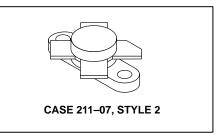

The RF MOSFET Line **RF** Power **Field-Effect Transistors N-Channel Enhancement-Mode MOSFET**


Designed for wideband large-signal amplifier and oscillator applications up to 400 MHz range, in single ended configuration.

- Guaranteed 28 Volt, 150 MHz Performance Output Power = 15 Watts Narrowband Gain = 16 dB (Typ) Efficiency = 60% (Typical)
- Small-Signal and Large-Signal Characterization
- 100% Tested For Load Mismatch At All Phase Angles With 30:1 VSWR
- Excellent Thermal Stability, Ideally Suited For Class A Operation
- Facilitates Manual Gain Control, ALC and **Modulation Techniques**

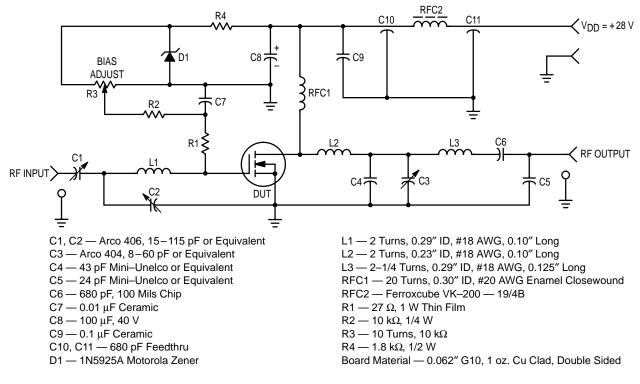
MRF136

MAXIMUM RATINGS

mbol	Value	Unit
DSS	65	Vdc
DGR	65	Vdc
/GS	±40	Vdc
ID	2.5	Adc
PD	55 0.314	Watts W/°C
Г _{stg}	-65 to +150	°C
Тj	200	°C

Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction to Case	R _{θJC}	3.2	°C/W

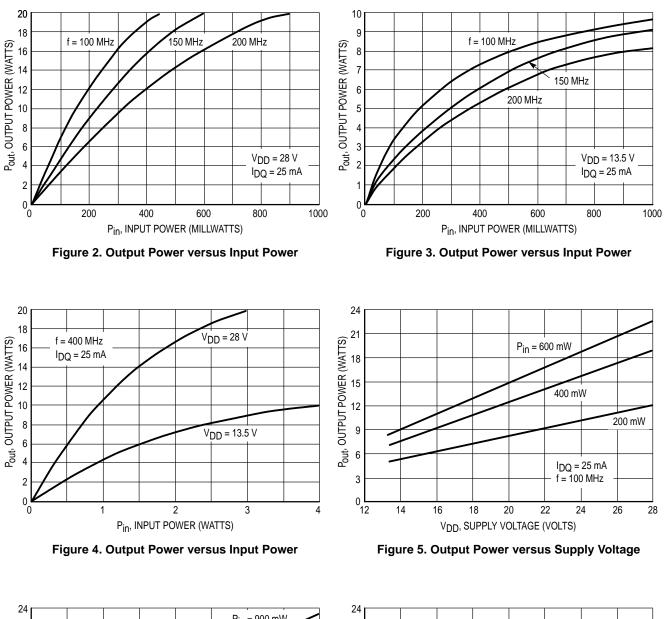
NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.



Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS (1)			•	•	
Drain–Source Breakdown Voltage $(V_{GS} = 0, I_D = 5.0 \text{ mA})$	V _{(BR)DSS} 65		-	—	Vdc
Zero–Gate Voltage Drain Current $(V_{DS} = 28 \text{ V}, V_{GS} = 0)$	IDSS	_	-	2.0	mAdc
Gate–Source Leakage Current (V _{GS} = 40 V, V _{DS} = 0)	I _{GSS} —		-	1.0	μAdc
ON CHARACTERISTICS (1)					
Gate Threshold Voltage (V _{DS} = 10 V, I _D = 25 mA)	VGS(th) 1.0		3.0	6.0	Vdc
Forward Transconductance $(V_{DS} = 10 \text{ V}, I_D = 250 \text{ mA})$	9fs	250	400	_	mmhos
DYNAMIC CHARACTERISTICS (1)					
Input Capacitance $(V_{DS} = 28 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz})$	C _{iss}	_	24	_	pF
Output Capacitance $(V_{DS} = 28 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz})$	C _{oss}	—	27	_	pF
Reverse Transfer Capacitance $(V_{DS} = 28 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz})$	C _{rss}	_	5.5	_	pF
FUNCTIONAL CHARACTERISTICS				•	•
Noise Figure $(V_{DS} = 28 \text{ Vdc}, I_D = 500 \text{ mA}, f = 150 \text{ MHz})$	NF	_	1.0	_	dB
Common Source Power Gain (Figure 1) (V _{DD} = 28 Vdc, P _{out} = 15 W, f = 150 MHz, I _{DQ} = 25 mA)	G _{ps}	13	16	_	dB
Drain Efficiency (Figure 1) (V _{DD} = 28 Vdc, P _{out} = 15 W, f = 150 MHz, I _{DQ} = 25 mA)	η	50	60	_	%
Electrical Ruggedness (Figure 1) (V _{DD} = 28 Vdc, P _{out} = 15 W, f = 150 MHz, I _{DQ} = 25 mA, VSWR 30:1 at all Phase Angles)	Ψ	No Degradation in Output Power			

