for NT applications, it lacks the LAPD D channel collision resolution support which
is crucial for TE implementation where multiple accesses to the D channel are allowed. The GT-96100A�s
FlexTDM supports both the IOM-1 and IOM-2 frame structures. Figure 73 depicts various IOM frame struc-
tures.

Figure 73: Typical IOM Structures

15.6.1 IOM-1 Frames
An IOM-1 frame is constructed from two 8-bit B channels, one 2-bit D channel, a monitor channel, and a C/I
channel.

The monitor channel is used to transfer data between the CPU and an ISDN PHY device. This channel is also
used for PHY chip programing and layer-2 message transferring. The MR and MX bits are used to control the
data transfers on the monitor channel.

The C/I channel is used to transfer layer-1 messages between the CPU and the PHY chip.

In IOM-1 mode no D channel control is supported and the D channel is assumed to be always granted. This mode
can be used when interfacing PHY chips such as the Siemens PEB-2081 and PEB-2086.

B1 MONITORB2 C/ID2D1 MR MXIOM1

Channel 0IOM2-TE

Channel0IOM2- LC

DCL 512kHz

DCL 4096Hz

DCL 1536kHz

FSC

FSC

FSC

Channel 1 Channel 2

Channel1 Channel2 Channel3 Channel4 Channel5 Channel6 Channel7
Revision 1.0 387

GT-96100A Advanced Communication Controller
15.6.2 IOM-2-TE Frames
An IOM-2-TE frame consists of three IOM channels (channels 0,1,2).

The C/I channel of the third sub-frame (i.e. IOM channel 2) is used for TIC bus applications. The TIC bus is used
by the PHY device to grant D channel access. Usually, bit 4 of C/I channel 2 is used as the D channel request/
grant bit. However, this is programmable in the GT-96100A and it is possible to specify any desired bit as the
request/grant bit.

The GT-96100A fully supports IOM-2-TE frames. In IOM-2-TE mode, the GT-96100A handles the D channel
REQ/GNT protocol by itself. The GT-96100A accesses the D channel only when the received Dgrant bit is
asserted low. The GT-96100A drives the Dreq bit to �0� when sending data over the D channel. Otherwise, it
drives the value programed in MASK[1:0] bits (see Table 356 for more information).

15.6.3 IOM-2-LC Frames
The IOM-2 line card frame is used to connect up to eight ISDN devices on the same card. An IOM-2-LC frame
consists of eight IOM channels.

The GT-96100A can be programmed to access any one of the IOM channels. The monitor and C/I channels refer
to the selected IOM channel. However, other MPSCs can be used to access other time slots in the IOM-2-LC
frame.

15.7 PCM Highway Mode

This is a free programming mode where each MPSC can be connected to any time slot in the programed frame.

15.8 Data Rate Adoption

Since it is capable of accessing each bit of the serial TDM stream separately, the FlexTDM supports data rate
adoption.

The FlexTDM DPRAM allows programmable routing of each bit (or byte) in the data to any of the MPSCs and
supports masking of bits which are to be ignored. The clock pulse associated with a masked bit is �stolen� from
the MPSC (or AUX channel). Thus, the serial controller is clocked at an effective rate that is appropriate for the
logical data stream.

15.9 FlexTDM Auxiliary Channels A and B

The auxiliary channels were designed to support the IOM-2 monitor and C/I channels. These are simple channels
accessible by reading and writing 8 bit registers.
388 Revision 1.0

GT-96100A Advanced Communication Controller
15.9.1 Auxiliary Channel A
Auxiliary channel A is used to access the monitor channel. The GT-96100A uses the IOM MX and MR bits for
interfacing to this channel.

Figure 74: Auxiliary Channel A Control Registers

The CPU writes new data to the ATA register and sets the V bit (bit 15) to 1. The GT-96100A loads the data into
the channel A transmit shift register and clears the V bit. The auxiliary channel A transmitter will constantly
transmit the contents of the ATA to the monitor channel when enabled. A maskable interrupt will be generated
when the MR bit in the receive frame changes from �1� to �0�, indicating the PHY chip had received the transmit-
ted byte.

When the transmit FlexTDM loses synchronization (i.e. when the SYNC signal is asserted not where expected),
the auxiliary channel A transmitter flushes its shift register and stops its transmit process. The transmit process
restarts when the FlexTDM regains synchronization.

The channel A receiver writes new data to the ARA register and sets the V bit. The GT-96100A clears the V bit
when the CPU reads the ARA register. The auxiliary channel A receiver generates an interrupt whenever the MX
bit in the received IOM frame changes from �1� to �0�, indicating that there is new data in the ARA register.

When the receive FlexTDM loses synchronization, the auxiliary channel A receiver flushes it�s shift register and
stop its receive process. The receive process restarts when the FlexTDM regains synchronization. The ARA con-
tents are not affected by synchronization lost.

Table 358 illustrates a typical monitor channel handshaking process.

Data

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

VATA

DataVARA
Revision 1.0 389

GT-96100A Advanced Communication Controller

15.9.2 Auxiliary Channel B
Channel B is used to interface to the 32Kbps C/I channel. The C/I channel is used to transfer 4-bit layer-1 com-
mands between the CPU and the PHY chip. A command is considered valid after it is received twice (i.e. after
receiving 8 bits).

Figure 75: Channel B Control Register

The CPU loads ATB with the data it wants to transmit and sets the V bit to 1. Auxiliary channel B transmitter
loads the new data into its internal shift register, clears the V bit and generates a maskable interrupt. The data is
transmitted constantly until new data is loaded.

Table 358: Monitor Channel Handshaking Process

Monitor
Channel

MX
Outgoing
Frame

MR
Incoming
Frame Interrupt

MX
Incoming
Frame

MR
Outgoing
Frame Interrupt

FF 1 1 1 1

FF 1 1 1 1

1st Byte 0 1 0 1 Rx

1st Byte 0 0 Tx 0 0

2nd Byte 1 0 1 0

2nd Byte 0 0 0 0 Rx

2nd Byte 0 1 0 1

2nd Byte 0 0 Tx 0 0

FF 1 0 1 0

FF 1 0 1 0

FF 1 1 1 1

FF 1 1 1 1

FF 1 1 1 1

FF 1 1 1 1

Data

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

VATB

DataVARB
390 Revision 1.0

GT-96100A Advanced Communication Controller
NOTE: The C/I channel messages are 4 bits wide. The message must be duplicated to create an 8-bit word,
which is written to the 8-bit ATB register.

When the transmit FlexTDM loses synchronization (i.e. when the SYNC signal is asserted not where expected),
the auxiliary channel B transmitter flushes its shift register and stop its transmit process. The transmit process
restarts when the FlexTDM regains synchronization.

The auxiliary channel B receiver generates an interrupt after it loads into ARB register a new C/I command. A
new command is recognized when it is different from the previous loaded command. The channel receiver sets
the V bit whenever it loads data into the ARB register. The CPU clears the V bit when it reads ARB.

When the receive FlexTDM loses synchronization, the auxiliary channel B receiver flushes its shift register and
stops its receive process. The receive process restarts when the FlexTDM regains synchronization. The ARB
contents are not affected by synchronization lost.

NOTES:The GT-96100A sets the V bit whenever it loads data, even if no new command was received. However,
the GT-96100A interrupts the CPU only when new command was received.

When the FlexTDM loses synchronization (i.e., when SYNC is not asserted where expected), the V bit
is cleared, even if new data has been loaded into ATB register. This prevents the new data from being
transmitted. The driver software must rewrite the data to the ATB register when there is loss of synchro-
nization (Loss of synchronization can be recognized using an interrupt or by polling).

15.10 IOM Programing

Table 359 , Table 360 and Table 361 provide the recommended DPRAM programming for the IOM bus. If IOM
mode is selected, the programming recommendations must be followed for the appropriate collision resolution
process.

NOTE: In these tables, B channels mask bits are set to �1�. However, the CPU must complete layer-2 negotia-
tions before granting a MPSC access to one of the B channels.

Table 359: IOM-1 Programming

Entry
Number L RPT STRB B CH MASK Comments

0 0 00 xx 1 00000 11111111 B channel 0 to MPSC0 (1 byte).

1 0 00 xx 1 00001 11111111 B channel 1 to MPSC1 (1 byte).

2 0 00 xx 1 11110 11111111 Monitor to AUXA (1 byte).

3 0 01 xx 0 00010 00000110 D channel to MPSC2 (2 bits).
NOTE: The MASK setting for D

channel data.

4 0 11 xx 0 11111 00000010 C/I to AUXB (4 bits).
Revision 1.0 391

GT-96100A Advanced Communication Controller
5 0 00 xx 0 11110 00010001
or
00010011

Receive: MX bit to AUXA (1bit).
Transmit: force 0 or 1 on MR using
MASK[1:0] (1bit).

6 1 00 xx 0 11110 00100001
or
00100011

Receive: MR bit to AUXA (1bit).
Transmit: force 0 or 1 on MX using
MASK[1:0] (1bit).
L indicates last entry in frame.

Table 360: IOM2-TE Programming

Entry
No L RPT STRB B CH MASK Comments

0 0 00 xx 1 00000 11111111 B channel 0 (in IOM channel 0)
to MPSC0 (1 byte).

1 0 00 xx 1 00001 11111111 B channel 1 (in IOM channel 0)
to MPSC1 (1 byte).

2 0 00 xx 1 11110 11111111 Monitor (in IOM channel 0) to
AUXA (1 byte).

3 0 01 xx 0 00010 00000110 D channel (in IOM channel 0) to
MPSC2 (2 bits). Note the MASK
setting for D channel data.

4 0 11 xx 0 11111 00000010 C/I (in IOM channel 0) to AUXB
(4 bits).

5 0 00 xx 0 11110 00010001 or
00010011

Receive: MX bit (in IOM channel
0) to AUXA (1bit).
Transmit: force 0 or 1 on MR
using MASK[1:0] (1bit).

6 0 00 xx 0 11110 00100001 or
00100011

Receive: MR bit (in IOM channel
0) to AUXA (1bit).
Transmit: force 0 or 1 on MX
using MASK[1:0] (1bit).

7 0 11 xx 1 11110 00000000 Skip IOM channel 1 (4 bytes).

8 0 10 xx 1 11110 00000000 Skip part of IOM channel 2 (3
bytes).

9 0 01 xx 0 11110 00000000 Skip more (2 bits).

10 0 00 xx 0 11110 00001000 D-grant/D-req bit in C/I channel
of IOM channel 2 (1 bit).

Table 359: IOM-1 Programming (Continued)

Entry
Number L RPT STRB B CH MASK Comments
392 Revision 1.0

GT-96100A Advanced Communication Controller
11 0 11 xx 0 11110 00000000 Skip (4 bits).

12 1 00 xx 0 11110 00000000 Skip to end of frame (1 bit).
L is set to indicate last entry in
frame.

Table 361: IOM2-LC (connected to channel 3) GCI

Entry
No L RPT STRB B CH MASK Comments

0 0 11 xx 1 11110 00000000 Skip IOM channel 0 (4 bytes).

1 0 11 xx 1 11110 00000000 Skip IOM channel 1 (4 bytes).

2 0 11 xx 1 11110 00000000 Skip IOM channel 2 (4 bytes).

3 0 00 xx 1 00000 11111111 B channel 0 (in IOM channel 3)
to MPSC0 (1 byte).

4 0 00 xx 1 00001 11111111 B channel 1 (in IOM channel 3)
to MPSC1 (1 byte).

5 0 00 xx 1 11110 11111111 Monitor (in IOM channel 3) to
AUXA (1 byte).

6 0 01 xx 0 00010 00000110 D channel (in IOM channel 3) to
MPSC2 (2 bits).
NOTE: The MASK setting for

D channel data.

7 0 11 xx 0 11111 00000010 C/I (in IOM channel 3) to AUXB
(4 bits).

8 0 00 xx 0 11110 00010001 or
00010011

Receive: MX bit (in IOM channel
3) to AUXA (1bit).
Transmit: force 0 or 1 on MR
using MASK[1:0] (1bit).

9 0 00 xx 0 11110 00100010 or
00100011

Receive: MR bit (in IOM channel
3) to AUXA (1bit).
Transmit: force 0 or 1 on MX
using MASK[1:0] (1bit).

10 0 11 xx 1 11110 00000000 Skip IOM channel 4 (4 bytes).

11 0 11 xx 1 11110 00000000 Skip IOM channel 5 (4 bytes).

Table 360: IOM2-TE Programming (Continued)

Entry
No L RPT STRB B CH MASK Comments
Revision 1.0 393

GT-96100A Advanced Communication Controller
15.11 FlexTDM Registers

12 0 11 xx 1 11110 00000000 Skip IOM channel 6 (4 bytes).

13 1 11 xx 1 11110 00000000 Skip IOM channel 7 (4 bytes).
L is set to indicate last entry in
frame.

Table 362: FlexTDM Register Map

Description Offset
Page
Number

FlexTDM0

FlexTDM0 Transmit Dual Port RAM (TDPR0), block 0 0x000B00 - 0x000BFF

FlexTDM0 Transmit Dual Port RAM (TDPR0), block 1 0x001B00 - 0x001BFF

FlexTDM0 Transmit Dual Port RAM (TDPR0), block 2 0x002B00 - 0x002BFF

FlexTDM0 Transmit Dual Port RAM (TDPR0), block 3 0x003B00 - 0x003BFF

FlexTDM0 Receive Dual Port RAM (RDPR0), block 0 0x004B00 - 0x004BFF

FlexTDM0 Receive Dual Port RAM (RDPR0), block 1 0x005B00 - 0x005BFF

FlexTDM0 Receive Dual Port RAM (RDPR0), block 2 0x006B00 - 0x006BFF

FlexTDM0 Receive Dual Port RAM (RDPR0), block 3 0x007B00 - 0x007BFF

FlexTDM0 Transmit Read Pointer (TRP0) 0x008B00

FlexTDM0 Receive Read Pointer (TRP0) 0x008B04

FlexTDM0 Configuration Register (TCR0) 0x008B08 page 384

FlexTDM0 AUX ChannelA TX Register (ATA0) 0x008B0C

FlexTDM0 AUX ChannelA RX Register (ARA0) 0x008B10

FlexTDM0 AUX ChannelB TX Register (ATB0) 0x008B14

FlexTDM0 AUX ChannelB RX Register (ARB0) 0x008B18

FlexTDM1

FlexTDM1 Transmit Dual Port RAM (TDPR1), block 0 0x010B00 - 0x010BFF

FlexTDM1 Transmit Dual Port RAM (TDPR1), block 1 0x011B00 - 0x011BFF

FlexTDM1 Transmit Dual Port RAM (TDPR1), block 2 0x012B00 - 0x012BFF

FlexTDM1 (Continued)

Table 361: IOM2-LC (connected to channel 3) GCI (Continued)

Entry
No L RPT STRB B CH MASK Comments
394 Revision 1.0

GT-96100A Advanced Communication Controller
FlexTDM1 Transmit Dual Port RAM (TDPR1), block 3 0x013B00 - 0x013BFF

FlexTDM1 Receive Dual Port RAM (RDPR1), block 0 0x014B00 - 0x014BFF

FlexTDM1 Receive Dual Port RAM (RDPR1), block 1 0x015B00 - 0x015BFF

FlexTDM1 Receive Dual Port RAM (RDPR1), block 2 0x016B00 - 0x016BFF

FlexTDM1 Receive Dual Port RAM (RDPR1), block 3 0x017B00 - 0x017BFF

FlexTDM1 Transmit Read Pointer (TRP1) 0x018B00

FlexTDM1 Receive Read Pointer (TRP1) 0x018B04

FlexTDM1 Configuration Register (TCR1) 0x018B08 page 384

FlexTDM1 AUX ChannelA TX Register (ATA1) 0x018B0C

FlexTDM1 AUX ChannelA RX Register (ARA1) 0x018B10

FlexTDM1 AUX ChannelB TX Register (ATB1) 0x018B14

FlexTDM1 AUX ChannelB RX Register (ARB1) 0x018B18

FlexTDM2

FlexTDM2 Transmit Dual Port RAM (TDPR2), block 0 0x020B00 - 0x020BFF

FlexTDM2 Transmit Dual Port RAM (TDPR2), block 1 0x021B00 - 0x021BFF

FlexTDM2 Transmit Dual Port RAM (TDPR2), block 2 0x022B00 - 0x022BFF

FlexTDM2 Transmit Dual Port RAM (TDPR2), block 3 0x023B00 - 0x023BFF

FlexTDM2 Receive Dual Port RAM (RDPR2), block 0 0x024B00 - 0x024BFF

FlexTDM2 Receive Dual Port RAM (RDPR2), block 1 0x025B00 - 0x025BFF

FlexTDM2 Receive Dual Port RAM (RDPR2), block 2 0x026B00 - 0x026BFF

FlexTDM2 Receive Dual Port RAM (RDPR2), block 3 0x027B00 - 0x027BFF

FlexTDM2 Transmit Read Pointer (TRP2) 0x028B00

FlexTDM2 Receive Read Pointer (TRP2) 0x028B04

FlexTDM2 Configuration Register (TCR2) 0x028B08 page 384

FlexTDM2 AUX ChannelA TX Register (ATA2) 0x028B0C

FlexTDM2 AUX ChannelA RX Register (ARA2) 0x028B10

FlexTDM2 AUX ChannelB TX Register (ATB2) 0x028B14

FlexTDM2 AUX ChannelB RX Register (ARB2) 0x028B18

FlexTDM3

FlexTDM3 Transmit Dual Port RAM (TDPR3), block 0 0x030B00 - 0x030BFF

Table 362: FlexTDM Register Map (Continued)

Description Offset
Page
Number
Revision 1.0 395

GT-96100A Advanced Communication Controller
FlexTDM3 Transmit Dual Port RAM (TDPR3), block 1 0x031B00 - 0x031BFF

FlexTDM3 Transmit Dual Port RAM (TDPR3), block 2 0x032B00 - 0x032BFF

FlexTDM3 Transmit Dual Port RAM (TDPR3), block 3 0x033B00 - 0x033BFF

FlexTDM3 Receive Dual Port RAM (RDPR3), block 0 0x034B00 - 0x034BFF

FlexTDM3 Receive Dual Port RAM (RDPR3), block 1 0x035B00 - 0x035BFF

FlexTDM3 Receive Dual Port RAM (RDPR3), block 2 0x036B00 - 0x036BFF

FlexTDM3 Receive Dual Port RAM (RDPR3), block 3 0x037B00 - 0x037BFF

FlexTDM3 Transmit Read Pointer (TRP3) 0x038B00

FlexTDM3 Receive Read Pointer (TRP3) 0x038B04

FlexTDM3 Configuration Register (TCR3) 0x038B08 page 384

FlexTDM3 AUX ChannelA TX Register (ATA3) 0x038B0C

FlexTDM3 AUX ChannelA RX Register (ARA3) 0x038B10

FlexTDM3 AUX ChannelB TX Register (ATB3) 0x038B14

FlexTDM3 AUX ChannelB RX Register (ARB3) 0x038B18

Table 362: FlexTDM Register Map (Continued)

Description Offset
Page
Number
396 Revision 1.0

GT-96100A Advanced Communication Controller
16. BAUD RATE GENERATORS (BRGS)
There are eight baud rate generators (BRGs) in the GT-96100A. Figure 76 shows a BRG block diagram.

Figure 76: Baud Rate Generator Block Diagram

16.1 BRG Inputs and Outputs

There are 19 clock inputs to the baud rate generators (BRGs). Two general purpose pins can be programmed to
function as clock inputs for the BRGs: GPP[0] and GPP[1]. Additionally, each of the serial input clocks can be
used as a BRG clock. Finally, the TCLK, which is the system parallel clock, is also an option.

When a BRG is enabled, it loads the Count Down Value (CDV), from the BRG configuration register, into its
count down counter. When the counter expires (i.e. reaches zero), the BRG clock output, BCLK, is toggled and
the counter reloads.

16.2 BRG Baud Tuning

A baud tuning mechanism can be used to adjust the generated clock rate to the receive clock rate.

When baud tuning is enabled, the baud tuning mechanism monitors for a start bit, i.e. High-to-Low transition.
When a start bit is found, the baud tuning machine measures the bit length by counting up until the next Low-to-
High transition. The count-up value of the BRG is then loaded into the Count Up Value (CUV) register and a
maskable interrupt is generated signaling the CPU that the bit length value is available. The CPU reads the value
from the CUV and adjusts the CDV to the requested value.

The CUV can be used to adjust the CDV, in the BRG configuration register, to the requested value.

TCLK

SCLK[7:0]
MUX

16bit Count Down

1/2

zero_count

BCLK

RxD Baud Tuning

load

(16 bit count up)

COUNT

sel_1/1

MUX
CLKSel

TSCLK[7:0]

GPP[1:0]
Revision 1.0 397

GT-96100A Advanced Communication Controller
16.3 BRG Registers
Table 363: BRG Registers Map

Register Name Offset Page

BRG0

BRG0 Configuration Register (BCR0) 0x102A00 page 399

BRG0 Baud Tuning Register (BTR0) 0x102A04 page 400

BRG1

BRG1 Configuration Register (BCR1) 0x102A08 For a description of the BRG1 regis-
ters, see the descriptions for the
BRG0 registers.BRG1 Baud Tuning Register (BTR1) 0x102A0C

BRG2

BRG2 Configuration Register (BCR2) 0x102A10 For a description of the BRG2 regis-
ters, see the descriptions for the
BRG0 registers.BRG2 Baud Tuning Register (BTR2) 0x102A14

BRG3

BRG3 Configuration Register (BCR3) 0x102A18 For a description of the BRG3 regis-
ters, see the descriptions for the
BRG0 registers.BRG3 Baud Tuning Register (BTR3) 0x102A1C

BRG4

BRG4 Configuration Register (BCR4) 0x102A20 For a description of the BRG4 regis-
ters, see the descriptions for the
BRG0 registers.BRG4 Baud Tuning Register (BTR4) 0x102A24

BRG5

BRG5 Configuration Register (BCR5) 0x102A28 For a description of the BRG5 regis-
ters, see the descriptions for the
BRG0 registers.BRG5 Baud Tuning Register (BTR5) 0x102A2C

BRG6

BRG6 Configuration Register (BCR6) 0x102A30 For a description of the BRG6 regis-
ters, see the descriptions for the
BRG0 registers.BRG6 Baud Tuning Register (BTR6) 0x102A34

BRG7

BRG7 Configuration Register (BCR7) 0x102A38 For a description of the BRG7 regis-
ters, see the descriptions for the
BRG0 registers.BRG7 Baud Tuning Register (BTR7) 0x102A3C
398 Revision 1.0

GT-96100A Advanced Communication Controller

Table 364: BRGx Configuration Register (BCR)

Bits Name Description
Reset
Value

15:0 CDV Count Down Value.
The user programs the CDV field to define the baud rate that the BRG gen-
erates. CDV is loaded into the BRG counter every time it reaches 0. The
actual baud rate is:

When CDV is 0x0000, the generated baud rate is equal to the input clock
rate.

0

16 En Enable BRG
0 - Disabled. Output clock is clamped to 0.
1 - Enabled.

0

17 RST Reset BRG
0 - No Op.
1 - Reset BRG counter to 0.

0

22:18 CLKS Clock Source (input clock to the BRG)
00000 - BCLK0 (from GPP[0] pin)
00001 - BCLK1 (from GPP[1] pin)
00010 - SCLK0 (from PA[5] pin)
00011 - TSCLK0 (from PA[6] pin)
00100 - SCLK1 (from PB[5] pin)
00101 - TSCLK1 (from PB[6] pin)
00110 - SCLK2 (from PC[5] pin)
00111 - TSCLK2 (from PC[6] pin)
01000 - SCLK3 (from PD[5] pin)
01001 - TSCLK3 (from PD[6] pin)
01010 - SCLK4 (from PE[5] pin)
01011 - TSCLK4 (from PE[6] pin)
01100 - SCLK5 (from PF[5] pin)
01101 - TSCLK5 (from PF[6] pin)
01110 - SCLK6 (from MII0[12] pin)
01111 - TSCLK6 (from MII0[1] pin)
10000 - SCLK7 (from MII0[13] pin)
10001 - TSCLK7 (from MII0[6] pin)
10010 - TCLK

10010

24:23 Reserved. 0

BaudRate InputClockRate
CDV+1() 2×

--------------------------------------=
Revision 1.0 399

GT-96100A Advanced Communication Controller

25 BT Baud Tuning
0 - Disabled
1 - Enabled
Setting BT to 1 enables the baud tuning for the duration of one start bit.
When the Start Bit Length calculation is done, the GT-96100A clears the BT
bit.

0

31:24 Reserved 0

Table 365: BRGx Baud Tuning register (BTR)
NOTE: If the BRG is written for a clock source that is inactive, this register cannot be accessed, see Table 364

bits [22:18].

Bits Name Description
Reset
Value

15:0 CUV Count Up Value
NOTE: These bits are read only.

0

31:16 Reserved. 0

Table 364: BRGx Configuration Register (BCR) (Continued)

Bits Name Description
Reset
Value
400 Revision 1.0

GT-96100A Advanced Communication Controller
17. WATCHDOG TIMER
The GT-96100A internal watchdog timer is a 32-bit count down counter that can be used to generate a non-
maskable interrupt or reset the system in the event of unpredictable software behavior.

After the watchdog is enabled, it is a free running counter that needs to be serviced periodically in order to pre-
vent its expiration.

17.1 Watchdog Registers

Figure 77: Watchdog Register Map

Table 366: Watchdog Configuration register (WDC), Offset: 0x101A80

Bits
Field
Name Function

Init ial
Value

23:0 Preset_VAL This field holds the 24 most significant bits which the watchdog
counter loads each time it is enabled or serviced. After reset, this
field is set to 0xFF.FFFF. The preset value is equal to
{0xPreset_VAL,FF}.

0xFF.FFFF

25:24 CTL1 A write sequence of �01� followed by �10� into CTL1 disables/enables
the watchdog.

00

27:26 CTL2 A write sequence of �01� followed by �10� to CTL2 services the watch-
dog timer.

00

28 Reserved. 0

29 NMI Non-Maskable Interrupt
When the watchdog counter reaches a value equal to NMI_VAL, this
bit is asserted. This pin can be used to drive the processor�s NMI*
pin.
This bit is read only.

1

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

WDC 0x101A80

WDV 0x101A84

W
D

E
EN N
M

I

Preset_VAL

NMI_VAL

CTL1CTL2

offsetregister
Revision 1.0 401

GT-96100A Advanced Communication Controller

17.2 Watchdog Operation

After reset, the watchdog is disabled.

The watchdog must be serviced periodically in order to avoid NMI or reset (WDE*). Watchdog service is per-
formed by writing �01� to CTL2, followed by writing �10� to CTL2. Upon watchdog service, the GT-96100A
clears the NMI and WDE bits (if set) and reloads the Preset_VAL into the watchdog counter.

A write sequence of �01� followed by �10� into CTL1 disables/enables the watchdog. The watchdog�s current sta-
tus can be read in bit 31 of WDC. When disabled, the GT-96100A sets the NMI and WDE bits (if clear) and
reloads the Preset_VAL into the watchdog counter.

Preset_VAL and NMI_VAL can be changed while the watchdog is enabled. However, Preset_VAL will affect the
watchdog only after it is loaded into the watchdog counter (e.g. after watchdog service).

If the watchdog is not serviced before the counter reaches NMI_VAL, a non-maskable interrupt event occurs. a
watchdog expiration event occurs. The NMI bit is reset, asserting low the NMI* pin.

In order to deassert the NMI* and/or WDE* pins, the watchdog must be serviced, disabled or the GT-96100A
must be reset. The GT-96100A holds WDE* asserted for the duration of 16 system cycles after reset assertion.

30 WDE Watchdog Expiration
When the watchdog counter expires, this bit is asserted. The WDE*
pin can be used to reset the entire system.
This bit is read only.

1

31 EN Enable
0 - Watchdog is disabled, counter is loaded with Preset_VAL. NMI
and WDE are set to �1�.
1 - Watchdog is enabled.
This bit is read only.

0

Table 367: Watchdog Value register (WDV), Offset: 0x101A84

Bits
Field
Name Function

Reset
Value

23:0 NMI_VAL NMI_VAL are the 24 least significant bits of a 32-bit value. The
upper 8 bits are always �00�.
When the Watchdog counter reaches a value equal to the NMI value
NMI* pin is asserted. The actual NMI value is a 32-bit number equal
to {0x00,NMI_VAL}.

0x000.0000

31:24 Reserved. 0

Table 366: Watchdog Configuration register (WDC), Offset: 0x101A80 (Continued)

Bits
Field
Name Function

Init ial
Value
402 Revision 1.0

GT-96100A Advanced Communication Controller
18. TIMERS/COUNTERS
There are three 24-bit wide and one 32-bit wide timer/counters on the GT-96100A. Each one can be selected to
operate as a timer or as a counter.

NOTE: The count frequency for the timer/counters is equal to TCLk frequency

In Counter mode, the counter counts down to terminal count, stops, and issue an interrupt.

In Timer mode, the timer counts down, issues an interrupt on terminal count, and resets itself to the programmed
countdown value, and begins to count down.

Reads from the counter or timer are done from the counter itself, while writes are to its register. For example,
note that even though the registers are programmed to an initial value of 0 the counters read 0xffffff.

In order to reprogram a timer/counter:

1. Disable the timer/counter.
2. Load it with a new value.
3. Enable it as appropriate, counter or timer.

NOTE: There are no external input pins for enable/disable nor are there any output timer pins on the GT-
96100A.

18.1 Timer / Counter Registers

Table 368: Timer/Counter 0, Offset: 0x850

Bits Field Name Function Init ial Value

31:0 TC0Value The counter or timer initial value. 0xffffffff

Table 369: Timer/Counter 1, Offset: 0x854

Bits Field Name Function Init ial Value

23:0 TC1Value The counter or timer initial value. 0xffffff

31:24 Reserved Reserved. 0x0

Table 370: Timer/Counter 2, Offset: 0x858

Bits Field Name Function Init ial Value

23:0 TC2Value The counter or timer initial value. 0xffffff

31:24 Reserved Reserved. 0x0
Revision 1.0 403

GT-96100A Advanced Communication Controller

Table 371: Timer/Counter 3, Offset: 0x85c

Bits Field Name Function Init ial Value

23:0 TC3Value The counter or timer initial value. 0xffffff

31:24 Reserved Reserved. 0x0

Table 372: Timer/Counter Control, Offset: 0x864

Bits Field Name Function Init ial Value

0 EnTC0 The timer/counter counts only when it is
enabled.
0 - Disable
1 - Enable

0x0

1 SelTC0 Timer or Counter Selection
0 - Counter
1 - Timer

0x0

2 EnTC1 The timer/counter counts only when it is
enabled.
0 - Disable
1 - Enable

0x0

3 SelTC1 Timer or Counter Selection
0 - Counter
1 - Timer

0x0

4 EnTC2 The timer/counter counts only when it is
enabled.
0 - Disable
1 - Enable

0x0

5 SelTC2 Timer or Counter Selection
0 - Counter
1 - Timer

0x0

6 EnTC3 The timer/counter counts only when it is
enabled.
0 - Disable
1 - Enable

0x0

7 SelTC3 Timer or Counter Selection
0 - Counter
1 - Timer

0x0

31:8 Reserved Reserved. 0x0
404 Revision 1.0

GT-96100A Advanced Communication Controller
19. GENERAL PURPOSE PORTS

19.1 Overview

The GT-96100A supports up to 88 general purpose pins.

Most of these pins are shared (multiplexed) with the serial ports (ports A through F) and with the MII ports (MII0
and MII1). The result is that in most applications less than 88 pins can be configured as GPPs. However, the con-
trol of the ports in GT-96100A is made very flexible, providing the user with a pin level configuration capability.
Thus, for example, if port A is used for serial communication but one of its pins is not needed (e.g. PA[6]), this
single pin can be programmed to function as a general purpose pin, without affecting the other pins associated
with the serial function.

GT-96100A also provides the capability of generating interrupts for each of the GPP pins.

19.2 General Purpose Control Registers

The General Purpose registers control the behavior of the pins associated with the GPP function. There are 12
registers, which are divided into 3 groups. The groups are defined as follows:

� Group 0 includes GPP, A and B ports.
� Group 1 includes C, D, E and F ports.
� Group 2 includes MII0 and MII1 ports.

Each group of registers comprises four registers, used to configure the group pins.
Table 373: Control Registers

Register Description

General Purpose Con-
figuration registers

GPC0, GPC1, and GPC2
These registers control the setting of the pins as either general-purpose I/O or
peripheral function. When a pin is configured as peripheral, it�s exact functionality is
set according to the port�s connection setting. For example, if port C is connected to
MPSC2, PC[0] is used as RXD2. If port C is tied to TDM0, PC[0] can be set to
either TRXD0 or TTXD0.

General Purpose Input/
Output registers

GPIO0, GPIO1, and GPIO2
These registers control the direction of the pins (either input or output).
NOTE: GPIO registers affect pin functionality not only when the pin is configured

as general purpose I/O, but also when the pin is configured as peripheral
function. For example, If port C is tied to TDM0, setting PC[0] as TRXD0
(input) or TTXD0 (output) is done by programming GPIO1 accordingly.
Revision 1.0 405

GT-96100A Advanced Communication Controller
The registers are described in the following tables.

General Purpose Data
registers

GPD0, GPD1, and GPD2
These registers hold the data associated with the general purpose I/O pins. These
registers� bits are read-only for general purpose inputs and are read-write for gen-
eral purpose outputs. The data read from these registers reflect the pin state, while
writing to these registers sets the data to be driven out (for output pins).
When a GPP pin is configured as input and its associated GPD bit is 0, an interrupt
is set. An interrupt is set regardless of the GPC state.

General Purpose Level
registers

GPL0, GPL1, and GPL2
These registers define the polarity associated with pins that are configured as gen-
eral purpose input. For each pin defined as asserted low, the pin state is inverted
before being processed in the device. Thus, if a pin is externally tied to �0�, but is
configured in the GPL register as negative polarity, the data read from the respec-
tive GPD bit is �1�.

Table 374: GPP Registers Map

Description Offset Page Number

General Purpose Configuration

General Purpose Configuration 0 (GPC0) 0x100A00 page 407

General Purpose Configuration 1 (GPC1) 0x100A04 page 409

General Purpose Configuration 2 (GPC2) 0x100A08 page 412

General Purpose Input/Output

General Purpose Input/Output 0 (GPIO0) 0x100A20 page 407

General Purpose Input/Output 1 (GPIO1) 0x100A24 page 410

General Purpose Input/Output 2 (GPIO2) 0x100A28 page 412

General Purpose Data

General Purpose Data 0 (GPD0) 0x100A40 page 408

General Purpose Data 1 (GPD1) 0x100A44 page 410

General Purpose Data 2 (GPD2) 0x100A48 page 413

General Purpose Level

General Purpose Level 0 (GPL0) 0x100A60 page 408

General Purpose Level 1 (GPL1) 0x100A64 page 411

General Purpose Level 2 (GPL2) 0x100A68 page 413

Table 373: Control Registers (Continued)

Register Description
406 Revision 1.0

GT-96100A Advanced Communication Controller

Table 375: General Purpose Configuration 0 (GPC0), Offset: 0x100A00

Bits
Field
Name Function

Init ial
Value

15:0 GPPC General Purpose Port Configuration
Each bit controls the setting of the respective pin in the GPP port.
0 - pin is configured as General Purpose I/O.
1 - pin is configured as peripheral function.

