

Dual Comparator

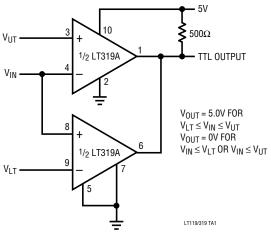
FEATURES

- Guaranteed Maximum 0.5mV Input Offset Voltage
- Input Protection Diodes
- Operates From Single 5V Supply
- 25mA Drive Capability
- 80ns Response Time

APPLICATIONS

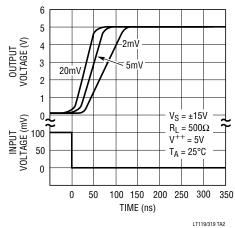
- Window Detectors
- High Speed One Shot
- Relay/Lamp Drivers
- Voltage Controlled Oscillators

DESCRIPTION


The LT119A is an improved version of the LM119 dual comparator. It features lower input offset voltage and offset current, higher voltage gain, guaranteed common mode rejection, and input protection diodes.

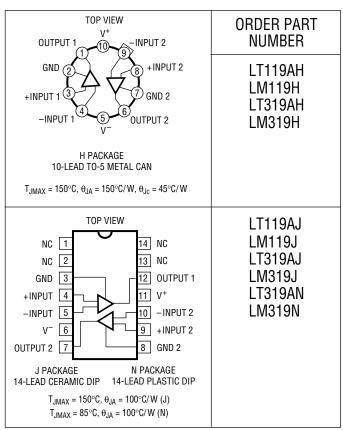
The LT119A is capable of operation over a supply range from 5V to $\pm 15V$ and can drive 25mA loads from each open collector output. A separate ground pin allows the LT119A to isolate system grounds.

Linear Technology Corporation's advanced processing, design techniques and reliability make the LT119A/LT319A an ideal choice over previous devices in most comparator applications.


TYPICAL APPLICATION

Window Detector*

*ALLOWED WINDOW FOR SINGLE +5V SUPPLY IS 1.2V TO 3.8V


Response Time for Various Input Overdrives

ABSOLUTE MAXIMUM RATINGS

Supply Voltage
Output to Negative Supply Voltage
Ground to Negative Supply Voltage
Ground to Positive Supply Voltage 18V
Differential Input Voltage (Note 5) ±5V
Differential Input Current (Note 5)±5mA
Input Voltage (Note 1)
Output Short-Circuit Duration 10s
Operating Temperature Range
LT119A, LM119 – 55°C to 125°C
LT319A, LM3190°C to 70°C
Storage Temperature Range65°C to 150°C
Lead Temperature (Soldering, 10 sec)300°C

PACKAGE/ORDER INFORMATION

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS (Note 2)

SYMBOL	PARAMETER				LT119A			LT119			
		CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
$\overline{V_{0S}}$	Input Offset Voltage	$V_S = \pm 15V, V_{CM} = 0$			0.3	0.5			4	mV	
V_{OS}	Input Offset Voltage	(Note 3)			0.5	1.0		0.7	4	mV	
			•		1.2	2.0			7	mV	
CMRR	Common-Mode Rejection Ratio			90	106					dB	
I _{OS}	Input Offset Current	(Note 3)			20	40		30	75	nA	
			•			75			100	nA	
I _B	Input Bias Current	(Note 3)			150	500		150	500	nA	
			•			1000			1000	nA	
A _V	Voltage Gain			20	40		10	40		V/mV	
	Response Time	(Note 4)			80			80		ns	
V _{SAT}	Saturation Voltage	$V_{IN} \le -5mV$, $I_0 = 25mA$ $V^+ \ge 4.5V$, $V^- = 0V$ $V_{IN} \le -6mA$, $I_{SINK} \le 3.2mA$			0.75	1.5		0.75	1.5	V	
		$T_A \ge 0$ °C			0.23	0.4		0.23	0.4	V	
		T _A ≤ 0°C				0.6			0.6	V	
	Output Leakage Current	$V_{IN} \ge 5 \text{mV}, V_{OUT} = 35 \text{V}$			0.2	2		0.2	2	μA	
			•		1	10		1	10	μA	
	Input Voltage Range	V _S = ±15V	•	-12	±13	12	-12	±13	12	V	
		$V^{+} = 5V, V^{-} = 0V$	•	1		3	1		3	V	