NOTES:

1. Each side measured separately.



TYPICAL CHARACTERISTICS

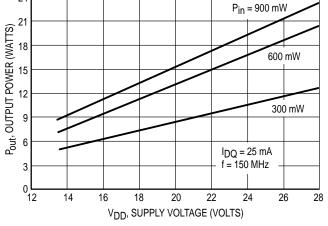
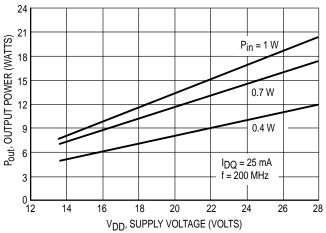
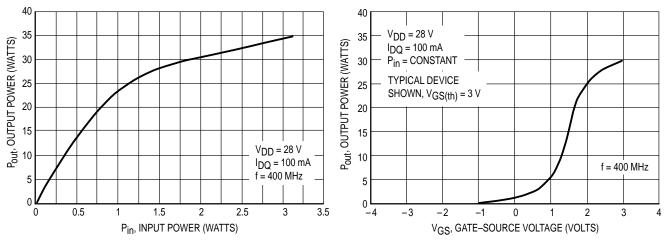



Figure 6. Output Power versus Supply Voltage

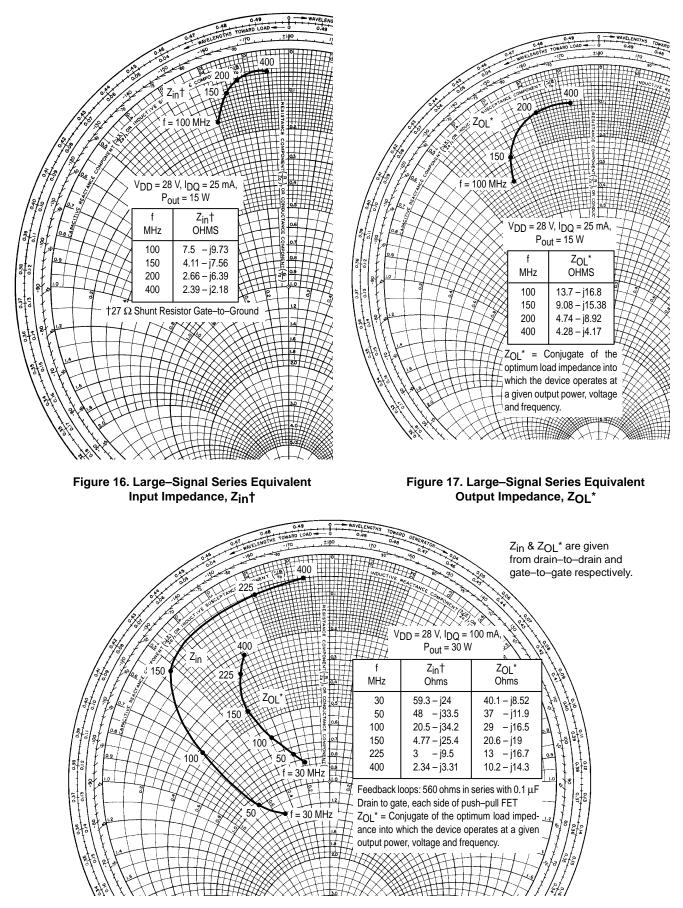


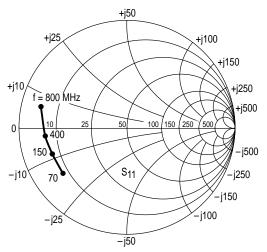


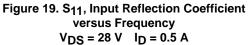
TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL 400 MHz PERFORMANCE