0

22:16 PAC Port A Configuration
Each bit controls the setting of the respective pin in port A.
0 - pin is configured as General Purpose I/O.
1 - pin is configured as peripheral function.

0

23 Reserved. 0

30:24 PBC Port B Configuration
Each bit controls the setting of the respective pin in port B.
0 - pin is configured as General Purpose I/O.
1 - pin is configured as peripheral function.

0

31 Reserved. 0

Table 376: General Purpose Input/Output 0 (GPIO0), Offset: 0x100A20

Bits
Field
Name Function

Init ial
Value

15:0 GPPIO General Purpose Port I/O
Each bit controls the setting of the respective pin in the GPP port as input or
output.
0 - pin is configured as input.
1 - pin is configured as output.

0

22:16 PAIO Port A I/O
Each bit controls the setting of the respective pin in port A as input or output.
0 - pin is configured as input.
1 - pin is configured as output.

0

23 Reserved. 0

30:24 PBIO Port B I/O. Each bit controls the setting of the respective pin in port B as
input or output.
0 - pin is configured as input.
1 - pin is configured as output.

0

31 Reserved. 0
Revision 1.0 407

GT-96100A Advanced Communication Controller

Table 377: General Purpose Data 0 (GPD0), Offset: 0x100A40

Bits
Field
Name Function

Init ial
Value

15:0 GPPD General Purpose Port Data
Each bit holds the data of the respective pin in GPP port. If the pin is config-
ured as input, this bit is read-only and reflects the signal status at the pin. If
the pin is configured as output, this bit is read-write and controls the data
driven out.

0

22:16 PAD Port A Data
Each bit holds the data of the respective pin in port A. If the pin is configured
as input, this bit is read-only and reflects the signal status at the pin. If the
pin is configured as output, this bit is read-write and controls the data driven
out.

0

23 Reserved. 0

30:24 PBD Port B Data
Each bit holds the data of the respective pin in port B. If the pin is configured
as input, this bit is read-only and reflects the signal status at the pin. If the
pin is configured as output, this bit is read-write and controls the data driven
out.

0

31 Reserved. 0

Table 378: General Purpose Level 0 (GPL0), Offset: 0x100A60

Bits
Field
Name Function

Init ial
Value

15:0 GPPL General Purpose Port Level
Each bit defines the polarity of the respective pin in GPP port.
0 - positive (normal) polarity.
1 - negative polarity. If the pin is configured as input, it is inverted before
being processed inside the device.

0

22:16 PAL Port A Level
Each bit defines the polarity of the respective pin in port A.
0 - positive (normal) polarity.
1 - negative polarity. If the pin is configured as input, it is inverted before
being processed inside the device.

0

23 Reserved. 0

30:24 PBL Port B Level
Each bit defines the polarity of the respective pin in port B.
0 - positive (normal) polarity.
1 - negative polarity. If the pin is configured as input, it is inverted before
being processed inside the device.

0

408 Revision 1.0

GT-96100A Advanced Communication Controller

31 Reserved. 0

Table 379: General Purpose Configuration 1 (GPC1), Offset: 0x100A04

Bits
Field
Name Function

Init ial
Value

6:0 PCC Port C Configuration
Each bit controls the setting of the respective pin in port C.
0 - pin is configured as General Purpose I/O.
1 - pin is configured as peripheral function.

0

7 Reserved. 0

14:8 PDC Port D Configuration
Each bit controls the setting of the respective pin in port D.
0 - pin is configured as General Purpose I/O.
1 - pin is configured as peripheral function.

0

15 Reserved. 0

22:16 PEC Port E Configuration
Each bit controls the setting of the respective pin in port E.
0 - pin is configured as General Purpose I/O.
1 - pin is configured as peripheral function.

0

23 Reserved. 0

30:24 PFC Port F Configuration
Each bit controls the setting of the respective pin in port F.
0 - pin is configured as General Purpose I/O.
1 - pin is configured as peripheral function.

0

31 Reserved. 0

Table 378: General Purpose Level 0 (GPL0), Offset: 0x100A60 (Continued)

Bits
Field
Name Function

Init ial
Value
Revision 1.0 409

GT-96100A Advanced Communication Controller

Table 380: General Purpose Input/Output 1 (GPIO1), Offset: 0x100A24

Bits
Field
Name Function

Init ial
Value

6:0 PCIO Port C I/O
Each bit controls the setting of the respective pin in port C as input or output.
0 - pin is configured as input.
1 - pin is configured as output.

0

7 Reserved. 0

14:8 PDIO Port D I/O
Each bit controls the setting of the respective pin in port D as input or output.
0 - pin is configured as input.
1 - pin is configured as output.

0

15 Reserved. 0

22:16 PEIO Port E I/O
Each bit controls the setting of the respective pin in port E as input or output.
0 - pin is configured as input.
1 - pin is configured as output.

0

23 Reserved. 0

30:24 PFIO Port F I/O
Each bit controls the setting of the respective pin in port F as input or output.
0 - pin is configured as input.
1 - pin is configured as output.

0

31 Reserved. 0

Table 381: General Purpose Data 1 (GPD1), Offset: 0x100A44

Bits
Field
Name Function

Init ial
Value

6:0 PCD Port C Data
Each bit holds the data of the respective pin in port C.
If the pin is configured as input, this bit is read-only and reflects the signal
status at the pin. If the pin is configured as output, this bit is read-write and
controls the data driven out.

0

7 Reserved 0

14:8 PDD Port D Data
Each bit holds the data of the respective pin in port D.
If the pin is configured as input, this bit is read-only and reflects the signal
status at the pin. If the pin is configured as output, this bit is read-write and
controls the data driven out.

0

410 Revision 1.0

GT-96100A Advanced Communication Controller

15 Reserved 0

22:16 PED Port E Data
Each bit holds the data of the respective pin in port E.
If the pin is configured as input, this bit is read-only and reflects the signal
status at the pin. If the pin is configured as output, this bit is read-write and
controls the data driven out.

0

23 Reserved 0

30:24 PFD Port F Data
Each bit holds the data of the respective pin in port F.
If the pin is configured as input, this bit is read-only and reflects the signal
status at the pin. If the pin is configured as output, this bit is read-write and
controls the data driven out.

0

31 Reserved 0

Table 382: General Purpose Level 1 (GPL1), Offset: 0x100A64

Bits
Field
Name Function

Init ial
Value

6:0 PCL Port C Level
Each bit defines the polarity of the respective pin in port C.
0 - positive (normal) polarity.
1 - negative polarity. If the pin is configured as input, it is inverted before
being processed inside the device.

0

7 Reserved. 0

14:8 PDL Port D Level
Each bit defines the polarity of the respective pin in port D.
0 - positive (normal) polarity.
1 - negative polarity. If the pin is configured as input, it is inverted before
being processed inside the device.

0

15 Reserved. 0

22:16 PEL Port E Level
Each bit defines the polarity of the respective pin in port E.
0 - positive (normal) polarity.
1 - negative polarity. If the pin is configured as input, it is inverted before
being processed inside the device.

0

23 Reserved. 0

Table 381: General Purpose Data 1 (GPD1), Offset: 0x100A44 (Continued)

Bits
Field
Name Function

Init ial
Value
Revision 1.0 411

GT-96100A Advanced Communication Controller

30:24 PFL Port F Level
Each bit defines the polarity of the respective pin in port F.
0 - positive (normal) polarity.
1 - negative polarity. If the pin is configured as input, it is inverted before
being processed inside the device.

0

31 Reserved. 0

Table 383: General Purpose Configuration 2 (GPC2), Offset: 0x100A08

Bits
Field
Name Function

Init ial
Value

14:0 MII0C Port MII0 Configuration
Each bit controls the setting of the respective pin in port MII0.
0 - pin is configured as General Purpose I/O.
1 - pin is configured as peripheral function.

0

15 Reserved. 0

30:16 MII1C Port MII1 Configuration
Each bit controls the setting of the respective pin in port MII1.
0 - pin is configured as General Purpose I/O.
1 - pin is configured as peripheral function.

0

31 Reserved. 0

Table 384: General Purpose Input/Output 2 (GPIO2), Offset: 0x100A28

Bits
Field
Name Function

Init ial
Value

14:0 MII0IO Port MII0 I/O
Each bit controls the setting of the respective pin in port MII0 as input or out-
put.
0 - pin is configured as input.
1 - pin is configured as output.

0

15 Reserved. 0

30:16 MII1IO Port MII1 I/O
Each bit controls the setting of the respective pin in port MII1 as input or out-
put.
0 - pin is configured as input.
1 - pin is configured as output.

0

Table 382: General Purpose Level 1 (GPL1), Offset: 0x100A64 (Continued)

Bits
Field
Name Function

Init ial
Value
412 Revision 1.0

GT-96100A Advanced Communication Controller

31 Reserved. 0

Table 385: General Purpose Data 2 (GPD2), Offset: 0x100A48

Bits
Field
Name Function

Init ial
Value

14:0 MII0D Port MII0 Data
Each bit holds the data of the respective pin in port MII0. If the pin is config-
ured as input, this bit is read-only and reflects the signal status at the pin. If
the pin is configured as output, this bit is read-write and controls the data
driven out.

0

15 Reserved. 0

30:16 MII1D Port MII1 Data
Each bit holds the data of the respective pin in port MII1. If the pin is config-
ured as input, this bit is read-only and reflects the signal status at the pin. If
the pin is configured as output, this bit is read-write and controls the data
driven out.

0

31 Reserved. 0

Table 386: General Purpose Level 2 (GPL2), Offset: 0x100A68

Bits
Field
Name Function

Init ial
Value

14:0 MII0L Port MII0 Level.
Each bit defines the polarity of the respective pin in port MII0.
0 - positive (normal) polarity.
1 - negative polarity. If the pin is configured as input, it is inverted before
being processed inside the device.

0

15 Reserved. 0

30:16 MII1L Port MII1 Level
Each bit defines the polarity of the respective pin in port MII1.
0 - positive (normal) polarity.
1 - negative polarity. If the pin is configured as input, it is inverted before
being processed inside the device.

0

31 Reserved. 0

Table 384: General Purpose Input/Output 2 (GPIO2), Offset: 0x100A28 (Continued)

Bits
Field
Name Function

Init ial
Value
Revision 1.0 413

GT-96100A Advanced Communication Controller
20. PHYSICAL SIGNAL ROUTING

20.1 Signal Routing

There are six serial ports on the GT-96100A�s Ports A�F and the MII0 port which are used to externally route the
MPSCs, FlexTDMs, and the General Purpose Interface signals.

The actual physical routing of the MPSC and TDM signals are defined in the Main Routing Register (MRR), see
Table 387 .
Table 387: MPSC Routing Register (MRR), Offset: 0X101A00

Bits
Field
Name Function

Init ial
Value

2:0 MR0 MPSC0 Routing
000 - Port A
001 - FlexTDM0
010 - FlexTDM1
011 - FlexTDM2
100 - FlexTDM3
101 - Reserved
110 - Reserved
111 - Unconnected (Default)
When not connected to MPSC0, Port A is connected to the PCI Arbiter or
used as GPP. See Section 19. �General Purpose Ports� on page 405 for
more details.

111

5:3 MR1 MPSC1 Routing
000 - Port B
001 - FlexTDM0
010 - FlexTDM1
011 - FlexTDM2
100 - FlexTDM3
101 - Reserved
110 - Reserved
111 - Unconnected (Default)
When not connected to MPSC1, Port B is connected to the PCI Arbiter or
used as GPP. See Section 19. �General Purpose Ports� on page 405 for
more details.

111
414 Revision 1.0

GT-96100A Advanced Communication Controller
8:6 MR2 MPSC2 Routing
000 - Port C
001 - FlexTDM0
010 - FlexTDM1
011 - FlexTDM2
100 - FlexTDM3
101 - Reserved
110 - Reserved
111 - Unconnected (Default)
When not connected to MPSC2, Port C is connected to TDM0 or used as
GPP. See Section 19. �General Purpose Ports� on page 405 for more
details.

111

11:9 MR3 MPSC3 Routing
000 - Port D
001 - FlexTDM0
010 - FlexTDM1
011 - FlexTDM2
100 - FlexTDM3
101 - Reserved
110 - Reserved
111 - Unconnected (Default)
When not connected to MPSC3, Port D is connected to TDM1 or used as
GPP. See Section 19. �General Purpose Ports� on page 405 for more
details.

111

14:12 MR4 MPSC4 Routing
000 - Port E
001 - FlexTDM0
010 - FlexTDM1
011 - FlexTDM2
100 - FlexTDM3
101 - Reserved
110 - Reserved
111 - Unconnected (Default)
When not connected to MPSC4, Port E is connected to TDM2 or used as
GPP. See Section 19. �General Purpose Ports� on page 405 for more
details.

111

Table 387: MPSC Routing Register (MRR), Offset: 0X101A00 (Continued)

Bits
Field
Name Function

Init ial
Value
Revision 1.0 415

GT-96100A Advanced Communication Controller
17:15 MR5 MPSC5 Routing
000 - Port F
001 - FlexTDM0
010 - FlexTDM1
011 - FlexTDM2
100 - FlexTDM3
101 - Reserved
110 - Reserved
111 - Unconnected (Default)
When not connected to MPSC5, Port F is connected to TDM3 or used as
GPP. See Section 19. �General Purpose Ports� on page 405 for more
details.

111

20:18 MR6 MPSC6 Routing
000 - Port MII0
001 - FlexTDM0
010 - FlexTDM1
011 - FlexTDM2
100 - FlexTDM3
101 - Reserved
110 - Reserved
111 - Unconnected (Default)
When not connected to MPSC6, Port MII0 is connected to Ethernet 0 or
used as GPP. See Section 19. �General Purpose Ports� on page 405 for
more details.
NOTE: Proper operation of MII interface for Ethernet 0 requires that fields

MR6 and MR7 cannot be set to value �000�. Any other value is a
valid setting. The RMII interface can be used for employing both
MPSC6 and Ethernet 0. See Table 289 for more details.

111

Table 387: MPSC Routing Register (MRR), Offset: 0X101A00 (Continued)

Bits
Field
Name Function

Init ial
Value
416 Revision 1.0

GT-96100A Advanced Communication Controller
NOTE: When a MPSC is connected to a FlexTDM, it�s clocks come from the FlexTDM Unit regardless of the
content of CRR/CRT.

23:21 MR7 MPSC7 Routing
000 - Port MII0
001 - FlexTDM0
010 - FlexTDM1
011 - FlexTDM2
100 - FlexTDM3
101 - Reserved
110 - Reserved
111 - Unconnected (Default)
When not connected to MPSC7, Port MII0 is connected to Ethernet 0 or
used as GPP. See Section 19. �General Purpose Ports� on page 405 for
more details.
NOTE: Proper operation of MII interface for Ethernet 0 requires that fields

MR6 and MR7 cannot be set to value �000�. Any other value is a
valid setting. The RMII interface can be used for employing both
MPSC7 and Ethernet 0. See Table 289 for more details.

111

31:24 Reserved. 0

Table 387: MPSC Routing Register (MRR), Offset: 0X101A00 (Continued)

Bits
Field
Name Function

Init ial
Value
Revision 1.0 417

GT-96100A Advanced Communication Controller
20.2 Clock Routing

The MPSCs� receive and transmit clocks use the baud rate generators or serial clock input signals. The routing of
these signals is defined in the RX Clock Routing Register (RCRR) and the TX Clock Routing Register (TCRR).
Table 388: RX Clock Routing Register (RCRR), Offset: 0X101A10

Bits
Field
Name Function

Init ial
Value

3:0 CRR0 MPSC0 RX Clock Routing
0000 - BRG0
0001 - BRG1
0010 - BRG2
0011 - BRG3
0100 - BRG4
0101 - BRG5
0110 - BRG6
0111 - BRG7
1000 - SCLK0
1001 to 1111 - Reserved

0000

7:4 CRR1 MPSC1 RX Clock Routing
0000 - BRG0
0001 - BRG1
0010 - BRG2
0011 - BRG3
0100 - BRG4
0101 - BRG5
0110 - BRG6
0111 - BRG7
1000 - SCLK1
1001 to 1111 - Reserved

0000

11:8 CRR2 MPSC2 RX Clock Routing
0000 - BRG0
0001 - BRG1
0010 - BRG2
0011 - BRG3
0100 - BRG4
0101 - BRG5
0110 - BRG6
0111 - BRG7
1000 - SCLK2
1001 to 1111 - Reserved

0000
418 Revision 1.0

GT-96100A Advanced Communication Controller
15:12 CRR3 MPSC3 RX Clock Routing
0000 - BRG0
0001 - BRG1
0010 - BRG2
0011 - BRG3
0100 - BRG4
0101 - BRG5
0110 - BRG6
0111 - BRG7
1000 - SCLK3
1001 to 1111 - Reserved

0000

19:16 CRR4 MPSC4 RX Clock Routing
0000 - BRG0
0001 - BRG1
0010 - BRG2
0011 - BRG3
0100 - BRG4
0101 - BRG5
0110 - BRG6
0111 - BRG7
1000 - SCLK4
1001 to 1111 - Reserved

0000

23:20 CRR5 MPSC5 RX Clock Routing
0000 - BRG0
0001 - BRG1
0010 - BRG2
0011 - BRG3
0100 - BRG4
0101 - BRG5
0110 - BRG6
0111 - BRG7
1000 - SCLK5
1001 to 1111 - Reserved

0000

Table 388: RX Clock Routing Register (RCRR), Offset: 0X101A10 (Continued)

Bits
Field
Name Function

Init ial
Value
Revision 1.0 419

GT-96100A Advanced Communication Controller

27:24 CRR6 MPSC6 RX Clock Routing
0000 - BRG0
0001 - BRG1
0010 - BRG2
0011 - BRG3
0100 - BRG4
0101 - BRG5
0110 - BRG6
0111 - BRG7
1000 - SCLK6
1001 to 1111 - Reserved

0000

31:28 CRR7 MPSC7 RX Clock Routing
0000 - BRG0
0001 - BRG1
0010 - BRG2
0011 - BRG3
0100 - BRG4
0101 - BRG5
0110 - BRG6
0111 - BRG7
1000 - SCLK7
1001 to 1111 - Reserved

0000

Table 389: TX Clock Routing Register (TCRR), Offset: 0x101A20

Bits
Field
Name Function

Init ial
Value

3:0 CRT0 MPSC0 TX Clock Routing
0000 - BRG0
0001 - BRG1
0010 - BRG2
0011 - BRG3
0100 - BRG4
0101 - BRG5
0110 - BRG6
0111 - BRG7
1000 - SCLK0
1001 - TSCLK0
1010 to 1111 - Reserved

0000

Table 388: RX Clock Routing Register (RCRR), Offset: 0X101A10 (Continued)

Bits
Field
Name Function

Init ial
Value
420 Revision 1.0

GT-96100A Advanced Communication Controller
7:4 CRT1 MPSC1 TX Clock Routing
0000 - BRG0
0001 - BRG1
0010 - BRG2
0011 - BRG3
0100 - BRG4
0101 - BRG5
0110 - BRG6
0111 - BRG7
1000 - SCLK1
1001 - TSCLK1
1010 to 1111 - Reserved

0000

11:8 CRT2 MPSC2 TX Clock Routing
0000 - BRG0
0001 - BRG1
0010 - BRG2
0011 - BRG3
0100 - BRG4
0101 - BRG5
0110 - BRG6
0111 - BRG7
1000 - SCLK2
1001 - TSCLK2
1010 to 1111 - Reserved

0000

15:12 CRT3 MPSC3 TX Clock Routing
0000 - BRG0
0001 - BRG1
0010 - BRG2
0011 - BRG3
0100 - BRG4
0101 - BRG5
0110 - BRG6
0111 - BRG7
1000 - SCLK3
1001 - TSCLK3
1010 to 1111 - Reserved

0000

Table 389: TX Clock Routing Register (TCRR), Offset: 0x101A20 (Continued)

Bits
Field
Name Function

Init ial
Value
Revision 1.0 421

GT-96100A Advanced Communication Controller
19:16 CRT4 MPSC4 TX Clock Routing
0000 - BRG0
0001 - BRG1
0010 - BRG2
0011 - BRG3
0100 - BRG4
0101 - BRG5
0110 - BRG6
0111 - BRG7
1000 - SCLK4
1001 - TSCLK4
1010 to 1111 - Reserved

0000

23:20 CRT5 MPSC5 TX Clock Routing
0000 - BRG0
0001 - BRG1
0010 - BRG2
0011 - BRG3
0100 - BRG4
0101 - BRG5
0110 - BRG6
0111 - BRG7
1000 - SCLK5
1001 - TSCLK5
1010 to 1111 - Reserved

0000

27:24 CRT6 MPSC6 TX Clock Routing
0000 - BRG0
0001 - BRG1
0010 - BRG2
0011 - BRG3
0100 - BRG4
0101 - BRG5
0110 - BRG6
0111 - BRG7
1000 - SCLK6
1001 - TSCLK6
1010 to 1111 - Reserved

0000

Table 389: TX Clock Routing Register (TCRR), Offset: 0x101A20 (Continued)

Bits
Field
Name Function

Init ial
Value
422 Revision 1.0

GT-96100A Advanced Communication Controller
31:28 CRT7 MPSC7 TX Clock Routing
0000 - BRG0
0001 - BRG1
0010 - BRG2
0011 - BRG3
0100 - BRG4
0101 - BRG5
0110 - BRG6
0111 - BRG7
1000 - SCLK7
1001 - TSCLK7
1010 to 1111 - Reserved

0000

Table 389: TX Clock Routing Register (TCRR), Offset: 0x101A20 (Continued)

Bits
Field
Name Function

Init ial
Value
Revision 1.0 423

GT-96100A Advanced Communication Controller
21. INTERRUPT CONTROLLER
The GT-96100A provides four interrupt pins that can be used for generating interrupts to the CPU:

� Interrupt0*
� Interrupt1*
� SerInt0*
� SerInt1*

The GT-96100A also integrates a programmable interrupt controller that is capable of routing each of the internal
interrupt requests to one (or more) of the interrupt pins. The interrupt controller performs a logical OR of all
internal interrupt events and asserts an interrupt to the CPU when at least one of the (unmasked) events is set.

The interrupt pins provided by the GT-96100A can be used in any system which supports multiple interrupt sig-
nals. If the CPU is capable of handling multiple interrupt inputs, connect the GT-96100A pins directly to the
CPU. If the system requires a PCI directed interrupt, connect one of the pins to the PCI and the remaining pins to
the CPU.

The two serial interrupt pins (SerInt0*, SerInt1*) allow separation of communication interrupts from other sys-
tem events. Only events that originate within the communication unit can be routed to the serial interrupt pins.

21.1 Interrupt Cause Registers

There are two high-level interrupt cause registers, which serve to indicate the occurrence of certain events. One
cause register (Main_Cause register) consists of events originating in the GT-96100A�s system controller logic.
This register is located at offset 0x000C18.

The other cause register (High_Cause register) consists of events originating in the PCI_1 unit and the communi-
cation unit. This register is located at offset 0x000C1C.

NOTE: There is another cause register dedicated to communication events. This register (Serial_Cause register)
is located at 0x103A00.

When an interrupt event occurs, a bit in one of the cause registers is set. All bits in the cause register(s) are ORed
together, and the result is driven on one of the Interrupt* lines. The Interrupt* causes the CPU to read the inter-
rupt cause registers and run a service routine depending on the interrupt being serviced.

The interrupt is acknowledged by the CPU resetting bits in the cause register. The specific bit that is reset
depends on the interrupt event being serviced. Reset a bit by writing �0� to this bit and �1� to all other bits.

NOTE: An exception to the above is the CPUInt ([25:22]) and PCIInt ([29:26]) bits, which are intended for gen-
erating PCItoCPU and CPUtoPCI interrupts. Set these bits by writing �0� from the interrupt originating
side. Clear these bits by writing �0� from the interrupt destination side. For example, if one of the PCI
agents needs to assert an interrupt to the CPU, it can write �0� to one of the PCIInt bits in the
Main_Cause register. Assuming that this bit is not masked, interrupt0* will be asserted. After servicing
this interrupt the CPU should clear the interrupt bit by writing zero to it.
424 Revision 1.0

GT-96100A Advanced Communication Controller
21.1.1 Communication Unit Cause Registers
The GT-96100A includes 16 second level cause registers used to trap events generated within the communication
unit.

Each interrupt source in the communication unit is tied to one of these second level cause registers. Each of these
registers is tied to specific bits in the High_Cause register and in the Serial_Cause register. These bits function as
summary bits, and are set when specific bits in the cause register are asserted (i.e. each summary bit is equivalent
to a logical OR of some bits in one of the cause registers). These summary bits are read-only.

When an interrupt event occurs in the communication unit, a bit is set in one of the second level cause registers.
This bit, if not masked, asserts one of the summary bits in the High_Cause register and in the Serial_Cause regis-
ter. Following that, one (or more) of the interrupt lines is asserted.

The CPU recognizes an interrupt that is due to the communication unit when one of the summary bits in the
High_Cause register is set or when one of the summary bits in the Serial_Cause register is set. Based on the spe-
cific bit set, the CPU reads the second level cause register associated with this bit in order to identify the actual
interrupt event that generated the interrupt. In order to acknowledge the interrupt, the CPU must write zero to this
bit in the cause register.

NOTE: The CPU cannot reset the summary bits directly, because these bits are read-only. A summary bit is
automatically reset when the CPU resets the bits in the related second level cause register.

21.2 Interrupt Mask Registers

The GT-96100A provides interrupt mask registers for each of the internal cause registers. These mask registers
allow masking of certain events, so that only specific events (as selected by the user) actually cause assertion of
one of the interrupts.

There are two mask registers associated with Interrupt0* and two mask registers associated with Interrupt1*.
These mask registers are used for enabling events that cause the assertion of either of these interrupts. For
Interrupt0*, these mask registers are located at 0x000C1C and at 0x000C9C. For Interrupt1*, the mask registers
are located at 0x000C24 and at 0x000C38. Programming �0� in a mask register bit disables the associated event
from asserting interrupt. Programming �1� allows the interrupt event to cause interrupt signal assertion.

In addition, there is one mask register associated with each of the serial interrupt pins. For SerInt0* the mask reg-
ister is located at 0x103A80 and for SerInt1* the mask register is located at 0x103A88.
Revision 1.0 425

GT-96100A Advanced Communication Controller
21.3 Interrupt Summaries

The GT-96100A provides the following three interrupt summary bits in the main cause register:
� IntSum (bit [0] in the Main_Cause register) is the logical OR of all interrupt bits in both the

Main_Cause and High_Cause registers. This OR is not affected by the state of the mask bits and can be
used for event polling.

� Int0*Sum (bit [30] in the Main_Cause register) is the logical OR of all interrupt bits in both the
Main_Cause and High_Cause registers masked by Interrupt0* mask registers. It serves as an indication
that at least one of the (unmasked) Interrupt0* events is set.

� Int1*Sum (bit [31] in the Main_Cause register) is the logical OR of all interrupt bits in both the
Main_Cause and High_Cause registers masked by Interrupt1* mask registers. It serves as an indication
that at least one of the (unmasked) Interrupt1* events is set.

21.4 Interrupt Select Registers

There are two interrupt select registers that can be used to optimize interrupt service routines. One select register
is associated with Interrupt0* (offset 0x000C70) and another register is associated with interrupt1* (offset
0x000C74).

These select registers optimize service routines is the following manner:
� Instead of checking BOTH the Main_Cause register and the High_Cause register, when interrupted, the

CPU has the option to read the appropriate select register.
� The select register will reflect the Cause register bits of either the Main_Cause or the High_Cause regis-

ters, depending on which register has active unmasked interrupt bits.
� Bit [30] of the select register indicates which of the cause registers (Main or High) is selected and bits

[29:0] reflect the state of the interrupt bits of the selected cause register. For example, if bit [5] of the
High_Cause register is set (and is unmasked), and no (unmasked) bit in the Main_Cause register is set,
then bit [5] of the select register is set as well. In addition, bit [30] of the select register is set, indicating
that the High_Cause register is currently being selected.

In case both the Main_Cause and the High_Cause registers have interrupt bits set, the select register reflects the
state of the Main_Cause register (and bit [30] is therefore reset). However, in order to indicate that both cause
registers are active, bit [31] of the select register is also set, in this case.
426 Revision 1.0

GT-96100A Advanced Communication Controller
21.5 Interrupt Registers Tables

Table 390: Interrupt Registers Map

Register Name Offset Page Number

Interrupt Main Cause register 0x000C18 page 428

Interrupt0* Main Mask register 0x000C1C page 432

Interrupt1* Main Mask register 0x000C24 page 434

Interrupt High Cause register 0x000C98 page 430

Interrupt0* High Mask register 0x000C9C page 433

Interrupt1* High Mask register 0x000CA4 page 435

Interrupt0* Select register 0x000C70 page 431

Interrupt1* Select register 0x000C74 page 432

Serial Cause register 0x103A00 page 436

SerInt0* Mask register 0x103A80 page 438

SerInt1* Mask register 0x103A88 page 439

Ethernet0 Cause register 0x084850 page 440

Ethernet0 Mask register 0x084858 page 440

Ethernet1 Cause register 0x088850 page 441

Ethernet1 Mask register 0x088858 page 441

SDMA Cause register 0x103A10 page 441

SDMA Mask register 0x103A90 page 441

MPSC0 Cause register 0x103A20 page 444

MPSC0 Mask register 0x103AA0 page 444

MPSC1 Cause register 0x103A24 page 445

MPSC1 Mask register 0x103AA4 page 445

MPSC2 Cause register 0x103A28 page 445

MPSC2 Mask register 0x103AA8 page 445

MPSC3 Cause register 0x103A2C page 446

MPSC3 Mask register 0x103AAC page 446

MPSC4 Cause register 0x103A30 page 446

MPSC4 Mask register 0x103AB0 page 446

MPSC5 Cause register 0x103A34 page 446

MPSC5 Mask register 0x103AB4 page 446
Revision 1.0 427

GT-96100A Advanced Communication Controller

MPSC6 Cause register 0x103A38 page 446

MPSC6 Mask register 0x103AB8 page 446

MPSC7 Cause register 0x103A3C page 446

MPSC7 Mask register 0x103ABC page 446

FlexTDM Cause register 0x103A40 page 447

FlexTDM Mask register 0x103AC0 page 447

BRG Cause register 0x103A48 page 448

BRG Mask register 0x103AC8 page 448

GPP0 Cause register 0x103A50 page 448

GPP0 Mask register 0x103AD0 page 448

GPP1 Cause register 0x103A54 page 449

GPP1 Mask register 0x103AD4 page 449

GPP2 Cause register 0x103A58 page 449

GPP2 Mask register 0x103AD8

Table 391: Interrupt Main Cause Register, Offset: 0x000C18

Bits Field Name Function
Init ial
Value

0 IntSum Interrupt Summary
Logical OR of all the interrupt bits, regardless of the Mask registers�
values.
This bit is read-only.

0

1 MemOut Asserts when the CPU or PCI accesses an address out of range in
the memory decoding or a burst access to 8- 16-bit devices.

0

2 DMAOut Asserts when the DMA or Communication unit accesses an address
out of range.

0

3 CPUOut Asserts when the CPU accesses an address out of range. 0

4 DMA0Comp Asserts at completion of DMA Channel 0 transfer. 0

5 DMA1Comp Asserts at completion of DMA Channel 1 transfer. 0

6 DMA2Comp Asserts at completion of DMA Channel 2 transfer. 0

7 DMA3Comp Asserts at completion of DMA Channel 3 transfer. 0

8 T0Exp Asserts when Timer 0 expires. 0

Table 390: Interrupt Registers Map (Continued)

Register Name Offset Page Number
428 Revision 1.0

GT-96100A Advanced Communication Controller
9 T1Exp Asserts when Timer 1 expires. 0

10 T2Exp Asserts when Timer 2 expires. 0

11 T3Exp Asserts when Timer 3 expires. 0

12 MasRdErr0 Asserts when the GT-96100A detects a parity error during a PCI_0
master read operation.

0

13 SlvWrErr0 Asserts when the GT-96100A detects a parity error during a PCI_0
slave write operation.

0

14 MasWrErr0 Asserts when the GT-96100A detects a parity error during a PCI_0
master write operation.

0

15 SlvRdErr0 Asserts when the GT-96100A detects a parity error during a PCI_0
slave read operation.

0

16 AddrErr0 Asserts when the GT-96100A detects a parity error on the PCI_0
address lines.

0

17 MemErr Asserts when a memory parity error is detected. 0

18 MasAbort0 Asserts upon PCI_0 master abort. 0

19 TarAbort0 Asserts upon PCI_0 target abort. 0

20 RetryCtr0 Asserts when the PCI_0 retry counter expires. 0

21 PMCInt0 If Power Management is enabled this bit functions as PMC0 interrupt,
otherwise it functions as one of the CPUInt bits.

� PMCInt: Asserts when power state bits in PMCSR0 register
are updated from PCI.

� CPUInt: Set by the CPU by writing �0� to generate an inter-
rupt on the PCI bus. Cleared when the PCI writes �0�.

0

25:22 CPUInt These bits are set by the CPU by writing �0� to generate an interrupt on
the PCI bus. They are cleared when the PCI writes �0�. This requires
that Interrupt1* is used as a PCI interrupt signal.

0

29:26 PCIInt These bits are set by the PCI by writing �0� to generate an interrupt on
the CPU. They are cleared when the CPU writes �0�.

0

30 Int0*Sum Interrupt Summary
Logical OR of all interrupt bits in the main and high Cause registers
masked by Interrupt0* mask registers.
This bit is read-only.

0

31 Int1*Sum Interrupt Summary
Logical OR of all interrupt bits in the main and high Cause registers
masked by Interrupt1* mask registers.
This bit is read-only.

0

Table 391: Interrupt Main Cause Register, Offset: 0x000C18 (Continued)

Bits Field Name Function
Init ial
Value
Revision 1.0 429

GT-96100A Advanced Communication Controller

Table 392: Interrupt High Cause Register, Offset: 0x000C98

Bits Field Name Function

Init ia
l
Value

0 Ether0Sum Ethernet port 0 Interrupt Summary
Logical OR of all unmasked interrupt bits in the Ethernet0_Cause reg-
ister.
This bit is read-only.

0

1 Ether1Sum Ethernet Port 1Interrupt Summary
Logical OR of all unmasked interrupt bits in the Ethernet1_Cause reg-
ister.
This bit is read-only.

0

3:2 Reserved. 0

4 SdmaSum SDMA Interrupt Summary
Logical OR of all unmasked interrupt bits in the SDMA_Cause register.
This bit is read-only.

0

5 MpscSum MPSC Interrupt Summary
Logical OR of all unmasked interrupt bits in all the MPSC_Cause reg-
isters.
This bit is read-only.

0

6 FtdmSum FlexTDM Interrupt Summary
Logical OR of all unmasked interrupt bits in the FTDM_Cause register.
This bit is read-only.

0

7 BrgSum Baud Rate Generators Interrupt Summary
Logical OR of all unmasked interrupt bits in the BRG_Cause register.
This bit is read-only.