ELECTRICAL CHARACTERISTICS (Note 2)

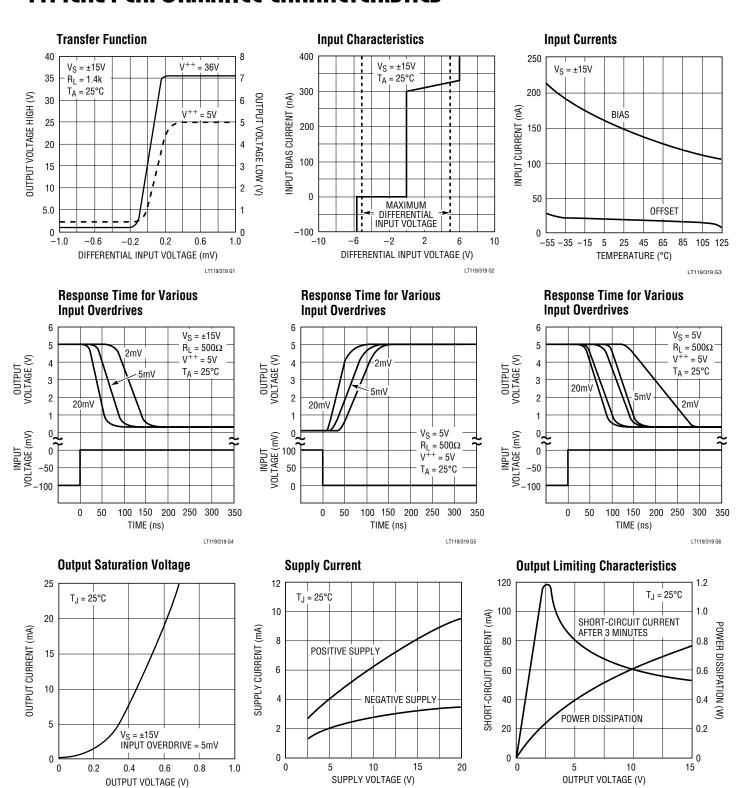
					LT119A			LT119		
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
	Differential Input Voltage		•			±5			±5	V
I _S	Supply Current	$V^{+} = 5V, V^{-} = 0V$			4.3			4.3		mA
Is	Positive Supply Current	V _S = ±15V			8	11.5		8	11.5	mA
Is	Negative Supply Current	V _S = ±15V			3	4.5		3	4.5	mA
$\overline{V_{OS}}$	Input Offset Voltage	$V_S = \pm 15V, V_{CM} = 0V$			0.3	0.5			8	mV
$\overline{V_{OS}}$	Input Offset Voltage	$R_S \le 5k$			0.5	1		2	8	mV
		(Note 3)	•			2			10	mV
CMRR	Common-Mode Rejection Ratio			90	106					dB
I _{OS}	Input Offset Current	(Note 3)			30	40		80	200	nA
			•			60			300	nA
I_B	Input Bias Current	(Note 3)			150	500		250	1000	nA
			•			1000			1200	nA
A _V	Voltage Gain			20	40		8	40		V/mV
	Response Time	(Note 4)			80			80		ns
$\overline{V_{SAT}}$	Saturation Voltage	$V_{IN} \le -10 \text{mV}$, $I_{SINK} = 25 \text{mA}$								
		T _A = 25°C			0.75	1.5		0.75	1.5	V
		$V^{+} \ge 4.5V, V^{-} = 0V$								
		$V_{IN} \le -10 \text{mV}, I_{SINK} \le 3.2 \text{mA}$	•		0.3	0.4		0.3	0.4	V
	Output Leakage Current	$V_{IN} \ge 10 \text{mV}, V_{OUT} = 35 \text{V}$			0.2	10		0.2	10	μΑ
	Input Voltage Range	$V_{S} = \pm 15V$	•		±13			±13		V
		$V^{+} = 5V, V^{-} = 0V$	•	1		3	1		3	V
	Differential Input Voltage		•			±5			±5	V
Is	Supply Current	$V^{+} = 5V, V^{-} = 0V$			4.3			4.3		mA
Is	Positive Supply Current	V _S = ±15V			8	12.5		8	12.5	mA
Is	Negative Supply Current	V _S = ±15V			3	5		3	5	mA

The ullet denotes specifications which apply over the full operating temperature range.