Figure 18. Input and Outut Impedance



f S ₁		S ₁₁		\$ ₂₁		\$12		\$ ₂₂	
(MHz)	S ₁₁	φ	S ₂₁	φ	S ₁₂	φ	S ₂₂	φ	
2.0	0.988	-11	41.19	173	0.006	67	0.729	-12	
5.0	0.970	-27	40.07	164	0.014	62	0.720	-31	
10	0.923	-52	35.94	149	0.026	54	0.714	-58	
20	0.837	-88	27.23	129	0.040	36	0.690	-96	
30	0.784	-111	20.75	117	0.046	27	0.684	-118	
40	0.751	-125	16.49	108	0.048	22	0.680	-131	
50	0.733	-135	13.41	103	0.050	19	0.679	-139	
60	0.720	-142	11.43	99	0.050	16	0.678	-145	
70	0.709	-147	9.871	96	0.050	14	0.679	-149	
80	0.707	-152	8.663	93	0.051	13	0.683	-153	
90	0.706	-155	7.784	91	0.051	13	0.682	-155	
100	0.708	-157	7.008	88	0.051	13	0.680	-157	
110	0.711	-159	6.435	86	0.051	14	0.681	-158	
120	0.714	-161	5.899	85	0.051	15	0.682	-159	
130	0.717	-163	5.439	82	0.052	16	0.684	-160	
140	0.717	-164	5.068	80	0.052	17	0.684	-161	
150	0.720	-165	4.709	80	0.052	17	0.686	-161	
160	0.723	-166	4.455	78	0.052	18	0.690	-161	
170	0.727	-167	4.433	77	0.052	18	0.694	-162	
170	0.732	-168	3.967	75	0.052	18	0.699	-162	
190	0.735		3.967	75		19	0.699	- 162	
		-169			0.052				
200	0.740	-170	3.545	73	0.052	20	0.706	-163	
225	0.746	-171	3.140	69	0.053	22	0.717	-163	
250	0.742	-172	2.783	67	0.053	25	0.724	-163	
275	0.744	-173	2.540	64	0.054	27	0.724	-163	
300	0.751	-174	2.323	60	0.055	29	0.736	-163	
325	0.757	-175	2.140	58	0.058	32	0.749	-163	
350	0.760	-176	1.963	54	0.059	35	0.758	-163	
375	0.762	-177	1.838	52	0.062	38	0.768	-163	
400	0.774	-179	1.696	50	0.065	41	0.783	-163	
425	0.775	-179	1.590	48	0.068	43	0.793	-163	
450	0.781	+ 179	1.493	46	0.071	46	0.805	-163	
475	0.787	+177	1.415	43	0.074	47	0.813	-164	
500	0.792	+176	1.332	40	0.079	48	0.825	-164	
525	0.797	+ 175	1.259	38	0.083	50	0.831	-164	
550	0.801	+ 175	1.185	37	0.088	51	0.843	-164	
575	0.810	+174	1.145	36	0.094	52	0.855	-164	
600	0.816	+173	1.091	34	0.101	52	0.869	-165	
625	0.818	+171	1.041	32	0.106	53	0.871	-165	
650	0.825	+170	0.994	30	0.112	53	0.884	-165	
675	0.834	+ 169	0.962	29	0.119	53	0.890	-165	
700	0.837	+ 168	0.922	27	0.127	53	0.906	-166	
725	0.836	+ 167	0.879	25	0.133	52	0.909	-167	
750	0.841	+166	0.838	25	0.140	53	0.917	-167	
775	0.844	+ 165	0.824	24	0.148	52	0.933	-167	
800	0.846	+ 163	0.785	21	0.154	50	0.941	-168	

Table 1. Common Source Scattering Parameters V_{DS} = 28 V, I_D = 0.5 A

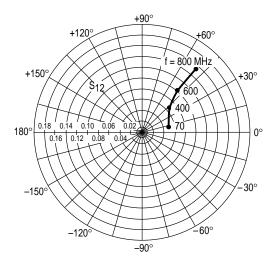


Figure 20. S₁₂, Reverse Transmission Coefficient versus Frequency $V_{DS} = 28 V I_D = 0.5 A$