0

8 GPP0Sum GPP0 Interrupt Summary
Logical OR of all unmasked interrupt bits in the GPP0_Cause register.
This bit is read-only.

0

9 GPP1Sum GPP1 Interrupt Summary
Logical OR of all unmasked interrupt bits in the GPP1_Cause register.
This bit is read-only.

0

10 GPP2Sum GPP2 Interrupt Summary
Logical OR of all unmasked interrupt bits in the GPP2_Cause register.
This bit is read-only.

0

11 Reserved. 0

12 MasRdErr1 Asserts when the GT-96100A detects a parity error during a PCI_1
master read operation.

0

13 SlvWrErr1 Asserts when the GT-96100A detects a parity error during a PCI_1
slave write operation.

0

430 Revision 1.0

GT-96100A Advanced Communication Controller

14 MasWrErr1 Asserts when the GT-96100A detects a parity error during a PCI_1
master write operation.

0

15 SlvRdErr1 Asserts when the GT-96100A detects a parity error during a PCI_1
slave read operation.

0

16 AddrErr1 Asserts when the GT-96100A detects a parity error on the PCI_1
address lines.

0

17 Reserved. 0

18 MasAbort1 Asserts upon PCI_1 master abort. 0

19 TarAbort1 Asserts upon PCI_1 target abort. 0

20 RetryCtr1 Asserts when the PCI_1 retry counter expires. 0

21 PMCInt1 If Power Management is enabled, this bit functions as PMC1 interrupt,
otherwise it is reserved. PMC1 asserts when power state bits in
PMCSR1 register are updated from PCI.

0

23:22 Reserved. 0

24 PciArb0 PCI_0 Arbiter Interrupt
This bit is set when a �broken master� condition is detected by PCI_0
arbiter.

0

25 PciArb1 PCI_1 Arbiter Interrupt
This bit is set when a �broken master� condition is detected by PCI_1
arbiter.

0

31:26 Reserved. 0

Table 393: Interrupt0* Select Register, Offset: 0x000C70

Bits Field Name Function

Init ia
l
Value

29:0 AliasedBits Aliased to bits [29:0] of the selected Cause register. 0

30 SelectCause Selected Cause Register
0 - Main Cause Register
1 - High Cause Register

0

31 LowAndHigh Interrupt is set in both Main and High Cause Registers. 0

Table 392: Interrupt High Cause Register, Offset: 0x000C98 (Continued)

Bits Field Name Function

Init ia
l
Value
Revision 1.0 431

GT-96100A Advanced Communication Controller

Table 394: Interrupt1* Select Register, Offset: 0x000C74

Bits Field Name Function
Init ial
Value

31:0 Various Same as for Interrupt0* Select register. 0

Table 395: Interrupt0* Main Mask Register, Offset: 0x000C1C

Bits Field Name Function
Init ial
Value

0 Reserved. 0

1 MemOutMask Masks MemOut Interrupt to Interrupt0* 0

2 DMAOutMask Masks DMAOut Interrupt to Interrupt0* 0

3 CPUOutMask Masks CPUOut Interrupt to Interrupt0* 0

4 DMA0CompMask Masks DMA0Comp Interrupt to Interrupt0* 0

5 DMA1CompMask Masks DMA1Comp Interrupt to Interrupt0* 0

6 DMA2CompMask Masks DMA2Comp Interrupt to Interrupt0* 0

7 DMA3CompMask Masks DMA3Comp Interrupt to Interrupt0* 0

8 T0ExpMask Masks T0Exp Interrupt to Interrupt0* 0

9 T1ExpMask Masks T1Exp Interrupt to Interrupt0* 0

10 T2ExpMask Masks T2Exp Interrupt to Interrupt0* 0

11 T3ExpMask Masks T3Exp Interrupt to Interrupt0* 0

12 MasRdErr0Mask Masks MasRdErr0 Interrupt to Interrupt0* 0

13 SlvWrErr0Mask Masks SlvWrErr0 Interrupt to Interrupt0* 0

14 MasWrErr0Mask Masks MasWrErr0 Interrupt to Interrupt0* 0

15 SlvRdErr0Mask Masks SlvRdErr0 Interrupt to Interrupt0* 0

16 AddrErr0Mask Masks AddrErr0 Interrupt to Interrupt0* 0

17 MemErrMask Masks MemErr Interrupt to Interrupt0* 0

18 MasAbort0Mask Masks MasAbort0 Interrupt to Interrupt0* 0

19 TarAbort0Mask Masks TarAbort0 Interrupt to Interrupt0* 0

20 RetryCtr0Mask Masks RetryCtr0 Interrupt to Interrupt0* 0

21 PMC0Mask If Power Management is enabled, masks PMC0 interrupt to
Interrupt0*, otherwise it is reserved (Read Only 0).

0

25:22 Reserved. 0

29:26 PCIIntMask Masks PCIInt Interrupt to Interrupt0* 0
432 Revision 1.0

GT-96100A Advanced Communication Controller
31:30 Reserved. 0

Table 396: Interrupt0* High Mask Register, Offset: 0x000C9C

Bits Field Name Function
Init ial
Value

0 Ether0SumMask Masks Ether0Sum to Interrupt0* 0

1 Ether1SumMask Masks Ether1Sum to Interrupt0* 0

3:2 Reserved. 0

4 SdmaSumMask Masks SdmaSum to Interrupt0* 0

5 MpscSumMask Masks MpscSum to Interrupt0* 0

6 FtdmSumMask Masks FtdmSum to Interrupt0* 0

7 BrgSumMask Masks BrgSum to Interrupt0* 0

8 GPP0SumMask Masks GPP0Sum to Interrupt0* 0

9 GPP1SumMask Masks GPP1Sum to Interrupt0* 0

10 GPP2SumMask Masks GPP2Sum to Interrupt0* 0

11 Reserved. 0

12 MasRdErr1Mask Masks MasRdErr1 to Interrupt0* 0

13 SlvWrErr1Mask Masks SlvWrErr1 to Interrupt0* 0

14 MasWrErr1Mask Masks MasWrErr1 to Interrupt0* 0

15 SlvRdErr1Mask Masks SlvRdErr1 to Interrupt0* 0

16 AddrErr1Mask Masks AddrErr1 to Interrupt0* 0

17 Reserved. 0

18 MasAbort1Mask Masks MasAbort1 to Interrupt0* 0

19 TarAbort1Mask Masks TarAbort1 to Interrupt0* 0

20 RetryCtr1Mask Masks RetryCtr1 to Interrupt0* 0

21 PMC1Mask If Power Management is enabled, masks PMC1 interrupt to
Interrupt0*, otherwise it is reserved (Read Only 0).

0

23:22 Reserved.

24 PciArb0Mask Masks PciArb0 to Interrupt0* 0

25 PciArb1Mask Masks PciArb1 to Interrupt0* 0

Table 395: Interrupt0* Main Mask Register, Offset: 0x000C1C (Continued)

Bits Field Name Function
Init ial
Value
Revision 1.0 433

GT-96100A Advanced Communication Controller

31:26 Reserved. 0

Table 397: Interrupt1* Main Mask Register, Offset: 0x000C24

Bits Field Name Function
Init ial
Value

0 Reserved 0

1 MemOutMask Masks MemOut Interrupt to Interrupt1* 0

2 DMAOutMask Masks DMAOut Interrupt to Interrupt1* 0

3 CPUOutMask Masks CPUOut Interrupt to Interrupt1* 0

4 DMA0CompMask Masks DMA0Comp Interrupt to Interrupt1* 0

5 DMA1CompMask Masks DMA1Comp Interrupt to Interrupt1* 0

6 DMA2CompMask Masks DMA2Comp Interrupt to Interrupt1* 0

7 DMA3CompMask Masks DMA3Comp Interrupt to Interrupt1* 0

8 T0ExpMask Masks T0Exp Interrupt to Interrupt1* 0

9 T1ExpMask Masks T1Exp Interrupt to Interrupt1* 0

10 T2ExpMask Masks T2Exp Interrupt to Interrupt1* 0

11 T3ExpMask Masks T3Exp Interrupt to Interrupt1* 0

12 MasRdErr0Mask Masks MasRdErr0 Interrupt to Interrupt1* 0

13 SlvWrErr0Mask Masks SlvWrErr0 Interrupt to Interrupt1* 0

14 MasWrErr0Mask Masks MasWrErr0 Interrupt to Interrupt1* 0

15 SlvRdErr0Mask Masks SlvRdErr0 Interrupt to Interrupt1* 0

16 AddrErr0Mask Masks AddrErr0 Interrupt to Interrupt1* 0

17 MemErrMask Masks MemErr Interrupt to Interrupt1* 0

18 MasAbort0Mask Masks MasAbort0 Interrupt to Interrupt1* 0

19 TarAbort0Mask Masks TarAbort0 Interrupt to Interrupt1* 0

20 RetryCtr0Mask Masks RetryCtr0 Interrupt to Interrupt1* 0

21 PMC0Mask If Power Management is enabled, masks PMC0 interrupt to
Interrupt1*, otherwise it masks CPUInt Interrupt to Interrupt1*

0

25:22 CPUInt Masks CPUInt Interrupt to Interrupt1* 0

31:26 Reserved 0

Table 396: Interrupt0* High Mask Register, Offset: 0x000C9C (Continued)

Bits Field Name Function
Init ial
Value
434 Revision 1.0

GT-96100A Advanced Communication Controller

Table 398: Interrupt1* High Mask Register, Offset: 0x000CA4

Bits Field Name Function
Init ial
Value

0 Ether0SumMask Masks Ether0Sum to Interrupt1* 0

1 Ether1SumMask Masks Ether1Sum to Interrupt1* 0

3:2 Reserved. 0

4 SdmaSumMask Masks SdmaSum to Interrupt1* 0

5 MpscSumMask Masks MpscSum to Interrupt1* 0

6 FtdmSumMask Masks FtdmSum to Interrupt1* 0

7 BrgSumMask Masks BrgSum to Interrupt1* 0

8 GPP0SumMask Masks GPP0Sum to Interrupt1* 0

9 GPP1SumMask Masks GPP1Sum to Interrupt1* 0

10 GPP2SumMask Masks GPP2Sum to Interrupt1* 0

11 Reserved. 0

12 MasRdErr1Mask Masks MasRdErr1 to Interrupt1* 0

13 SlvWrErr1Mask Masks SlvWrErr1 to Interrupt1* 0

14 MasWrErr1Mask Masks MasWrErr1 to Interrupt1* 0

15 SlvRdErr1Mask Masks SlvRdErr1 to Interrupt1* 0

16 AddrErr1Mask Masks AddrErr1 to Interrupt1* 0

17 Reserved. 0

18 MasAbort1Mask Masks MasAbort1 to Interrupt1* 0

19 TarAbort1Mask Masks TarAbort1 to Interrupt1* 0

20 RetryCtr1Mask Masks RetryCtr1 to Interrupt1* 0

21 PMC1Mask If Power Management is enabled, masks PMC1 interrupt to
Interrupt1*. Otherwise, it is reserved (Read Only 0).

0

23:22 Reserved.

24 PciArb0Mask Masks PciArb0 to Interrupt1* 0

25 PciArb1Mask Masks PciArb1 to Interrupt1* 0

31:26 Reserved. 0
Revision 1.0 435

GT-96100A Advanced Communication Controller

Table 399: Serial Cause Register, Offset: 0x103A00

Bits Field Name Function

Init ia
l
Value

0 Ether0Sum Ethernet Port 0 Interrupt Summary
Logical OR of all unmasked interrupt bits in the Ethernet0_Cause
register.
This bit is read-only.

0

1 Ether1Sum Ethernet Port 1Interrupt Summary
Logical OR of all unmasked interrupt bits in the Ethernet1_Cause
register.
This bit is read-only.

0

3:2 Reserved. 0

4 SdmaSum SDMA Interrupt Summary
Logical OR of all unmasked bits in the SDMA_Cause register.
This bit is read-only.

0

5 MpscSum MPSC Interrupt Summary
Logical OR of all unmasked interrupt bits in the MPSC_Cause regis-
ters.
This bit is read-only.

0

6 FtdmSum FlexTDM Interrupt Summary
Logical OR of all unmasked interrupt bits in the FTDM_Cause regis-
ter.
This bit is read-only.

0

7 BrgSum Baud Rate Generators Interrupt Summary
Logical OR of all unmasked interrupt bits in the BRG_Cause regis-
ter.
This bit is read-only.

0

8 Sdma0Sum SDMA0 Interrupt Summary
Logical OR of unmasked bits [3:0] in the SDMA_Cause register.
This bit is read-only.

0

9 Mpsc0Sum MPSC0 Interrupt Summary
Logical OR of all unmasked interrupt bits in the MPSC0_Cause reg-
ister.
This bit is read-only.

0

10 Sdma1Sum SDMA1 Interrupt Summary
Logical OR of unmasked bits [7:4] in the SDMA_Cause register.
This bit is read-only.

0

436 Revision 1.0

GT-96100A Advanced Communication Controller
11 Mpsc1Sum MPSC1 Interrupt Summary
Logical OR of all unmasked interrupt bits in the MPSC1_Cause reg-
ister.
This bit is read-only.

0

12 Sdma2Sum SDMA2 Interrupt Summary
Logical OR of unmasked bits [11:8] in the SDMA_Cause register.
This bit is read-only.

0

13 Mpsc2Sum MPSC2 Interrupt Summary
Logical OR of all unmasked interrupt bits in the MPSC2_Cause reg-
ister.
This bit is read-only.

0

14 Sdma3Sum SDMA2 Interrupt Summary
Logical OR of unmasked bits [15:12] in the SDMA_Cause register.
This bit is read-only.

0

15 Mpsc3Sum MPSC3 Interrupt Summary
Logical OR of all unmasked interrupt bits in the MPSC3_Cause reg-
ister.
This bit is read-only.

0

16 Sdma4Sum SDMA4 Interrupt Summary
Logical OR of unmasked bits [19:16] in the SDMA_Cause register.
This bit is read-only.

0

17 Mpsc4Sum MPSC4 Interrupt Summary
Logical OR of all unmasked interrupt bits in the MPSC4_Cause reg-
ister.
This bit is read-only.

0

18 Sdma5Sum SDMA5 Interrupt Summary
Logical OR of unmasked bits [23:20] in the SDMA_Cause register.
This bit is read-only.

0

19 Mpsc5Sum MPSC5 Interrupt Summary
Logical OR of all unmasked interrupt bits in the MPSC5_Cause reg-
ister.
This bit is read-only.

0

20 Sdma6Sum SDMA6 Interrupt Summary
Logical OR of unmasked bits [27:24] in the SDMA_Cause register.
This bit is read-only.

0

Table 399: Serial Cause Register, Offset: 0x103A00 (Continued)

Bits Field Name Function

Init ia
l
Value
Revision 1.0 437

GT-96100A Advanced Communication Controller

21 Mpsc6Sum MPSC6 Interrupt Summary
Logical OR of all unmasked interrupt bits in the MPSC6_Cause reg-
ister.
This bit is read-only.

0

22 Sdma7Sum SDMA7 Interrupt Summary
Logical OR of unmasked bits [31:28] in the SDMA_Cause register.
This bit is read-only.

0

23 Mpsc7Sum MPSC7 Interrupt Summary
Logical OR of all unmasked interrupt bits in the MPSC7_Cause reg-
ister.
This bit is read-only.

0

24 GPP0Sum GPP0 Interrupt Summary
Logical OR of all unmasked interrupt bits in the GPP0_Cause regis-
ter.
This bit is read-only.

0

25 GPP1Sum GPP1 Interrupt Summary
Logical OR of all unmasked interrupt bits in the GPP1_Cause regis-
ter.
This bit is read-only.

0

26 GPP2Sum GPP2 Interrupt Summary
Logical OR of all unmasked interrupt bits in the GPP2_Cause regis-
ter.
This bit is read-only.

0

31:27 Reserved. 0

Table 400: SerInt0* Mask Register, Offset: 0x103A80

Bits Field Name Function
Init ial
Value

0 Ether0SumMask Mask Ether0Sum interrupt to SerInt0* 0

1 Ether1SumMask Mask Ether1Sum interrupt to SerInt0* 0

3:2 Reserved. 0

4 SdmaSumMask Mask SdmaSum interrupt to SerInt0* 0

5 MpscSumMask Mask MpscSum interrupt to SerInt0* 0

6 FtdmSumMask Mask FtdmSum interrupt to SerInt0* 0

Table 399: Serial Cause Register, Offset: 0x103A00 (Continued)

Bits Field Name Function

Init ia
l
Value
438 Revision 1.0

GT-96100A Advanced Communication Controller

7 BrgSumMask Mask BrgSum interrupt to SerInt0* 0

8 Sdma0SumMask Mask Sdma0Sum interrupt to SerInt0* 0

9 Mpsc0SumMask Mask Mpsc0Sum interrupt to SerInt0* 0

10 Sdma1SumMask Mask Sdma1Sum interrupt to SerInt0* 0

11 Mpsc1SumMask Mask Mpsc1Sum interrupt to SerInt0* 0

12 Sdma2SumMask Mask Sdma2Sum interrupt to SerInt0* 0

13 Mpsc2SumMask Mask Mpsc2Sum interrupt to SerInt0* 0

14 Sdma3SumMask Mask Sdma3Sum interrupt to SerInt0* 0

15 Mpsc3SumMask Mask Mpsc3Sum interrupt to SerInt0* 0

16 Sdma4SumMask Mask Sdma4Sum interrupt to SerInt0* 0

17 Mpsc4SumMask Mask Mpsc4Sum interrupt to SerInt0* 0

18 Sdma5SumMask Mask Sdma5Sum interrupt to SerInt0* 0

19 Mpsc5SumMask Mask Mpsc5Sum interrupt to SerInt0* 0

20 Sdma6SumMask Mask Sdma6Sum interrupt to SerInt0* 0

21 Mpsc6SumMask Mask Mpsc6Sum interrupt to SerInt0* 0

22 Sdma7SumMask Mask Sdma7Sum interrupt to SerInt0* 0

23 Mpsc7SumMask Mask Mpsc7Sum interrupt to SerInt0* 0

24 GPP0SumMask Mask GPP0Sum interrupt to SerInt0* 0

25 GPP1SumMask Mask GPP1Sum interrupt to SerInt0* 0

26 GPP2SumMask Mask GPP2Sum interrupt to SerInt0* 0

31:27 Reserved. 0

Table 401: SerInt1* Mask Register, Offset: 0x103A88

Bits Field Name Function
Init ial
Value

0 Ether0SumMask Mask Ether0Sum interrupt to SerInt1* 0

1 Ether1SumMask Mask Ether1Sum interrupt to SerInt1* 0

3:2 Reserved. 0

4 SdmaSumMask Mask SdmaSum interrupt to SerInt1* 0

5 MpscSumMask Mask MpscSum interrupt to SerInt1* 0

Table 400: SerInt0* Mask Register, Offset: 0x103A80 (Continued)

Bits Field Name Function
Init ial
Value
Revision 1.0 439

GT-96100A Advanced Communication Controller

6 FtdmSumMask Mask FtdmSum interrupt to SerInt1* 0

7 BrgSumMask Mask BrgSum interrupt to SerInt1* 0

8 Sdma0SumMask Mask Sdma0Sum interrupt to SerInt1* 0

9 Mpsc0SumMask Mask Mpsc0Sum interrupt to SerInt1* 0

10 Sdma1SumMask Mask Sdma1Sum interrupt to SerInt1* 0

11 Mpsc1SumMask Mask Mpsc1Sum interrupt to SerInt1* 0

12 Sdma2SumMask Mask Sdma2Sum interrupt to SerInt1* 0

13 Mpsc2SumMask Mask Mpsc2Sum interrupt to SerInt1* 0

14 Sdma3SumMask Mask Sdma3Sum interrupt to SerInt1* 0

15 Mpsc3SumMask Mask Mpsc3Sum interrupt to SerInt1* 0

16 Sdma4SumMask Mask Sdma4Sum interrupt to SerInt1* 0

17 Mpsc4SumMask Mask Mpsc4Sum interrupt to SerInt1* 0

18 Sdma5SumMask Mask Sdma5Sum interrupt to SerInt1* 0

19 Mpsc5SumMask Mask Mpsc5Sum interrupt to SerInt1* 0

20 Sdma6SumMask Mask Sdma6Sum interrupt to SerInt1* 0

21 Mpsc6SumMask Mask Mpsc6Sum interrupt to SerInt1* 0

22 Sdma7SumMask Mask Sdma7Sum interrupt to SerInt1* 0

23 Mpsc7SumMask Mask Mpsc7Sum interrupt to SerInt1* 0

24 GPP0SumMask Mask GPP0Sum interrupt to SerInt1* 0

25 GPP1SumMask Mask GPP1Sum interrupt to SerInt1* 0

26 GPP2SumMask Mask GPP2Sum interrupt to SerInt1* 0

31:27 Reserved. 0

Table 402: Ethernet0 Cause Register, Offset: 0x084850 and
Ethernet0 Mask Register, Offset: 0x084858

Bits Field Name Function
Init ial
Value

0 RxBuffer Rx Buffer Return 0

1 Reserved. 0

2 TxBufferHigh Tx Buffer for High priority queue. 0

Table 401: SerInt1* Mask Register, Offset: 0x103A88 (Continued)

Bits Field Name Function
Init ial
Value
440 Revision 1.0

GT-96100A Advanced Communication Controller

3 TxBufferLow Tx Buffer for low priority queue. 0

5:4 Reserved. 0

6 TxEndHigh Tx End for high priority queue. 0

7 TxEndLow Tx End for low priority queue. 0

8 RxError Rx Resource Error. Indicates a Rx resource error event. 0

9 Reserved. 0

10 TxErrorHigh Tx Resource Error for high priority queue. 0

11 TxErrorLow Tx Resource Error for low priority queue. 0

12 RxOVR Rx Overrun 0

13 TxUdr Tx Underrun 0

27:14 Reserved. 0

28 MIIPhySTC MII PHY Status Change. 0

29 SMIdone SMI Command Done 0

30 Reserved. 0

31 EtherIntSum Ethernet Interrupt Summary
This bit is a logical OR of the (unmasked) bits [30:4] in the Interrupt
Cause register.

0

Table 403: Ethernet1 Cause Register, Offset: 0x088850 and
Ethernet1 Mask Register, Offset: 0x088858

Bits Field Name Function
Init ial
Value

31:0 various Same as for Ethernet0 Cause register. 0

Table 404: SDMA Cause Register, Offset: 0x103A10 and
SDMA Mask Register, Offset: 0x103A90

Bits Field Name Function
Init ial
Value

0 Sdma0RxBuf SDMA Channel 0 Rx Buffer Return
Indicates that SDMA0 Rx closed a descriptor and returned the associ-
ated buffer to CPU ownership.

0

Table 402: Ethernet0 Cause Register, Offset: 0x084850 and
Ethernet0 Mask Register, Offset: 0x084858 (Continued)

Bits Field Name Function
Init ial
Value
Revision 1.0 441

GT-96100A Advanced Communication Controller
1 Sdma0RxErr SDMA Channel 0 Rx Error
Indicates that a Rx resource error occurred.

0

2 Sdma0TxBuf SDMA Channel 0 Tx Buffer Return
Indicates that SDMA0 Tx closed a descriptor and returned the associ-
ated buffer to CPU ownership.

0

3 Sdma0TxEnd SDMA Channel 0 Tx End
Indicates that a Tx resource error occurred or that the Tx DMA moved
to IDLE after a stop command. Also set when Tx retransmit limit is
reached in HDLC mode.

0

4 Sdma1RxBuf SDMA Channel 1 Rx Buffer Return
Indicates that SDMA1 Rx closed a descriptor and returned the associ-
ated buffer to CPU ownership.

0

5 Sdma1RxErr SDMA Channel 1 Rx Error
Indicates that a Rx resource error occurred.

0

6 Sdma1TxBuf SDMA Channel 1 Tx Buffer Return
Indicates that SDMA1 Tx closed a descriptor and returned the associ-
ated buffer to CPU ownership.

0

7 Sdma1TxEnd SDMA Channel 1 Tx End
Indicates that a Tx resource error occurred or that the Tx DMA moved
to IDLE after a stop command. Also set when Tx retransmit limit is
reached in HDLC mode.

0

8 Sdma2RxBuf SDMA Channel 2 Rx Buffer Return
Indicates that SDMA2 Rx closed a descriptor and returned the associ-
ated buffer to CPU ownership.

0

9 Sdma2RxErr SDMA Channel 2 Rx Error
Indicates that a Rx resource error occurred.

0

10 Sdma2TxBuf SDMA Channel 2 Tx Buffer Return
Indicates that SDMA2 Tx closed a descriptor and returned the associ-
ated buffer to CPU ownership.

0

11 Sdma2TxEnd SDMA Channel 2 Tx End
Indicates that a Tx resource error occurred or that the Tx DMA moved
to IDLE after a stop command. Also, set when Tx retransmit limit is
reached in HDLC mode.

0

12 Sdma3RxBuf SDMA Channel 3 Rx Buffer Return
Indicates that SDMA3 Rx closed a descriptor and returned the associ-
ated buffer to CPU ownership.

0

Table 404: SDMA Cause Register, Offset: 0x103A10 and
SDMA Mask Register, Offset: 0x103A90 (Continued)

Bits Field Name Function
Init ial
Value
442 Revision 1.0

GT-96100A Advanced Communication Controller
13 Sdma3RxErr SDMA Channel 3 Rx Error
Indicates that a Rx resource error occurred.

0

14 Sdma3TxBuf SDMA Channel 3 Tx Buffer Return
Indicates that SDMA3 Tx closed a descriptor and returned the associ-
ated buffer to CPU ownership.

0

15 Sdma3TxEnd SDMA Channel 3 Tx End
Indicates that a Tx resource Error occurred or that the Tx DMA moved
to IDLE after a stop command. Also, set when Tx retransmit limit is
reached in HDLC mode.

0

16 Sdma4RxBuf SDMA Channel 4 Rx Buffer Return
Indicates that SDMA4 Rx closed a descriptor and returned the associ-
ated buffer to CPU ownership.

0

17 Sdma4RxErr SDMA Channel 4 Rx Error
Indicates that a Rx resource error occurred.

0

18 Sdma4TxBuf SDMA Channel 4 Tx Buffer Return
Indicates that SDMA4 Tx closed a descriptor and returned the associ-
ated buffer to CPU ownership.

0

19 Sdma4TxEnd SDMA Channel 4 Tx End
Indicates that a Tx resource error occurred or that the Tx DMA moved
to IDLE after a stop command. Also, set when Tx retransmit limit is
reached in HDLC mode.

0

20 Sdma5RxBuf SDMA Channel 5 Rx Buffer Return
Indicates that SDMA5 Rx closed a descriptor and returned the associ-
ated buffer to CPU ownership.

0

21 Sdma5RxErr SDMA Channel 5 Rx Error
Indicates that a Rx resource error occurred.

0

22 Sdma5TxBuf SDMA Channel 5 Tx Buffer Return
Indicates that SDMA5 Tx closed a descriptor and returned the associ-
ated buffer to CPU ownership.

0

23 Sdma5TxEnd SDMA Channel 5 Tx End
Indicates that a Tx resource error occurred or that the Tx DMA moved
to IDLE after a stop command. Also, set when Tx retransmit limit is
reached in HDLC mode.

0

24 Sdma6RxBuf SDMA Channel 6 Rx Buffer Return
Indicates that SDMA6 Rx closed a descriptor and returned the associ-
ated buffer to CPU ownership.

0

Table 404: SDMA Cause Register, Offset: 0x103A10 and
SDMA Mask Register, Offset: 0x103A90 (Continued)

Bits Field Name Function
Init ial
Value
Revision 1.0 443

GT-96100A Advanced Communication Controller

25 Sdma6RxErr SDMA Channel 6 Rx Error
Indicates that a Rx resource error occurred.

0

26 Sdma6TxBuf SDMA Channel 6 Tx Buffer Return
Indicates that SDMA6 Tx closed a descriptor and returned the associ-
ated buffer to CPU ownership.

0

27 Sdma6TxEnd SDMA Channel 6 Tx End
Indicates that a Tx resource error occurred or that the Tx DMA moved
to IDLE after a stop command. Also, set when Tx retransmit limit is
reached in HDLC mode.

0

28 Sdma7RxBuf SDMA Channel 7 Rx Buffer Return
Indicates that SDMA7 Rx closed a descriptor and returned the associ-
ated buffer to CPU ownership.

0

29 Sdma7RxErr SDMA Channel 7 Rx Error
Indicates that a Rx resource error occurred.

0

30 Sdma7TxBuf SDMA Channel 7 Tx Buffer Return
Indicates that SDMA7 Tx closed a descriptor and returned the associ-
ated buffer to CPU ownership.

0

31 Sdma7TxEnd SDMA Channel 7 Tx End
Indicates that a Tx resource Error occurred or that the Tx DMA moved
to IDLE after a stop command. Also, set when Tx retransmit limit is
reached in HDLC mode.

0

Table 405: MPSC0 Cause Register, Offset: 0x103A20 and
MPSC0 Mask Register, Offset: 0x103AA0

Bits Field Name Function
Init ial
Value

0 Mpsc0Rx MPSC0 Normal Rx Interrupt Summary
Logical OR of (unmasked) bits 4-7 below.
This bit is read only.

0

1 Mpsc0RxErr MPSC0 Rx Error Interrupt Summary
Logical OR of (unmasked) bits 8-11 below.
This bit is read only.

0

2 Reserved. 0

3 Mpsc0TxErr MPSC0 Tx Error Interrupt Summary
Logical OR of (unmasked) bits 13-15 below.
This bit is read only.

0

Table 404: SDMA Cause Register, Offset: 0x103A10 and
SDMA Mask Register, Offset: 0x103A90 (Continued)

Bits Field Name Function
Init ial
Value
444 Revision 1.0

GT-96100A Advanced Communication Controller

4 Mpsc0RLSC MPSC0 Rx Line Status Change (from to IDLE) 0

5 Mpsc0RHNT MPSC0 Rx Entered HUNT State 0

6 Mpsc0RFSC/
Mpsc0RCC

MPSC0 Rx Flag Status Change (HDLC mode)
MPSC0 Received Control Character (Bisync, Uart modes)

0

7 Mpsc0RCSC MPSC0 Rx Carrier Sense Change (DPLL decoded carriers sense) 0

8 Mpsc0ROVR MPSC0 Rx Overrun 0

9 Mpsc0RCDL MPSC0 Rx Carrier Detect Loss 0

10 Mpsc0RCKG MPSC0 Rx Clock Glitch 0

11 MPsc0BPER MPSC0 Bisync Protocol Error (valid only in Bisync mode) 0

12 Mpsc0TEIDL MPSC0 Tx Entered IDLE State 0

13 Mpsc0TUDR MPSC0 Tx Underrun 0

14 Mpsc0TCTSL MPSC0 Tx Clear To Send Loss 0

15 Mpsc0TCKG MPSC0 Tx Clock Glitch 0

31:16 Reserved. 0

Table 406: MPSC1 Cause Register, Offset: 0x103A24 and
MPSC1 Mask Register, Offset: 0x103AA4

Bits Field Name Function
Init ial
Value

31:0 Various Same as for MPSC0 cause register. 0

Table 407: MPSC2 Cause Register, Offset: 0x103A28 and
MPSC2 Mask Register, Offset: 0x103AA8

Bits Field Name Function
Init ial
Value

31:0 Various Same as for MPSC0 cause register. 0

Table 405: MPSC0 Cause Register, Offset: 0x103A20 and
MPSC0 Mask Register, Offset: 0x103AA0 (Continued)

Bits Field Name Function
Init ial
Value
Revision 1.0 445

GT-96100A Advanced Communication Controller

Table 408: MPSC3 Cause Register, Offset: 0x103A2C and
MPSC3 Mask Register, Offset: 0x103AAC

Bits Field Name Function
Init ial
Value

31:0 Various Same as for MPSC0 cause register. 0

Table 409: MPSC4 Cause Register, Offset: 0x103A30 and
MPSC4 Mask Register, Offset: 0x103AB0

Bits Field Name Function
Init ial
Value

31:0 Various Same as for MPSC0 cause register. 0

Table 410: MPSC5 Cause Register, Offset: 0x103A34 and
MPSC5 Mask Register, Offset: 0x103AB4

Bits Field Name Function
Init ial
Value

31:0 Various Same as for MPSC0 cause register. 0

Table 411: MPSC6 Cause Register, Offset: 0x103A38 and
MPSC6 Mask Register, Offset: 0x103AB8

Bits Field Name Function
Init ial
Value

31:0 Various Same as for MPSC0 cause register. 0

Table 412: MPSC7 Cause Register, Offset: 0x103A3C and
MPSC7 Mask Register, Offset: 0x103ABC

Bits Field Name Function
Init ial
Value

31:0 Various Same as for MPSC0 cause register. 0
446 Revision 1.0

GT-96100A Advanced Communication Controller

Table 413: FlexTDM Cause Register, Offset: 0x103A40 and
FlexTDM Mask Register, Offset: 0x103AC0

Bits Field Name Function
Init ial
Value

0 Ftdm0RAUXA FlexTDM0 Rx Interrupt from AUX channel A 0

1 Ftdm0RAUXB FlexTDM0 Rx Interrupt from AUX channel B 0

2 Ftdm0Rint FlexTDM0 Rx Interrupt (programmed in dual port ram) 0

3 Ftdm0RSL FlexTDM0 Rx Synchronization Loss 0

4 Ftdm0TAUXA FlexTDM0 Tx Interrupt from AUX channel A 0

5 Ftdm0TAUXB FlexTDM0 Tx Interrupt from AUX channel B 0

6 Ftdm0Tint FlexTDM0 Tx Interrupt (programmed in dual port ram) 0

7 Ftdm0TSL FlexTDM0 Tx Synchronization Loss 0

8 Ftdm1RAUXA FlexTDM1 Rx Interrupt from AUX channel A 0

9 Ftdm1RAUXB FlexTDM1 Rx Interrupt from AUX channel B 0

10 Ftdm1Rint FlexTDM1 Rx Interrupt (programmed in dual port ram) 0

11 Ftdm1RSL FlexTDM1 Rx Synchronization Loss 0

12 Ftdm1TAUXA FlexTDM1 Tx Interrupt from AUX channel A 0

13 Ftdm1TAUXB FlexTDM1 Tx Interrupt from AUX channel B 0

14 Ftdm1Tint FlexTDM1 Tx Interrupt (programmed in dual port ram) 0

15 Ftdm1TSL FlexTDM1 Tx Synchronization Loss 0

16 Ftdm2RAUXA FlexTDM2 Rx Interrupt from AUX channel A 0

17 Ftdm2RAUXB FlexTDM2 Rx Interrupt from AUX channel B 0

18 Ftdm2Rint FlexTDM2 Rx Interrupt (programmed in dual port ram) 0

19 Ftdm2RSL FlexTDM2 Rx Synchronization Loss 0

20 Ftdm2TAUXA FlexTDM2 Tx Interrupt from AUX channel A 0

21 Ftdm2TAUXB FlexTDM2 Tx Interrupt from AUX channel B 0

22 Ftdm2Tint FlexTDM2 Tx Interrupt (programmed in dual port ram) 0

23 Ftdm2TSL FlexTDM2 Tx Synchronization Loss 0

24 Ftdm3RAUXA FlexTDM3 Rx Interrupt from AUX channel A 0

25 Ftdm3RAUXB FlexTDM3 Rx Interrupt from AUX channel B 0

26 Ftdm3Rint FlexTDM3 Rx Interrupt (programmed in dual port ram) 0

27 Ftdm3RSL FlexTDM3 Rx Synchronization Loss 0

28 Ftdm3TAUXA FlexTDM3 Tx Interrupt from AUX channel A 0
Revision 1.0 447

GT-96100A Advanced Communication Controller

29 Ftdm3TAUXB FlexTDM3 Tx Interrupt from AUX channel B 0

30 Ftdm3Tint FlexTDM3 Tx Interrupt (programmed in dual port ram) 0

31 Ftdm3TSL FlexTDM3 Tx Synchronization Loss 0

Table 414: BRG Cause Register, Offset: 0x103A48 and
BRG Mask Register, Offset: 0x103AC8

Bits Field Name Function
Init ial
Value

0 BTR0 Baud Tuning 0 interrupt 0

1 BTR1 Baud Tuning 1 interrupt 0

2 BTR2 Baud Tuning 2 interrupt 0

3 BTR3 Baud Tuning 3 interrupt 0

4 BTR4 Baud Tuning 4 interrupt 0

5 BTR5 Baud Tuning 5 interrupt 0

6 BTR6 Baud Tuning 6 interrupt 0

7 BTR7 Baud Tuning 7 interrupt 0

31:24 Reserved. 0

Table 415: GPP0 Cause Register, Offset: 0x103A50 and GPP0 Mask Register, Offset: 0x103AD0

Bits Field Name Function
Init ial
Value

31:0 GPInt[31:0] General Purpose Interrupt Bits
A bit in this cause register is set when the value latched in the GPD
register bit is '0'.
NOTE: Interrupts also occur when the associated GPC pin is con-

figured as a functional input.

