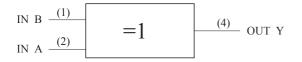


SEMICONDUCTOR TECHNICAL DATA

KIC7SZ86FU

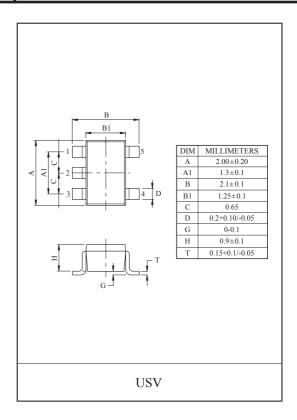
SILICON MONOLITHIC CMOS DIGITAL INTEGRATED CIRCUIT

EXCLUSIVE OR GATE

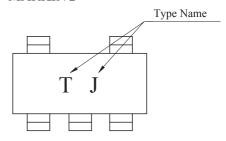

FEATURES

- · Super High Speed : t_{PD} =2.9ns(Typ.) into 50pF at V_{CC} =5V.
- · High Output Driver : ± 24 mA at V_{CC} =3V.
- · Power Down High Impedance inputs/outputs.
- · Wide Operating Voltage Range : $V_{CC(opr)}=1.65\sim5.5V$.

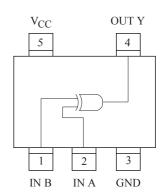
MAXIMUM RATINGS (Ta=25℃)


CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage Range	V _{CC}	-0.5~6	V
DC Input Voltage	V _{IN}	-0.5~6	V
DC Output Voltage	V _{OUT}	-0.5~6	V
Input Diode Current	I_{IK}	-50~20	mA
Output Diode Current	I _{OK}	-50~20	mA
DC Output Current	I _{OUT}	±50	mA
DC V _{CC} /Ground Current	I_{CC}	±50	mA
Power Dissipation	P_{D}	200	mW
Storage Temperature	T_{stg}	-65~150	${\mathbb C}$
Lead Temperature (10s)	$T_{\rm L}$	260	$^{\circ}$

Logic Diagram



TRUTH TABEL


A	В	Y
Н	Н	L
L	Н	Н
Н	L	Н
L	L	L

MARKING

PIN CONNECTION(TOP VIEW)

KIC7SZ86FU

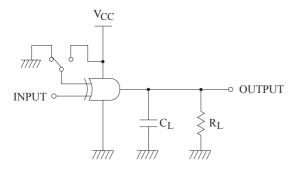
RECOMMENDED OPERATING CONDIITIONS

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	V _{CC}	1.65~5.5	V
Input Voltage	V _{IN}	0~5.5	V
Output Voltage	V _{OUT}	0~V _{CC}	V
Operating Temperature	T _{opr}	-40 ~ 85	$^{\circ}$
		$0 \sim 20 \text{ (V}_{CC}=1.8\text{V}, 2.5\text{V} \pm 0.2\text{V})$	
Input Rise and Fall Time	t_r, t_f	$0 \sim 10 \ (V_{CC} = 3.3 V \pm 0.3 V)$	ns/V
		$0 \sim 5 \text{ (V}_{CC} = 5.0 \text{V} \pm 0.5 \text{V})$	