Note 1: For supply voltages less than $\pm 15V$, the maximum input voltage is equal to the supply voltage.

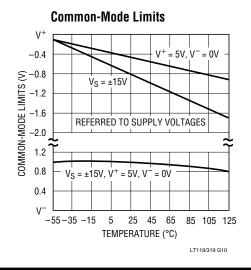
Note 2: Unless otherwise noted, supply voltage equals $\pm 15V$ and $T_A = 25^{\circ}C$. The ground pin is grounded. Note that the maximum voltage allowed between the ground pin and V^+ is 18V. Do not tie the ground pin to V^- when the power supply voltage exceeds $\pm 9V$. The offset voltage, offset current and bias current specifications apply for all supply voltages between $\pm 15V$ and 5V unless otherwise specified.

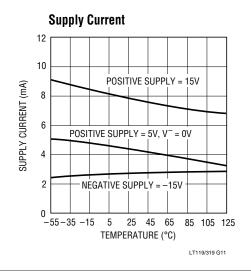
Note 3: The offset voltages and currents given are the maximum values required to drive the output within 1V of either supply with a 1mA load, thus these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.


Note 4: Response time specified is for a 100mV input step with 5mV overdrive.

Note 5: Inputs are protected with back-to-back 5.6V zener diodes. This limits maximum differential input voltage to ±5V if current is unlimited. Larger differential input drive is allowed if input current is limited to ±5mA with external resistance.