0

Table 413: FlexTDM Cause Register, Offset: 0x103A40 and
FlexTDM Mask Register, Offset: 0x103AC0 (Continued)

Bits Field Name Function
Init ial
Value
448 Revision 1.0

GT-96100A Advanced Communication Controller

Table 416: GPP1 Cause Register, Offset: 0x103A54 and
GPP1 Mask Register, Offset: 0x103AD4

Bits
Field
Name Function

Init ial
Value

31:0 GPInt[63:32] General Purpose Interrupt Bits
A bit in this cause register is set when the value latched in the GPD
register bit is '0'.
NOTE: Interrupts also occur when the associated GPC pin is con-

figured as a functional input.

0

Table 417: GPP2 Cause Register, Offset: 0x103A58 and
GPP2 Mask Register, Offset: 0x103AD8

Bits Field Name Function
Init ial
Value

31:0 GPInt[95:64] General Purpose Interrupt Bits
A bit in this cause register is set when the value latched in the GPD
register bit is '0'.
NOTE: Interrupts also occur when the associated GPC pin is con-

figured as a functional input.

0

Table 418: SErr0* Mask, PCI_0 Events Offset: 0xc28

Bits Field Name Function
Init ial
Value

0 AddrErr0 Mask bit.
When this bit is set and the GT-96100A detects a parity error on
PCI_0 address lines, SErr0* is asserted.

0x0

1 MasWrErr0 Mask bit.
When this bit is set and the GT-96100A detects a parity error during
a PCI_0 master write operation, SErr0* is asserted.

0x0

2 MasRdErr0 Mask bit.
When this bit is set and the GT-96100A detects a parity error during
a PCI_0 master read operation, SErr0* is asserted.

0x0

3 MemErr Mask bit.
When this bit is set and a memory parity error has been detected,
SErr0* is asserted.

0x0

4 MasAbor0t Mask bit.
When this bit is set and the GT-96100A performs a PCI_0 master
abort, SErr0* is asserted.

0x0
Revision 1.0 449

GT-96100A Advanced Communication Controller
5 TarAbort0 Mask bit.
When this bit is set and the GT-96100A detects a PCI_0 target abort,
SErr0* is asserted.

0x0

31:6 Reserved 0x0

Table 418: SErr0* Mask, PCI_0 Events Offset: 0xc28 (Continued)

Bits Field Name Function
Init ial
Value
450 Revision 1.0

GT-96100A Advanced Communication Controller

Table 419: SErr1* Mask, PCI_1 Events Offset: 0xca8
(RESERVED if configured for only PCI_0)

Bits Field Name Function
Init ial
Value

0 AddrErr1 Mask bit.
When this bit is set and the GT-96100A detects a parity error on the
PCI_1 address lines, SErr1* is asserted.

0x0

1 MasWrErr1 Mask bit.
When this bit is set and the GT-96100A detects a parity error during
a PCI_1 master write operation, SErr1* is asserted.

0x0

2 MasRdErr1 Mask bit.
When this bit is set and the GT-96100A detects a parity error during
a PCI_1 master read operation, SErr1* is asserted.

0x0

3 MemErr Mask bit.
When this bit is set and a memory parity error has been detected,
SErr1* is asserted.

0x0

4 MasAbort1 Mask bit.
When this bit is set and the GT-96100A performs a PCI_1 master
abort, SErr1* is asserted.

0x0

5 TarAbort1 Mask bit.
When this bit is set and the GT-96100A detects a PCI_1 target
abort, SErr1* is asserted.

0x0

31:6 Reserved 0x0
Revision 1.0 451

GT-96100A Advanced Communication Controller
22. RESET CONFIGURATION
The GT-96100A must acquire some knowledge about the system before it is configured by the software.

Special modes of operation are sampled on RESET in order to enable the GT-96100A to function as required.
Certain pins must be pulled up to VCC3.3 or down to GND (4.7K Ohm recommended) externally to accomplish
this.

The following configuration pins are continuously sampled from Rst* assertion until three TClk cycles after Rst*
is deasserted. This does not apply to Frame1*/Req64* that requires zero hold time in respect to RESET rise (as
defined in PCI spec).

NOTE: Rst* must be de-asserted for at least 10 PClk cycles before any CPU transactions are generated.

Table 420: Reset Configuration

Pin Configuration Function

DAdr[2], Frame1*/Req64*: PCI Bus Configuration

00-Only PCI_0 is used as 64-bit.
01-Only PCI_0 is used as 32-bit, PCI_1 is NOT used.
10-Reserved.
11-Both PCI_0 and PCI_1 are used as 32-bit.

Interrupt0*: CPU Data Endianess

0-Big endian
1-Little endian

Ready*, CSTiming* Multi-GT-96100A Address ID

00-GT responds to SysAD[26,25]= 00
01-GT responds to SysAD[26,25]= 01
10-GT responds to SysAD[26,25]= 10
11- GT responds to SysAD[26,25]= 11
NOTE: Boot GT-96100A should be programmed to 11.

BankSel[0]: PCI Class Code Default Select

0-Memory Controller (0x580)
1-Network Controller (0x280)

DAdr[10]: Multiple GT-96100A Support

0-Not supported.
1-Supported.

DAdr[9]: 66 MHz PCI

0-Disable.
1-Enable.

DAdr[8]: I2O Support

0-Enable.
1-Disable.
452 Revision 1.0

GT-96100A Advanced Communication Controller
DAdr[7]: UMA Support

0-
1-

Enable - DMAReq[0]*/MREQ* functions as MREQ*.
Disable - DMAReq[0]*/MREQ* functions as DMAReq[0]*.

DAdr[6]: Programming Conditional PCI Retry

0-
1-

Enable.
Disable.

DAdr[5]: Expansion ROM Enable

0-
1-

Enable.
Disable.

DAdr[4:3]: Device Boot Bus Width (Controlled by BootCS*) AND CS[3]* Device
Width.

00-
01-
10-
11-

8 bits
16 bits
32 bits
64 bits

DAdr[0]: Autoload

0-
1-

Enable.
Disable.

SDQM[1]: PCI_1 Power Management

0-
1-

Disable.
Enable.

SDQM[0]: PCI_0 Power Management

0-
1-

Disable.
Enable.

DMAReq[3]* Duplicate ALE

0-
1-

Do not Duplicate ALE.
Duplicate ALE output on ADP[1] (no ECC in system).

DMAReq[1]* Duplicate SDRAM Control Signals

0-
1-

Do not Duplicate SRAS*, SCAS* and DWr*.
Duplicate SRAS*, SCAS* and DWr* on ADP[7], ADP[6] and ADP[3] (no
ECC in system).

ADP[7:4] Reserved

Design in the option to pull-up or pull-down these pins.

Table 420: Reset Configuration (Continued)

Pin Configuration Function
Revision 1.0 453

GT-96100A Advanced Communication Controller
DAdr[1] Reserved

Must pull LOW during Reset.

DMAReq[2]* Reserved

Must pull LOW during Reset.

SDQM[2] Reserved

Must pull LOW during Reset.

SDQM[3] Reserved

Must pull LOW during Reset.

Table 420: Reset Configuration (Continued)

Pin Configuration Function
454 Revision 1.0

GT-96100A Advanced Communication Controller
23. CONNECTING THE MEMORY CONTROLLER TO SDRAM AND
DEVICES

In order to connect the memory (SDRAM and Devices), follow the pin connections for the appropriate SDRAM
and devices listed in this section�s tables.

23.1 SDRAM

The GT-96100A supports both 64-bit and 32-bit SDRAM.
Table 421: 64-bit SDRAM

Connection Connect . . . To.. .

SDRAM Address DAdr[12:0] A[10:0]
A[11] (64/128/256 Mbit only)
A[12] (256 Mbit only)

SDRAM Bank Address BankSel[1:0] BA0
BA1 (64/128/256 Mbit only)

SDRAM Data AD[63:0] D[63:0], SDRAM Data pins

SDRAM Control Pins SRAS*
SCAS*
DWr*1

1. SRAS*, SCAS*, and DWr* can be duplicated on ADP[7], ADP[6] and ADP[3] if programmed on RESET.

SDRAM Row Address Strobe
SDRAM Column Address Strobe
Write Enable

Chip Selects SCS[0]*
SCS[1]*
SCS[2]*
SCS[3]*

Chip Select, Bank 0
Chip Select, Bank 1
Chip Select, Bank 2
Chip Select, Bank 3

Byte Enables SDQM[0]*
SDQM[1]*
SDQM[2]*
SDQM[3]*
SDQM[4]*
SDQM[5]*
SDQM[6]*
SDQM[7]*

D[7:0] Byte Enable
D[15:8] Byte Enable
D[23:16] Byte Enable
D[31:24] Byte Enable
D[39:32] Byte Enable
D[47:40] Byte Enable
D[55:48] Byte Enable
D[63:56] Byte Enable

ECC Bits ADP[7:0] D[63:0] ECC byte

Clock Same Clock Output used for
TClk

Clock Input
Revision 1.0 455

GT-96100A Advanced Communication Controller
23.2 Devices

The GT-96100A supports 64-, 32-, 16- and 8-bit devices.

Table 422: 32-bit SDRAM

Connection Connect . . . To. . .

SDRAM Address DAdr[11:0] A[10:0]
A[11] (64/128 Mbit only)

SDRAM Bank Address BankSel[1:0] BA0
BA1 (64/128 Mbit only)

SDRAM Even Data
SDRAM Odd Data

AD[31:0]
AD[63:32]

Even D[31:0] SDRAM Data pins
Odd D[31:0] SDRAM Data pins

SDRAM Control Pins SRAS*
SCAS*
DWr*1

1. SRAS*, SCAS*, and DWr* can be duplicated on ADP[7], ADP[6] and ADP[3] if programmed on RESET.

SDRAM Row Address Strobe
SDRAM Column Address Strobe
Write Enable

Chip Selects SCS[0]*
SCS[1]*
SCS[2]*
SCS[3]*

Chip Select, Bank 0
Chip Select, Bank 1
Chip Select, Bank 2
Chip Select, Bank 3

Byte Enables SDQM[0]*
SDQM[1]*
SDQM[2]*
SDQM[3]*
SDQM[4]*
SDQM[5]*
SDQM[6]*
SDQM[7]*

Even D[7:0] Byte Enable
Even D[15:8] Byte Enable
Even D[23:16] Byte Enable
Even D[31:24] Byte Enable
Odd D[7:0] Byte Enable
Odd D[15:8] Byte Enable
Odd D[23:16] Byte Enable
Odd D[31:24] Byte Enable

ECC Bits Not supported for 32-bit SDRAM.

Clock Same Clock Output used for
TClk.

Clock Input

Table 423: 64-bit Devices

Connection Connect . . . To. . .

Device Address BAdr[2:0]
AD[31:6]
ALE
Latch Outputs

To the device�s LSB address bits.
Address Latch Inputs
Address LE
Device Address Bits [28:3]
456 Revision 1.0

GT-96100A Advanced Communication Controller
Device Data AD[63:0] Device Data Pins [63:0]

Device Control Pins ALE
AD[41:32]
Control latch bit[41] output
Control latch bit[40] output
Control latch bit[39:36] outputs
Control latch bit[35:32] outputs

Control latch LE
Control Latch Inputs
Becomes DevRW*
Becomes BootCS*
Becomes CS[3:0]*
Becomes DMAAck[3:0]*

Write Strobes Wr[0]*
Wr[1]*
Wr[2]*
Wr[3]*
Wr[4]*
Wr[5]*
Wr[6]*
Wr[7]*

D[7:0] Write Strobe
D[15:8] Write Strobe
D[23:16] Write Strobe
D[31:24] Write Strobe
D[39:32] Write Strobe
D[47:40] Write Strobe
D[55:48] Write Strobe
D[63:56] Write Strobe

ECC Bits Not supported for Devices.

Table 424: 32-bit Devices

Connection Connect. . . To.. .

Device Address BAdr[2:0]
AD[31:5]
ALE
Latch Outputs

To the device�s LSB address bits.
Address Latch Inputs
Address LE
Device Address Bits [29:3]

Device Data AD[31:0]
AD[63:32]

Device Even Data Pins [31:0]
Device Odd Data Pins[31:0]

Device Control Pins ALE
AD[41:32]
Control latch bit[41] output
Control latch bit[40] output
Control latch bit[39:36] outputs
Control latch bit[35:32] outputs

Control latch LE
Control Latch Inputs
Becomes DevRW*
Becomes BootCS*
Becomes CS[3:0]*
Becomes DMAAck[3:0]*

Table 423: 64-bit Devices (Continued)

Connection Connect. . . To.. .
Revision 1.0 457

GT-96100A Advanced Communication Controller

Write Strobes Wr[0]*
Wr[1]*
Wr[2]*
Wr[3]*
Wr[4]*
Wr[5]*
Wr[6]*
Wr[7]*

Even D[7:0] Write Strobe
Even D[15:8] Write Strobe
Even D[23:16] Write Strobe
Even D[31:24] Write Strobe
Odd D[7:0] Write Strobe
Odd D[15:8] Write Strobe
Odd D[23:16] Write Strobe
Odd D[31:24] Write Strobe

ECC Bits Not supported for Devices.

Table 425: 16-bit Devices

Connection Connect . . . To. . .

Device Address BAdr[2:0]
AD[31:4]
ALE
Latch Outputs

To the device�s LSB address bits.
Address Latch Inputs
Address LE
Device Address Bits [30:3]

Device Data AD[15:0]
AD[47:32]

Device Even Data Pins [15:0]
Device Odd Data Pins[15:0]

Device Control Pins ALE
AD[41:32]
Control latch bit[41] output
Control latch bit[40] output
Control latch bit[39:36] outputs
Control latch bit[35:32] outputs

Control latch LE
Control Latch Inputs
Becomes DevRW*
Becomes BootCS*
Becomes CS[3:0]*
Becomes DMAAck[3:0]*

Write Strobes Wr[0]*
Wr[1]*
Wr[4]*
Wr[5]*

Even D[7:0] Write Strobe
Even D[15:8] Write Strobe
Odd D[7:0] Write Strobe
Odd D[15:8] Write Strobe

ECC Bits Not supported for Devices.

Table 424: 32-bit Devices (Continued)

Connection Connect . . . To. . .
458 Revision 1.0

GT-96100A Advanced Communication Controller

Table 426: 8-bit Devices

Connection Connect. . . To.. .

Device Address BAdr[2:0]
AD[31:3]
ALE
Latch Outputs

To the device�s LSB address bits.
Address Latch Inputs
Address LE
Device Address Bits [31:3]

Device Data AD[7:0]
AD[39:32]

Device Even Data Pins [7:0]
Device Odd Data Pins[7:0]

Device Control Pins ALE
AD[41:32]
Control latch bit[41] output
Control latch bit[40] output
Control latch bit[39:36] outputs
Control latch bit[35:32] outputs

Control latch LE
Control Latch Inputs
Becomes DevRW*
Becomes BootCS*
Becomes CS[3:0]*
Becomes DMAAck[3:0]*

Write Strobes Wr[0]*
Wr[4]*

Even D[7:0] Write Strobe
Odd D[7:0] Write Strobe

ECC Bits Not supported for Devices.
Revision 1.0 459

GT-96100A Advanced Communication Controller
24. JTAG INTERFACE

24.1 IEEE Standard 1149.1

The GT-96100A supports test mode operation through it�s JTAG boundary scan interface to enable board testing.

The JTAG interface is IEEE 1149.1 standard compliant. It supports mandatory and optional boundary scan
instructions.

24.2 TAP Controller

The Test Access Port (TAP) is constructed with a 5-pin interface and a 16-state Finite State Machine (FSM), as
defined by IEEE JTAG standard 1149.1.

To place the GT-96100A in functional mode, the JTAG interface must be disabled by resetting the JTAG state
machine.

According to the IEEE 1149.1 standard, the JTAG state machine is not reset when the GT-96100A RESET is
asserted. The JTAG state machine can only be reset by one of the following methods:

� Asserting TRST* (JTAG[4]).
� By setting TMS (JTAG[1]) for at least five TCK (JTAG[0]) cycles.

To place the GT-96100A in the boundary scan test mode, the JTAG state machine must be moved to it's control
states. The TMS & TDI inputs control the state transitions of the JTAG state machine, as specified in the 1149.1
standard. The JTAG state machine has various states for shifting instructions to the Instruction Register and for
shifting data to and from the boundary scan, identification, or bypass registers.

NOTE: Although the JTAG state machine is not reset, the GT-96100A RESET must be de-asserted (pulled up)
when the GT-96100A is in the boundary scan test mode.
In order to meet this requirement, the BSDL file defines the RESET within a compliant pattern.
460 Revision 1.0

GT-96100A Advanced Communication Controller
24.3 Instruction Register (IR)

The Instruction register (IR) is a 4-bit two-stage register. It contains the command that is shifted in when the TAP
FSM is in the Shift-IR state. When the TAP FSM is in the Capture-IR state, the IR outputs all four bits in parallel.

The GT-96100A supports the following instructions:

NOTE: Bi-directional pins can be programmed to be either input or output, depending on their control bit in the
Boundary Scan Register.

24.4 Bypass Register (BR)

The Bypass Register (BR) is a one-bit serial shift register that connects TDI to TDO when the IR holds the
Bypass command, and the TAP FSM is in the Shift-DR state. Data that is driven on the TDI input pin is shifted
out one cycle later on the TDO output pin. The Bypass Register is loaded with "0" when the TAP FSM is in the
Capture-DR state.

24.5 JTAG Scan Chain

The JTAG Scan Chain is a serial shift register that is used to sample and drive all of the GT-96100A pins during
the JTAG tests. It is a 216-bit deep shift register in the GT-96100A, thereby allowing it to sequentially access all
of the data pins. For further details, go to JTAG Scan Chain in BSDL format (Hash://www.GalileoT.com/library/
raclib.htm) for a full description.

Table 427: Supported JTAG Instructions

Instruction Code Description

 HIGHZ 0011 Select the Bypass Register between TDI and TDO.
Sets the GT-96100A output pins to high-impedance state.

 IDCODE 0010 Selects the Identification Register between TDI and TDO.
This 32-bit register is used to identify the GT-96100A device.
See Table 428

EXTEST 0000 Selects the Boundary Scan Register between TDI and TDO.
Output boundary scan register cells drive the output pins of
the GT-96100A. Input boundary scan register cell sample the
input pin of the GT-96100A.

SAMPLE/PRE-
LOAD

0001 Selects the Boundary Scan Register between TDI and TDO.
Sample input pins of the GT-96100A to input boundary scan
register cells. Preload output boundary scan register cells
with the Boundary Scan Register value.

BYPASS 1111 Selects the single bit Bypass Registers between TDI and
TDO. This allows for rapid data movement through an
untested device.
Revision 1.0 461

http://www.galileot.com/library/raclib.htm
http://www.galileot.com/library/raclib.htm

GT-96100A Advanced Communication Controller
24.6 ID Register

The ID Register is a 32-bit deep serial shift register. The ID Register is loaded with vendor and device informa-
tion when the TAP FSM is in the Capture-DR state. In the GT-96100A, the ID Register is loaded with
"00011001011000010000000101010111" during Capture_DR. The Identification code format of the ID Register
is shown in Table 428 which describes the various ID Code fields.

When the JTAG interface is not connected in a JTAG chain on the board:
� It's input pins must be pulled to VCC3.3, or GND (4.7K Ohm recommended).
� It's output pin (TDO) must be left unconnected.

JTAG TMS & TDI input pins must be pulled HIGH, and TCLK & TRST* input pins must be pulled LOW.

Table 428: IDCODE Register Map

Bits Value Description

31:28 0010 Version

27:12 1001011001010011 Part number

11:1 00010101011 Manufacturer ID

0 1 Mandatory
462 Revision 1.0

GT-96100A Advanced Communication Controller
25. BIG AND LITTLE ENDIAN

25.1 Background

NOTE: For a description of big and little endian and how it is used in Galileo Technology system controllers, go
to Endianess Explained! (http://www.GalileoT.com/library/syslib.htm) on the Galileo Technology Web-
site.

There are three bits in the GT-96100A which control byte swapping on the CPU and PCI interfaces. One bit is
located in the CPU Interface Configuration Register (0x000) bit 12. The other two bits are in PCI Internal Com-
mand register (0xc00) bits 0 and 16.

All these bits are given the same value as sampled at RESET on Interrupt0* pin. These bits can also be pro-
grammed after reset is de-asserted.

If all bits are set to 1, the GT-96100A assumes Little-endian data format and NO byte swapping is done within
the device.

Additionally, there are three WORD-SWAP bits in GT-96100A which controls 32-bit word swap on access to/
from PCI:

� Bit 10 controls PCI master interface word swap.
� Bit 11 controls PCI target interface word swap when accessed through non-swap BARs.
� Bit 12 controls PCI target interface word swap when accessed through swap BARs.

Since the PCI bus is 32-bit wide and the GT-96100A data path is 64-bit wide, byte swap is not good enough in
case of working in a BIG endian PCI bus configuration. These three bits are used for endianess compensation for
this case.

On top of the above, the GT-96100A supports byte swapping on serial data transferred between the communica-
tion unit agents and memory/PCI. Each of the serial DMA channels has two configuration bits associated with it
that control byte swapping - one bit controls swapping of incoming (receive) data, and the other bit controls
swapping of outgoing (transmit) data. Refer to the Ethernet and SDMA sections for more details about serial
DMA configuration options.1

The nomenclature for this section is shown in Table 429.

1. DMA descriptors that are used by the serial DMA channels are not considered data, and therefore are not affected by the setting of receive/trans-
mit swap bits in the DMA configuration registers. Descriptors swapping is controlled via one bit in the CIU configuration register. Refer to CIU
section for details.
Revision 1.0 463

http://www.galileot.com/library/syslib.htm

GT-96100A Advanced Communication Controller
25.1.1 Bit 12 of the CPU Interface Configuration register
Bit 12 of the CPU Interface Configuration register (0x000) affects the following:

� Setting this bit to 1 (Little-endian mode) means there is no byte swapping within the CPU Interface unit
on any data transfer.

� Setting this bit to 0 (Big endian mode) means that byte swapping takes place on data transfers
from CPU to the GT-96100A internal registers (including Configuration Data register, offset 0xcfc). No
byte swapping takes place on data transfers for which the source/target is external.

25.1.2 Bits 0 and 16 of the PCI Internal Command register
Bit 0 of the PCI Internal Command register (0xc00) controls byte swapping of GT-96100A PCI master interface.
Bit 16 controls byte swapping of GT-96100A PCI target interface. These bits affect the following:

� Setting these bits to 1 means there is no byte swapping within the PCI Interface unit on any data transfer.
� Setting these bits to 0 means that no byte swapping takes place on data transfers from PCI to/from the

GT-96100A internal registers. Byte swapping does take place on data transfers for which the source/tar-
get is external

25.1.3 Bits 10-12 of the PCI Internal Command register
Setting these bits to 0 means there is no word swapping.

Setting these bits to 1 means that no word swapping takes place on data transfers from PCI to/from the GT-
96100A internal registers. Word swapping does take place on data transfers for which the source/target is exter-
nal.

NOTE: Only the 32-bit PCI interface supports word swapping.

Table 429: Nomenclature

Name Definit ion

W, Word 32-bits of data, R4600 terminology

DW, Double Word 64-bits of data, R4600 terminology

Even Address Address of which A[2] == 0
In Little-endian format, this address points to the LEAST significant W of a DW.
In Big-endian format, this address points to the MOST significant W of a DW.

Odd Address Address of which A[2] == 1.
In Little-endian format, this address points to the MOST significant W of a DW.
In Big-endian format, this address points to the LEAST significant W of a DW.

Even Word LEAST significant W of a DW.

Odd Word MOST significant W of a DW.
464 Revision 1.0

GT-96100A Advanced Communication Controller
25.2 Configuring a System for Big and Little Endian

Table 430 shows the basic combinations of the resources and swapping bits with sample data.

� CPU bit = Bit 12 of the CPU Interface Configuration register (0x000).
� PCI byte swap bit = Bits 0 and 16 of the PCI Internal Command register (0xc00).
� PCI word swap bit = Bits 10-12 of the PCI Internal Command register (0xc00).

NOTE: The sample data is 0x04030201.

Table 430: Configuring for Big and Little Endian

Resource

Swap Bits (CPU bit: PCI byte swap
bit: PCI word swap bit)

110 001 010 101

Internal Registers (CPU access) 04030201 01020304 01020304 04030201

Internal Registers (PCI access) 04030201 04030201 04030201 04030201

Internal PCI Configuration Registers (CPU access) 04030201 01020304 01020304 04030201

Internal PCI Configuration Registers (PCI access) 04030201 04030201 04030201 04030201

External PCI Configuration Registers 04030201 04030201 01020304 01020304

Memory (DRAM and Devices) (CPU access) 04030201 04030201 04030201 04030201

Memory (DRAM and Devices) (PCI access) 04030201 01020304 04030201 01020304

CPU to PCI (Except external PCI Configuration Regis-
ters)

04030201 01020304 04030201 01020304
Revision 1.0 465

GT-96100A Advanced Communication Controller

466 Revision 1.0

26. USING THE GT-96100A WITHOUT THE CPU INTERFACE
Table 431 lists the pins that must be strapped when the GT-96100A is used without the CPU interface (i.e., PCI
Memory Controller only).

NOTE: Rst* and TClk must always be connected in any system. Each pin must be strapped with a separate
resistor unless otherwise noted.

Table 431: CPU-less Pin Strapping

Pin Strapping1

1. Galileo Technology recommends using 4.7KOhm resistors.

ValidOut* Pulled up to VCC through a resistor.

Release* Pulled up to VCC through a resistor.

SysAD[63:0]2

2. SysAD[63:0] can be pulled up through a single resistor instead of 64 separate resistors.

Pulled up to VCC through a resistor.

SysCmd[8:0]3

3. SysCmd[8:0] can be pulled up through a single resistor instead of 9 separate resistors.

Pulled up to VCC through a resistor.

SysADC[8:0] No Connect.

ValidIn* No Connect.

WrRdy* No Connect.

Interrupt* Sampled at RESET, see Section 22. �Reset Configuration� on page 452.

Hit Pulled down to GND.

ScTCE* Pulled up to VCC.

GT-96100A Advanced Communication Controller
27. USING THE GT-96100A IN DIFFERENT PCI CONFIGURATIONS
The PCI interface of the GT-96100A can be used in 4 different modes:

� No PCI.
� PCI_0 as 32-bit PCI.
� PCI_0 and PCI_1 as 32-bit PCI.
� PCI_0 as 64-bit PCI.

Table 432 lists what must be done with the pins when the GT-96100A is used without any PCI interface.

NOTE: Rst* must be connected. Most pins should be strapped HIGH or LOW through a resistor. Galileo Tech-
nology recommends using 4.7 KOhm resistors.

Table 432: No PCI Interface

Pin Pin Usage

VREF0 VREF0

PClk0 Pulled up to VCC through a resistor.

DevSel0* Pulled up to VCC through a resistor.

Stop0* Pulled up to VCC through a resistor.

Par0 No Connect.

PErr0* Pulled up to VCC through a resistor.

Frame0* Pulled up to VCC through a resistor.

IRdy0* Pulled up to VCC through a resistor.

TRdy0* Pulled up to VCC through a resistor.

Gnt0* Pulled down to GND through a resistor.

IdSel0 Pulled down to GND through a resistor.

SErr0* Pulled up to VCC through a resistor.

Req0* No Connect.

Int0* Pulled up to VCC through a resistor.

Lock0* Pulled up to VCC through a resistor.

PAD0[31:0] No Connect.

CBE0[3:0]* No Connect.

VREF1 Tie directly to 3V or 5V power plane.

PClk1 Pulled up to VCC through a resistor.

DevSel1*/Ack64* Pulled up to VCC through a resistor.

Stop1* Pulled up to VCC through a resistor.

Par1/Par64 No Connect.
Revision 1.0 467

GT-96100A Advanced Communication Controller
Table 433 lists what must be done with the pins when the GT-96100A is used with PCI_0 as a 32-bit PCI inter-
face only (i.e., no PCI_1).

NOTE: When the GT-96100A is configured to a single 32-bit PCI_0 interface, the GT-96100A drives all PCI_1
interface signals to a random value. Therefore, there is no need to put pull ups or pull downs on PCI_1
interface signals.

PErr1* Pulled up to VCC through a resistor.

Frame1*/Req64* Pulled up to VCC through a resistor.

IRdy1* Pulled up to VCC through a resistor.

TRdy1* Pulled up to VCC through a resistor.

Gnt1* Pulled down to GND through a resistor.

IdSel1 Pulled down to GND through a resistor.

SErr1* Pulled up to VCC through a resistor.

Req1* No Connect.

PAD1[31:0]/PAD0[63:32] No Connect.

CBE1[3:0]*/CBE0[7:4]* No Connect.

Table 433: PCI_0 as 32-bit PCI Only

Pin Pin Usage

VREF0 VREF0

PClk0 PClk0

DevSel0* DevSel0*

Stop0* Stop0*

Par0 Par0

PErr0* PErr0*

Frame0* Frame0*

IRdy0* IRdy0*

TRdy0* TRdy0*

Gnt0* Gnt0*

IdSel0 IdSel0

SErr0* SErr0*

Req0* Req0*

Table 432: No PCI Interface (Continued)

Pin Pin Usage
468 Revision 1.0

GT-96100A Advanced Communication Controller
Table 434 lists what must be done with the pins when the GT-96100A is used with PCI_0 as a 32-bit PCI inter-
face and PCI_1 as a 32-bit PCI interface.

Int0* Int0*

Lock0* Lock0*

PAD0[31:0] PAD0[31:0]

CBE0[3:0]* CBE0[3:0]*

VREF1 Tie directly to 3V or 5V power plane.

PClk1 Pulled up to VCC through a resistor.

DevSel1*/Ack64* Pulled up to VCC through a resistor.

Stop1* Pulled up to VCC through a resistor.

Par1/Par64 No Connect.

PErr1* Pulled up to VCC through a resistor.

Frame1*/Req64* Pulled up to VCC through a resistor.

IRdy1* Pulled up to VCC through a resistor.

TRdy1* Pulled up to VCC through a resistor.

Gnt1* Pulled down to GND through a resistor or
pulled up to VCC through a resistor.

IdSel1 Pulled down to GND through a resistor.

SErr1* Pulled up to VCC through a resistor.

Req1* No Connect.

PAD1[31:0]/PAD0[63:32] No Connect.

CBE1[3:0]*/CBE0[7:4]* No Connect.

Table 433: PCI_0 as 32-bit PCI Only (Continued)

Pin Pin Usage
Revision 1.0 469

GT-96100A Advanced Communication Controller
Table 434: PCI_0 as 32-bit PCI and PCI_1 as 32-bit PCI

Pin Pin Usage

VREF0 VREF0

PClk0 PClk0

DevSel0* DevSel0*

Stop0* Stop0*

Par0 Par0

PErr0* PErr0*

Frame0* Frame0*

IRdy0* IRdy0*

TRdy0* TRdy0*

Gnt0* Gnt0*

IdSel0 IdSel0

SErr0* SErr0*

Req0* Req0*

Int0* Int0*

Lock0* Lock0*

PAD0[31:0] PAD0[31:0]

CBE0[3:0]* CBE0[3:0]*

VREF1 VREF1

PClk1 PClk1

DevSel1*/Ack64* DevSel1*

Stop1* Stop1*

Par1/Par64 Par1

PErr1* PErr1*

Frame1*/Req64* Frame1*

IRdy1* IRdy1*

TRdy1* TRdy1*

Gnt1* Gnt1*

IdSel1 IdSel1

SErr1* SErr1*

Req1* Req1*
470 Revision 1.0

GT-96100A Advanced Communication Controller
Table 435 lists what must be done with the pins when the GT-96100A is used with PCI_0 as a 64-bit PCI inter-
face only (i.e. no PCI_1).

PAD1[31:0]/PAD0[63:32] PAD1[31:0]

CBE1[3:0]*/CBE0[7:4]* CBE1[3:0]*

Table 435: PCI_0 as 64-bit PCI Only

Pin Pin Usage

VREF0 VREF0

PClk0 PClk0

DevSel0* DevSel0*

Stop0* Stop0*

Par0 Par0

PErr0* PErr0*

Frame0* Frame0*

IRdy0* IRdy0*

TRdy0* TRdy0*

Gnt0* Gnt0*

IdSel0 IdSel0

SErr0* SErr0*

Req0* Req0*

Int0* Int0*

Lock0* Lock0*

PAD0[31:0] PAD0[31:0]

CBE0[3:0]* CBE0[3:0]*

VREF1 Tie directly to 3V or 5V power plane (same as
VREF0).

PClk1 Tie directly to PClk0.

DevSel1*/Ack64* Ack64*

Stop1* Pulled up to VCC through a resistor.

Par1/Par64 Par64

PErr1* Pulled up to VCC through a resistor.

Table 434: PCI_0 as 32-bit PCI and PCI_1 as 32-bit PCI (Continued)

Pin Pin Usage
Revision 1.0 471

GT-96100A Advanced Communication Controller
Frame1*/Req64* Req64*

IRdy1* Pulled up to VCC through a resistor.

TRdy1* Pulled up to VCC through a resistor.

Gnt1* Pulled up to VCC through a resistor.

IdSel1 Pulled down to GND through a resistor.

SErr1* Pulled up to VCC through a resistor.