ELECTRICAL CHARACTERISTICS

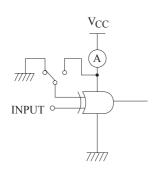
DC Characteristics

CHARACTERISTIC		SVMBOI	SYMBOL TEST CONDI		Ta=25 ℃			Ta=-40~85 °C		UNIT
		STNIBOL		V _{CC} (V)	MIN.	TYP.	MAX.	MIN.	MAX.	ONII
Input Voltage	High Level	V _{IH}	-	1.65~1.95	$0.75 \times V_{CC}$	-	-	$0.75 \times V_{CC}$	-	V
				2.3~5.5	$0.7 \times V_{CC}$	-	-	$0.7 \times V_{CC}$	-	
	Low Level	V _{IL}	-	1.65~1.95	-	-	$0.25 \times V_{CC}$	-	$\begin{array}{c} 0.25 \times \\ V_{CC} \end{array}$	
				2.3~5.5	-	-	$0.3 \times V_{CC}$	-	$0.3 \times V_{CC}$	
				1.65	1.55	1.65	-	1.55	-	
				1.8	1.7	1.8	-	1.7	-	
			$V_{IN}=V_{IH} \cdot V_{IL}$ $I_{OH}=-100\mu A$	2.3	2.2	2.3	-	2.2	-	
			10H-100μΑ	3.0	2.9	3.0	-	2.9	-	
	High Level	V _{OH}		4.5	4.4	4.5	-	4.4	-	V
	High Level	V OH	I _{OH} =-4mA	1.65	1.29	1.52	-	1.29	-	
			I _{OH} =-8mA	2.3	1.9	2.15	-	1.9	-	
			I _{OH} =-16mA	3.0	2.4	2.80	-	2.4	-	
			I _{OH} =-24mA	3.0	2.3	2.68	-	2.3	-	
Output			I _{OH} =-32mA	4.5	3.8	4.20	-	3.8	-	
Voltage			$V_{IN}=V_{IH}$ or V_{IL} $I_{OL}=100\mu A$	1.65	-	0.0	0.1	-	0.1	
				1.8	-	0.0	0.1	-	0.1	
				2.3	-	0.0	0.1	-	0.1	
		V _{OL}		3.0	-	0.0	0.1	-	0.1	
	Low Level			4.5	-	0.0	0.1	-	0.1	
	Low Level		I _{OL} =4mA	1.65	-	0.08	0.24	-	0.24	
			I _{OL} =8mA	2.3	-	0.10	0.3	-	0.3	
			I _{OL} =16mA	3.0	-	0.15	0.4	-	0.4	
			I _{OL} =24mA	3.0	-	0.22	0.55	-	0.55	
			I _{OL} =32mA	4.5	-	0.22	0.55	-	0.55	
Input Leaka	ge Current	I _{IN}	V _{IN} =5.5V, GND	0~5.5	-	-	±1	-	±10	μΑ
Power Off I	Leakage Current	I _{OFF}	V _{IN} or V _{OUT} =5.5V	0.0	-	-	1	-	10	μΑ
Quiescent S	upply Current	I _{CC}	V _{IN} =5.5V, GND	1.65~5.5	-	-	2.0	-	20	μΑ


KIC7SZ86FU

AC Characteristics

CHARACTERISTIC	SYMBOL	TEST CONDITION		Ta=25 ℃			Ta=-40~85 °C		UNIT
CHARACTERISTIC	SIMBOL		V _{CC} (V)	MIN.	TYP.	MAX.	MIN.	MAX.	UNII
Propagation Delay (Figures 1,3)	t _{PLH} t _{PHL}	$C_L=15pF, R_L=1M\Omega$	1.65	2.0	6.9	13.8	2.0	14.5	ns
			1.8	2.0	5.7	11.5	2.0	12	
			2.5 ± 0.2	0.8	3.8	8.0	0.8	8.5	
			3.3 ± 0.3	0.5	3.0	5.7	0.5	6.0	
			5.0 ± 0.5	0.5	2.4	5.0	0.5	5.4	
	$t_{\rm PLH}$	$C_1 = 50pF, K_1 = 500 \Omega$	3.3 ± 0.3	1.5	3.5	6.2	1.5	6.5	
	t_{PHL}		5.0 ± 0.5	0.8	2.9	5.4	1.0	5.8	
Input Capacitance	C_{IN}		0	-	4	-	-	ı	pF
Power Dissipation Capacitance (Figure 2)	C _{PD} (Note)	(Nota)	3.3	-	25	-	-	-	- pF
		5.0	-	31	-	-	-	PI	


Note: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the exprssion: $I_{CCD} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$

AC Loading and Waveforms

 C_L includes load and stray capacitance Input PRR=1.0MHz ; $t_{\,W}\!=\!\!500 ns$

FIGURE 1. AC Test Circuit

 $\begin{array}{l} \text{Input=AC Waveform ; } t_r = & t_f = 1.8 ns; \\ \text{PRR=10MHz ; Duty Cycle=50\%} \end{array}$

FIGURE 2. I_{CCD} Test Circuit

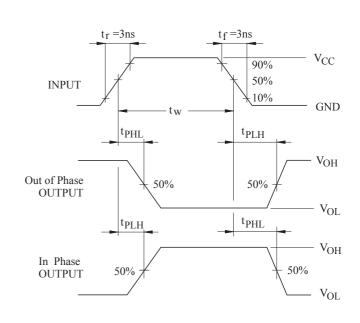


FIGURE 3. AC Waveforms