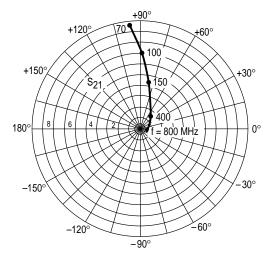


Figure 21. S₂₁, Forward Transmission Coefficient versus Frequency $V_{DS} = 28 V I_D = 0.5 A$

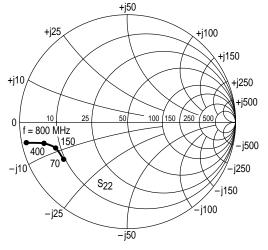


Figure 22. S₂₂, Output Reflection Coefficient versus Frequency $V_{DS} = 28 V I_D = 0.5 A$

DESIGN CONSIDERATIONS

The MRF136 is an RF power N-Channel enhancement mode field-effect transistor (FET) designed especially for HF and VHF power amplifier applications. M/A-COM RF MOS FETs feature planar design for optimum manufacturability.

M/A-COM Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs.

The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal, thus facilitating manual gain control, ALC and modulation.

DC BIAS

The MRF136 is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied without gate bias. A positive gate voltage causes drain current to flow (see Figure 10). RF power FETs require forward bias for optimum gain and power output. A Class AB condition with quiescent drain current (IDQ) in the 25-100 mA range is sufficient for many applications. For special requirements such as linear amplification, IDQ may have to be adjusted to optimize the critical parameters.

The MOS gate is a dc open circuit. Since the gate bias circuit does not have to deliver any current to the FET, a simple resistive divider arrangement may sometimes suffice for this function. Special applications may require more elaborate gate bias systems.

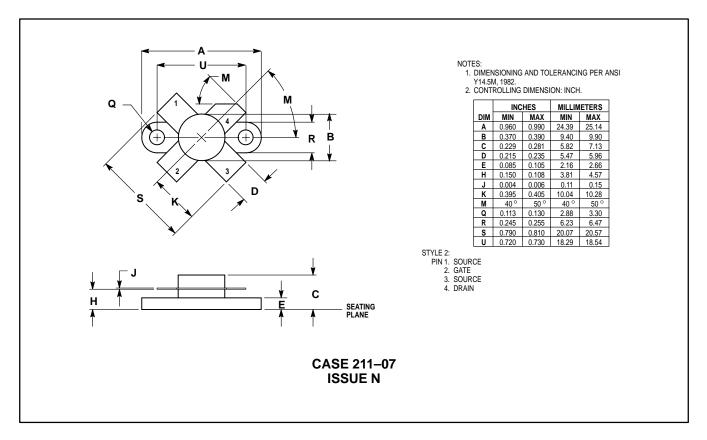
GAIN CONTROL

Power output of the MRF136 may be controlled from rated values down to the milliwatt region (>20 dB reduction in power output with constant input power) by varying the dc gate voltage. This feature, not available in bipolar RF power devices, facilitates the incorporation of manual gain control, AGC/ALC and modulation schemes into system designs. A full range of power output control may require dc gate voltage excursions into the negative region.

AMPLIFIER DESIGN

Impedance matching networks similar to those used with bipolar transistors are suitable for MRF136. See M/A-COM Application Note AN721, Impedance Matching Networks Applied to RF Power Transistors. Both small signal scattering parameters and large signal impedance parameters are provided. Large signal impedances should be used for network designs wherever possible. While the s parameters will not produce an exact design solution for high power operation, they do yield a good first approximation. This is particularly useful at frequencies outside those presented in the large signal impedance plots.

RF power FETs are triode devices and are therefore not unilateral. This, coupled with the very high gain, yields a device capable of self oscillation. Stability may be achieved using techniques such as drain loading, input shunt resistive loading, or feedback. S parameter stability analysis can provide useful information in the selection of loading and/or feedback to insure stable operation. The MRF136 was characterized with a 27 ohm input shunt loading resistor.


For further discussion of RF amplifier stability and the use of two port parameters in RF amplifier design, see M/A-COM Application Note AN215A.

LOW NOISE OPERATION

Input resistive loading will degrade noise performance, and noise figure may vary significantly with gate driving impedance. A low loss input matching network with its gate impedance optimized for lowest noise is recommended.

PACKAGE DIMENSIONS

Specifications subject to change without notice.

North America: Tel. (800) 366-2266, Fax (800) 618-8883

Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298

Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020

Visit www.macom.com for additional data sheets and product information.

REV 7

