

Current Transducer LT 4000-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{DN} = 4000 A$

Electrical data

I _{PN}	Primary nominal r.m.s. current		4000		Α
I _P	Primary current, measuring range		0 ± 6000		Α
$\mathbf{R}_{_{\mathrm{M}}}$	Measuring resistance		$R_{_{M min}}$	R _{M max}	x
	with ± 24 V	@ $\pm 4000 A_{max}$	0	10	Ω
		@ ± 6000 A max	0	2	Ω
I _{SN}	Secondary nominal r.m.s. current		800		mΑ
K _N	Conversion ratio		1:5000	0	
V _c	Supply voltage (±5%)		± 24		V
I _c	Current consumption		35 (@ ± 2	24 V) + I ,	_s mA
\mathbf{V}_{d}	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		6	`	kV

Accuracy - Dynamic performance data

X _G	Overall accuracy @ I _{PN} , T _A = 25°C		± 0.5		%
$\mathbf{e}_{\scriptscriptstyle\! \!\scriptscriptstyle \perp}$	Linearity		< 0.1		%
			Тур	Max	
I_{\circ}	Offset current @ $I_p = 0$, $T_A = 25$ °C		Typ ± 0.6	± 0.8	mΑ
\mathbf{I}_{OT}	Thermal drift of \mathbf{I}_{o}	- 25°C + 70°C	± 0.6	± 0.8	mΑ
$\mathbf{t}_{_{\mathrm{r}}}$	Response time $^{\rm 1)}$ @ 90 % of $I_{\rm P\ max}$		< 1		μs
di/dt	di/dt accurately followed		> 50		A/µs
f	Frequency bandwidth (- 1 dB)		DC 1	100	kHz

General data

$T_{_{\rm A}}$	Ambient operating temperature	- 25 + 70	°C
T _s	Ambient storage temperature	- 40 + 85	°C
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 70°C	15	Ω
m	Mass	6	kg
	Standards 2)	EN 50178	

Features

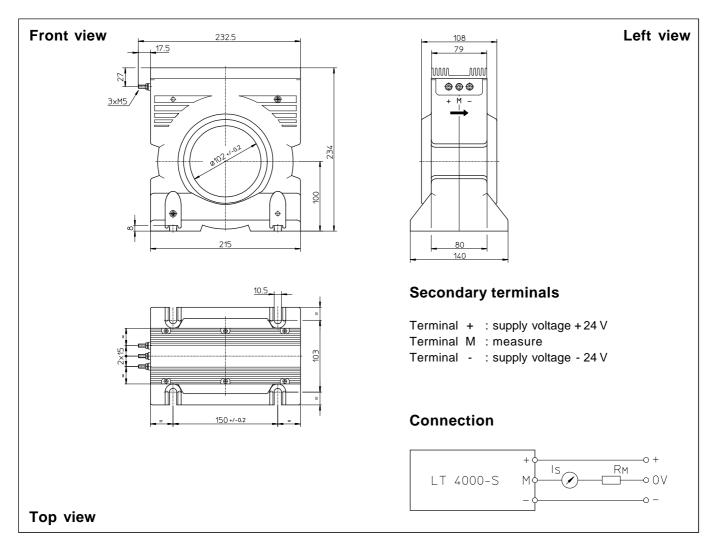
- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.


Notes: 1) With a di/dt of 100 A/µs

980728/8

²⁾ A list of corresponding tests is available

Dimensions LT 4000-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Primary through-hole
- Connection of secondary fastening torque
- ± 1.0 mm
- 4 holes \varnothing 10.5 mm \varnothing 102 mm
- M5 threaded studs 2.2 Nm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.