Req1* No Connect.

PAD1[31:0]/PAD0[63:32] PAD0[63:32]

CBE1[3:0]*/CBE0[7:4]* CBE0[7:4]*

Table 435: PCI_0 as 64-bit PCI Only (Continued)

Pin Pin Usage
472 Revision 1.0

GT-96100A Advanced Communication Controller
28. PHASED LOCKED LOOP (PLL) APPLICATION NOTES
NOTE: Future revisions of this datasheet will contain new information and guidelines about using PLL.

The GT-96100A contains a Phase Locked Loop (PLL) logic. It is used to improve AC timing of the GT-96100A
TClk output signals.

The following sections describe the special care the PLL requires from the system designer.

28.1 PLL Power Supply

The GT-96100A�s internal PLL has a separate power supply. There are two dedicated pins for this purpose -
VccPLL and VssPLL. See Section 33. �Pinout Table, 492 Pin BGA� on page 533 for exact pin numbers.

These analog power supplies must be isolated from the digital power supply pads and be noise filtered.

The internal PLL has two parallel capacitors values and two serial resistors used for VccPLL and VssPLL, see
Figure 79. The values for the capacitors are 0Ω and 4.7Ω, respectively. The two resistors have a value of 1nf and
100nf, respectively.

Figure 78: Filtering Circuit

NOTE: At this stage, the above recommendations are based on simulations. Galileo uses the above values for
testing the GT-96100A. However, some changes to the above values might be required due to difference
in package and the physical design of the devices.

Figure 79: Resistor and Capacitor Values for VccPLL and VssPLL

+2.5v

GND VssPLL

VccPLL
LQG21NR27K10

LQG21NR27K10

21

22ohm +/-5% 0603

21

22ohm +/-5% 0603

10uF
+/-10%
Size B

0.1uF
+/-10%
0603

1nF
+/-10%
0603

VssPLL VccPLL

1 nf 100 nf

0Ω

4.7Ω

GND
2.5V=VCC
Revision 1.0 473

GT-96100A Advanced Communication Controller
NOTE: The capacitors and the resistor must be located as close as possible to the GT-96100A and only have a
minimum distance between them. Also, the capacitors must be assembled so that the 1nf capacitor is
closest to the GT-96100A.

28.2 PLL Characteristics

PLL maximum pull-in time PLUS locking time is 0.5 ms. This means that the reset pin must be kept asserted for
at least 0.5ms after TClk is on.
474 Revision 1.0

GT-96100A Advanced Communication Controller
29. SYSTEM CONFIGURATIONS

29.1 Minimal System Configuration

� Low Cost RV4650 CPU
� 32-bit SDRAM
� 8-bit Boot EPROM
� 32-bit PCI

Figure 80: Minimal System Configuration

OR

RV4650

GT-96100A

32 PCI
PCI I/O PCI I/O

32

SDRAM

SCAS*, SRAS*,
DWr*

SDQM[3:0]*

SCS[0]*

DAdr[11:0] Latch (373)

BOOT
ROM

dev_adr[21:0]

CS*

BootCS*

CSTiming*

DAdr[2:0]

8

64

ADP[3:0]
Revision 1.0 475

GT-96100A Advanced Communication Controller
29.2 Typical System Configuration

� Support for RV4700/5260 CPU.
� Support for 16-bit Devices.
� Support for 64-bit SDRAM.
� Two 32-bit PCI buses (3.3 and 5V support).

Figure 81: Typical System Configuration

OR

RV4700/
5260

GT-96100A

32
3.3V PCI

MASTER SLAVE

64

SCAS*, SRAS*,
DWr*

SDQM[7:0]*

SCS[1:0]*

DAdr[11:0] Latch (373)

BOOT
FLASH

dev_adr[21:0]

CS*

BootCS*

CSTiming*

DAdr[2:0]

16

64

ADP[7:0]

SDRAM

32

MASTER SLAVE

5V PCI
476 Revision 1.0

GT-96100A Advanced Communication Controller
29.3 High Performance System

� Support for RV5000/5270 CPU.
� Support for 2nd Level Cache.
� Support for 64-bit Devices.
� Support for 64-bit PCI.
� Multiple Banks of SDRAM.
� Buffer used for Large AD loading.

Figure 82: High Performance System

Bi-Directional
Buffer

OR

RV5000/
5270

GT-96100A

64

SCAS*, SRAS*,
DWr*

SDQM[7:0]*

SCS[3:0]*

DAdr[11:0] Latch (373)

BOOT
FLASH

dev_adr[21:0]

CS*

BootCS*

CSTiming*

DAdr[2:0]

64

ADP[7:0]

SDRAM

64

MASTER SLAVE

L2 Cache
L2 Cache
Control

ScTCE*, ScDOE*,
ScWord[1:0], Hit

DEVICE

OR
CS*

CSTiming*

CS[0]*

64

16

Wr[7:0]*
Revision 1.0 477

GT-96100A Advanced Communication Controller
30. REGISTER TABLES
The GT-96100A�s internal registers are accessed by the CPU or from the PCI bus.

The registers are memory-mapped for the CPU and memory- or I/O-mapped for the PCI.

The registers� address is comprised of the value in the Internal Space Decode register and the register Offset. The
value in the Internal Space Decode register [14:0] is matched against bits [35:21] of the actual address; therefore,
this value must be the actual address bits [35:21] shifted right once.

For example, to access �Channel 0 DMA Byte Count� register (offset 0x800) immediately after Reset:
� The full address is the default value in the Internal Space Decode register;
� this value is 0x0a0 shifted left once, which gives 0x140, two zero�s and the offset 0x800, to become a

32-bit address of 0x14000800.

The location of the registers in the memory space can be changed by changing the value programmed into the
Internal Space Decode register. For example, after changing the value in the Internal Space Decode register by
writing to 0x14000068 a value of 0bd, an access to the �Channel 0 DMA Byte Count� register is with
0x17a00800.

When writing to the internal registers from the PCI with Byte Enable = 0xF, the write is ignored (as per PCI spec-
ifications).

If a write occurs to the following registers with at least one CBE* pin asserted, the entire 32-bit word is written:

� CPU Interface
� Processor Address Space Decoders
� Device Address Space Decoders
� All SDRAM and Device registers
� All DMA registers
� All Communication unit registers
� Timer/Counter

The following internal registers are CBE* sensitive:

� PCI Internal registers
� PCI Configuration registers
� Interrupt Registers

30.1 Access to On-Chip PCI Configuration Space Registers

An access from the CPU to one of the GT-96100A PCI configuration registers is performed differently than
accesses to all other registers. The access is performed indirectly by writing the PCI configuration register offset
into the Configuration Address register and then reading, or writing, the data from/to the Configuration Data reg-
ister.

For example, to read data from the Status and Command register, the register offset �0x004� is written into the
Configuration Address register, offset 0xcf8 (or full address from the previous example 0xbd000cf8). Then, read-
ing from the Configuration Data register (offset 0xcfc), returns the data of the Status and Command register.
478 Revision 1.0

GT-96100A Advanced Communication Controller
30.2 Register Maps
Table 436: CPU Registers Map

Description Offset Page Number

CPU Configuration

CPU Interface Configuration 0x000000 page 85

Multi-GT Register 0x000120 page 87

CPU Address Decode

SCS[1:0]* Low Decode Address 0x000008 page 87

SCS[1:0]* High Decode Address 0x000010 page 87

SCS[3:2]* Low Decode Address 0x000018 page 88

SCS[3:2]* High Decode Address 0x000020 page 88

CS[2:0]* Low Decode Address 0x000028 page 88

CS[2:0]* High Decode Address 0x000030 page 88

CS[3]* & Boot CS* Low Decode Address 0x000038 page 88

CS[3]* & Boot CS* High Decode Address 0x000040 page 89

PCI_0 I/O Low Decode Address 0x000048 page 89

PCI_0 I/O High Decode Address 0x000050 page 89

PCI_0 Memory 0 Low Decode Address 0x000058 page 89

PCI_0 Memory 0 High Decode Address 0x000060 page 89

PCI_0 Memory 1 Low Decode Address 0x000080 page 90

PCI_0 Memory 1 High Decode Address 0x000088 page 90

PCI_1 I/O Low Decode Address 0x000090 page 90

PCI_1 I/O High Decode Address 0x000098 page 90

PCI_1 Memory 0 Low Decode Address 0x0000A0 page 90

PCI_1 Memory 0 High Decode Address 0x0000A8 page 91

PCI_1 Memory 1 Low Decode Address 0x0000B0 page 91

PCI_1 Memory 1 High Decode Address 0x0000B8 page 91

Internal Space Decode 0x000068 page 91

SCS[1:0]* Address Remap 0x0000D0 page 91

SCS[3:2]* Address Remap 0x0000D8 page 92

CS[2:0]* Remap 0x0000E0 page 92

CS[3]* & Boot CS* Remap 0x0000E8 page 92
Revision 1.0 479

GT-96100A Advanced Communication Controller

CPU Address Decode (Continued)

PCI_0 I/O Remap 0x0000F0 page 92

PCI_0 Memory 0 Remap 0x0000F8 page 92

PCI_0 Memory 1 Remap 0x000100 page 93

PCI_1 I/O Remap 0x000108 page 93

PCI_1 Memory 0 Remap 0x000110 page 93

PCI_1 Memory 1 Remap 0x000118 page 93

CPU Errors Report

CPU Error Address (Low) 0x070 page 151

CPU Error Address (High) 0x078 page 151

CPU Error Data (Low) 0x128 page 151

CPU Error Data (High) 0x130 page 151

CPU Error Parity 0x138 page 151

CPU Sync Barrier

PCI_0 Sync Barrier Virtual Register 0x0000C0 page 94

PCI_1 Sync Barrier Virtual Register 0x0000C8 page 94

Table 437: SDRAM Registers Map

Description Offset Page Number

SDRAM and Device Address Decode

SCS[0]* Low Decode Address 0x000400 page 130

SCS[0]* High Decode Address 0x000404 page 130

SCS[1]* Low Decode Address 0x000408 page 130

SCS[1]* High Decode Address 0x00040C page 130

SCS[2]* Low Decode Address 0x000410 page 131

SCS[2]* High Decode Address 0x000414 page 131

SCS[3]* Low Decode Address 0x000418 page 131

SCS[3]* High Decode Address 0x00041C page 131

CS[0]* Low Decode Address 0x000420 page 131

CS[0]* High Decode Address 0x000424 page 132

Table 436: CPU Registers Map (Continued)

Description Offset Page Number
480 Revision 1.0

GT-96100A Advanced Communication Controller
SDRAM and Device Address Decode (Continued)

CS[1]* Low Decode Address 0x000428 page 132

CS[1]* High Decode Address 0x00042C page 132

CS[2]* Low Decode Address 0x000430 page 132

CS[2]* High Decode Address 0x000434 page 132

CS[3]* Low Decode Address 0x000438 page 133

CS[3]* High Decode Address 0x00043C page 133

Boot CS* Low Decode Address 0x000440 page 133

Boot CS* High Decode Address 0x000444 page 133

Address Decode Error 0x000470 page 133

SDRAM Configuration

SDRAM Configuration 0x000448 page 134

SDRAM Operation Mode 0x000474 page 135

SDRAM Burst Mode 0x000478 page 135

SDRAM Address Decode 0x00047C page 136

SDRAM Parameters

SDRAM Bank0 Parameters 0x00044C page 137

SDRAM Bank1 Parameters 0x000450 page 138

SDRAM Bank2 Parameters 0x000454 page 138

SDRAM Bank3 Parameters 0x000458 page 139

ECC

ECC Upper Data 0x000480 page 139

ECC Lower Data 0x000484 page 139

ECC from Memory 0x000488 page 139

ECC Calculated 0x00048C page 139

ECC Error report 0x000490 page 140

Table 437: SDRAM Registers Map (Continued)

Description Offset Page Number
Revision 1.0 481

GT-96100A Advanced Communication Controller

Device Parameters

Device Bank0 Parameters 0x00045C page 140

Device Bank1 Parameters 0x000460 page 141

Device Bank2 Parameters 0x000464 page 141

Device Bank3 Parameters 0x000468 page 141

Device Boot Bank Parameters 0x00046C page 142

Table 438: DMA Registers Map

Description Offset Page Number

DMA Record

Channel 0 DMA Byte Count 0x000800 page 232

Channel 1 DMA Byte Count 0x000804 page 232

Channel 2 DMA Byte Count 0x000808 page 232

Channel 3 DMA Byte Count 0x00080C page 233

Channel 0 DMA Source Address 0x000810 page 233

Channel 1 DMA Source Address 0x000814 page 233

Channel 2 DMA Source Address 0x000818 page 233

Channel 3 DMA Source Address 0x00081C page 233

Channel 0 DMA Destination Address 0x000820 page 233

Channel 1 DMA Destination Address 0x000824 page 234

Channel 2 DMA Destination Address 0x000828 page 234

Channel 3 DMA Destination Address 0x00082C page 234

Channel 0 Next Record Pointer 0x000830 page 234

Channel 1 Next Record Pointer 0x000834 page 234

Channel 2 Next Record Pointer 0x000838 page 235

Channel 3 Next Record Pointer 0x00083C page 235

Channel 0 Current Descriptor Pointer 0x000870 page 235

Channel 1 Current Descriptor Pointer 0x000874 page 235

Channel 2 Current Descriptor Pointer 0x000878 page 235

Channel 3 Current Descriptor Pointer 0x00087C page 236

Table 437: SDRAM Registers Map (Continued)

Description Offset Page Number
482 Revision 1.0

GT-96100A Advanced Communication Controller

DMA Record (Continued)

Channel 0 Control 0x000840 page 236

Channel 1 Control 0x000844 page 239

Channel 2 Control 0x000848 page 239

Channel 3 Control 0x00084C page 239

DMA Arbiter

Arbiter Control 0x000860 page 240

Table 439: Timer/Counter Registers Map

Description Offset Page Number

Timer /Counter 0 0x000850 page 403

Timer /Counter 1 0x000854 page 403

Timer /Counter 2 0x000858 page 403

Timer /Counter 3 0x00085C page 404

Timer /Counter Control 0x000864 page 404

Table 440: PCI Registers Map

Description Offset Page Number

PCI Internal

PCI_0 Command 0x000C00 page 172

PCI_1 Command 0x000C80 page 174

PCI_0 Time Out & Retry 0x000C04 page 174

PCI_1 Time Out & Retry 0x000C84 page 174

PCI_0 SCS[1:0]* Bank Size 0x000C08 page 175

PCI_1 SCS[1:0]* Bank Size 0x000C88 page 175

PCI_0 SCS[3:2]* Bank Size 0x000C0C page 175

PCI_1 SCS[3:2]* Bank Size 0x000C8C page 176

PCI_0 CS[2:0]* Bank Size 0x000C10 page 176

PCI_1 CS[2:0]* Bank Size 0x000C90 page 176

Table 438: DMA Registers Map (Continued)

Description Offset Page Number
Revision 1.0 483

GT-96100A Advanced Communication Controller
PCI Internal (Continued)

PCI_0 CS[3]* & Boot CS* Bank Size 0x000C14 page 177

PCI_1 CS[3]* & Boot CS* Bank Size 0x000C94 page 177

PCI_0 Base Address Registers� Enable 0x000C3C page 178

PCI_1 Base Address Registers� Enable 0x000CBC page 179

PCI_0 Prefetch/Max Burst Size 0x000C40 page 179

PCI_1 Prefetch/Max Burst Size 0x000CC0 page 179

PCI_0 SCS[1:0]* Base Address Remap 0x000C48 page 180

PCI_1 SCS[1:0]* Base Address Remap 0x000CC8 page 180

PCI_0 SCS[3:2]* Base Address Remap 0x000C4C page 181

PCI_1 SCS[3:2]* Base Address Remap 0x000CCC page 179

PCI_0 CS[2:0]* Base Address Remap 0x000C50 page 182

PCI_1 CS[2:0]* Base Address Remap 0x000CD0 page 182

PCI_0 CS[3]* & Boot CS* Address Remap 0x000C54 page 182

PCI_1 CS[3]* & Boot CS* Address Remap 0x000CD4 page 182

PCI_0 Swapped SCS[1:0]* Base Address Remap 0x000C58 page 180

PCI_1 Swapped SCS[1:0]* Base Address Remap 0x000CD8 page 180

PCI_0 Swapped SCS[3:2]* Base Address Remap 0x000C5C page 181

PCI_1 Swapped SCS[3:2]* Base Address Remap 0x000CDC page 181

PCI_0 Swapped CS[3]* & BootCS* Base Address Remap 0x000C64 page 183

PCI_1 Swapped CS[3]* & BootCS* Base Address Remap 0x000CE4 page 183

PCI_0 Configuration Address 0x000CF8 page 183

PCI_1 Configuration Address 0x000CF0 page 184

PCI_0 Configuration Data Virtual Register 0x000CFC page 184

PCI_1 Configuration Data Virtual Register 0x000CF4 page 184

PCI_0 Interrupt Acknowledge Virtual Register 0x000C34 page 184

PCI_1 Interrupt Acknowledge Virtual Register 0x000C30 page 184

Table 440: PCI Registers Map (Continued)

Description Offset Page Number
484 Revision 1.0

GT-96100A Advanced Communication Controller
PCI Configuration

PCI_0 Device and Vendor ID 0x000000 page 185

PCI_1 Device and Vendor ID 0x000080 page 185

PCI_0 Status and Command 0x000004 page 186

PCI_1 Status and Command 0x000084 page 187

PCI_0 Class Code and Revision ID 0x000008 page 188

PCI_1 Class Code and Revision ID 0x000088 page 188

PCI_0 BIST, Header Type, Latency Timer, Cache Line 0x00000C page 188

PCI_1 BIST, Header Type, Latency Timer, Cache Line 0x00008C page 189

PCI_0 SCS[1:0]* Base Address 0x000010 page 190

PCI_1 SCS[1:0]* Base Address 0x000090 page 190

PCI_0 SCS[3:2]* Base Address 0x000014 page 191

PCI_1 SCS[3:2]* Base Address 0x000094 page 191

PCI_0 CS[2:0]* Base Address 0x000018 page 191

PCI_1 CS[2:0]* Base Address 0x000098 page 192

PCI_0 CS[3]* & Boot CS* Base Address 0x00001C page 192

PCI_1 CS[3]* & Boot CS* Base Address 0x00009C page 192

PCI_0 Internal Registers Memory Mapped Base Address 0x000020 page 193

PCI_1 Internal Registers Memory Mapped Base Address 0x0000A0 page 193

PCI_0 Internal Registers I/O Mapped Base Address 0x000024 page 193

PCI_1 Internal Registers I/O Mapped Base Address 0x0000A4 page 193

PCI_0 Subsystem ID and Subsystem Vendor ID 0x00002C page 194

PCI_1 Subsystem ID and Subsystem Vendor ID 0x0000AC page 194

Expansion ROM Base Address Register 0x000030 page 194

PCI_0 Interrupt Pin and Line 0x00003C page 195

PCI_1 Interrupt Pin and Line 0x0000BC page 195

Table 440: PCI Registers Map (Continued)

Description Offset Page Number
Revision 1.0 485

GT-96100A Advanced Communication Controller

PCI Configuration, Function 1

PCI_0 Swapped SCS[1:0]* Base Address 0x000110 page 198

PCI_1 Swapped SCS[1:0]* Base Address 0x000190 page 198

PCI_0 Swapped SCS[3:2]* Base Address 0x000114 page 198

PCI_1 Swapped SCS[3:2]* Base Address 0x000194 page 199

PCI_0 Swapped CS[3]* & Boot CS* Base Address 0x00011C page 199

PCI_1 Swapped CS[3]* & Boot CS* Base Address 0x00019C page 200

Table 441: Interrupts Registers Map

Description Offset Page Number

Interrupt Main Cause register 0x000C18 page 428

Interrupt0* Main Mask register 0x000C1C page 432

Interrupt1* Main Mask register 0x000C24 page 434

Interrupt High Cause register 0x000C98 page 430

Interrupt0* High Mask register 0x000C9C page 433

Interrupt1* High Mask register 0x000CA4 page 435

Interrupt0* Select register 0x000C70 page 431

Interrupt1* Select register 0x000C74 page 432

Serial Cause register 0x103A00 page 436

SerInt0* Mask register 0x103A80 page 438

SerInt1* Mask register 0x103A88 page 439

Ethernet0 Cause register 0x084850 page 440

Ethernet0 Mask register 0x084858 page 440

Ethernet1 Cause register 0x088850 page 441

Ethernet1 Mask register 0x088858 page 441

SDMA Cause register 0x103A10 page 441

SDMA Mask register 0x103A90 page 441

MPSC0 Cause register 0x103A20 page 444

MPSC0 Mask register 0x103AA0 page 444

MPSC1 Cause register 0x103A24 page 445

Table 440: PCI Registers Map (Continued)

Description Offset Page Number
486 Revision 1.0

GT-96100A Advanced Communication Controller
MPSC1 Mask register 0x103AA4 page 445

MPSC2 Cause register 0x103A28 page 445

MPSC2 Mask register 0x103AA8 page 445

MPSC3 Cause register 0x103A2C page 446

MPSC3 Mask register 0x103AAC page 446

MPSC4 Cause register 0x103A30 page 446

MPSC4 Mask register 0x103AB0 page 446

MPSC5 Cause register 0x103A34 page 446

MPSC5 Mask register 0x103AB4 page 446

MPSC6 Cause register 0x103A38 page 446

MPSC6 Mask register 0x103AB8 page 446

MPSC7 Cause register 0x103A3C page 446

MPSC7 Mask register 0x103ABC page 446

FlexTDM Cause register 0x103A40 page 447

FlexTDM Mask register 0x103AC0 page 447

BRG Cause register 0x103A48 page 448

BRG Mask register 0x103AC8 page 448

GPP0 Cause register 0x103A50 page 448

GPP0 Mask register 0x103AD0 page 448

GPP1 Cause register 0x103A54 page 449

GPP1 Mask register 0x103AD4 page 449

GPP2 Cause register 0x103A58 page 449

GPP2 Mask register 0x103AD8 page 449

PCI_0 SErr0 Mask 0x000C28 page 449

PCI_1 SErr1 Mask 0x000CA8 page 451

Table 441: Interrupts Registers Map (Continued)

Description Offset Page Number
Revision 1.0 487

GT-96100A Advanced Communication Controller

NOTE: I2O registers can be accessed from the CPU and PCI_0 sides (unless stated otherwise). If accessed from
the PCI_0 side, address offset is with respect to the PCI_0 SCS[1:0]* Base Address register contents. If
accessed from CPU side, the address offset is with respect to the CPU Internal Space Base Register +
0x1c00.

Table 442: I2O Support Registers Map

Description Offset Page Number

Inbound Message Register 0 0x00010 page 211

Inbound Message Register 1 0x00014 page 211

Outbound Message Register 0 0x00018 page 211

Outbound Message Register 1 0x0001C page 211

Inbound Doorbell Register 0x00020 page 212

Inbound Interrupt Cause Register 0x00024 page 212

Inbound Interrupt Mask Register 0x00028 page 213

Outbound Doorbell Register 0x0002C page 213

Outbound Interrupt Cause Register 0x00030 page 214

Outbound Interrupt Mask Register 0x00034 page 214

Inbound Queue Port Virtual Register 0x00040 page 215

Outbound Queue Port Virtual Register 0x00044 page 215

Queue Control Register 0x00050 page 215

Queue Base Address Register 0x00054 page 216

Inbound Free Head Pointer Register 0x00060 page 216

Inbound Free Tail Pointer Register 0x00064 page 216

Inbound Post Head Pointer Register 0x00068 page 216

Inbound Post Tail Pointer Register 0x0006C page 217

Outbound Free Head Pointer Register 0x00070 page 217

Outbound Free Tail Pointer Register 0x00074 page 217

Outbound Post Head Pointer Register 0x00078 page 218

Outbound Post Tail Pointer Register 0x0007C page 218
488 Revision 1.0

GT-96100A Advanced Communication Controller
Table 443: Communication Unit Register Map

Description Offset
Page
Number

Ethernet Ports

Ethernet PHY Address Register (EPAR) 0X080800 page 285

Ethernet SMI Register (ESMIR) 0X080810 page 286

Ethernet0 Ports

Ethernet0 Port Configuration Register (E0PCR) 0X084800 page 286

Ethernet0 Port Configuration Extend Register (E0PCXR) 0X084808 page 288

Ethernet0 Port Command Register (E0PCMR) 0X084810 page 291

Ethernet0 Port Status Register (E0PSR) 0X084818 page 291

Ethernet0 Serial Parameters Register (E0SPR) 0X084820 page 292

Ethernet0 Hash Table Pointer Register (E0HTPR) 0X084828 page 293

Ethernet0 Flow Control Source Address Low (E0FCSAL) 0X084830 page 293

Ethernet0 Flow Control Source Address High (E0FCSAH) 0X084838 page 294

Ethernet0 SDMA Configuration Register (E0SDCR) 0X084840 page 294

Ethernet0 SDMA Command Register (E0SDCMR) 0X084848 page 295

Ethernet0 Interrupt Cause Register (E0ICR) 0X084850 page 296

Ethernet0 Interrupt Mask Register (E0IMR) 0X084858 page 299

Ethernet0 IP Differentiated Services CodePoint to Priority0 low (E0DSCP2P0L) 0x84860 page 299

Ethernet0 IP Differentiated Services CodePoint to Priority0 high (E0DSCP2P0H) 0x84864 page 299

Ethernet0 IP Differentiated Services CodePoint to Priority1 low (E0DSCP2P1L) 0x84868 page 299

Ethernet0 IP Differentiated Services CodePoint to Priority1 high (E0DSCP2P1H) 0x8486c page 299

Ethernet0 VLAN Priority Tag to Priority (E0VPT2P) 0x88870 page 299

Ethernet0 First Rx Descriptor Pointer 0 (E0FRDP0) 0X084880 page 263

Ethernet0 First Rx Descriptor Pointer 1 (E0FRDP1) 0X084884

Ethernet0 First Rx Descriptor Pointer 2 (E0FRDP2) 0X084888

Ethernet0 First Rx Descriptor Pointer 3 (E0FRDP3) 0X08488C

Ethernet0 Current Rx Descriptor Pointer 0 (E0CRDP0) 0X0848A0

Ethernet0 Current Rx Descriptor Pointer 1 (E0CRDP1) 0X0848A4

Ethernet0 Current Rx Descriptor Pointer 2 (E0CRDP2) 0X0848A8

Ethernet0 Current Rx Descriptor Pointer 3 (E0CRDP3) 0X0848AC
Revision 1.0 489

GT-96100A Advanced Communication Controller
Ethernet0 Ports (Continued)

Ethernet0 Current Tx Descriptor Pointer 0 (E0CTDP0) 0X0848E0 page 255

Ethernet0 Current Tx Descriptor Pointer 1 (E0CTDP1) 0X0848E4

Ethernet0 MIB Counters 0X085800
-
0X0858FF

page 302

Ethernet1 Ports

Ethernet1 Port Configuration Register (E1PCR) 0X088800 page 286

Ethernet1 Port Configuration Extend Register (E1PCXR) 0X088808 page 288

Ethernet1 Port Command Register (E1PCMR) 0X088810 page 291

Ethernet1 Port Status Register (E1PSR) 0X088818 page 291

Ethernet1 Serial Parameters Register (E1SPR) 0X088820 page 292

Ethernet1 Hash Table Pointer Register (E1HTPR) 0X088828 page 293

Ethernet1 Flow Control Source Address Low (E1FCSAL) 0X088830 page 293

Ethernet1 Flow Control Source Address High (E1FCSAH) 0X088838 page 294

Ethernet1 SDMA Configuration Register (E1SDCR) 0X088840 page 294

Ethernet1 SDMA Command Register (E1SDCMR) 0X088848 page 295

Ethernet1 Interrupt Cause Register (E0ICR) 0X088850 page 296

Ethernet1 Interrupt Mask Register (E0IMR) 0X088858 page 299

Ethernet IP Differentiated Services CodePoint to Priority0 low (E0DSCP2P0L) 0x84860 page 299

Ethernet IP Differentiated Services CodePoint to Priority0 high (E0DSCP2P0H) 0x84864 page 299

Ethernet IP Differentiated Services CodePoint to Priority1 low (E0DSCP2P1L) 0x84868 page 299

Ethernet IP Differentiated Services CodePoint to Priority1 high (E0DSCP2P1H) 0x8486c page 299

Ethernet VLAN Priority Tag to Priority (E0VPT2P) 0x84870 page 299

Ethernet1 First Rx Descriptor Pointer 0 (E1FRDP0) 0X088880 page 263

Ethernet1 First Rx Descriptor Pointer 1 (E1FRDP1) 0X088884

Ethernet1 First Rx Descriptor Pointer 2 (E1FRDP2) 0X088888

Ethernet1 First Rx Descriptor Pointer 3 (E1FRDP3) 0X08888C

Table 443: Communication Unit Register Map (Continued)

Description Offset
Page
Number
490 Revision 1.0

GT-96100A Advanced Communication Controller
Ethernet1 Current Rx Descriptor Pointer 0 (E1CRDP0) 0X0888A0 page 263

Ethernet1 Current Rx Descriptor Pointer 1 (E1CRDP1) 0X0888A4

Ethernet1 Current Rx Descriptor Pointer 2 (E1CRDP2) 0X0888A8

Ethernet1 Current Rx Descriptor Pointer 3 (E1CRDP3) 0X0888AC

Ethernet1 Current Tx Descriptor Pointer 0 (E1CTDP0) 0X0888E0 page 255

Ethernet1 Current Tx Descriptor Pointer 1 (E1CTDP1) 0X0888E4

Ethernet1 MIB Counters 0X089800
-
0X0898FF

page 302

SDMAs

SDMA Group Configuration Register 0X101AF0 page 312

SDMA Group 0, Channel0

Channel0 Configuration Register (S0DC0) 0X000900 page 312

Channel0 Command Register (S0DCM0) 0X000908 page 314

Channel0 Rx Descriptor 0X008900
-
0X00890F

Not to be
accessed
during nor-
mal opera-
tion.

Channel0 Current Rx Descriptor Pointer (S0CRDP0) 0X008910 page 316

Channel0 Tx Descriptor 0X00C900
-
0X00C90F

Not to be
accessed
during nor-
mal opera-
tion.

Channel0 Current Tx Descriptor Pointer (S0CTDP0) 0X00C910 page 316

Channel0 First Tx Descriptor Pointer (S0FTDP0) 0X00C914 page 316

Table 443: Communication Unit Register Map (Continued)

Description Offset
Page
Number
Revision 1.0 491

GT-96100A Advanced Communication Controller
SDMA Group 0, Channel1

Channel1 Configuration Register (S0DC1) 0X010900 For a
description
of the
Channel1
registers,
see the
descrip-
tions for
the
Channel0
registers.

Channel1 Command Register (S0DCM1) 0X010908

Channel1 Rx Descriptor 0X018900
-
0X01890F

Channel1 Current Rx Descriptor Pointer (S0CRDP1) 0X018910

Channel1 Tx Descriptor 0X01C900
-
0X01C90F

Channel1 Current Tx Descriptor Pointer (S0CTDP1) 0X01C910

Channel1 First Tx Descriptor Pointer (S0FTDP1) 0X01C914

SDMA Group 0, Channel2

Channel2 Configuration Register (S0DC2) 0X020900 For a
description
of the
Channel2
registers,
see the
descrip-
tions for
the
Channel0
registers.

Channel2 Command Register (S0DCM2) 0X020908

Channel2 Rx Descriptor 0X028900
-
0X02890F

Channel2 Current Rx Descriptor Pointer (S0CRDP2) 0X028910

Channel2 Tx Descriptor 0X02C900
-
0X02C90F

Channel2 Current Tx Descriptor Pointer (S0CTDP2) 0X02C910

Channel2 First Tx Descriptor Pointer (S0FTDP2) 0X02C914

Table 443: Communication Unit Register Map (Continued)

Description Offset
Page
Number
492 Revision 1.0

GT-96100A Advanced Communication Controller
SDMA Group 0, Channel3

Channel3 Configuration Register (S0DC3) 0X030900 For a
description
of the
Channel3
registers,
see the
descrip-
tions for
the
Channel0
registers.

Channel3 Command Register (S0DCM3) 0X030908

Channel3 Rx Descriptor 0X038900
-
0X03890F

Channel3 Current Rx Descriptor Pointer (S0CRDP3) 0X038910

Channel3 Tx Descriptor 0X03C900
-
0X03C90F

Channel3 Current Tx Descriptor Pointer (S0CTDP3) 0X03C910

Channel3 First Tx Descriptor Pointer (S0FTDP3) 0X03C914

SDMA Group 0, Channel4

Channel4 Configuration Register (S0DC4) 0X040900 For a
description
of the
Channel4
registers,
see the
descrip-
tions for
the
Channel0
registers.

Channel4 Command Register (S0DCM4) 0X040908

Channel4 Rx Descriptor 0X048900
-
0X04890F

Channel4 Current Rx Descriptor Pointer (S0CRDP4) 0X048910

Channel4 Tx Descriptor 0X04C900
-
0X04C90F

Channel4 Current Tx Descriptor Pointer (S0CTDP4) 0X04C910 For a
description
of the
Channel4
registers,
see the
descrip-
tions for
the
Channel0
registers.

Channel4 First Tx Descriptor Pointer (S0FTDP4) 0X04C914

Table 443: Communication Unit Register Map (Continued)

Description Offset
Page
Number
Revision 1.0 493

GT-96100A Advanced Communication Controller
SDMA Group 0, Channel5

Channel5 Configuration Register (S0DC5) 0X050900 For a
description
of the
Channel5
registers,
see the
descrip-
tions for
the
Channel0
registers.

Channel5 Command Register (S0DCM5) 0X050908

Channel5 Rx Descriptor 0X058900
-
0X05890F

Channel5 Current Rx Descriptor Pointer (S0CRDP5) 0X058910

Channel5 Tx Descriptor 0X05C900
-
0X05C90F

Channel5 Current Tx Descriptor Pointer (S0CTDP5) 0X05C910

Channel5 First Tx Descriptor Pointer (S0FTDP5) 0X05C914

SDMA Group 0, Channel6

Channel6 Configuration Register (S0DC6) 0X060900 For a
description
of the
Channel6
registers,
see the
descrip-
tions for
the
Channel0
registers.

Channel6 Command Register (S0DCM6) 0X060908

Channel6 Rx Descriptor 0X068900
-
0X06890F

Channel6 Current Rx Descriptor Pointer (S0CRDP6) 0X068910

Channel6 Tx Descriptor 0X06C900
-
0X06C90F

Channel6 Current Tx Descriptor Pointer (S0CTDP6) 0X06C910

Channel6 First Tx Descriptor Pointer (S0FTDP6) 0X06C914

Table 443: Communication Unit Register Map (Continued)

Description Offset
Page
Number
494 Revision 1.0

GT-96100A Advanced Communication Controller
SDMA Group 0, Channel7

Channel7 Configuration Register (S0DC7) 0X070900 For a
description
of the
Channel7
registers,
see the
descrip-
tions for
the
Channel0
registers.

Channel7 Command Register (S0DCM7) 0X070908

Channel7 Rx Descriptor 0X078900
-
0X07890F

Channel7 Current Rx Descriptor Pointer (S0CRDP7) 0X078910

Channel7 Tx Descriptor 0X07C900
-
0X07C90F

Channel7 Current Tx Descriptor Pointer (S0CTDP7) 0X07C910

Channel7 First Tx Descriptor Pointer (S0FTDP7) 0X07C914

SDMA Group 1, Channel0

Channel1 Configuration Register (S1DC0) 0X100900 page 312

Channel1 Command Register (S1DCM0) 0X100908 page 314

Channel1 Rx Descriptor 0X108900
-
0X10890F

Not to be
accessed
during nor-
mal opera-
tion.

Channel1 Current Rx Descriptor Pointer (S1CRDP0) 0X108910 page 316

Channel1 Tx Descriptor 0X10C900
-
0X10C90F

Not to be
accessed
during nor-
mal opera-
tion.

Channel1 Current Tx Descriptor Pointer (S1CTDP0) 0X10C910 page 316

Channel1 First Tx Descriptor Pointer (S1FTDP0) 0X10C914 page 316

Table 443: Communication Unit Register Map (Continued)

Description Offset
Page
Number
Revision 1.0 495

GT-96100A Advanced Communication Controller
SDMA Group 1, Channel1

Channel1 Configuration Register (S1DC1) 0X110900 For a
description
of the
Channel1
registers,
see the
descrip-
tions for
the
Channel0
registers.

Channel1 Command Register (S1DCM1) 0X110908

Channel1 Rx Descriptor 0X118900 -
0X11890F

Channel1 Current Rx Descriptor Pointer (S1CRDP1) 0X118910

Channel1 Tx Descriptor 0X11C900
-
0X11C90F

SDMA Group 1, Channel1 (Continued)

Channel1 Current Tx Descriptor Pointer (S1CTDP1) 0X11C910 For a
description
of the
Channel1
registers,
see the
descrip-
tions for
the
Channel0
registers.

Channel1 First Tx Descriptor Pointer (S1FTDP1) 0X11C914

SDMA Group 1, Channel2

Channel2 Configuration Register (S1DC2) 0X120900 For a
description
of the
Channel2
registers,
see the
descrip-
tions for
the
Channel0
registers.

Channel2 Command Register (S1DCM2) 0X120908

Channel2 Rx Descriptor 0X128900
-
0X12890F

Channel2 Current Rx Descriptor Pointer (S1CRDP2) 0X128910

Channel2 Tx Descriptor 0X12C900
-
0X12C90F

Channel2 Current Tx Descriptor Pointer (S1CTDP2) 0X12C910

Channel2 First Tx Descriptor Pointer (S1FTDP2) 0X12C914

Table 443: Communication Unit Register Map (Continued)

Description Offset
Page
Number
496 Revision 1.0

GT-96100A Advanced Communication Controller
SDMA Group 1, Channel3

Channel3 Configuration Register (S1DC3) 0X130900 For a
description
of the
Channel3
registers,
see the
descrip-
tions for
the
Channel0
registers.

Channel3 Command Register (S1DCM3) 0X130908

Channel3 Rx Descriptor 0X138900
-
0X13890F

Channel3 Current Rx Descriptor Pointer (S1CRDP3) 0X138910

Channel3 Tx Descriptor 0X13C900
-
0X13C90F

Channel3 Current Tx Descriptor Pointer (S1CTDP3) 0X13C910

Channel3 First Tx Descriptor Pointer (S1FTDP3) 0X13C914

SDMA Group 1, Channel4

Channel4 Configuration Register (S1DC4) 0X140900 For a
description
of the
Channel4
registers,
see the
descrip-
tions for
the
Channel0
registers.

Channel4 Command Register (S1DCM4) 0X140908

Channel4 Rx Descriptor 0X148900
-
0X14890F

Channel4 Current Rx Descriptor Pointer (S1CRDP4) 0X148910

Channel4 Tx Descriptor 0X14C900
-
0X14C90F

Channel4 Current Tx Descriptor Pointer (S1CTDP4) 0X14C910

Channel4 First Tx Descriptor Pointer (S1FTDP4) 0X14C914

Table 443: Communication Unit Register Map (Continued)

Description Offset
Page
Number
Revision 1.0 497

GT-96100A Advanced Communication Controller
SDMA Group 1, Channel5

Channel5 Configuration Register (S1DC5) 0X150900 For a
description
of the
Channel5
registers,
see the
descrip-
tions for
the
Channel0
registers.

Channel5 Command Register (S1DCM5) 0X150908

Channel5 Rx Descriptor 0X158900
-
0X15890F

Channel5 Current Rx Descriptor Pointer (S1CRDP5) 0X158910

Channel5 Tx Descriptor 0X15C900
-
0X15C90F

Channel5 Current Tx Descriptor Pointer (S1CTDP5) 0X15C910

Channel5 First Tx Descriptor Pointer (S1FTDP5) 0X15C914

SDMA Group 1, Channel6

Channel6 Configuration Register (S1DC6) 0X160900 For a
description
of the
Channel6
registers,
see the
descrip-
tions for
the
Channel0
registers.

Channel6 Command Register (S1DCM6) 0X160908

Channel6 Rx Descriptor 0X168900
-
0X16890F

Channel6 Current Rx Descriptor Pointer (S1CRDP6) 0X168910

Channel6 Tx Descriptor 0X16C900
-
0X16C90F

Channel6 Current Tx Descriptor Pointer (S1CTDP6) 0X16C910 For a
description
of the
Channel6
registers,
see the
descrip-
tions for
the
Channel0
registers.

Channel6 First Tx Descriptor Pointer (S1FTDP6) 0X16C914

Table 443: Communication Unit Register Map (Continued)

Description Offset
Page
Number
498 Revision 1.0

GT-96100A Advanced Communication Controller
SDMA Group 1, Channel7

Channel7 Configuration Register (S1DC7) 0X170900 For a
description
of the
Channel7
registers,
see the
descrip-
tions for
the
Channel0
registers.

Channel7 Command Register (S1DCM7) 0X170908

Channel7 Rx Descriptor 0X178900
-
0X17890F

Channel7 Current Rx Descriptor Pointer (S1CRDP7) 0X178910

Channel7 Tx Descriptor 0X17C900
-
0X17C90F

Channel7 Current Tx Descriptor Pointer (S1CTDP7) 0X17C910

Channel7 First Tx Descriptor Pointer (S1FTDP7) 0X17C914

MPSC0

MPSC0 Main Configuration Low (MMCRL0) 0X000A00 page 329

MPSC0 Main Configuration High (MMCRH0) 0X000A04 page 333

MPSC0 Protocol Configuration (MPCR0) 0X000A08 page 339

Channel0 Register1 (CH0R1) 0X000A0C page 337

Channel0 Register2 (CH0R2) 0X000A10

Channel0 Register3 (CH0R3) 0X000A14

Channel0 Register4 (CH0R4) 0X000A18

Channel0 Register5 (CH0R5) 0X000A1C

Channel0 Register6 (CH0R6) 0X000A20

Channel0 Register7 (CH0R7) 0X000A24

Channel0 Register8 (CH0R8) 0X000A28

Channel0 Register9 (CH0R9) 0X000A2C

Channel0 Register10 (CH0R10) 0X000A30

Table 443: Communication Unit Register Map (Continued)

Description Offset
Page
Number
Revision 1.0 499

GT-96100A Advanced Communication Controller
MPSC1

MPSC1 Main Configuration Low (MMCRL1) 0X008A00 For a
description
of the
MPSC1
registers,
see the
descrip-
tions for
the MPSC0
registers
on page
499.

MPSC1 Main Configuration High (MMCRH1) 0X008A04

MPSC1 Protocol Configuration (MPCR1) 0X008A08

Channel1 Register1 (CH1R1) 0X008A0C

Channel1 Register2 (CH1R2) 0X008A10

Channel1 Register3 (CH1R3) 0X008A14

Channel1 Register4 (CH1R4) 0X008A18

Channel1 Register5 (CH1R5) 0X008A1C

Channel1 Register6 (CH1R6) 0X008A20

Channel1 Register7 (CH1R7) 0X008A24

Channel1 Register8 (CH1R8) 0X008A28

Channel1 Register9 (CH1R9) 0X008A2C

Channel1 Register10 (CH1R10) 0X008A30

Channel1 Register11 (CH1R11) 0X008A34

MPSC2

MPSC2 Main Configuration Low (MMCRL2) 0X010A00 For a
description
of the
MPSC1
registers,
see the
descrip-
tions for
the MPSC0
registers
on page
499.

MPSC2 Main Configuration High (MMCRH2) 0X010A04

MPSC2 Protocol Configuration (MPCR2) 0X010A08

Channel2 Register1 (CH2R1) 0X010A0C

Channel2 Register2 (CH2R2) 0X010A10

Channel2 Register3 (CH2R3) 0X010A14

Channel2 Register4 (CH2R4) 0X010A18

Channel2 Register5 (CH2R5) 0X010A1C

Channel2 Register6 (CH2R6) 0X010A20

Channel2 Register7 (CH2R7) 0X010A24

Channel2 Register8 (CH2R8) 0X010A28

Channel2 Register9 (CH2R9) 0X010A2C

Channel2 Register10 (CH2R10) 0X010A30

Table 443: Communication Unit Register Map (Continued)

Description Offset
Page
Number
500 Revision 1.0

GT-96100A Advanced Communication Controller
MPSC3

MPSC3 Main Configuration Low (MMCRL3) 0X018A00 For a
description
of the
MPSC3
registers,
see the
descrip-
tions for
the MPSC0
registers
on page
499.

MPSC3 Main Configuration High (MMCRH3) 0X018A04

MPSC3 Protocol Configuration (MPCR3) 0X018A08

Channel3 Register1 (CH3R1) 0X018A0C

Channel3 Register2 (CH3R2) 0X018A10

Channel3 Register3 (CH3R3) 0X018A14

Channel3 Register4 (CH3R4) 0X018A18

Channel3 Register5 (CH3R5) 0X018A1C

Channel3 Register6 (CH3R6) 0X018A20

Channel3 Register7 (CH3R7) 0X018A24

Channel3 Register8 (CH3R8) 0X018A28

Channel3 Register9 (CH3R9) 0X018A2C

Channel3 Register10 (CH3R10) 0X018A30

MPSC4

MPSC4 Main Configuration Low (MMCRL4) 0X020A00 For a
description
of the
MPSC4
registers,
see the
descrip-
tions for
the MPSC0
registers
on page
499.

MPSC4 Main Configuration High (MMCRH4) 0X020A04

MPSC4 Protocol Configuration (MPCR4) 0X020A08

Channel4 Register1 (CH4R1) 0X020A0C

Channel4 Register2 (CH4R2) 0X020A10

Channel4 Register3 (CH4R3) 0X020A14

Channel4 Register4 (CH4R4) 0X020A18

Channel4 Register5 (CH4R5) 0X020A1C

Channel4 Register6 (CH4R6) 0X020A20

Channel4 Register7 (CH4R7) 0X020A24

Channel4 Register8 (CH4R8) 0X020A28

Channel4 Register9 (CH4R9) 0X020A2C

Channel4 Register10 (CH4R10) 0X020A30

Table 443: Communication Unit Register Map (Continued)

Description Offset
Page
Number
Revision 1.0 501

GT-96100A Advanced Communication Controller
MPSC5

MPSC5 Main Configuration Low (MMCRL5) 0X028A00 For a
description
of the
MPSC5
registers,
see the
descrip-
tions for
the MPSC0
registers
on page
499.

MPSC5 Main Configuration High (MMCRH5) 0X028A04

MPSC5 Protocol Configuration (MPCR5) 0X028A08

Channel5 Register1 (CH5R1) 0X028A0C

Channel5 Register2 (CH5R2) 0X028A10

Channel5 Register3 (CH5R3) 0X028A14

Channel5 Register4 (CH5R4) 0X028A18

Channel5 Register5 (CH5R5) 0X028A1C

Channel5 Register6 (CH5R6) 0X028A20

Channel5 Register7 (CH5R7) 0X028A24

Channel5 Register8 (CH5R8) 0X028A28

Channel5 Register9 (CH5R9) 0X028A2C

Channel5 Register10 (CH5R10) 0X028A30

MPSC6

MPSC6 Main Configuration Low (MMCRL6) 0X030A00 For a
description
of the
MPSC6
registers,
see the
descrip-
tions for
the MPSC0
registers
on page
499.

MPSC6 Main Configuration High (MMCRH6) 0X030A04

MPSC6 Protocol Configuration (MPCR6) 0X030A08

Channel6 Register1 (CH6R1) 0X030A0C

Channel6 Register2 (CH6R2) 0X030A10

Channel6 Register3 (CH6R3) 0X030A14

Channel6 Register4 (CH6R4) 0X030A18

Channel6 Register5 (CH6R5) 0X030A1C

Channel6 Register6 (CH6R6) 0X030A20

Channel6 Register7 (CH6R7) 0X030A24

Channel6 Register8 (CH6R8) 0X030A28

Channel6 Register9 (CH6R9) 0X030A2C

Channel6 Register10 (CH6R10) 0X030A30

Table 443: Communication Unit Register Map (Continued)

Description Offset
Page
Number
502 Revision 1.0

GT-96100A Advanced Communication Controller
MPSC7

MPSC7 Main Configuration Low (MMCRL7) 0X038A00 For a
description
of the
MPSC7
registers,
see the
descrip-
tions for
the MPSC0
registers
on page
499.

MPSC7 Main Configuration High (MMCRH7) 0X038A04

MPSC7 Protocol Configuration (MPCR7) 0X038A08

Channel7 Register1 (CH7R1) 0X038A0C

Channel7 Register2 (CH7R2) 0X038A10

Channel7 Register3 (CH7R3) 0X038A14

Channel7 Register4 (CH7R4) 0X038A18

Channel7 Register5 (CH7R5) 0X038A1C

Channel7 Register6 (CH7R6) 0X038A20

Channel7 Register7 (CH7R7) 0X038A24

Channel7 Register8 (CH7R8) 0X038A28

Channel7 Register9 (CH7R9) 0X038A2C

Channel7 Register10 (CH7R10) 0X038A30

FlexTDM0

FlexTDM0 Transmit Dual Port RAM (TDPR0), block 0 0X000B00 - 0X000BFF

FlexTDM0 Transmit Dual Port RAM (TDPR0), block 1 0X001B00 - 0X001BFF

FlexTDM0 Transmit Dual Port RAM (TDPR0), block 2 0X002B00 - 0X002BFF

FlexTDM0 Transmit Dual Port RAM (TDPR0), block 3 0X003B00 - 0X003BFF

FlexTDM0 Receive Dual Port RAM (RDPR0), block 0 0X004B00 - 0X004BFF

FlexTDM0 Receive Dual Port RAM (RDPR0), block 1 0X005B00 - 0X005BFF

FlexTDM0 Receive Dual Port RAM (RDPR0), block 2 0X006B00 - 0X006BFF

FlexTDM0 Receive Dual Port RAM (RDPR0), block 3 0X007B00 - 0X007BFF

FlexTDM0 Transmit Read Pointer (TTRP0) 0X008B00

FlexTDM0 Receive Read Pointer (TRRP0) 0X008B04

FlexTDM0 Configuration Register (TCR0) 0X008B08 page 384

FlexTDM0 AUX ChannelA Tx Register (ATA0) 0X008B0C

FlexTDM0 AUX ChannelA Rx Register (ARA0) 0X008B10

Table 443: Communication Unit Register Map (Continued)

Description Offset
Page
Number
Revision 1.0 503

GT-96100A Advanced Communication Controller
FlexTDM0 (Continued)

FlexTDM0 AUX ChannelB Tx Register (ATB0) 0X008B14

FlexTDM0 AUX ChannelB Rx Register (ARB0) 0X008B18

FlexTDM1

FlexTDM1 Transmit Dual Port RAM (TDPR1), block 0 0X010B00 - 0X010BFF

FlexTDM1 Transmit Dual Port RAM (TDPR1), block 1 0X011B00 - 0X011BFF

FlexTDM1 Transmit Dual Port RAM (TDPR1), block 2 0X012B00 - 0X012BFF

FlexTDM1 Transmit Dual Port RAM (TDPR1), block 3 0X013B00 - 0X013BFF

FlexTDM1 Receive Dual Port RAM (RDPR1), block 0 0X014B00 - 0X014BFF

FlexTDM1 Receive Dual Port RAM (RDPR1), block 1 0X015B00 - 0X015BFF

FlexTDM1 Receive Dual Port RAM (RDPR1), block 2 0X016B00 - 0X016BFF

FlexTDM1 Receive Dual Port RAM (RDPR1), block 3 0X017B00 - 0X017BFF

FlexTDM1 Transmit Read Pointer (TTRP1) 0X018B00

FlexTDM1 Receive Read Pointer (TRRP1) 0X018B04

FlexTDM1 Configuration Register (TCR1) 0X018B08 page 384

FlexTDM1 AUX ChannelA Tx Register (ATA1) 0X018B0C

FlexTDM1 AUX ChannelA Rx Register (ARA1) 0X018B10

FlexTDM1 AUX ChannelB Tx Register (ATB1) 0X018B14

FlexTDM1 AUX ChannelB Rx Register (ARB1) 0X018B18

FlexTDM2

FlexTDM2 Transmit Dual Port RAM (TDPR2), block 0 0X020B00 - 0X020BFF

FlexTDM2 Transmit Dual Port RAM (TDPR2), block 1 0X021B00 - 0X021BFF

FlexTDM2 Transmit Dual Port RAM (TDPR2), block 2 0X022B00 - 0X022BFF

FlexTDM2 Transmit Dual Port RAM (TDPR2), block 3 0X023B00 - 0X023BFF

FlexTDM2 Receive Dual Port RAM (RDPR2), block 0 0X024B00 - 0X024BFF

FlexTDM2 Receive Dual Port RAM (RDPR2), block 1 0X025B00 - 0X025BFF

FlexTDM2 Receive Dual Port RAM (RDPR2), block 2 0X026B00 - 0X026BFF

FlexTDM2 Receive Dual Port RAM (RDPR2), block 3 0X027B00 - 0X027BFF

FlexTDM2 Transmit Read Pointer (TTRP2) 0X028B00

FlexTDM2 Receive Read Pointer (TRRP2) 0X028B04

Table 443: Communication Unit Register Map (Continued)

Description Offset
Page
Number
504 Revision 1.0

GT-96100A Advanced Communication Controller
FlexTDM2 (Continued)

FlexTDM2 Configuration Register (TCR2) 0X028B08 page 384

FlexTDM2 AUX ChannelA Tx Register (ATA2) 0X028B0C

FlexTDM2 AUX ChannelA Rx Register (ARA2) 0X028B10

FlexTDM2 AUX ChannelB Tx Register (ATB2) 0X028B14

FlexTDM2 AUX ChannelB Rx Register (ARB2) 0X028B18

FlexTDM3

FlexTDM3 Transmit Dual Port RAM (TDPR3), block 0 0X030B00 - 0X030BFF

FlexTDM3 Transmit Dual Port RAM (TDPR3), block 1 0X031B00 - 0X031BFF

FlexTDM3 Transmit Dual Port RAM (TDPR3), block 2 0X032B00 - 0X032BFF

FlexTDM3 Transmit Dual Port RAM (TDPR3), block 3 0X033B00 - 0X033BFF

FlexTDM3 Receive Dual Port RAM (RDPR3), block 0 0X034B00 - 0X034BFF

FlexTDM3 Receive Dual Port RAM (RDPR3), block 1 0X035B00 - 0X035BFF

FlexTDM3 Receive Dual Port RAM (RDPR3), block 2 0X036B00 - 0X036BFF

FlexTDM3 Receive Dual Port RAM (RDPR3), block 3 0X037B00 - 0X037BFF

FlexTDM3 Transmit Read Pointer (TTRP3) 0X038B00

FlexTDM3 Receive Read Pointer (TRRP3) 0X038B04

FlexTDM3 Configuration Register (TCR3) 0X038B08 page 384

FlexTDM3 AUX ChannelA Tx Register (ATA3) 0X038B0C

FlexTDM3 AUX ChannelA Rx Register (ARA3) 0X038B10

FlexTDM3 AUX ChannelB Tx Register (ATB3) 0X038B14

FlexTDM3 AUX ChannelB Rx Register (ARB3) 0X038B18

Table 443: Communication Unit Register Map (Continued)

Description Offset
Page
Number
Revision 1.0 505

GT-96100A Advanced Communication Controller
Baud Rate Generators

BRG0 Configuration Register (BCR0) 0X102A00 page 399

BRG0 Baud Tuning Register (BTR0) 0X102A04 page 400

BRG1 Configuration Register (BCR1) 0X102A08 For BRG1
through
BRG7 con-
figuration
and tuning
registers,
see BRG0

BRG1 Baud Tuning Register (BTR1) 0X102A0C

BRG2 Configuration Register (BCR2) 0X102A10

BRG2 Baud Tuning Register (BTR2) 0X102A14

BRG3 Configuration Register (BCR3) 0X102A18

BRG3 Baud Tuning Register (BTR3) 0X102A1C

BRG4 Configuration Register (BCR4) 0X102A20

BRG4 Baud Tuning Register (BTR4) 0X102A24

BRG5 Configuration Register (BCR5) 0X102A28

BRG5 Baud Tuning Register (BTR5) 0X102A2C

BRG6 Configuration Register (BCR6) 0X102A30

BRG6 Baud Tuning Register (BTR6) 0X102A34

BRG7 Configuration Register (BCR7) 0X102A38

BRG7 Baud Tuning Register (BTR7) 0X102A3C

Routing Registers

Main Routing Register (MRR) 0X101A00 page 414

Receive Clock Routing Register (RCRR) 0X101A10 page 418

Transmit Clock Routing Register (TCRR) 0X101A20 page 420

General Purpose Ports

General Purpose Configuration 0 (GPC0) 0X100A00 page 407

General Purpose Configuration 1 (GPC1) 0X100A04 page 409

General Purpose Configuration 2 (GPC2) 0X100A08 page 412

General Purpose Input/Output 0 (GPIO0) 0X100A20 page 407

General Purpose Input/Output 1 (GPIO1) 0X100A24 page 410

General Purpose Input/Output 2 (GPIO2) 0X100A28 page 412

General Purpose Data 0 (GPD0) 0X100A40 page 408

General Purpose Data 1 (GPD1) 0X100A44 page 410

Table 443: Communication Unit Register Map (Continued)

Description Offset
Page
Number
506 Revision 1.0

GT-96100A Advanced Communication Controller
General Purpose Ports (Continued)

General Purpose Data 2 (GPD2) 0X100A48 page 413

General Purpose Level 0 (GPL0) 0X100A60 page 408

General Purpose Level 1 (GPL1) 0X100A64 page 411

General Purpose Level 2 (GPL2) 0X100A68 page 413

Watchdog

Watchdog Configuration Register (WDC) 0X101A80 page 401

Watchdog Value Register (WDV) 0X101A84 page 402

Communication Unit Arbiter

Comm Unit Arbiter Configuration Register (CUACR) 0X101AC0 page 251

PCI Arbiters

PCI_0 Arbiter Configuration Register 0X101AE0 page 243

PCI_1 Arbiter Configuration Register 0X101AE4 page 245

Table 443: Communication Unit Register Map (Continued)

Description Offset
Page
Number
Revision 1.0 507

GT-96100A Advanced Communication Controller
31. DC CHARACTERISTICS

NOTE: Operation at or beyond the maximum ratings is not recommended or guaranteed. Extended exposure at
the maximum rating for extended periods of time may adversely affect device reliability.

Table 444: Absolute Maximum Ratings

Symbol Parameter Min. Max. Unit

VCC2.5 Core Supply Voltage -0.3 3.0 V

VCC3.3 IO Supply Voltage -0.3 4.0 V

Vi Input Voltage -0.3 5.5 V

Iik Input Protect Diode Current +-20 mA

Iok Output Protect Diode Current +-20 mA

Tc Operating Case Temperature 0 110 C

Tstg Storage Temperature -40 125 C

Table 445: Recommended Operating Conditions

Symbol Parameter Min. Typ. Max. Unit

VCC2.5 Core Supply Voltage 2.375 2.5 2.625 V

VCC3.3 I/O Supply Voltage 3.15 3.3 3.45 V

Vi Input Voltage -0.3 5.5 V

Vo Output Voltage 0 VCC3.3 V

Tc Case Temperature 0 70 C

Table 446: Pin Capacitance

Symbol Parameter Min. Typ. Max. Unit

Cin Input Capacitance PCI PAD 2.5 4.5 pF

Input Capacitance Non PCI PAD 2 3.5

Cout Output Capacitance PCI PAD 2.5 4.5 pF

Output Capacitance Non PCI PAD 2 3.5
508 Revision 1.0

GT-96100A Advanced Communication Controller
31.1 DC Electrical Characteristics Over Operating Range
(Tc=0-70oC; Vcc3.3=+3.3V, +/-5%, VCC2.5= +2.5V, +/-5%)

Table 447: DC Electrical Characteristics Over Operating Range

Symbol Parameter Test Condit ion Min. Max. Unit Loading

Vih Input HIGH level Guaranteed Logic
HIGH level

2.0V V

Vil Input LOW level Guaranteed Logic LOW
level

0.8V V

Voh Output HIGH Volt-
age:

IoH = 8,12,16,241 mA

1. See Table 448, �Driving Pad Characteristics,� on page 510.

2.4 V 50pF

Vol Output LOW Volt-
age:

IoL = 8,12,16,241 mA 0.4 V 50pF

Iih Input HIGH Current +-1 uA

Iil Input LOW Current +-1 uA

Iozh High Impedance
Output Current

+-1 uA

Iozl High Impedance
Output Current

+-1 uA

Icc Operating Current I/O
VCC3.3=3.465V
f = 100MHz TClk/
66Mhz PClk

440 mA

Core
VCC2.5=2.625V
f = 100MHz TClk/
66Mhz PClk

880 mA
Revision 1.0 509

GT-96100A Advanced Communication Controller

31.1.1 Power Sequencing Notes
The voltage power must be turned on sequentially so that the highest voltage power is always the preceding one;
i.e.the highest voltage power must be turned on first, then the second highest voltage power and so on and so
forth.

This power up sequence must be used due to the presence of protection diodes between the two power rails. If the
power is turned on in incorrect sequence and if the tie-high terminal becomes tie low, these diodes leaks current.

Likewise, when powering down, turn off the lowest voltage first. Turn off the next highest and so on and so forth.

Table 448: Driving Pad Characteristics

Output Current Pads Name

PCI Pads CBE0_[3:0], CBE1_[3:0], DevSel0_, DevSel1_, Frame0_, Frame1_, Gnt0_, Gnt1_,
IDSel0, IDSel1, Interrupt1_, Irdy0_, Irdy1_, Lock0_, PAD0[31:0], PAD1[31:0], Par0,
Par1, PClk0, PClk1, PErr0_, PErr1_, Req0_, Req1_, SErr0_, SErr1_, Stop0_,
Stop1_, Trdy0_, Trdy1_, Reset_

4mA Pads JTAG[3]

 8mA Pads GPP[15:0], MDC, MDIO, MII0[14:0], MII1[14:0], NMI_, PORTA[6:0], PORTB[6:0],
PORTC[6:0], PORTD[6:0], PORTE[6:0], PORTF[6:0], WDE_

16mA Pads AD[63:0], ADP[1], ADP[3:2], ADP[7:6], ALE, BypsOE_, ClkOutPLL, CSTiming_,
DMAReq_[0], Interrupt0_, ScDOE_, SCS_[3:0], ScWord[1:0], SDQM[7:0],
SerInt0_, SerInt1_, SysAD[63:0], SysADC[7;0], SysCmd[8:0], ValidIn_, WrRdy_

24mA Pads ADP[0], ADP[5:4], BankSel, DAdr[10:0], DMAReq_[3:1], DWr_, SCAS_, SRAS_
510 Revision 1.0

GT-96100A Advanced Communication Controller
31.1.2 Power Consumption
Figure 83 illustrate the GT-96100A power consumption in various common configurations and frequencies.

Figure 83: Power vs. Operating Frequency

GT-96100A Power (0.25um) vs. Operating Freq.
@ 64 bit PCI, 4 TDMs and 4 IDMAs active,

8 MPSCs in 2Mbit/s FDX, 2 FDX FastEthernet

0.00

1.00

2.00

3.00

4.00

Operating Freq.

G
T-

96
10

0A
 P

ow
er

Power 1.29 1.83 1.99 2.35 1.34 1.87 2.04 2.40 1.27 1.80 1.97 2.33
Pcore 0.73 1.06 1.16 1.38 0.74 1.06 1.17 1.39 0.77 1.09 1.20 1.42
Tclk 50 75 83 100 50 75 83 100 50 75 83 100
PCIclk 25 25 25 25 33 33 33 33 66 66 66 66

1 2 3 4 5 6 7 8 9 10 11 12

GT-96100A Power (0.25um) vs. Operating Freq.
@ 64 bit PCI, 4 TDMs and 4 IDMAs active,

4 MPSCs in 55Mbit/s FDX, 4 MPSCs in 2Mbit/s FDX, 2 FDX FastEthernet

0.00

1.00

2.00

3.00

4.00

Operating Freq.

G
T-

96
10

0A
 P

ow
er

Power 1.40 1.94 2.10 2.47 1.45 1.99 2.15 2.51 1.38 1.92 2.08 2.44
Pcore 0.77 1.10 1.20 1.43 0.78 1.11 1.21 1.43 0.81 1.14 1.24 1.46
Tclk 50 75 83 100 50 75 83 100 50 75 83 100
PCIclk 25 25 25 25 33 33 33 33 66 66 66 66

1 2 3 4 5 6 7 8 9 10 11 12
Revision 1.0 511

GT-96100A Advanced Communication Controller
31.2 Thermal Data

Table 449 shows the package thermal data for the GT-96100A.

Using the commercial grade device, Galileo Technology recommends the use of heatsink for most systems, espe-
cially those with little or no airflow.

Use an adequate airflow, layout, and other means to meet the recommended operating conditions listed in Table
449.
Table 449: Thermal data for GT-96100A in BGA 492

Airf low 0 m/s 1 m/s 2 m/s

θja 18.5 c/w 16.6 c/w 15 c/w

jt 0.37 c/w 0.43 c/w 0.53 c/w

θjc 5.9 c/w

Ψ

512 Revision 1.0

GT-96100A Advanced Communication Controller
32. AC TIMING
NOTE: The following targets are subject to change.

Table 450: AC Timing Measurement Formulas

Commercial Industrial

I/O Supply Voltage:
TCase= 70º C; VCC= +3.3V, +/- 5%
Core Supply Voltage:
TCase= 70º C; VCC= +2.5V, +/- 5%

NOTE: AC timing specifications for the 66Mhz
industrial grade part will be included in
future revisions of this datasheet.

Table 451: AC Commercial Grade Timing
All Delays, Setup, and Hold times are referred to TClk RISING edge, unless stated otherwise.

Signals Description

83 Mhz 100 Mhz

Unit LoadingMin. Max. Min. Max.

Clk

TClk Pulse Width
High

4.8 4 ns

TClk Pulse Width
Low

4.8 4 ns

TClk Clock Period 12 10 ns

TClk Rise Time TBD TBD V/ns

TClk Fall Time TBD TBD V/ns

Reset** Active Device
Reset

10 10 TClk
Cycle

CPU Interface

SysAD[63:0],
SysCMD[8:0], Valid-
Out*, Release*,
ScTCE*

Setup 3.5 2.5 ns

ScMatch Setup 5 2.5

SysAD[63:0],
SysCMD[8:0], Valid-
Out*, Release*,
ScTCE*, ScMatch

Hold 1 1 ns
Revision 1.0 513

GT-96100A Advanced Communication Controller
CPU Interface (Continued)

SysAD[63:0],
SysCMD[8:0],
SysADC[7:0], ScDOE*,
ValidIn*, WrRdy*,
ScWord[1:0],
Interrupt0*

Output Delay 2 7 2 5 ns 50pF

PCI Interface

Pclk0, Pclk1 Clock Period 15 15 ns

All Bussed Inputs Setup 4 3.5 ns

All Point to Point Inputs Setup 7 6

All Inputs Hold 0 0 ns

All Outputs, except
Req*

Output Delay 2 9 2 8 ns

Req* Output Delay 2 11 2 10 ns

Memory Interface

AD[63:0] Setup 3 2 ns

AD[63:0] Hold 1 1 ns

AD[63:0], SCS[3:0]* Output Delay 2 7 2 5.5 ns 50pF

DAdr[10:0] Output Delay 2 7 2 5 ns 50pF

DAdr[2:0] Output Delay
(Device Burst)

2 7 2 5 ns 50pF

DAdr[10:3] Output Delay
from TClk Fall-
ing
(Device Write)

2 7 2 6 ns 50pF

ADP[7:0] Output Delay
(Parity)

2 7 2 5.5 ns 50pF

ADP[7:0] Setup (Parity) 3 2 ns 50pF

ADP[7:0] Hold (Parity) 1 1 ns

ADP[3:0]/EOT[3:0]* Setup
(EOT[3:0]*)

4 3 ns

Table 451: AC Commercial Grade Timing (Continued)
All Delays, Setup, and Hold times are referred to TClk RISING edge, unless stated otherwise.

Signals Description

83 Mhz 100 Mhz

Unit LoadingMin. Max. Min. Max.
514 Revision 1.0

GT-96100A Advanced Communication Controller
Memory Interface (Continued)

ADP[3:0]/EOT[3:0]* Hold
(EOT[3:0]*)

1 1 ns

ADP[1]/ALE Output Delay
(ALE)

2 7 2 5.5 ns 30pF

ADP[1]/ALE Output Delay,
TClk Falling
(ALE)

2 7 2 6 ns 30pF

ADP[3]/DWr* Output Delay
(DWr*)

2 7 2 6 ns 50pF

ADP[5:4]/{Dadr[11],
BankSel[1]}

Output Delay
(Dadr[11],
BankSel[1])

2 7 2 6 ns 50pF

ADP[7:6]/
{SRAS*,SCAS*}

Output Delay
(SRAS* and
SCAS*)

2 7 2 6 ns 50pF

SDQM[7:0] Output Delay 2 7 2 6

Ready* Setup 6 5 ns

Ready* Hold 1 1 ns

DMAReq[0]*/MREQ*/
SRAS*

Setup
(DMAReq[0]/
MREQ*)

4.5 3.5 ns

DMAReq[0]*/MREQ*/
SRAS*

Hold
(DMAReq[0]/
MREQ*)

1 1 ns

DMAReq[0]*/MREQ*/
SRAS*

Output Delay
(SRAS*)

2 7 2 6 ns 50pF

DMAReq[1]*/
BankSel[1]

Setup
(DMAReq[1]*)

4.5 3.5 ns

DMAReq[1]*/
BankSel[1]

Hold
(DMAReq[1]*)

1 1 ns

DMAReq[1]*/
BankSel[1]

Output Delay
(BankSel[1])

2 7 2 5 ns 50pF

DMAReq[2]*/DAdr[11] Setup
(DMAReq[2]*)

4.5 3.5 ns

Table 451: AC Commercial Grade Timing (Continued)
All Delays, Setup, and Hold times are referred to TClk RISING edge, unless stated otherwise.

Signals Description

83 Mhz 100 Mhz

Unit LoadingMin. Max. Min. Max.
Revision 1.0 515

GT-96100A Advanced Communication Controller
32.1 TClk/PClk Restrictions

TClk cycle must be smaller than PClk cycle by at least 1ns (Tpclk> T tclk + 1ns). This restriction applies to all
sync modes.

There is one exception to this restriction. TClk and PClk can run at the same frequency if the following condi-
tions are met:

� The two clocks are synchronized (derived from the same clock source).
� If running at sync mode 1, a minimum skew of 5.5ns must be observed between rising edge of TClk and

PClk, as shown in Figure 84. Galileo Technology recommends using an inverted TClk as PClk in order
to guarantee this skew.

� If running at sync mode 2 or 3, a maximum skew of 2ns between rising edge of TClk and PClk must be
met.

Memory Interface (Continued)

DMAReq[2]*/DAdr[11] Hold
(DMAReq[2]*)

1 1 ns

DMAReq[2]*/DAdr[11] Output Delay
(DAdr[11])

1.3 7 1.3 5 ns 50pF

DMAReq[3]*/SCAS*/
EOT[0]*

Setup
(DMAReq[3]*/
EOT[0]*)

4.5 3.5 ns

DMAReq[3]*/SCAS*/
EOT[0]*

Hold
(DMAReq[3]*/
EOT[0]*)

1 1 ns

DMAReq[3]*/SCAS*/
EOT[0]*

Output Delay
(SCAS*)

2 7.5 2 6 ns 50pF

MGnt*/ByPsOE* Output Delay
(MGnt*)

2 7 2 6 ns 30pF

MGnt*/ByPsOE* Output Delay
(Bypass OE*)

2 7.5 2 6.5 ns 30pF

SRAS*,SCAS*, DWr* Output Delay 2 7 2 5 ns 50pF

ALE Output Delay 2 7 2 5.5 ns 30pF

ALE Output Delay,
TClk Falling

2 7 2 5.5 ns 30pF

CSTiming* Output Delay 2 7 2 5.5 ns 30pF

Table 451: AC Commercial Grade Timing (Continued)
All Delays, Setup, and Hold times are referred to TClk RISING edge, unless stated otherwise.

Signals Description

83 Mhz 100 Mhz

Unit LoadingMin. Max. Min. Max.
516 Revision 1.0

GT-96100A Advanced Communication Controller
Figure 84: TClk = PClk, in Sync Mode = 1, Skew Requirement

In addition to the above restriction, there are few sync modes specific restrictions, summarized in Table 452.

The sync mode can be programed by the CPU, the PCI or during autoload. For sync mode information, see Sec-
tion 7.14.1 �PCI Internal Registers� on page 172.

Table 452: TClk/PClk Restrictions

Sync
Mode

PClk Frequency
Range Restrict ions

0,4 from DC up to TClk Tpclk > Ttclk + 1ns

1 from TClk/2 up to TClk Tpclk < 2T tclk -1ns, unless running with synchronized
Tpclk = 2Ttclk and minimum skew of 5.5ns between PClk rise
and TClk rise is guaranteed, as shown in Figure 84. For exam-
ple, if T tclk = 15ns (66MHz), Tpclk should be smaller than
29ns (unless running with synchronized clocks).
NOTE: To guarantee this skew, Galileo Technology recom-

mends using an inverted TClk as PClk.

2,3 from TClk/2 up to TClk TClk and PClk are synchronized, and a maximum skew of
2ns between PClk rise and TClk rise is guaranteed.

5 from TClk/3 up to TClk/2 Tpclk < 3T tclk - 1ns, unless running with synchronized
 Tpclk = 3T tclk and minimum skew of 5.5ns between PClk rise
and TClk rise is guaranteed. For example, if T tclk = 13.3ns
(75MHz), Tpclk should be smaller than 39ns (unless running
with synchronized clocks).

6,7 from TClk/3 up to TClk/2 TClk and PClk are synchronized, and a maximum skew of
2ns between PClk rise and TClk rise is guaranteed.

TClk

PClk

TClk to PClk
5.5ns Minimum Skew

PClk to TClk
5.5ns Minimum Skew
Revision 1.0 517

GT-96100A Advanced Communication Controller
32.2 Serial (Communication) Clock Domain AC Characteristic

(TC= 0 - 70°C; VDDI/O= +3.3V, +/- 5%; VDDC = +2.5V=/-5%; External Load=50pf)

NOTE: For information on the settings for Receive Sync Delay (RSD), Transmit Sync Delay(TSD), Driving
Edge (DE), and Sync Edge (SE), see Section 15.4 �FlexTDM Configuration Register (TCR)� on page
384.

Figure 85: Flex-TDM Receive Timing - Normal Clock Waveform

Table 453: Flex-TDM Receive Timing - Normal Clock

Symbol Description Min Max Unit

t20 TRCLK Cycle Time 18 ns

t21 TRCLK Width Low 7.2 ns

t22 TRCLK Width High 7.2 ns

t23 TRSYNC Setup Time 5 ns

t24 TRSYNC Hold Time 5 ns

t25 TRSYNC Rise and Fall Time 15 ns

t27 TRXD Setup Time 5 ns

t28 TRXD Hold Time 5 ns

t20t21 t20t21t22t22

t25
t23
t25

t24

t27
t28

RSD=1

BIT0

TRCLK (SE=0, DE=0)

TRCLK (SE=1, DE=1)

TRSYNC

TRXD
518 Revision 1.0

GT-96100A Advanced Communication Controller
Figure 86: Flex-TDM Transmit Timing - Normal Speed Clock Waveform

Table 454: Flex-TDM Transmit Timing - Normal Speed Clock

Symbol Descript ion Min Max Unit

t40 TTCLK Cycle Time 18 ns

t41 TTCLK Width Low 7.2 ns

t42 TTCLK Width High 7.2 ns

t43 TTSYNC Setup Time 5 ns

t44 TTSYNC Hold Time 5 ns

t45 TTSYNC Rise and Fall Time 15 ns

t46 TDSTRB Output Delay 13 ns

t47 TTCLK to TDCLK Delay Time 8 ns

t48 TTXD Output Delay 13 ns

t40t40 t41t42 t41t42

t45
t43

t45

t44

t47

t48

t46
TSD=0

BIT0

TTCLK (SE=0, DE=0)

TTCLK (SE=1, DE=1)

TTSYNC

TTXD

TDSTRB

TOCLK (SE=0, DE=0)

TOCLK (SE=1, DE=1)
Revision 1.0 519

GT-96100A Advanced Communication Controller

Figure 87: Flex-TDM Receive Timing - Double Speed Clock Waveform

Table 455: Flex-TDM Receive Timing - Double Speed Clock

Symbol Description Min Max Unit

t30 TRCLK Cycle Time 18 ns

t31 TRCLK Width Low 7.2 ns

t32 TRCLK Width High 7.2 ns

t33 TRSYNC Setup Time 5 ns

t34 TRSYNC Hold Time 5 ns

t35 TRSYNC Rise and Fall Time 15 ns

t37 TRXD Setup Time 5 ns

t38 TRXD Hold Time 5 ns

t30
t31

t30
t31

t32t32

t35
t33

t35

t34

t37 t38

RSD=1

BIT0

TRCLK (SE=0, CE=0)

TRCLK (SE=1, DE=1)

TRSYNC

TRXD

TOCLK (SE=0, DE=0)

TOCLK (SE=1, DE=1)
520 Revision 1.0

GT-96100A Advanced Communication Controller
Figure 88: Flex-TDM Receive Timing - Double Speed Clock Waveform

Table 456: Flex-TDM Transmit Timing - Double Speed Clock

Symbol Description Min Max Unit

t50 TTCLK Cycle Time 18 ns

t51 TTCLK Width Low 7.2 ns

t52 TTCLK Width High 7.2 ns

t53 TTSYNC Setup Time 5 ns

t54 TTSYNC Hold Time 5 ns

t55 TTSYNC Rise and Fall Time 15 ns

t56 TDSTRB Output Delay 13 ns

t57 TTCLK to TDCLK Delay 8 ns

t58 TTXD Output Delay 13 ns

t30
t31

t30
t31

t32t32

t35
t33

t35

t34

t37 t38

RSD=0

BIT0 BIT1

TRCLK (SE=0, DE=1)

TRCLK (SE=1, DE=0)

TRSYNC

TRXD

TOCLK (SE=1, DE=0)

TOCLK (SE=0, DE=1)
Revision 1.0 521

GT-96100A Advanced Communication Controller
Figure 89: Flex-TDM Transmit Timing - Double Speed Clock Waveform

Figure 90: Flex-TDM Transmit Timing - Double Speed Clock Waveform

t50 t51
t52

t
t

t55
t53

t

t54

t57

t58

t56

BIT0

TTCLK (SE=0, CE=0)

TTCLK (SE=1, DE=1)

TTSYNC

TTXD

TDSTRB

TOCLK (SE=0, DE=0)

TOCLK (SE=1, DE=1)

TSD=0

t50t t51
t52

t

t55
t53

t

t54

t57

t58

t56
TSD=1

BIT0

TTCLK (SE=0, DE=1)

TTCLK (SE=1, DE=0)

TTSYNC

TTXD

TDSTRB

TOCLK (SE=0, DE=1)

TOCLK (SE=1, DE=0)
522 Revision 1.0

GT-96100A Advanced Communication Controller
Figure 91: MPSC Receive Timing

Table 457: MPSC Receive Timing

Symbol Description Min Max Unit

t60 RCLK Cycle Time 18 ns

t61 RCLK Width Low 7.2 ns

t62 RCLK Width High 7.2 ns

t63 RXD Setup Time 5 ns

t64 RXD Hold Time 5 ns

t65 CD* Setup Time 5 ns

t66 CD* Hold Time 5 ns

t60t61 t62

t63 t64

t65 t66

RCLK

RXD

CD*
Revision 1.0 523

GT-96100A Advanced Communication Controller

Figure 92: MPSC Transmit Timing

Table 458: MPSC Transmit Timing

Symbol Description Min Max Unit

t70 TCLK Cycle Time 18 ns

t71 TCLK Width Low 7.2 ns

t72 TCLK Width High 7.2 ns

t73 TXD Delay Time 13 ns

t74 RTS* Delay Time 13 ns

t75 CTS* Setup Time 5 ns

t76 CTS* Hold Time 5 ns

t70t71t72 t76

t75

t73

t74

TCLK

TXD

RTS*

CTS*
524 Revision 1.0

GT-96100A Advanced Communication Controller
32.3 MPSC Waveforms

32.3.1 Output Delay From RTS*

Figure 93: Output Delay From RTS*, Asynchronous CTS*
(CTSS=0 in MMCRLx) Waveform

Figure 94: Output Delay From RTS*, Synchronous CTS*
(CTSS=1 in MMCRLx) Waveform

First Bit Last Bit

TCLK

TXD

RTS*

CTS*

First Bit Last Bit

TCLK

TXD

RTS*

CTS*
Revision 1.0 525

GT-96100A Advanced Communication Controller
32.3.2 Output Delay From CTS*

Figure 95: Output Delay From CTS*, Asynchronous CTS*
(CTSS=0 in MMCRLx) Waveform

Figure 96: Output Delay From CTS*, Synchronous CTS*
(CTSS=1 in MMCRLx) Waveform

32.3.3 CTS* Loss In Synchronous Protocol

Figure 97: CTS* Loss In Synchronous Protocol:
Start of Frame Waveform With CTS Lost

First Bit Last Bit

TCLK

TXD

RTS*

CTS*

First Bit Last Bit

TCLK

TXD

RTS*

CTS*

CTS* Loss

First Bit, RTS* Forced High

TCLK

TXD

RTS*

CTS*
526 Revision 1.0

GT-96100A Advanced Communication Controller
Figure 98: CTS* Loss In Synchronous Protocol:
Start of Frame Waveform Without CTS Lost

Figure 99: CTS* Loss In Synchronous Protocol, Synchronous
CTS* (CTSS=1 in MMCRLx) Waveform

Figure 100:CTS* Loss In Synchronous Protocol, Asynchronous
CTS* (CTSS=0 in MMCRLx) Waveform

32.3.4 Reception Control Using CD*

Figure 101:Reception Control Using CD* Waveform

No CTS* Lost

TCLK

TXD

RTS*

CTS*

First Bit

RTS* Forced High

CTS* Lost

TCLK

TXD

RTS*

CTS*

First Bit

RTS* Forced High

CTS* Loss

TCLK

TXD

RTS*

CTS*

First Bit Last Bit

RCLK

RXD

CD*
Revision 1.0 527

GT-96100A Advanced Communication Controller
32.3.5 External Sync

Figure 102:External Sync (RSYL=0 in MMCRHx), CD* Pulse Mode
(CDM=0 in MMCRLx) Waveform

32.3.6 Transmit Synchronize to Receive

Figure 103:Transmit Synchronize to Receive (TSYN=1 in MMCRLx),
External Sync (RSYL=0 in MMCRHx) Waveform

Figure 104:Transmit Synchronize to Receive (TSYN=1 in MMCRLx),
External Sync (RSYL=0 in MMCRHx), CD* and
CTS* Pulse Mode (CTSM=1 and CDM=1 in MMCRLx),
Synchronous CTS* (CTSS=1 in MMCRLx) Waveform

NOTE: CD* and CTS* are connected to the same signal.

First Bit
Last Bit
Due to
Enter Hunt

No Effect
Pulse Mode

First Bit Next Frame

RCLK

RXD

CD*

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit0

Bit0

RCLK

TCLK

RXD

CD*

TXD

RTS*

CTS*

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit0

Bit0

RCLK

TCLK

RXD

CD*/CTS*

TXD

RTS*
528 Revision 1.0

GT-96100A Advanced Communication Controller
32.4 MII Waveforms

32.4.1 Transmit Timing

Figure 105:MII Port Transmit Signals Timing

32.4.2 Receive Timing

Table 459: MII Transmit Timing

Symbol Description Min Typ Max Unit

Tmtxcc MII TxCLK Cycle 40t1

1. t=1 for 100Mb/s operation, t=10 for 10Mb/s operation

ns

Tmtxch MII TxCLK High 15t 25t ns

Tmtxcl MII TxCLK Low 15t 25t ns

Tmtxv MII TxCLK rising to TXD, TXEN valid 20 ns

Tmtxh MII TXD, TXEN hold after TxCLK rising 5 ns

Table 460: MII Receive Timing

Symbol Description Min Typ Max Unit

Tmrxcc MII RxCLK Cycle 40t1

1. t=1 for 100Mb/s operation, t=10 for 10Mb/s operation

ns

Tmrxch MII RxCLK High 15t 25t ns

Tmrxcl MII RxCLK Low 15t 25t ns

Tmrxs MII RXD, RXDV setup before RxCLK rising 10 ns

Tmrxh MII RXD, RXDV hold after RxCLK rising 5 ns

0ns MIN
20ns MAX

TxClk

TxD, TxEn

Vihmin

Vilmax

Vihmin

Vilmax
Revision 1.0 529

GT-96100A Advanced Communication Controller
Figure 106:MII Port Receive Signals Timing

32.5 JTAG AC Characteristics

Figure 107:JTAG AC Timing

Table 461: JTAG AC Characteristics

Symbol Description Min Max Unit

Tjck Jtack Clock Period 1000 ns

Tjckh TCK High Period 400 ns

Tjckl TCK Low Period 400 ns

Tjdis TDI and TMS Setup Time 20 ns

Tjdih TDI and TMS Hold Time 20 ns

Tjdo TDO Output Delay 2 20 ns

10ns
MIN

RxClk

RxD, RxDV,
RxEr

10ns
MIN

Vihmin

Vilmax

Vihmin

Vilmax

Tjdo

Tjck

Tjkl
Tjckh

TjdihTjdis

TCK

TDI, TMS

TDO
530 Revision 1.0

GT-96100A Advanced Communication Controller
32.6 Additional Delay Due to Capacitive Loading

Some applications may require additional capacitive loading on different output pins of the GT-96100A. For
example, when using multiple GT-96100A devices connected to the same SysAD bus, the 50pF load specifica-
tion may be exceeded. This additional loading affects the output delays of the signals, depending on the drive
strength of the output driver.

The following section describes how to calculate the affects of additional loading on the output drivers.

32.6.1 Calculating the Maximum Delay due to Loading
The basic equation for calculating the maximum delay is:

Tmax = [Atypa + (Btyp * Cr)] * 1.6
where:

� Tmax is the maximum delay in nanoseconds.
� Atypa must be calculated by the designer as shown in Section 32.6.1.1 �Calculating Atypa� on page

531.
� Btyp is a parameter according to the specific output buffer from Table 462.
� Cr is the capacitance required, in picofarads.

32.6.1.1 Calculating Atypa
Atypa can be calculated by using the given values in the AC Timing Parameters table. We start with the equation:

Tspec = [Atypa + (Btyp * Cds)] * 1.6

and solving for Atypa:

Atypa = (Tspec/1.6) - (Btyp * Cds)
where:

� Tspec is the maximum delay parameter from the AC Timing Parameters Table, in nanoseconds.
� Btyp is a parameter according to the specific output buffer from Table 462.
� Cds is the capacitance parameter from the AC Timing Parameters Table, in picofarads.

NOTE: 1.6 is the worst case derating factor.

32.6.2 Calculating the Minimum Delay due to Loading
The basic equation for calculating the maximum delay is:

Tmin = [Atypb + (Btyp * Cr)] * 0.7
where:

� Tmin is the minimum delay in nanoseconds
� Atypb must be calculated by the designer as shown in Section 32.6.2.1 �Calculating Atypb� on page

532
� Btyp is a parameter according to the specific output buffer from Table 462
� Cr is the capacitance required, in picofarads.
Revision 1.0 531

GT-96100A Advanced Communication Controller
32.6.2.1 Calculating Atypb
Atypb can be calculated by using the given values in the AC Timing Parameters table. We start with the equation:

Tspec = [Atypb + (Btyp * Cds)] * 0.7

and solving for Atypb:

Atypb = (Tspec/0.7) - (Btyp * Cds)
where:

� Tspec is the maximum delay parameter from the AC Timing Parameters Table, in nanoseconds
� Btyp is a parameter according to the specific output buffer from Table 462
� Cds is the capacitance parameter from the AC Timing Parameters Table, in picofarads.

NOTE: 0.7 is the worst case derating factor.

32.6.3 Btyp Values
Table 462 lists the Btyp values for the different output buffers of the GT-96100A. See the DC Parameters Section
for the corresponding pin and output driver.

32.6.4 Tmax Calculating Example
The following is an example of how to calculate the maximum delay on the AD[0] line for a 75pF load.

From the AC Timing Parameters Table, for a 50pF load, the maximum output delay on the AD[0] line is speci-
fied as 7ns for 83 Mhz. Looking at Table 462, Btyp for AD[0], which is an 8mA driver, is = 0.031 (Low to High
transition).

Substituting these values into:

Atypa = (Tspec/1.6) - (Btyp * Cds)

gives Atypa = 2.83.

Substituting Atypa of 3.45, Btyp of 0.031 and Cr of 75pF in:

Tmax = [Atypa + (Btyp * Cr)] * 1.6

gives Tmax = 8.25. This means that the maximum output delay of AD[0] with a 75pF load is 8.25ns.

Table 462: Btyp Values

Output Driver Low to High Btyp Value High to Low Btype Value

4mA 0.06 0.077

8mA 0.031 0.039

12mA 0.021 0.028

16mA 0.018 0.022

All PCI Outputs 0.015 0.018
532 Revision 1.0

GT-96100A Advanced Communication Controller
33. PINOUT TABLE, 492 PIN BGA
NOTE: The following table is sorted by ball number.

Table 463: GT-96100A Pinout Table

Ball # Signal Name

A01�A26 B01�B26 C01�C26

A01 Req0_ B01 PAD0[28] C01 PAD0[24]

A02 GPP[14] B02 JTAG[3] C02 PAD0[30]

A03 GPP[13] B03 JTAG[0] C03 GNT0_

A04 GPP[6] B4 VssPLL C04 JTAG[1]

A05 VccPLL B05 GPP[7] C05 GPP[12]

A06 MII1[14] B06 GPP[2] C06 GPP[9]

A07 MII1[10] B07 MDC C07 GPP[3]

A08 MII1[4] B08 MII1[13] C08 GPP[0]

A09 MII1[3] B09 MII1[9] C09 MII1[12]

A10 NC B10 MII1[5] C10 MII1[6]

A11 MII0[12] B11 MII1[1] C11 MII1[8]

A12 MII0[11] B12 MII0[13] C12 NC

A13 MII0[8] B13 MII0[9] C13 MII0[6]

A14 MII0[2] B14 MII0[5] C14 MII0[4]

A15 MII0[1] B15 NC C15 PORTF[5]

A16 PORTF[6] B16 PORTF[3] C16 PORTF[1]

A17 PORTF[4] B17 PORTE[6] C17 PORTE[3]

A18 PORTF[2] B18 PORTE[4] C18 PORTD[6]

A19 PORTE[5] B19 PORTD[5] C19 NC

A20 PORTE[1] B20 PORTD[0] C20 PORTC[5]

A21 PORTD[4] B21 PORTC[6] C21 PORTC[1]

A22 NC B22 PORTC[0] C22 PORTB[4]

A23 PORTC[3] B23 PORTB[0] C23 PORTA[3]

A24 PORTB[1] B24 PORTA[2] C24 DMAReq[0]_

A25 PORTA[4] B25 Ready_ C25 AD[0]

A26 PORTA[0] B26 AD[33] C26 AD[2]
Revision 1.0 533

GT-96100A Advanced Communication Controller
D01�D26 E01�E26 F01�10, F17�F26

D01 PAD0[17] E01 Irdy0_ F01 PErr0_

D02 PAD0[25] E02 PAD0[20] F02 Frame0_

D03 PAD0[29] E03 PAD0[23] F03 PAD0[18]

D04 JTAG[2] E04 PAD0[26] F04 PAD0[22]

D05 JTAG[4] E05 PAD0[31] F05 PAD0[27]

D06 GPP[8] E06 GPP[15] F06 GND

D07 GPP[5] E07 GPP[10] F07 GND

D08 GPP[1] E08 GPP[11] F08 VCC 2.5

D09 MDIO E09 GPP[4] F09 VCC 3.3

D10 MII1[11] E10 NC F10 VCC 3.3

D11 MII1[2] E11 MII1[7] F17 VCC 3.3

D12 MII0[14] E12 MII1[0] F18 VCC 2.5

D13 MII0[7] E13 MII0[10] F19 VCC 2.5

D14 MII0[0] E14 MII0[3] F20 GND

D15 PORTF[0] E15 NC F21 GND

D16 PORTE[2] E16 PORTD[2] F22 AD[1]

D17 PORTE[0] E17 PORTD[3] F23 AD[36]

D18 PORTD[1] E18 PORTC[2] F24 AD[4]

D19 PORTC[4] E19 PORTB[2] F25 AD[39]

D20 PORTB[6] E20 PORTB[3] F26 AD[11]

D21 PORTB[5] E21 PORTA[5] G01�G06

D22 PORTA[6] E22 PORTA[1] G01 PAD0[14]

D23 ALE E23 BypsOE_ G02 DevSel0_

D24 CSTiming_ E24 AD[34] G03 CBE0_[2]

D25 AD[32] E25 AD[5] G04 PAD0[21]

D26 AD[37] E26 AD[9] G05 IDSel0

G06 GND

Table 463: GT-96100A Pinout Table (Continued)

Bal l # Signal Name
534 Revision 1.0

GT-96100A Advanced Communication Controller
G21�G26 J21�J26 L11�L16, L22�L26

G21 GND J21 VCC 3.3 L11 GND

G22 AD[35] J22 AD[38] L12 GND

G23 AD[6] J23 AD[10] L13 GND

G24 AD[7] J24 AD[12] L14 GND

G25 AD[42] J25 AD[45] L15 GND

G26 AD[13] J26 ADP[4] L16 GND

H01�H06, H21�H26 K01�K06, K21�K26 L22 AD[46]

H01 PAD0[10] K01 PAD0[6] L23 ADP[1]

H02 Par0 K02 PAD0[9] L24 AD[15]

H03 Trdy0_ K03 PAD0[13] L25 ADP[5]

H04 PAD0[16] K04 CBE0_[1] L26 SDQM[5]

H05 CBE0_[3] K05 Lock0_ M01�M05, M11�M16,
M22�M26

H06 VCC 2.5 K06 VCC 3.3 M01 PAD0[1]

H21 VCC 2.5 K21 VCC 3.3 M02 PAD0[2]

H22 AD[3] K22 AD[41] M03 PAD0[5]

H23 AD[8] K23 AD[44] M04 CBE0_[0]

H24 AD[40] K24 AD[14] M05 PAD0[3]

H25 AD[43] K25 AD[47] M11 GND

H26 ADP[0] K26 SDQM[0] M12 GND

J01�J06 J01�J05 M13 GND

J01 PAD0[8] L01 PAD0[4] M14 GND

J02 PAD0[12] L02 PAD0[7] M15 GND

J03 PAD0[15] L03 VREF0 M16 GND

J04 Stop0_ L04 PAD0[11] M22 DWr_

J05 PAD0[19] L05 SErr0_ M23 SDQM[4]

J06 VCC 2.5 M24 SCAS_

M25 SDQM[1]

M26 SCS_[0]

Table 463: GT-96100A Pinout Table (Continued)

Ball # Signal Name
Revision 1.0 535

GT-96100A Advanced Communication Controller
N01�N05, N11�N16,
N22�N26

P22�P26 T11�T16, T22�T26

N01 PAD0[0] P22 DAdr[4] T11 GND

N02 TClk P23 DAdr[7] T12 GND

N03 NC P24 DAdr[3] T13 GND

N04 PClk0 P25 DAdr[2] T14 GND

N05 NC P26 DAdr[5] T15 GND

N11 GND R01�R05, R11�R16,
R22�R26

T16 GND

N12 GND R01 PAD1[30] T22 AD[17]

N13 GND R02 PAD1[25] T23 SDQM[7]

N14 GND R03 CBE1_[3] T24 DMAReq_[1]

N15 GND R04 PAD1[24] T25 NC

N16 GND R05 PAD1[27] T26 DAdr[10]

N22 SCS_[1] R11 GND U01�U06, U21�U26

N23 DAdr[0] R12 GND U01 PAD1[26]

N24 DAdr[1] R13 GND U02 PAD1[22]

N25 SRAS_ R14 GND U03 PAD1[23]

N26 NC R15 GND U04 PAD1[19]

P01�P05, P11�P16 R16 GND U05 PErr1_

P01 PAD1[28] R22 DAdr[9] U06 VCC 3.3

P02 PClk1 R23 SCS_[2] U21 VCC 3.3

P03 ClkOutPLL R24 DMAReq_[2] U22 AD[48]

P04 NC R25 DAdr[8] U23 ADP[6]

P05 PAD1[29] R26 DAdr[6] U24 SDQM[3]

P11 GND T01�T05 U25 SCS_[3]

P12 GND T01 PAD1[31] U26 DMAReq_[3]

P13 GND T02 VREF1

P14 GND T03 PAD1[17]

P15 GND T04 IDsel1

P16 GND T05 PAD1[16]

Table 463: GT-96100A Pinout Table (Continued)

Bal l # Signal Name
536 Revision 1.0

GT-96100A Advanced Communication Controller
V01�V06, V21�V26 Y01�Y06, Y21�Y26 AA23�AA26

V01 PAD1[20] Y01 CBE1_[2] AA23 AD[55]

V02 PAD1[18] Y02 DevSel1_ AA24 AD[22]

V03 Frame1_ Y03 PAD1[13] AA25 AD[51]

V04 Stop1_ Y04 PAD1[14] AA26 AD[16]

V05 PAD1[15] Y05 PAD1[4] AB01�AB24

V06 VCC 3.3 Y06 GND AB01 SErr1_

V21 VCC 2.5 Y21 GND AB02 PAD1[9]

V22 AD[53] Y22 AD[56] AB03 PAD1[5]

V23 AD[49] Y23 AD[23] AB04 SysAD[4]

V24 ADP[3] Y24 AD[20] AB05 SysAD[46]

V25 SDQM[6] Y25 AD[18] AB06 SysAD[45]

V26 BankSel[0] Y26 ADP[2] AB07 SysAD[12]

W01�W06, W21�W26 AA01�AA10, AA17�AA22 AB08 SysAD[33]

W01 PAD1[21] AA01 Trdy1_ AB09 SysADC[1]

W02 Irdy1_ AA02 PAD1[12] AB10 NC

W03 Par1 AA03 PAD1[11] AB11 SysAD[62]

W04 CBE1_[1] AA04 PAD1[10] AB12 SysAD[52]

W05 CBE1_[0] AA05 PAD1[0] AB13 NC

W06 VCC 2.5 AA06 GND AB14 NC

W21 VCC 2.5 AA07 GND AB15 SysAD[20]

W22 AD[25] AA08 VCC 2.5 AB16 SysAD[26]

W23 AD[52] AA09 VCC 2.5 AB17 SysCMD[1]

W24 AD[50] AA10 VCC 3.3 AB18 ScDOE_

W25 ADP[7] AA17 VCC 3.3 AB19 Interrupt1_

W26 SDQM[2] AA18 VCC 3.3 AB20 Interrupt0_

AA19 VCC 2.5 AB21 ByPassPLL

AA20 GND AB22 AD[29]

AA21 GND AB23 AD[58]

AA22 AD[27] AB24 AD[24]

Table 463: GT-96100A Pinout Table (Continued)

Ball # Signal Name
Revision 1.0 537

GT-96100A Advanced Communication Controller
AB25�AB26 AD01�AD26 AE01�AE26

AB25 AD[54] AD01 PAD1[6] AE01 PAD1[7]

AB26 AD[19] AD02 PAD1[2] AE02 Req1_

AC01�AC26 AD03 SysAD[40] AE03 SysAD[10]

AC01 PAD1[8] AD04 SysAD[37] AE04 SysAD[13]

AC02 PAD1[1] AD05 SysAD[41] AE05 SysAD[11]

AC03 PAD1[3] AD06 SysAD[15] AE06 SysAD[9]

AC04 Gnt1_ AD07 SysAD[38] AE07 SysAD[35]

AC05 SysAD[8] AD08 SysAD[34] AE08 SysAD[3]

AC06 SysAD[39] AD09 SysAD[0] AE09 SysAD[1]

AC07 SysAD[14] AD10 SysADC[3] AE10 SysADC[0]

AC08 SysAD[44] AD11 SysADC[6] AE11 SysADC[2]

AC09 SysADC[5] AD12 SysAD[49] AE12 SysAD[30]

AC10 SysADC[7] AD13 SysAD[16] AE13 SysAD[29]

AC11 SysAD[63] AD14 SysAD[17] AE14 SysAD[28]

AC12 SysAD[51] AD15 SysAD[24] AE15 SysAD[25]

AC13 SysAD[19] AD16 SysAD[22] AE16 SysAD[21]

AC14 SysAD[18] AD17 SysAD[23] AE17 SysAD[53]

AC15 SysAD[50] AD18 SysCMD[6] AE18 SysAD[56]

AC16 SysAD[57] AD19 ValidOut_ AE19 SysCMD[5]

AC17 SysCMD[7] AD20 Release_ AE20 SysCMD[3]

AC18 SysCMD[2] AD21 NC AE21 WrRdy_

AC19 ValidIn_ AD22 SerInt0_ AE22 ScWord[1]

AC20 ScMatch AD23 NMI_ AE23 Reset_

AC21 ScWord[0] AD24 AD[30] AE24 WDE_

AC22 AD[62] AD25 AD[60] AE25 AD[31]

AC23 AD[63] AD26 AD[57] AE26 AD[59]

AC24 AD[28]

AC25 AD[26]

AC26 AD[21]

Table 463: GT-96100A Pinout Table (Continued)

Bal l # Signal Name
538 Revision 1.0

GT-96100A Advanced Communication Controller
NOTE: All NC pins must be connected to ground for future devices compatibility. In order to use these pins in a
future device, Galileo Technology recommends that these pins be connected by zero ohm resistors.

AF01�AF26

AF01 SysAD[36]

AF02 SysAD[7]

AF03 SysAD[43]

AF04 SysAD[6]

AF05 SysAD[5]

AF06 SysAD[42]

AF07 SysAD[47]

AF08 SysAD[2]

AF09 SysAD[32]

AF10 SysADC[4]

AF11 SysAD[31]

AF12 SysAD[48]

AF13 SysAD[60]

AF14 SysAD[61]

AF15 SysAD[54]

AF16 SysAD[27]

AF17 SysAD[55]

AF18 SysAD[59]

AF19 SysAD[58]

AF20 SysCMD[8]

AF21 SysCMD[4]

AF22 SysCMD[0]

AF23 ScTCE_

AF24 SerInt1_

AF25 OutModePLL

AF26 AD[61]

Table 463: GT-96100A Pinout Table (Continued)

Ball # Signal Name
Revision 1.0 539

GT-96100A Advanced Communication Controller
Figure 108:GT-96100A Pinout Map (top view, left side)

1 2 3 4 5 6 7 8 9

A Req0_ GPP[14] GPP[13] GPP[6] VccPLL MII1[14] MII1[10] MII1[4] MII1[3]

B PAD0[28] JTAG[3] JTAG[0] VssPLL GPP[7] GPP[2] MDC MII1[13] MII1[9]

C PAD0[24] PAD0[30] Gnt0_ JTAG[1] GPP[12] GPP[9] GPP[3] GPP[0] MII1[12]

D PAD0[17] PAD0[25] PAD0[29] JTAG[2] JTAG[4] GPP[8] GPP[5] GPP[1] MDIO

E Irdy0_ PAD0[20] PAD0[23] PAD0[26] PAD0[31] GPP[15] GPP[10] GPP[11] GPP[4]

F PErr0_ Frame0_ PAD0[18] PAD0[22] PAD0[27] VSS VSS VCC2.5 VCC3.3

G PAD0[14] DevSel0_ CBE0_[2] PAD0[21] IDSel0 VSS

H PAD0[10] Par0 Trdy0_ PAD0[16] CBE0_[3] VCC2.5

J PAD0[8] PAD0[12] PAD0[15] Stop0_ PAD0[19] VCC2.5

K PAD0[6] PAD0[9] PAD0[13] CBE0_[1] Lock0_ VCC3.3

L PAD0[4] PAD0[7] VREF0 PAD0[11] SErr0_

M PAD0[1] PAD0[2] PAD0[5] CBE0_[0] PAD0[3]

N PAD0[0] TClk NC PClk0 NC

10 11 12 13 14

NC MII0[12] MII0[11] MII0[8] MII0[2]

MII1[5] MII1[1] MII0[13] MII0[9] MII0[5]

MII1[6] MII1[8] NC MII0[6] MII0[4]

MII1[11] MII1[2] MII0[14] MII0[7] MII0[0]

NC MII1[7] MII1[0] MII0[10] MII0[3]

VCC3.3

VSS VSS VSS VSS

VSS VSS VSS VSS

VSS VSS VSS VSS

P PAD1[28] PClk1 ClkOutPLL NC PAD1[29]

R PAD1[30] PAD1[25] CBE1_[3] PAD1[24] PAD1[27]

T PAD1[31] VREF1 PAD1[17] IDSel1 PAD1[16]

U PAD1[26] PAD1[22] PAD1[23] PAD1[19] PErr1_ VCC3.3

V PAD1[20] PAD1[18] Frame1_ Stop1_ PAD1[15] VCC3.3

W PAD1[21] Irdy1_ Par1 CBE1_[1] CBE1_[0] VCC2.5

Y CBE1_[2] DevSel1_ PAD1[13] PAD1[14] PAD1[4] VSS

AA Trdy1_ PAD1[12] PAD1[11] PAD1[10] PAD1[0] VSS VSS VCC2.5 VCC2.5

AB SErr1_ PAD1[9] PAD1[5] SysAD[4] SysAD[46] SysAD[45] SysAD[12] SysAD[33] SysADC[1]

AC PAD1[8] PAD1[1] PAD1[3] Gnt1_ SysAD[8] SysAD[39] SysAD[14] SysAD[44] SysADC[5]

AD PAD1[6] PAD1[2] SysAD[40] SysAD[37] SysAD[41] SysAD[15] SysAD[38] SysAD[34] SysAD[0]

AE PAD1[7] Req1_ SysAD[10] SysAD[13] SysAD[11] SysAD[9] SysAD[35] SysAD[3] SysAD[1]

AF SysAD[36] SysAD[7] SysAD[43] SysAD[6] SysAD[5] SysAD[42] SysAD[47] SysAD[2] SysAD[32]

1 2 3 4 5 6 7 8 9

VSS VSS VSS VSS

VSS VSS VSS VSS

VSS VSS VSS VSS

VCC3.3

NC SysAD[62] SysAD[52] NC NC

SysADC[7] SysAD[63] SysAD[51] SysAD[19] SysAD[18]

SysADC[3] SysADC[6] SysAD[49] SysAD[16] SysAD[17]

SysADC[0] SysADC[2] SysAD[30] SysAD[29] SysAD[28]

SysADC[4] SysAD[31] SysAD[48] SysAD[60] SysAD[61]

10 11 12 13 14
540 Revision 1.0

GT-96100A Advanced Communication Controller
Figure 109:GT-96100A Pinout Map (top view, right side)

15 16 17 18 19 20 21

MII0[1] PORTF[6] PORTF[4] PORTF[2] PORTE[5] PORTE[1] PORTD[4]

NC PORTF[3] PORTE[6] PORTE[4] PORTD[5] PORTD[0] PORTC[6]

PORTF[5] PORTF[1] PORTE[3] PORTD[6] NC PORTC[5] PORTC[1]

PORTF[0] PORTE[2] PORTE[0] PORTD[1] PORTC[4] PORTB[6] PORTB[5]

NC PORTD[2] PORTD[3] PORTC[2] PORTB[2] PORTB[3] PORTA[5]

VDD3.3 VDD2.5 VDD2.5 VSS VSS

VSS

22 23 24 25 26

NC PORTC[3] PORTB[1] PORTA[4] PORTA[0] A

PORTC[0] PORTB[0] PORTA[2] Ready_ AD[33] B

PORTB[4] PORTA[3] DM AReq[0]_ AD[0] AD[2] C

PORTA[6] ALE CSTim ing_ AD[32] AD[37] D

PORTA[1] BypsOE_ AD[34] AD[5] AD[9] E

AD[1] AD[36] AD[4] AD[39] AD[11] F

AD[35] AD[6] AD[7] AD[42] AD[13] G

VDD2.5

VDD3.3

VDD3.3

VSS VSS

VSS VSS

VSS VSS

VSS VSS

VSS VSS

AD[3] AD[8] AD[40] AD[43] ADP[0] H

AD[38] AD[10] AD[12] AD[45] ADP[4] J

AD[41] AD[44] AD[14] AD[47] SDQM [0] K

AD[46] ADP[1] AD[15] ADP[5] SDQM [5] L

DW r_ SDQM [4] SCAS_ SDQM [1] SCS_[0] M

SCS_[1] DAdr[0] DAdr[1] SRAS_ NC N

DAdr[4] DAdr[7] DAdr[3] DAdr[2] DAdr[5] P

DAdr[9] SCS_[2] DM AReq_[2] DAdr[8] DAdr[6] R

VSS VSS

VDD3.3

VDD2.5

VDD2.5

VSS

VDD3.3 VDD3.3 VDD2.5 VSS VSS

SysAD[20] SysAD[26] SysCMD[1] ScDOE_ Interrupt1_ Interrupt0_ ByPassPLL

SysAD[50] SysAD[57] SysCMD[7] SysCMD[2] ValidIn_ ScMatch ScWord[0]

SysAD[24] SysAD[22] SysAD[23] SysCMD[6] ValidOut_ Release_ NC

SysAD[25] SysAD[21] SysAD[53] SysAD[56] SysCMD[5] SysCMD[3] WrRdy_

SysAD[54] SysAD[27] SysAD[55] SysAD[59] SysAD[58] SysCMD[8] SysCMD[4]

15 16 17 18 19 20 21

A D [1 7] S D Q M [7] D M A R e q _ [1] N C D A d r[1 0] T

A D [4 8] A D P [6] S D Q M [3] S C S _ [3] D M A R e q _ [3] U

A D [5 3] A D [4 9] A D P [3] S D Q M [6] B a n kS e l[0] V

A D [2 5] A D [5 2] A D [5 0] A D P [7] S D Q M [2] W

A D [5 6] A D [2 3] A D [2 0] A D [1 8] A D P [2] Y

A D [2 7] A D [5 5] A D [2 2] A D [5 1] A D [1 6] A A

A D [2 9] A D [5 8] A D [2 4] A D [5 4] A D [1 9] A B

A D [6 2] A D [6 3] A D [2 8] A D [2 6] A D [2 1] A C

S e rIn t0 _ N M I_ A D [3 0] A D [6 0] A D [5 7] A D

S cW o rd [1] R es e t_ W D E _ A D [3 1] A D [5 9] A E

S ys C M D [0] S c T C E _ S e rIn t1 _ O u tM o de P L L A D [6 1] A F

2 2 2 3 2 4 2 5 2 6
Revision 1.0 541

GT-96100A Advanced Communication Controller

542 Revision 1.0

34. 492 BGA PACKAGE MECHANICAL INFORMATION
Figure 110:492 BGA Package Mechanical Information

GT-96100A Advanced Communication Controller
35. GT-96100A PART NUMBERING
Figure 111:Sample Part Number

35.1 Standard Part Number

The standard part number for the GT-96100A is: GT-96100A�B�x.

Without the �XYYY�ZZ suffix, this part number indicates that it is the commercial temperature grade, 100MHz
version. In other words, GT-96100A-B-x is the same as GT-96100A�B�x�C100�00, although it is not marked
with the suffix information.

35.2 Valid Part Numbers

The following part numbers are the only valid part numbers that can be used when ordering the GT-96100A:

� GT-96100A�B�x, Commercial Temperature, 100MHz
� GT-96100A�B�x�C083�00, Commercial Temperature, 83MHz

GT�96100A�B�x�C083�00

Device Prefix
GT

Part Number
96100A

Package Type
B = BGA

Revision/Stepping Number
0 = Initial Silicon
1 = 1st Revision/Stepping
2 = 2nd Revision/Stepping
etc.

Temperature Range
C = Commercial
I = Industrial

Speed
083 = 83 MHz
100 = 100 Mhz

00 = Standard Device
Revision 1.0 543

GT-96100A Advanced Communication Controller
36. ABBREVIATIONS

b bit

B byte

Gbps gigabits per second

KHz kilohertz

mA milliampere

MHz megahertz

ns nanosecond

V volt

GB gigabytes

Gb gigabits

KB kilobytes

Kb kilobits

MB megabytes

Mb megabits
544 Revision 1.0

GT-96100A Advanced Communication Controller
37. REVISION HISTORY

Table 464: Document History

Document Type Rev. Number Date Comments

Product Preview 0.1 April 17, 2000 Preliminary Release

Datasheet 1.0 3 October, 2000

1. In Table 107, "SDRAM Burst Mode", the following changes were made:
bit 10 & bit 11; initial value changed from 0x1 to 0x0.
Bits 31:12; initial value changed from 0x1 to X.

2. In Table 281 �Hash Table Entry Fields", the following changes were made:
Bits 52:51was added.
Bits 63:51 changed to bits 63:53.

3. In Table 463 �GT�96100A Pinout Table", the following changes were made:
AD21 changed from VSS to NC.
The note at the end of the table was modified.

4. In the Features section 83MHz for CPU frequency support was changed to 100MHz.

5. In Section 13.7.4 �Transmit SDMA Notes� on page 317, information added.

6. In Table 270 �PCI_0 Arbiter Configuration Register, Offset: 0x101AE0", a note was added in Priority Arbitra-
tion enable field

7. In Section 12.1 �Functional Overview� on page 253, added information.

8. In Table 14 �Interrupt Interface Pin Assignments", the following changes were made:
SoR section deleted.
GPP is defined as 15:0, no reserved bits.
Interrupt1* notation as SoR type was deleted.

9. In Table 181 �PCI_1 SCS[1:0]* Base Address, Offset: 0x090 from PCI_0 or CPU; 0x010 from PCI_1", initial
value changed to 0x08 from 0x04.

10. Table 183 �PCI_1 SCS[3:2]* Base Address, Offset: 0x094 from PCI_0 or CPU; 0x014 from PCI_1", initial
value changed to 0x01000008 from 0x01000004.

11. In Table 375, Table 376, Table 377 and Table 378, GPP changed to 15:0.

12. In Table 200 �PCI_1 PMC Register, Offset: 0x0c0 from PCI_0 or CPU, 0x040 from PCI_11", initial value
changed to 0x00090001 from 0x91.
Revision 1.0 545

GT-96100A Advanced Communication Controller
Datasheet 1.0 3 October, 2000

13. Table 204 �Function 1 PCI_1 Swapped SCS[1:0]* Base Address, Offset: 0x190 from PCI_0 or CPU; 0x110
from PCI_1", initial value changed to 0x08 from 0x04.

14. Table 206 �Function 1 PCI_1 Swapped SCS[3:2]* Base Address, Offset: 0x194 from PCI_0 or CPU; 0x114
from PCI_1", initial value changed to 0x01000008 from 0x01000004.

15. In Section 32. �AC Timing� on page 513, the following changes were made:
Rst* changed to Reset**.
 "10 TClk Cycle" to "0.5 mSec".

16. Table 415, Table 416 and Table 417 were changed as follows:
 "...the value latched in the GPD register bit is '1'" changed to "...the value latched in the GPD register bit is '0'.

17. In Table 292 �Serial Parameters Register (SPR), Offset: 0x084820 for Ethernet_0; 0x088820 for
Ethernet_1", The following changes were made:
Initial value changed to "11001 (64 bit time)" from "10000 (64 bit time).
The function description was modified.

18. Section 31.1.1 �Power Sequencing Notes� on page 510 was added.

19. Section Table 327: �CHxR1 - Sync/Abort Register (SYNR), Offset: 0x000A0C, 0x008A0C, 0x010A0C,
0x018A0C, 0x020A0C, 0x028A0C, 0x030A0C, 0x038A0C (where x is channel 0 to 7)� on page 342 was modi-
fied.

20. In Section 14.1.3 �Receive DPLL Clock Recovery� on page 328, the text was modified.

21. In Section 14.7.1.1 �Asynchronous Mode� on page 361, "The DPLL sampling rate" changed to "the DPLL
encoding must be set to NRZ and the clock ampling rate".

22. In Table 6 �PCI Bus 0 Pin Assignments", the following changes were made:
� "Req0*/PARB0_GNT0" changed to "Req0*/PARB0_GNT1"
� "PCI_0 arbiter output grant 0" changed to "PCI_0 arbiter output grant 1"
� "functions as the arbiter's grant 0 output" changed to "functions as the arbiter's grant 1 output"
� "Gnt0*/PARB0_REQ0" changed to "Gnt0*/PARB0_REQ1"
� "PCI_0 arbiter input request 0" changed to "PCI_0 arbiter input request 1"
� "functions as the arbiter's request 0 input" changed to "functions as the arbiter's request 1 input".

23. In Table 7 �PCI Bus 1 Pin Assignments", the following changes were made:
� "Req1*/PARB1_GNT0" changed to "Req1*/PARB1_GNT1"
� "PCI_1 arbiter output grant 0" changed to "PCI_1 arbiter output grant 1"
� "functions as the arbiter's grant 0 output" changed to "functions as the arbiter's grant 1 output"
� "Gnt1*/PARB1_REQ0" changed to "Gnt1*/PARB1_REQ1"
� "PCI_1 arbiter input request 0" changed to "PCI_1 arbiter input request 1"
� "functions as the arbiter's request 0 input" changed to "functions as the arbiter's request 1 input".

Table 464: Document History (Continued)

Document Type Rev. Number Date Comments
546 Revision 1.0

GT-96100A Advanced Communication Controller
Datasheet 1.0 3 October, 2000

24. In Table 11 �WAN Pin Assignments", the following changes were made:
� "PARB0_GNT1" changed to "PARB0_GNT2"
� "PCI_0 arbiter output grant 1" changed to "PCI_0 arbiter output grant 2"
� "PARB0_REQ1" changed to "PARB0_REQ2"
� "PCI_0 arbiter input request 1" changed to "PCI_0 arbiter input request 2"
� "PARB0_REQ2" changed to "PARB0_REQ3"
� "PCI_0 arbiter input request 2" changed to "PCI_0 arbiter input request 3"
� "PARB0_GNT2" changed to "PARB0_GNT3"
� "PCI_0 arbiter output grant 2" changed to "PCI_0 arbiter output grant 3"
� "PARB0_GNT3" changed to "PARB0_GNT4"
� "PCI_0 arbiter output grant 3" changed to "PCI_0 arbiter output grant 4"
� "PARB0_REQ3" changed to "PARB0_REQ4"
� "PCI_0 arbiter input request 3" changed to "PCI_0 arbiter input request 4"
� "PARB0_REQ4" changed to "PARB0_REQ5"
� "PCI_0 arbiter input request 4" changed to "PCI_0 arbiter input request 5"
� "PARB1_GNT1" changed to "PARB1_GNT2"
� "PCI_1 arbiter output grant 1" changed to "PCI_1 arbiter output grant 2"
� "PARB1_REQ1" changed to "PARB1_REQ2"
� "PCI_1 arbiter input request 1" changed to "PCI_1 arbiter input request 2"
� "PARB1_REQ2" changed to "PARB1_REQ3"
� "PCI_1 arbiter input request 2" changed to "PCI_1 arbiter input request 3"
� "PARB1_GNT2" changed to "PARB1_GNT3"
� "PCI_1 arbiter output grant 2" changed to "PCI_1 arbiter output grant 3"
� "PARB0_GNT5" changed to "PARB0_GNT6"
� "PCI_0 arbiter output grant 5" changed to "PCI_0 arbiter output grant 6"
� "PARB1_GNT3" changed to "PARB1_GNT4"
� "PCI_1 arbiter output grant 3" changed to "PCI_1 arbiter output grant 4"
� "PARB0_REQ5" changed to "PARB0_REQ6"
� "PCI_0 arbiter input request 5" changed to "PCI_0 arbiter input request 6"
� "PARB1_REQ3" changed to "PARB1_REQ4"
� "PCI_1 arbiter input request 3" changed to "PCI_1 arbiter input request 4"
� "PARB0_GNT4" changed to "PARB0_GNT5"
� "PCI_0 arbiter output grant 4" changed to "PCI_0 arbiter output grant 5"

25. In Table 270 �PCI_0 Arbiter Configuration Register, Offset: 0x101AE0", the following changes were made:
PARB0_G5, PARB0_R5 changed to PARB0_GNT1,PARB0_REQ1
"0 - this pin to function as all PSclk1."
changed to
"0 - this pin to function as OTSLKC1."

Table 464: Document History (Continued)

Document Type Rev. Number Date Comments
Revision 1.0 547

GT-96100A Advanced Communication Controller
Datasheet 1.0 3 October, 2000

26. In Table 271 �PCI_1 Arbiter Configuration Register, Offset: 0x101AE4", "(execpt for bit 29 is reserved)"
changed to "(execpt for bits 30:29 which are reserved)."

27. In Table 16 �Test Interface Pin Assignments", the following changes were made:
Jtag[2] type changed from "O" to "I"
Jtag[3] type changed from "I" to "O".

28. In Table 463 �GT�96100A Pinout Table", AD21 signal name changed from "Vss" to "NC".

29. In Section 12.4.1.5 �Backoff Algorithm Options� on page 277, "Port_Configuration_Extend<Limit4>"
 changed to "Serial Parameters Register<Limit4>".

30. In Table 292 �Serial Parameters Register (SPR), Offset: 0x084820 for Ethernet_0; 0x088820 for
Ethernet_1", the following changes were made:
Bit 22 was added and bits 31:23 were modified to �Reserved�.

31. In Table 453 �Flex-TDM Receive Timing - Normal Clock", the following changes were made:
t21 & t22 max value were removed.
t23 & t27 min value changed from 8 to 5.

32. In Table 454 �Flex-TDM Transmit Timing - Normal Speed Clock", the following changes were made:
t41 & t42 max value were removed
t43 min value changed from 8 to 5
t46 max value CHANGED from 10 to 13.
t48, was added at the end of the table.

33. In Table 455 �Flex-TDM Receive Timing - Double Speed Clock", the following changes were made:
t31 & t32 max value wre removed.
t33 & t37 min value changed from 8 to 5.

34. In Table 456 �Flex-TDM Transmit Timing - Double Speed Clock", the following changes were made:
t51 & t52 max value were removed.
t53 min value changed from 8 to 5
t56 & t58 max value changed from 10 to 13.

35. In Table 457 �MPSC Receive Timing", the following changes were made:
t61 & t62 max value were removed.
t63 & t65 min value changed from 8 to 5.

Table 464: Document History (Continued)

Document Type Rev. Number Date Comments
548 Revision 1.0

GT-96100A Advanced Communication Controller
Datasheet 1.0 3 October, 2000

36. In Table 458 �MPSC Transmit Timing", the following changes were made:
t71 & t72 max value were removed.
t73 max value changed from 10 to 13.
t75 min value changed from 8 to 5.

37. New Section 36, Abbreviations was added.

38. In Section 5.11.1 �SDRAM and Device Address Decode� on page 130, table 86 through to table103 were
changed as follows:
Bits 7:0 changed to 11:0 and bits 31:8 were changed to 31:12.

39. Section 4.8.2 �MultiGT Bit In The CPU Configuration Register� on page 82 was modified.

40. Section 4.8.4 �Multi-GT Restrictions� on page 83 was modified.

41. In Table 36 �CPU Interface Configuration, Offset: 0x000", the following changes were made:
pins 8:0 & 9 & 10 were changed to "Reserved (Must be zero)".
Description added to Endianess "NOTE: affects only the internal registers, and the PCI Configuration data reg-
ister".

42. Figure 44 modified.

43. In Table 17, pin OutModePLL description modified to "...pin is in hi-z state."

44. In Table 316 the following changes were made:
The initial value for bits 5:2 was changed to �1111�.

45. In Table 172, the initia value was changed from 0x9652 to 0x9653.

46. In Table 173, the initia value was changed from 0x965211ab to 0x965311ab.

47. In Table 173, the initia value was changed from 0x02ab to 0x03.

48. Table Table 403. The title was corrrected from �Ethernet1 Cause Register...� to �Ethernet1 Mask Reg-
ister...�.

49. Table 449 �Thermal data for GT-96100A in BGA 492" was modified.

Table 464: Document History (Continued)

Document Type Rev. Number Date Comments
Revision 1.0 549

	Features
	Table of Contents
	List of Tables
	List of Figures
	1. Overview
	1.1 Communication Unit Description
	1.1.1 Multi-protocol Serial Controllers
	1.1.2 FlexTDM Time Slot Assigners
	1.1.3 10/100 Ethernet Controllers
	1.1.4 SDMA Channels

	1.2 CPU Interface
	1.3 SDRAM and Device Interface
	1.4 PCI Interface
	1.5 Independent DMA (IDMA) Engines
	1.6 Peripheral Configurations

	2. Pin Information
	3. Address Space Decoding
	3.1 Two Stage Decoding Process
	3.1.1 CPU Side Decoding Process
	3.1.2 PCI Side Decoding Process

	3.2 Disabling Address Decoders
	3.3 DMA Unit Address Decoding
	3.4 Address Space Decoding Errors
	3.5 Default Memory Map
	3.6 Address Remapping
	3.6.1 CPU Address Remapping
	3.6.2 Writing to Decode Registers
	3.6.3 PCI Address Remapping
	3.6.4 Writing to Decode Registers

	3.7 Using the CPU PCI Override
	3.8 Using the DMA to PCI Bypass

	4. CPU Interface Description
	4.1 CPU Interface Signals
	4.2 SysAD, SysADC, and SysCmd Buses
	4.2.1 SysAD Read Protocol
	4.2.2 SysAD Write Protocol

	4.3 Operation of WrRdy* and the Internal Write Posting Queues
	4.4 CPU Write Modes and Write Patterns Supported
	4.5 CPU Interface Endianess
	4.6 Burst Order
	4.7 MIPS L2 Cache Support
	4.8 Multiple GT-96100A Support
	4.8.1 Hardware Connections
	4.8.2 MultiGT Bit In The CPU Configuration Register
	4.8.3 Initializing a Multiple GT-96100A System
	4.8.4 Multi-GT Restrictions

	4.9 CPU Interface Restrictions
	4.10 CPU Interface Control Registers
	4.10.1 CPU Configuration Registers
	4.10.2 CPU Address Decode Registers
	4.10.3 CPU Sync Barrier

	5. Memory Controller
	5.1 SDRAM Controller
	5.1.1 SDRAM Configuration Register (0x448)
	5.1.2 Duplicating Signals
	5.1.3 Registered SDRAM Support
	5.1.4 SDRAM Operation Mode Register (0x474)
	5.1.5 SDRAM Address Decode Register (0x47c)

	5.2 Connecting the Address Bus to the SDRAM
	5.2.1 16 MBit SDRAMs
	5.2.2 64/128 Mbit SDRAMs
	5.2.3 256 Mbit SDRAMs

	5.3 Programmable SDRAM Parameters
	5.4 SDRAM Performance
	5.4.1 CPU Access to SDRAM
	5.4.2 PCI Read Performance from SDRAM

	5.5 SDRAM Bank Interleaving
	5.6 Unified Memory Architecture (UMA) Support
	5.6.1 UMA Hardware Support
	5.6.2 SDRAM Pins
	5.6.3 Address Decoding
	5.6.4 Arbitration
	5.6.5 Latencies, Low and High Priority
	5.6.6 Total Request
	5.6.7 Disable Refresh
	5.6.8 Internal Register Reads with UMA Enabled

	5.7 Device Controller
	5.7.1 TurnOff
	5.7.2 AccToFirst
	5.7.3 AccToNext
	5.7.4 ALEtoWr
	5.7.5 WrActive
	5.7.6 WrHigh
	5.7.7 Device Bank Width and Location
	5.7.8 Burst Writes
	5.7.9 Packing and Unpacking Data and Burst Support
	5.7.10 Ready* Support
	5.7.11 Parity Support for Devices

	5.8 Programming the ADP lines for other Functions
	5.9 Memory Controller Restrictions
	5.10 Registered SDRAM Interface Restrictions
	5.11 Memory Interface Control Registers
	5.11.1 SDRAM and Device Address Decode
	5.11.2 SDRAM Configuration
	5.11.3 SDRAM Parameters
	5.11.4 ECC
	5.11.5 Device Parameters

	6. Data Integrity
	6.1 SDRAM ECC
	6.1.1 ECC Calculation
	6.1.2 ECC Error Report

	6.2 PCI Parity Support
	6.3 Parity Support for Devices
	6.4 CPU Parity Support
	6.5 Data Integrity Flow
	6.5.1 CPU writes to SDRAM and PCI
	6.5.2 CPU reads from SDRAM
	6.5.3 CPU reads from PCI
	6.5.4 PCI writes to GT-96100A SDRAM
	6.5.5 PCI reads from the SDRAM
	6.5.6 DMA cycles

	6.6 Register Information
	6.7 CPU Errors Report Registers

	7. PCI Interfaces
	7.1 Reset Configuration
	7.2 PCI Master Operation
	7.2.1 PCI Master CPU Address Space Decode and Translation
	7.2.2 PCI Master CPU Byte Swapping
	7.2.3 PCI Master FIFOs
	7.2.4 PCI Master DMA
	7.2.5 PCI Master RETRY Counter

	7.3 PCI Target Interface
	7.3.1 PCI Target FIFOs
	7.3.2 Controlling Burst Length
	7.3.3 PCI Target Read Prefetching
	7.3.4 PCI Target Address Space Decode and Byte Swapping
	7.3.5 Enhancing Target Interface Performance

	7.4 PCI Synchronization Barriers
	7.5 PCI Master Configuration
	7.5.1 Special Cycles and Interrupt Acknowledge

	7.6 Target Configuration and Plug and Play
	7.6.1 Plug and Play Base Address Register Sizing
	7.6.2 PCI Autoload of Configuration Registers at RESET
	7.6.3 Expansion ROM Functionality

	7.7 PCI Bus/Device Bus/CPU Clock Synchronization
	7.8 64-bit PCI Configuration
	7.9 Retry Enable
	7.10 Locked Cycles
	7.11 Hot-Swap Support
	7.12 PCI Power Management Support
	7.13 PCI Interface Restrictions
	7.13.1 General
	7.13.2 Master
	7.13.3 Slave

	7.14 PCI Control and Configuration Registers
	7.14.1 PCI Internal Registers
	7.14.2 PCI Configuration Registers
	7.14.3 Function 1 Configuration Registers

	8. Intelligent I/O (I2O) Standard Support
	8.1 Overview
	8.2 I2O Registers
	8.3 Enabling I2O Support
	8.4 Register Map Compatibility with the i960Rx Family
	8.5 Message Registers
	8.5.1 Inbound Messages
	8.5.2 Outbound Messages

	8.6 Doorbell Registers
	8.6.1 Outbound Doorbells
	8.6.2 Inbound Doorbells

	8.7 Circular Queues
	8.7.1 Inbound Message Queues
	8.7.2 Outbound message queues
	8.7.3 Memory for Circular Queues
	8.7.4 Inbound/Outbound Queue Port Register Function
	8.7.5 Inbound Post Queue
	8.7.6 Inbound Free Queue
	8.7.7 Outbound Post Queue
	8.7.8 Outbound Free Queue

	8.8 I2O Support Registers

	9. Independent DMA Controllers (IDMA Controllers)
	9.1 DMA Channel Registers
	9.1.1 Byte Count Register
	9.1.2 Source Address Register
	9.1.3 Destination Address Register
	9.1.4 Pointer to the Next Record Register
	9.1.5 Channel Registers

	9.2 DMA Channel Control Register (0x840 - 0x84c)
	9.3 Restarting a Disabled Channel
	9.4 Reprogramming an Active Channel
	9.5 Arbitration
	9.6 Current Descriptor Pointer Registers
	9.7 Design Information
	9.7.1 DMA in Demand Mode
	9.7.2 Non-Chain Mode
	9.7.3 Chain Mode
	9.7.4 Dynamic DMA chaining
	9.7.5 Fly-by DMA

	9.8 Initiating a DMA from a Timer/Counter
	9.9 DMA Restrictions
	9.9.1 Fly-by Mode DMA Restrictions

	9.10 DMA Control Registers
	9.10.1 DMA Record
	9.10.2 DMA Channel Control
	9.10.3 DMA Arbiter

	10. PCI Arbiter
	10.1 Interface
	10.2 Arbitration Scheme
	10.3 Arbitration Parking
	10.4 PCI Arbiter Configuration Register

	11. Communication Interface Unit (CIU)
	11.1 CIU Connectivity
	11.2 Address Decoding and PCI Override (MASTER)
	11.2.1 Address Decoding Errors

	11.3 Arbitration Scheme
	11.3.1 Master Arbitration

	11.4 CIU Arbiter Configuration Register

	12. 10/100Mb Ethernet Unit
	12.1 Functional Overview
	12.2 Port Features
	12.3 Operational Description
	12.3.1 General Overview
	12.3.2 Transmit Operation
	12.3.3 Receive Operation
	12.3.4 Ethernet Address Recognition

	12.4 Ethernet Port
	12.4.1 Network Interface
	12.4.2 MII Serial Management Interface (SMI)
	12.4.3 SMI Timing Requirements

	12.5 Internal Control Registers
	12.5.1 Defining a priority queue to the IP DSCP or VLAN Entry

	12.6 Ethernet MIB Counters

	13. Serial DMA (SDMA)
	13.1 Overview
	13.2 SDMA Descriptors
	13.3 SDMA Configuration Register (SDC)
	13.4 SDMA Command Register (SDCMx)
	13.5 SDMA Group Configuration Register
	13.6 SDMA Descriptor Pointer Registers
	13.6.1 SDMA Current Receive Descriptor Pointer (SCRDP)
	13.6.2 SDMA Current Transmit Descriptor Pointer (SCTDP)
	13.6.3 SDMA First Transmit Descriptor Pointer (SFTDP)

	13.7 Transmit SDMA
	13.7.1 Transmit SDMA Definitions
	13.7.2 Transmit SDMA Flow
	13.7.3 Retransmit in HDLC (LAP-D) mode
	13.7.4 Transmit SDMA Notes

	13.8 Receive SDMA
	13.8.1 Receive SDMA Definitions
	13.8.2 Receive SDMA Flow

	13.9 SDMA Interrupt and Mask register (SDI and SDM)
	13.9.1 Resource Error Interrupt
	13.9.2 Descriptor/Frame Closed Interrupt

	13.10 SDMA in Auto Mode
	13.11 SDMA Registers

	14. Multi Protocol Serial Controller (MPSC)
	14.1 DPLL
	14.1.1 Data Encoding/Decoding
	14.1.2 DPLL Clock Source
	14.1.3 Receive DPLL Clock Recovery

	14.2 MPSCx Main Configuration Register (MMCRx)
	14.2.1 MPSCx Main Configuration Register Low (MMCRLx)
	14.2.2 MPSCx Main Configuration Register High (MMCRHx)

	14.3 MPSCx Protocol Configuration Registers (MPCRx)
	14.4 Channel Registers (CHxRx)
	14.5 HDLC Mode
	14.5.1 HDLC Receive/Transmit Operation
	14.5.2 SDMAx Command/Status Field for HDLC Mode
	14.5.3 MPSCx Protocol Configuration Register (MPCRx) for HDLC
	14.5.4 Channel Registers (CHxRx) for HDLC Mode

	14.6 BISYNC Mode
	14.6.1 BISYNC Transmit Operation
	14.6.2 BISYNC Receive Operation
	14.6.3 SDMAx Command/Status Field for BISYNC Mode
	14.6.4 MPSCx Protocol Configuration Register (MPCRx) for BISYNC
	14.6.5 Channel Registers (CHxRx) for BISYNC Mode

	14.7 UART Mode
	14.7.1 UART Receive/Transmit Operation
	14.7.2 SDMAx Command/Status Field for UART Mode
	14.7.3 MPSCx Protocol Configuration Register (MPCRx) for UART Mode
	14.7.4 UART Stop Bit Reception and Framing Error
	14.7.5 Channel Registers (CHxRx) for UART Mode

	14.8 Transparent Protocol
	14.8.1 SDMAx Command/Status Field for Transparent Mode
	14.8.2 Channel Registers (CHxRx) for Transparent Mode

	15. FlexTDM Units (FTDM)
	15.1 FlexTDM Architecture
	15.2 FlexTDM DPRAM
	15.3 FlexTDM Programing Modes
	15.4 FlexTDM Configuration Register (TCR)
	15.5 FlexTDM Synchronization
	15.6 IOM (GCI) Mode
	15.6.1 IOM-1 Frames
	15.6.2 IOM-2-TE Frames
	15.6.3 IOM-2-LC Frames

	15.7 PCM Highway Mode
	15.8 Data Rate Adoption
	15.9 FlexTDM Auxiliary Channels A and B
	15.9.1 Auxiliary Channel A
	15.9.2 Auxiliary Channel B

	15.10 IOM Programing
	15.11 FlexTDM Registers

	16. Baud Rate Generators (BRGs)
	16.1 BRG Inputs and Outputs
	16.2 BRG Baud Tuning
	16.3 BRG Registers

	17. Watchdog Timer
	17.1 Watchdog Registers
	17.2 Watchdog Operation

	18. Timers/Counters
	18.1 Timer / Counter Registers

	19. General Purpose Ports
	19.1 Overview
	19.2 General Purpose Control Registers

	20. Physical Signal Routing
	20.1 Signal Routing
	20.2 Clock Routing

	21. Interrupt Controller
	21.1 Interrupt Cause Registers
	21.1.1 Communication Unit Cause Registers

	21.2 Interrupt Mask Registers
	21.3 Interrupt Summaries
	21.4 Interrupt Select Registers
	21.5 Interrupt Registers Tables

	22. Reset Configuration
	23. Connecting the Memory Controller to SDRAM and Devices
	23.1 SDRAM
	23.2 Devices

	24. JTAG Interface
	24.1 IEEE Standard 1149.1
	24.2 TAP Controller
	24.3 Instruction Register (IR)
	24.4 Bypass Register (BR)
	24.5 JTAG Scan Chain
	24.6 ID Register

	25. Big and Little Endian
	25.1 Background
	25.1.1 Bit 12 of the CPU Interface Configuration register
	25.1.2 Bits 0 and 16 of the PCI Internal Command register
	25.1.3 Bits 10-12 of the PCI Internal Command register

	25.2 Configuring a System for Big and Little Endian

	26. Using the GT-96100A Without the CPU Interface
	27. Using the GT-96100A in Different PCI Configurations
	28. Phased Locked Loop (PLL) Application Notes
	28.1 PLL Power Supply
	28.2 PLL Characteristics

	29. System Configurations
	29.1 Minimal System Configuration
	29.2 Typical System Configuration
	29.3 High Performance System

	30. Register Tables
	30.1 Access to On-Chip PCI Configuration Space Registers
	30.2 Register Maps

	31. DC Characteristics
	31.1 DC Electrical Characteristics Over Operating Range
	31.1.1 Power Sequencing Notes
	31.1.2 Power Consumption

	31.2 Thermal Data

	32. AC Timing
	32.1 TClk/PClk Restrictions
	32.2 Serial (Communication) Clock Domain AC Characteristic
	32.3 MPSC Waveforms
	32.3.1 Output Delay From RTS*
	32.3.2 Output Delay From CTS*
	32.3.3 CTS* Loss In Synchronous Protocol
	32.3.4 Reception Control Using CD*
	32.3.5 External Sync
	32.3.6 Transmit Synchronize to Receive

	32.4 MII Waveforms
	32.4.1 Transmit Timing
	32.4.2 Receive Timing

	32.5 JTAG AC Characteristics
	32.6 Additional Delay Due to Capacitive Loading
	32.6.1 Calculating the Maximum Delay due to Loading
	32.6.2 Calculating the Minimum Delay due to Loading
	32.6.3 Btyp Values
	32.6.4 Tmax Calculating Example

	33. Pinout Table, 492 Pin BGA
	34. 492 BGA Package Mechanical Information
	35. GT-96100A Part Numbering
	35.1 Standard Part Number
	35.2 Valid Part Numbers

	36. Abbreviations
	37. Revision History