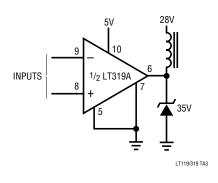
TYPICAL PERFORMANCE CHARACTERISTICS

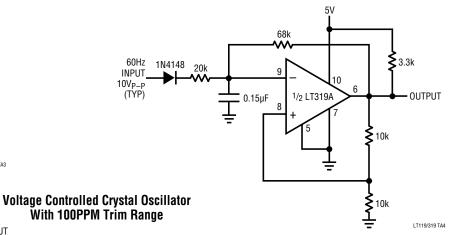

LT119/319 G7

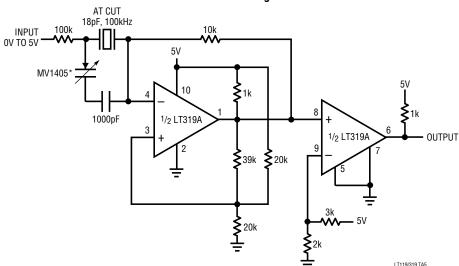


LT119/319 G8

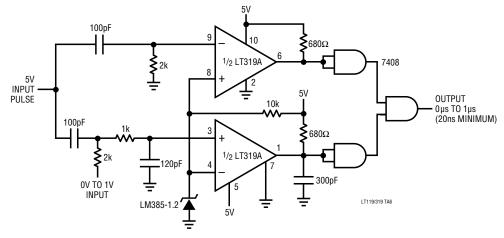
LT119/319 G9

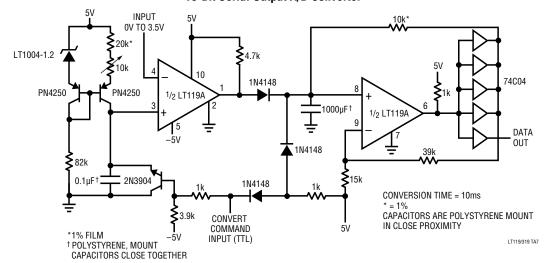

TYPICAL PERFORMANCE CHARACTERISTICS



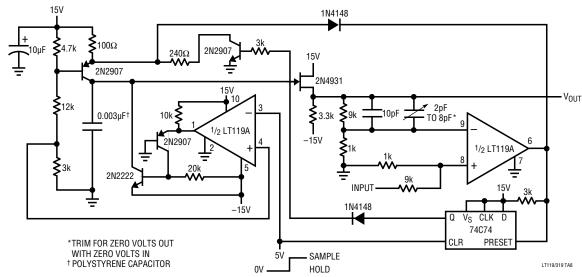

TYPICAL APPLICATIONS

High Noise Immunity 60Hz Sync Circuit

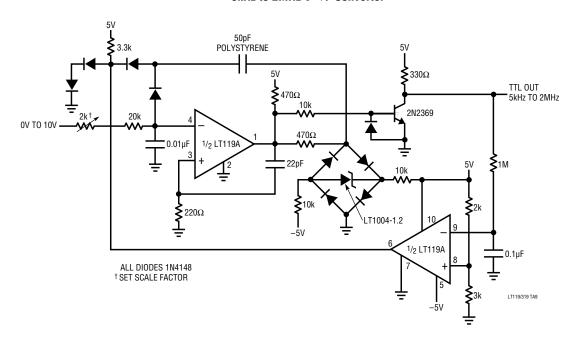




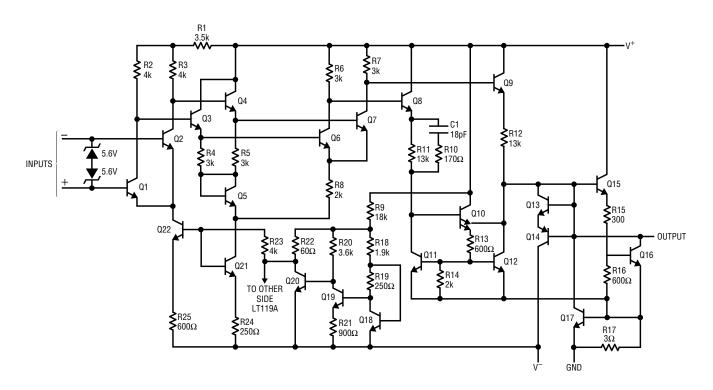
TYPICAL APPLICATIONS


Voltage Controlled High Speed One Shot

10-Bit Serial Output A/D Converter

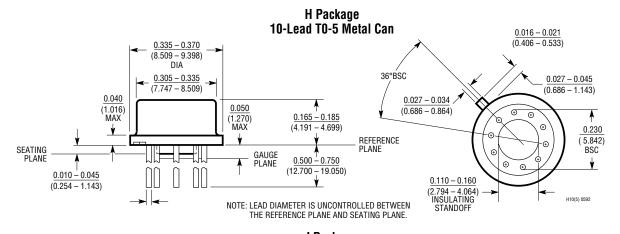


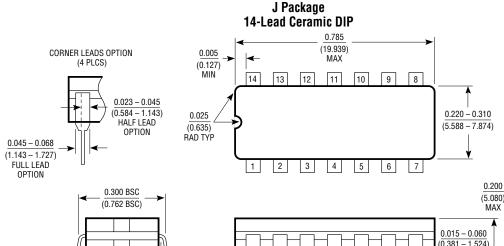
5 Microsecond Sample-and-Hold with Zero Hold Step

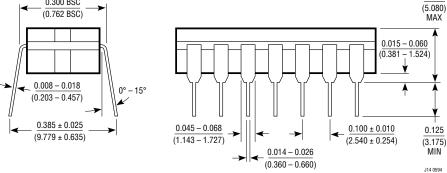


TYPICAL APPLICATIONS

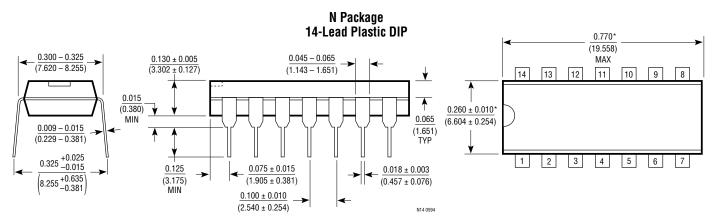
5kHz to 2MHz V→F Converter


SCHEMATIC DIAGRAM





PACKAGE DESCRIPTION


Dimension in inches (millimeters) unless otherwise noted.

NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP OR TIN PLATE LEADS.

^{*}THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm).