8－bit $\mu \mathrm{C}$ with 8 KB ROM，an $8-\mathrm{CH}$
12－bit A／D Converter and 16x4 LCD Driver

DESCRIPTION

The WT5058 is a high－performance，low－cost，CMOS 8－bit single－chip microcontroller with 8 Kbytes on－chip ROM，an 8－ channel 12－bit analog to digital converter and 16×4 LCD driver．This chip is suitable for variable applications，especially where analog signal（sensor output）to digital signal conversion and LCD display are required，including industrial control， consumer，communications，and security products．

This chip has 8 －bit CPU，RAM，ROM，I／Os，dual 16－bit timer／counters， $16 x 4$ LCD driver and an 8－channel 12－bit A／D converter．To be suitable powered applications，a power saving function is included．

FEATURES

－8－bit single chip microcontroller with 8K bytes ROM and 384bytes SRAM
－Wide voltage operating range from 2.4 V to 5.5 V
－On－chip RC oscillator runs at 2 MHz and crystal oscillator can run up to 6.0 MHz
－ 6 interrupt sources（external：l；internal：5）；all sources have independent latches each and multiple interrupt control is available
－I／O port（32 pins）
－Port PO
－Port P1 8 pins（ 20 mA sink current）
－Port P2 8 pins（shared with SEG9－SEG16）
－Port P3
8 pins（shared with SEG1－SEG8）
－Interval Timer（Internal time base generator）
\bullet Operating current $2 \mathrm{~mA} / 4 \mathrm{MHz} @ 5 \mathrm{~V}$ ；providing standby mode（OSC is stopped and current consumption $<1 \mathrm{uA} @ 5 \mathrm{~V}$ ）and key wake－up mode
－Watchdog timer
－Dual PWM
－Dual 16－bit timer／counters
－A／D converter module
－ 8 analog inputs multiplexed into one A / D converter
－Sample and hold
－ $20 \quad \mu \mathrm{~S}$ conversion time／per channel
－12－bit resolution with ± 2 LSB accuracy
－External reference input， $\mathrm{ADv} \sim$
－LCD driver（automatically display）
－LCD direct drive（max．8－digit display at $1 / 4$ duty）
－ $1 / 4,1 / 3,1 / 2$ duties and $1 / 2,1 / 3$ biases can be selected by programming
－Package：Chip form，28／40－pin PDIP or 28－pin Skinny

Jess Technology Co．，Ltd．
珍氏科技有限公司

WT5058
8 －bit $\mu \mathrm{C}$ with 8 KB ROM，an $8-\mathrm{CH}$ 12－bit A／D Converter and 16×4 LCD Driver

PACKAGE PIN ASSIGNMENT（40－PIN DIP）

Jess Technology Co．，Ltd．
珍氏科技有限公司

8－bit $\mu \mathrm{C}$ with 8 KB ROM，an $8-\mathrm{CH}$ 12－bit A／D Converter and 16×4 LCD Driver

PACKAGE PIN ASSIGNMENT（28－PIN DIP or 28－PIN SKINNY；Option \＃1）

Jess Technology Co．，Ltd．
珍氏科技有限公司

8－bit $\mu \mathrm{C}$ with 8 KB ROM，an $8-\mathrm{CH}$ 12－bit A／D Converter and 16x4 LCD Driver

PACKAGE PIN ASSIGNMENT（28－PIN DIP or 28－PIN SKINNY；Option \＃2）

Jess Technology Co．，Ltd．
珍氏科技有限公司

PIN FUNCTION

PIN NAME	40－pin	In／Out	FUNCTIONS
$\begin{aligned} & \text { P00/AIN0- P03/AIN3 } \\ & \text { P04/AIN4-P07/AIN7 } \end{aligned}$	$\begin{aligned} & 36-39 \\ & 1-4 \end{aligned}$	I／O	8－bit I／O port；internal pull－up； o / p ：sink $20 \mathrm{~mA}(\mathrm{P} 04 \sim \mathrm{P} 07)$ ；i／p：external pull－low （shared with analog inputs）
$\begin{aligned} & \text { P 10/PWM0 } \\ & \text { P11/PWM1 } \\ & \text { P 12/ECT0 } \\ & \text { P 13/VLCD } \\ & \text { P 14/COM } 1 \\ & \text { P 15/COM2 } \\ & \text { P 16/COM3 } \\ & \text { P 17/COM4 } \end{aligned}$	$\begin{array}{\|l\|} \hline 16 \\ 17 \\ 18 \\ 19 \\ 21 \\ 22 \\ 23 \\ 24 \\ \hline \end{array}$	I／O	（shared with PWM output）；8－bit I／O port；internal pull－up；o／p：sink 20 mA ； i / p ：external pull－low （Extemal counter） （Bias voltage to LCD） （LCD common output） （LCD common output） （LCD common output） （LCD common output）
P20／SEG9 P21／SEG10 P22／SEG11 P23／SEG12 P24／SEG13 P25／SEG14／VCAP 1 P26／SEG15／VCAP2 P27／SEG 16／VCAP3	$\begin{array}{\|l\|} \hline 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ \hline \end{array}$	I／O	8－bit I／O port；internal pull－up；i／p：external pull－low （shared with LCD segment output） P20－P23 support key wake－up
P30／SEG1 P31／SEG2 P32／SEG3 P33／SEG4 P34／SEG5 P35／SEG6 P36／SEG7 P37／SEG8	13 30 31 32 33 34 35 14 15		8－bit I／O port；internal pull－up；i／p：external pull－low （shared with LCD segment output）
XIN／ROSC	26	Input	Crystal input／ROSC input
XOUT	27	Output	Crystal output
RESET	29	Input	System reset signal input；low active
VDD	40	Input	Power source
GND	20	Input	Ground
$\mathrm{AD}_{\mathrm{VRF}}$	5	Input	Reference voltage input to A／D
EXTINT	28	Input	External interrupt input
CLKSEL／TEST	25	Input	Clock sources select，connected to VDD for ROSC or to GND for Crystal（Test Pin）

Jess Technology Co．，Ltd．
珍氏科技有限公司

APPLICATION DIAGRAM

FUNCTION DESCRIPTION

［1］I／O PORTS

The WT5058 has 4 ports（ 32 pins）each as follows：
$\diamond \quad \mathrm{P} 00-\mathrm{P} 07 \quad ; 8$－bit I／O port（shared with analog input AIN0－AIN7）
$\triangleleft \quad \mathrm{P} 10-\mathrm{P} 17 \quad ; 8$－bit I／O port（shared with PWM0／PWM1，COM1－4，ECT0，VLcD）
$\diamond \quad \mathrm{P} 20-\mathrm{P} 27 \quad ; 8$－bit I／O port（shared with SEG9－16）
＞P30－P37 ；8－bit I／O port（shared with SEG1－8）
$<1>$ Port PO（P00－P07）

Port P0 is an 8－bit bi－directional I／O port and its Data Register and Direction Control Register are located in P0DR（\＄00）and P0DCR（\＄26），respectively．All port pins have individually selectable pull－up resistors，and among them，P04～P07 output buffers are designed to have the capability to sink 20 mA and thus can drive LED directly．

Port P0 pins are shared with analog inputs（in this case，P0x must be configured as input）．When used as digital I／O pins，then P 0 x is configured as output pin if P 0 DCRx is set to＂ 1 ＂；otherwise，if P 0 DCRx is cleared to＂ 0 ＂，then P 0 x is configured as an input pin．For more detail about the P0 port configuration，please refer to Table 1.

Note：When pins of port P0 are used as inputs and externally pulled low，then they will source current If the internal pins are pulled up．

1．1 Port PO Data Register（PODR；\＄00）；R／W；Initial value 00_{H}

B7	B6	B5	B4	B3	B2	B1	B0
P0DR7	P0DR6	P0DR5	P0DR4	P0DR3	P0DR2	P0DR1	P0DR0

1．2 Port PO Data Direction Control Register（PODCR；\＄26）；R／W Initial value 00_{H}

B7	B6	B5	B4	B3	B2	B1	B0
P0DCR7	P0DCR6	P0DCR5	P0DCR4	P0DCR3	P0DCR2	P0DCR1	P0DCR0

Table 1．Port P0 Configuration

Jess Technology Co．，Ltd．

P0DCR0 ~ 7	P0DR0 ~ 7	I／O	Pull－up	Results
0	0	In	No	Tri－state（Hi－Z）
0	1	In	Yes	P00 \sim P07 with pull－up resistor（MOS）${ }^{\text {（NOTE）}}$（
1	0	Output	No	Output＂0＂＂
1	1	Output	No	Output＂ $1 "$

$<2>$ Port P1（P10－P17）

Port P1 is an 8－bit bi－directional I／O port and its Data Register and Direction Control Register are located in P1DR（\＄01）and P1DCR（\＄27），respectively．All port pins have individually selectable pull－up resistors and all their output buffers are designed to have the capability to sink 20 mA and thus can drive LED directly．

When used as digital I／O pins，then Plx is configured as output pin ifP1DCRx is set to＇ T ＇；otherwise，if P1DCRx is cleared to ＂ 0 ＂，then Pix is configured as input pin．For more detail about the configuration，please refer to Table 2.

Note：When pins of port P1 are used as inputs and externally pulled low，then they will source current if the internal pins are pulled up．

B7	B6	B5	B4	B3	B2		B0
P1DR7	P1DR6	P1DR5	P1DR4	P1DR3	P1DR2	P1DR1	P1DR0

2．2 Port P1 Data Direction Control Register（P1DCR；\＄27）；R／W；Initial value 00H

B7	B6	B5	B4	B3	B2	B1	B0
P1DCR7	P1DCR6	P1DCR5	P1DCR4	P1DCR3	P1DCR2	P1DCR1	P1DCR0

Table 2：Port P1 Configuration

P1DCR0 ~ 7	P1DR0 ~ 7	I／O	Pull－up	Results
0	0	In	No	Tri－state（Hi－Z）
0	1	In	Yes	P10 P17 with pull－up resistor（MOS）${ }^{(\text {NOTE })}$
1	0	Output	No	Output＂ $0 "$
1	1	Output	No	Output＂ $1 "$

$<3>$ Port P2（P20－P27）

Port P2 is an 8－bit bi－directional I／O port and all port pins have individually selectable pull－up resistors．The Data Register and Direction Control Register of port P2 are located in P2DR（\＄02）and P2DCR（\＄28），respectively．

When used as digital I／O pins，then P 2 x is configured as an output pin if P2DCRx is set to＂ 1 ＂；otherwise，if P2DCRx is cleared to＂ 0 ＂，then P 2 x is configured as input pin．For more detail about the configuration of port P2，please refer to Table 3.

Note：When pins of port P2 are used as inputs and externally pulled low，then they will source current if the internal pins are pulled up．

3．1 Port P2 Data Register（P2DR；\＄02）R／W；Initial value 00_{H}

B7	B6	B5	B4	B3	B2	B1	B0
P2DR7	P2DR6	P2DR5	P2DR4	P2DR3	P2DR2	P2DR1	P2DR0

3．2 Port P2 Data Direction Control Register（P2DCR；\＄28）；R／W；Initial value 0 OH

B7	B6	B5	B4	B3	B2	B1	B0
P2DCR7	P2DCR6	P2DCR5	P2DCR4	P2DCR3	P2DCR2	P2DCR1	P2DCR0

Table 3：The Configuration of port P2

P2DCR0 ~ 7	P2DR0 ~ 7	I／O	Pull－up	Results
0	0	In	No	Tri－state（Hi－Z）

Jess Technology Co．，Ltd．
珍氏科技有限公司

0	1	In	Yes	P20 \sim P27 with pull－up resistor（MOS）${ }^{\text {（NOTE）}}$
1	0	Output	No	Output＂ $0 "$
1	1	Output	No	Output＂ $1 "$

$<4>\quad$ Port P3（P30－P37）

Port P3 is an 8－bit bi－directional I／O port and all port pins have individually selectable pull－up resistors．The Data Register and Direction Control Register of port P3 are located in P3DR（\＄03）and P3DCR（\＄29）．

Jess Technology Co．，Ltd．

When used as digital I／O pins，then P3x is configured as output pin if P3DCRx is set to＂ 1 ＂；otherwise，if P3DCRx is cleared to＂ 0 ＂，then P 3 x is configured as input pin．

For more detail about the configuration of port P3，please refer to Table 4.

Note：When pins of port P3 are used as inputs and externally pulled low，then they will source current if the internal pins are pulled up．

4．1 Port P3 Data Register（P3DR；\＄03）；R／W；Initial value 00_{H}

B7	B6	B5	B4	B3	B2		B1
P3DR7	P3DR6	P3DR5	P3DR4	P3DR3	P3DR2	P3DR1	P3DR0

4．2 Port P3 Data Direction Control Register（P3DCR；\＄29）；R／W；Initial value 00_{H}

B7	B6	B5	B4	B3	B2	B1	B0
P3DCR7	P3DCR6	P3DCR5	P3DCR4	P3DCR3	P3DCR2	P3DCR1	P3DCR0

Table 4：The Configuration of Port P4

P3DCR0 ~ 7	P3DR0 ~ 7	I／O	Pull－up	Results
0	0	In	No	Tri－state（Hi－Z）
0	1	In	Yes	P30 \sim P37 with pull－up resistor（MOS）${ }^{\text {（NOTE）}}$
1	0	Output	No	Output＂0＂
1	1	Output	No	Output＂＂ $1 "$

$<5>\operatorname{PORTSEL}(\$ 11) ; R / W$ ；Initial 00_{H}

B7	B6	B5	B4	B3	B2	B1	B0
CAPSEL	P3SCHN	P3SCLN	P2SCHN	P2SCLN	P1LCD	P1PWM1	P1PWM0

B7：CAPSEL；＂1＂：external capacitors are connected to pins VCAP1，VCAP2，and VCAP3；
＂0＂：I／O（P25～27）or SEG14～16 is selected
B6：P3SCHN；P3 segments or I／Os select（high nibble）；0：I／Os，1：segments
B5：P3SCLN；P3 segments or I／Os select（low nibble）；0：I／Os，1：segments
B4：P2SCHN；P2 segments or I／Os select（high nibble）；0：I／Os，1：segments
B3：P2SCLN；P2 segments or I／Os select（low nibble）；0：I／Os，1：segments
B2：P1LCD；LCD commons／$V_{\text {LCD }}$ or I／Os select；0：I／Os，1：LCD commons／V $\mathrm{V}_{\mathrm{LCD}}$ ）
B1：P1PWM1；PWM1 or FO select；0：FO，1：PWM1 output

Jess Technology Co．，Ltd．

B0：P1PWM0；PWM0 or I／O select；0：I／O，1：PWM0 output
$<6>$ EXTINT Input Pads

$<7>$ NMI Source
INT 1 from T／C 1

$<8>$ INT Sources

INT0 from T／CO
INT 1 from T／C 1
FQL INT
FQH INT
A／D conversion completion interrupt
EXTINT（rising edge）

［2］CLOCK SOURCE

CPU clock from RC oscillator：CLKSEL pin is connected to VDD
CPU clock from Crystal oscillator：CLKSEL pin is connected to GND

［3］TIMER／COUNTERS

CRYC register（\＄05）；Oscillator control
B3－B0：R／W

B7	B6	B5	B4	B3	B2	B1	B0
--	-	--	RES／NORES	WUT1	WUT0	CRYST／PSM	ENAB

B0：ENAB；0：enable（default），1：disable
Note： b 0 is set to 1 in normal operation，and can be set to 0 to stop the crystal（sleep mode）

B1：CRYST／PSM；0：crystal starts（default），1：power saving mode

Note：While crystal is being started（strong current mode），b1 is set to 0 ；once it starts，b1 can be set to 1 in order to switch the crystal from＂strong current mode＂to＂weak current mode＂for power saving

Jess Technology Co．，Ltd．

B3：B2：WUT1：WUT0（set the warm－up time at release of the hold operating mode）
00：218／fc \qquad 65.5 ms （when $\mathrm{fc}=4 \mathrm{MHz}$ ）

01：214／fc． ed
10：reserved
00：26／fc． \qquad $16 \mu \mathrm{~s}($ when $\mathrm{fc}=4 \mathrm{MHz}$

B4：RES／NORES；0：go through reset process， 1 ＇without going through reset process，1：without going through reset process

3．1 Timer／counters interrupt sources

INTC Register（\＄06）；Interrupt control command register；R／W

Read：read interrupt flag

B7	B6	B5	B4	B3	B2	B1	B0
$*$	ADCI	FQHINT	EXTINT	T／C1NMI	T／C1INT	T／C0INT	FQLINT

Write：Interrupt enable／disable control

B7	B6	B5	B4	B3	B2	B1	B0	FUNCTION
$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	Low frequency interrupt enable
$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	Low frequency interrupt disable \＆clear
$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	T／CO INT0 interrupt enable
$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	T／CO INT0 interrupt disable \＆clear
$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	T／C1 INT1 interrupt enable
$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	T／C1 INT1 interrupt disable \＆clear
$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	T／C 1 NMI interrupt enable
$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	T／C1 NMI interrupt disable \＆clear
$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	External interrupt（EXTINT）enable
$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	External interrupt disable \＆clear
$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	High frequency interrupt enable
$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	High frequency interrupt disable \＆clear
$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	A／D converter interrupt enable（hold \＆conversion start）
$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	A／D converter interrupt disable \＆clear（sampling start）

3．2 TIMER／COUNTERS

WT5058 has two 16－bit timer／counters，namely T／CO and T／C 1，one low－frequency timer，and one high－frequency timer． Both T／CO and T／C1 can be used as either a timer or a counter，and T／C 1 has auto－reload capability．

If $\mathrm{T} / \mathrm{CO}(\mathrm{T} / \mathrm{C} 1)$ is used as an internal counter，by loading zero into register $\mathrm{T} / \mathrm{COH}(\mathrm{T} / \mathrm{C} 1 \mathrm{H})$ and $\mathrm{T} / \mathrm{COL}(\mathrm{T} / \mathrm{C} 1 \mathrm{~L})$ ，the user can reset the timer．When the specified timer is activated，the count value can be read from registers T／COH（T／C1H）\＆T／COL （T／C1L）by reading registers $\mathrm{T} / \mathrm{COH}(\mathrm{T} / \mathrm{C} 1 \mathrm{H})$ and then registers $\mathrm{T} / \mathrm{COL}(\mathrm{T} / \mathrm{C} 1 \mathrm{~L})$ will be latched automatically．While writing registers $\mathrm{T} / \mathrm{COH}(\mathrm{T} / \mathrm{C} 1 \mathrm{H})$ and $\mathrm{T} / \mathrm{COL}(\mathrm{T} / \mathrm{C} 1 \mathrm{~L})$ ，the register $\mathrm{T} / \mathrm{COL}(\mathrm{T} / \mathrm{C} 1 \mathrm{~L})$ must be written first and then followed by writing $\mathrm{T} / \mathrm{COH}(\mathrm{T} / \mathrm{C} 1 \mathrm{H})$ ．To guarantee correct counting，it is not allowed to write ONLY either $\mathrm{T} / \mathrm{C} 0 \mathrm{H}(\mathrm{T} / \mathrm{C} 1 \mathrm{H})$ or T／C0L（T／C1L）．

Registers for loading T／C0 \＆ 116 bit data

LDT／C0（\＄0A）；Write	Load（\＆latch）T／C0 16－bit data
LDT／C1（\＄0D）；Write	Load（\＆latch）T／C1 16－bit data

T／C0 116－bit data locations

	High Byte Data（D15～D8）	Low Byte Data（D7～D0）
$\mathrm{T} / \mathrm{C} 0$	T／C0H（\＄0B）；B7～B0	T／C0H（\＄0C）；B7～B0
$\mathrm{T} / \mathrm{C} 1$	$\mathrm{~T} / \mathrm{C} 1 \mathrm{H}(\$ 0 \mathrm{E}) ; \mathrm{B} 7 \sim \mathrm{~B} 0$	$\mathrm{~T} / \mathrm{C} 1 \mathrm{H}(\$ 0 \mathrm{~F}) ; \mathrm{B} 7 \sim \mathrm{~B} 0$

TMC Register（\＄07）；Timer control register，Write

B7	B6	B5	B4	B3	B2	B1	B0
T1AUTO	T1TCS2	T1TCS1	T1TCS0	--	T0TCS2	T0TCS10	T0TCS0

B3：reserved
B7：T／C1 Auto－reload selection（can be stop on－the－fly）
＂ 0 ＂：disable；＂ 1 ＂：enable
$\mathrm{B} 2 \sim \mathrm{~B} 0: \mathrm{T} / \mathrm{C} 0$ timer sources and timer／counter mode selection
T／C0 Clock Source Table

T0TCS2	T0TCS1	T0TCS0	Mode	Selected Source
0	0	0	Timer	CPU Clock（T）
0	0	1	Timer	T／4
0	1	0	Timer	T／8
0	1	1	Timer	T／16
1	0	0	Timer	T／32
1	0	1	Timer	T／64
1	1	0	Timer	T／128
1	1	1	Timer	External counter（ETC0）

B6～B4：T／C1 timer sources and timer／counter mode selection

Jess Technology Co．，Ltd．

T1TCS2	T1TCS1	T1TCS0	Mode	Selected Source
0	0	0	Timer	CPU Clock（T）
0	0	1	Timer	T／4
0	1	0	Timer	T／8
0	1	1	Timer	T／16
1	0	0	Timer	T／32
1	0	1	Timer	T／64
1	1	0	Timer	T／128
1	1	1	Timer	Clock source from T／C0 output

IN TIMER MODE

In regular timer mode， T / CO and $\mathrm{T} / \mathrm{C} 1$ can be re－loaded and always counts down from the value set by the user．If the specified bit is enabled in INTC register（\＄06）and the timer counts down from the value set by the user toward 0000 H ，then once it hits 0000 H and becomes underflow，an interrupt signal will be generated．The value set by the user will be re－loaded to the timer automatically，and，again，the timer counts down from the value set by the user toward 0000_{H} ．

T／C1 IN PWM MODE

When the PWM mode is selected，T／C1 incorporated with the output compare registers OCR10 and OCR11 performs a dual 8， 9 or 10－bit，free－running，glitch－free and phase correct PWM with outputs on the P 10／PWM0 and P 11／PWM1 pins．The PWM output frequency is depends on the resolutions，i．e．， 8,9 ，or 10 －bit，and the OSC frequency， $\mathrm{F}_{\text {OSC }}$ ．Referring to Table 5 for more detail

In this mode $T / C 1$ acts as an up／down counter，counting up from 0000 H to MAX and counts down again to zero before the cycle is repeated．When the counter value matches the contents of the 10 least significant bits（for 10－bit PWM case）of OCR10 or OCR11，the P10（PWM0）／P11（PWM1）pins are set or cleared according to the setting of the CPA0 or CPB0 bits in the T／C1 control register TCCR10．

Write procedure for PWM operation should be OCR10L（\＄2B）first，followed by OCR10H（\＄2A），and then finally TCCR10（\＄10）．

TCCR10（\＄10）；R／W；Initial value 00_{H} ．

B7	B6	B5	B4	B3	B2	B1	B0
--	CAP0	--	CPB0	--	--	PWMS1	PWMS0

PWMS 1	PWMS0	Description
0	0	PWM function is disable（default）

Jess Technology Co．，Ltd．

12－bit A／D Converter and 16x4 LCD Driver

0	1	T／C 1 is an 8 －bit PWM
1	0	T／C1 is a $9-$ bit PWM
1	1	T／C1 is a $10-$ bit PWM

CPA0／CPB0	Results on PWM0／PWM1
	Up counting and output is cleared when compare match． Down counting and output is set when compare match
	Down counting and output is cleared when compare match． Up counting and output is set when compare match

Table 5：The relationship between the PWM output frequency and its resolution

PWM Resolution	Timer MAX value	Frequency
8－bit	$\$ 00 \mathrm{FF}$	Fosc／512
9－bit	$\$ 01 \mathrm{FF}$	Fosc／1024
10－bit	$\$ 03 \mathrm{FF}$	Fosc／2048

OCR $10 \mathrm{H}(\$ 2 \mathrm{~A}) /$ OCR10L（\＄2B）；T／C 1 output compare register；R／W；Initial value 00_{H}

OCR10H	B7（MSB）	B6	B5	B4	B3	B2	B1	B0
	OCR10L	B7	B6	B5	B4	B3	B2	B1
		B0（LSB）						

OCR11H（\＄2C）／OCR11L（\＄2D）；T／C 1 output compare register；R／W；Initial value 00_{H}

OCR11H								
	B7（MSB）	B6	B5	B4	B3	B2	B1	B0
OCR11L	B7	B6	B5	B4	B3	B2	B1	B0（LSB）

To avoid the false counting of the PWM pulse in the event of abnormal OCR10／OCR11 write（glitch case），the OCR10／OCRllcontents while being written，are copied to a temporary location and are latched when T／C1 reaches the value MAX．

Note：The value in OCR10／OCRII can NOT be 0000 H or MAX；The minimal value is 0001 H and the maximal value is MAX－1．

WDTMR register（\＄12）
Watchdog timer must reset within TWDT seconds；otherwise the system will be reset．

B7	B6	B5	B4	B3	B2	B1	B0
FQHS2	FQHS1	FQHS0	--	WDTEN	WDTS2	WDTS1	WDTS0

B2：B0：Watchdog timer or FQL output frequencies select（ $f_{\text {WDT }}$ ）

Jess Technology Co．，Ltd．
WT5058
珍氏科技有限公司
8－bit $\mu \mathrm{C}$ with 8 KB ROM，an 8－CH 12－bit ADD Converter and 16×4 LCD Driver

WDTS2	WDTS1	WDTS0	Output Frequency $\left(\mathrm{f}_{\mathrm{wDT}}\right) \sim \mathrm{OSC}=4 \mathrm{MHz}$
0	0	0	$\mathrm{OSC} 1 / 2^{17}(0.25 \mathrm{~Hz})$
0	0	1	$\mathrm{OSC} 1 / 2^{16}(0.5 \mathrm{~Hz})$
0	1	0	$\mathrm{OSC} 1 / 2^{15}(1.0 \mathrm{~Hz})$
0	1	1	$\mathrm{OSC} 1 / 2^{14}(2.0 \mathrm{~Hz})$
1	0	0	$\mathrm{OSC} 1 / 2^{13}(4.0 \mathrm{~Hz})$
1	0	1	$\mathrm{OSC} 1 / 2^{12}(8.0 \mathrm{~Hz}$
1	1	0	$\mathrm{O} 8 \mathrm{Cl} / 2^{11}(16.0 \mathrm{~Hz})$
1	1	1	$\mathrm{OSC} 1 / 2^{10}(32.0 \mathrm{~Hz})$

Where OSC $1=\mathrm{OSC} / 2^{7}$ ，so when $\mathrm{OSC}=4 \mathrm{MHz}$ then $\operatorname{OSC} 1=32 \mathrm{KHz}$
B3：WDTEN：Watchdog timer／FQL select；1：watchdog enable \＆FQL disable， 0 ：watchdog disable \＆FQL enable

B7：B5：FQHS2～FQHS0；FQH output frequencies select

FQHS2	FQHS1	FQHS0	Output Frequency $(0$ OSC $=4 \mathrm{MHz})$
0	0	0	OSC1 $(32 \mathrm{kHz})$
0	0	1	OSC $1 / 2(16 \mathrm{kHz})$
0	1	0	OSC1 $/ 2^{2}(8 \mathrm{kHz})$
0	1	1	OSC1／2 ${ }^{3}(4 \mathrm{kHz})$
1	0	0	OSC1 $2^{4}(2 \mathrm{kHz})$
1	0	1	OSC1 $/ 2^{5}(1 \mathrm{kHz})$
1	1	0	OSC1 $2^{6}(512 \mathrm{~Hz})$
1	1	1	$\mathrm{OSCl}^{7} / 2^{7}(256 \mathrm{~Hz})$

［4］MEMORY MAP

The following figure shows the location of memory mapping．

CPU ADDRESS

\＄0000－5002D	I／O）register
\＄002E－5007F	Reserved
\＄0080－500FF	SRAM（page0）
50100－501FF	SRAM\＆STACK（pagel）
50200－SDFFF	Reserved
SE000	
	ogtam ROM

Jess Technology Co．，Ltd．
珍氏科技有限公司

［ 5 ］CLOCK MODES

For portable battery－powered applications，stand－by mode is required for saving power．In this chip，by writing the SLPST register（\＄09），user can stop the CPU clock such that CPU goes to stand－by mode．
The wake－up sources can be enable by setting the SLWC register（\＄08）（there are two sources in this chip，namely port P20－ P23 and FQL wake－ups）．After receiving a wake－up signal，the CPU is reset．

SLWC register（\＄08）；Sleep／wake－up control register；R／W

| B7 | B6 | B5 | B4 | B3 | B1 | B0 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | P2SC | FQLTBI |

Jess Technology Co．，Ltd．
b1：P2SC：P20－P23 port keyboard state change
0 ：wake－up disable；1：wake－up enable
b0：FQLTBI：FQL time base interrupt
0 ：wake－up disable； 1 ：wake－up enable
SLPST register（\＄09），Write
Write：Sleep start
To get into sleep mode，the program should be written as below（two consecutive instructions）
STA $08_{\text {H }}$
STA $09_{\text {H }}$

［6］A／DCONVERTER

A 12－bit successive approximation method used in this A / D converter，as shown in the following figure．By multiplexing method，this A／D converter can manage up to eight analog inputs．A／D conversion is started by a write operation to the analog input selection bit in the A / D control register and by selecting the analog voltage input pins． When the conversion is completed，the A / D interrupt request bit in the interrupt request register is set．The result of A / D conversion is stored in the A / D register．During A / D conversion stage，the A / D register must not be read， otherwise the incorrect value may be obtained．

ADCR（\＄13）：A／D control register；
b7：A／D On／Off control；
$\mathrm{b} 7=0, \mathrm{~A} / \mathrm{D}$ Off（default）；b7＝1，A／D On（write）
b3 ：b0：High－nibble of A／D data

B7	B6	B5	B4	B3	B2	B1	B0
ADON	CKS1	CKS0	--	B3	B2／ADS2	B1／ADS1	B0／ADS0

CKS1	CKS0	Input Clock Selection
0	0	$\phi_{0} / 4$（when CPU clock is 1 MHz ，this option is recommended）
0	1	$\Phi_{0} / 8$（when CPU clock is 2 MHz ，this option is recommended）
1	0	$\Phi_{0} / 16$（when CPU clock is 4 MHz ，this option is recommended）
1	1	$\Phi_{0} / 32$（when CPU clock is 8 MHz ，this option is recommended）

＊ϕ_{0} represents CPU／System clock

ADS2	ADS1	ADS0	Input Selection
0	0	0	AIN0
0	0	1	AIN1
0	1	0	AIN2
0	1	1	AIN3
1	0	0	AIN4
1	0	1	AIN5
1	1	0	AIN6
1	1	1	AIN7

ADR（\＄14）：A／D register；Low Byte of A／D data（D7－D0；note：Dll－D8 in register ADCR（\＄13））

［ 7 ］LCD DRIVER／CONTROLLER

The WT5058 contains 64－segment LCD driver／controllers and it has circuit that directly drives the Liquid Crystal Display （LCD）and its control circuit．

The WT5058 has the following connecting pins with
（1）Segment output； 16 pins（SEG1－SEG16）
（2）Common output； 4 pins（COM 1－COM4）

In addition，VCAP 1，VCAP2，VCAP3，and VLCD are bias voltage input pins to drive the LCD In power saving mode， VCAP1，VCAP2 and VCAP3 should be connected with 0.01 uF capacitors

The devices that can be directly driven is selected for LCD drivers of following drive methods
（1） $1 / 4$ duty（ $1 / 3$ bias）LCD；Max． 64 segments（ 8 segments X 8 digits）
（2） $1 / 3$ duty（ $1 / 3$ bias）LCD；Max． 48 segments（ 8 segments X 6 digits）

Jess Technology Co．，Ltd．
（3） $1 / 3$ duty（ $1 / 2$ bias）LCD；Max． 48 segments（ 8 segments X 6 digits）
（4） $1 / 2$ duty（ $1 / 2$ bias）LCD；Max． 32 segments（ 8 segments X 4 digits）

7．1 Control of LCD Driver

LCDC（\＄15）；bl～b0，Write

B7	B6	B5	B4	B3	B2	B1	B0
$*$	$*$	$*$	LCDPS	LFS1	LFS0	DTY1	DTY0

DTY1	DTY0	Duty \＆Bias Selection
0	0	$1 / 4$ duty $(1 / 3$ bias $)$
0	1	$1 / 3$ duty $(1 / 3$ bias $)$
1	0	$1 / 3$ duty $(1 / 2$ bias $)$
1	1	$1 / 2$ duty $(1 / 2$ bias $)$

Note：Initial value：$b l=0 ; b 0=0$

LFS1	LFS0	Select guide（frequency＝64Hz）
		When OSC $\approx 4 \mathrm{MHz}$, this option is recommended
		When OSC $\approx 8 \mathrm{MHz}$, this option is recommended
		When OSC $\approx 2 \mathrm{MHz}$, this option is recommended
		When OSC $\approx 1 \mathrm{MHz}$, this option is recommended

LCDPS：＂0＂：Normal mode
＂ 1 ＂：Power saving mode

Note：Initially this system is in normal mode，once the LCD is lit then，after around 1 second，this system can be switched to power saving mode for power saving．But，please be careful that the LCD can ONLY be turned on by using normal mode （can＇t use power saving mode）when it being turned off and would like to turn it on again．

7．2 Frame Frequency

Base Freq．＠ 64 Hz	$1 / 4$ Duty	$1 / 3$ Duty	$1 / 2$ Duty
Frame Freq．	$\mathrm{f}=256 \mathrm{~Hz}$	$\mathrm{f}=192 \mathrm{~Hz}$	$\mathrm{f}=128 \mathrm{~Hz}$

7．3 LCD Drive Voltage

The LCD is on only when the difference in potential between the segment output and common output is $+\mathrm{V}_{\mathrm{ON}}$ or－ V_{ON} ，and turn off at all other cases，where V_{ON} is the voltage value on $\mathrm{V}_{\mathrm{LCD}}$ pin．If CPU and LCD drive voltage are different， $\mathrm{V}_{\mathrm{LCD}}$ pin is connected to VDD through a 100 K ohm variable resister， R ；otherwise，if CPU and LCD drive voltage are the same， $\mathrm{V}_{\mathrm{LCD}}$ pin is connected to VDD directly．If V_{R} is the voltage drop on R ，then $V_{O N}=V D D-V_{R}$

7．4 LCD Display Operation

珍氏科技有限公司

8－bit $\mu \mathrm{C}$ with 8 KB ROM，an $8-\mathrm{CH}$ 12－bit A／D Converter and 16×4 LCD Driver

The LCD driver generates the segment signals and common signals in accordance with display data and drive method．Thus， display patterns can be changed easily by overwriting the contents of the display data area with a program．

DISPLAY DATA AREA

Write the following assigned area

	SEG1－SEG8	SEG9－SEG16
COM1	DDA11（\＄16）	DDA12（\＄17）
COM2	DDA21（\＄1A）	DDA22（\＄1B）
COM3	DDA31（\＄1E）	DDA32（\＄1F）
COM4	DDA41（\＄22）	DDA42（\＄23）

$1 / 4$ DUTY	COM4	COM3	COM2	COM1
$1 / 3$ DUTY	$* * * *$	COM3	COM2	COM1
$1 / 2$ DUTY	$* * * *$	$* * * *$	COM2	COM1

［ 8 ］I／O REGISTER SUMMARY

NAME	ADDR	R／W	D7	D6	D5	D4	D3	D2	D1	D0
P0DR	\＄00	R／W	P0DR7	P0DR6	P0DR5	P0DR4	P0DR3	P0DR2	P0DR1	P0DR0
P1DR	\＄01	R／W	P1DR7	P1DR6	P1DR5	P1DR4	P1DR3	P1DR2	P1DR1	P1DR0
P2DR	\＄02	R／W	P2DR7	P2DR6	P2DR5	P2DR4	P2DR3	P2DR2	P2DR1	P2DR0
P3DR	\＄03	R／W	P3DR7	P3DR6	P3DR5	P3DR4	P3DR3	P3DR2	P3DR1	P3DR0
Reserved	\＄04	－－	－－	－－	－－	－－	－－	－－	－－	－－
CRYC	\＄05	R／W		－－	－－	$\begin{aligned} & \text { RES/NO } \\ & \text { RES } \\ & \hline \end{aligned}$	WUT1	WUT0	$\begin{aligned} & \text { CRYST/ } \\ & \text { PSM } \\ & \hline \end{aligned}$	ENAB
INTC	\＄06	R／W	－－	ADCI	FQHINT	EXTINT	$\begin{aligned} & \text { T/C1N } \\ & \text { MI } \end{aligned}$	$\begin{aligned} & \text { T/C1IN } \\ & \text { T } \end{aligned}$	$\begin{aligned} & \text { T/C0IN } \\ & \text { T } \end{aligned}$	FQLINT
TMC	\＄07	W	$\begin{aligned} & \text { T1AUT } \\ & \mathrm{O} \\ & \hline \end{aligned}$	T1TCS2	T1TCS1	T1TCS0	－－	T0TCS2	T0TCS1	T0TCS0
SLWC	\＄08	R／W	－－	－－	－－	－－	－－	－－	P2SC	FQLTBI
SLPST	\＄09	W	－－	－－	－－	－－	－－	－－	－－	－－
LDT／C0	\＄0A	W	\cdots	－－	－－	－－	－－	－－	－－	－－
T／C0H	\＄0B	R／W	B7	B6	B5	B4	B3	B2	B1	B0
T／C0L	\＄0C	R／W	B7	B6	B5	B4	B3	B2	B1	B0
LDT／C1	\＄0D	W	－	－－	－－	－－	－－	－－	－－	－－
T／C1H	\＄0E	R／W	B7	B6	B5	B4	B3	B2	B1	B0
T／C1L	\＄0F	R／W	B7	B6	B5	B4	B3	B2	B1	B0
TCCR10	\＄10	R／W	－－	CPA0	－－	CPB0	－－	－－	PWMS1	PWMS0
PORTSEL	\＄11	R／W	CAPSE L	$\begin{aligned} & \text { P3SCH } \\ & \mathrm{N} \end{aligned}$	P3SCLN	$\begin{aligned} & \text { P2SCH } \\ & \mathrm{N} \end{aligned}$	P2SCLN	P1LCD	$\begin{aligned} & \text { P1PWM } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { P1PWM } \\ & 0 \end{aligned}$
WDTMR	\＄12	W	FQHS2	FQHS1	FQHS0	－－	WDTEN	WDTS2	WDTS1	WDTS0
ADCR	\＄13	R／W	ADON	CKS1	CKS0	－－	B3	$\begin{aligned} & \mathrm{B} 2 / \mathrm{ADS} \\ & 2 \end{aligned}$	$\begin{aligned} & \text { B1/ADS } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { B0/ADS } \\ & 0 \end{aligned}$
ADR	\＄14	R	B7	B6	B5	B4	B3	B2	B1	B0
LCDC	\＄15	W	－－	－－	－－	LCDPS	LFS1	LFS0	DTY1	DTY0

DDA11	$\$ 16$	W	B7	B6	B5	B4	B3	B2	B1	B0
DDA12	$\$ 17$	W	B7	B6	B5	B4	B3	B2	B1	B0
Reserved	$\$ 18 \sim 19$	W	--	--	--	--	--	--	--	--
DDA21	$\$ 1 \mathrm{~A}$	W	B7	B6	B5	B4	B3	B2	B1	B0
DDA22	$\$ 1 \mathrm{~B}$	W	B7	B6	B5	B4	B3	B2	B1	B0
Reserved	$\$ 1 \mathrm{C} \sim 1 \mathrm{D}$	W	--	--	--	--	--	--	--	--
DDA31	$\$ 1 \mathrm{E}$	W	B7	B6	B5	B4	B3	B2	B1	B0
DDA32	$\$ 1 F$	W	B7	B6	B5	B4	B3	B2	B1	B0
Reserved	$\$ 20 \sim 21$	W	--	--	--	--	--	--	--	--
DDA41	$\$ 22$	W	B7	B6	B5	B4	B3	B2	B1	B0
DDA42	$\$ 23$	W	B7	B6	B5	B4	B3	B2	B1	B0
Reserved	$\$ 24 \sim 25$									
P0DCR	$\$ 26$	R／W	P0DCR7	P0DCR6	P0DCR5	P0DCR4	P0DCR3	P0DCR2	P0DCR1	P0DCR0
P1DCR	$\$ 27$	R／W	P1DCR7	P1DCR6	P1DCR5	P1DCR4	P1DCR3	P1DCR2	P1DCR11	P1DCR0
P2DCR	$\$ 28$	R／W	P2DCR7	P2DCR6	P2DCR5	P2DCR4	P2DCR3	P2DCR2	P2DCR1	P2DCR0
P3DCR	$\$ 29 ~$	R／W	P3DCR7	P3DCR6	P3DCR5	P3DCR4	P3DCR3	P3DCR2	P3DCR1	P3DCR0
OCR10H	$\$ 2 A$	R／W	B7	B6	B5	B4	B3	B2	B1	B0
OCR10L	$\$ 2 B ~$	R／W	B7	B6	B5	B4	B3	B2	B1	B0
OCR11H	$\$ 2 C ~$	R／W	B7	B6	B5	B4	B3	B2	B1	B0
OCR11L	$\$ 2 D ~$	R／W	B7	B6	B5	B4	B3	B2	B1	B0

［ 9 ］ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS（VSS＝0V）

PARAMETER	SYMBOL	RATING	UNIT
DC Supply Voltage	VDD	$<+$	V
Input Voltage Range	Vin	$-0.5 \sim$ VDD +0.5	V
Operating Temperature	Topr	$0 \sim+70$	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	$-50 \sim+150$	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{VSS}=0 \mathrm{~V}, \mathrm{Topr}=0\right.$ to $\left.70^{\circ} \mathrm{C}\right)$

PARAMETER	SYMBOL	Min．	Typ．	Max．	Unit	CONDITIONS
Operating Voltage	VDD	2.4	--	5.5	V	
Operating Current	I_{OP}			2	mA	OSC 4MHz＠ 5.0 V
Standby Current	$\mathrm{I}_{\mathrm{STB}}$			1.0	$\mu \mathrm{~A}$	$\mathrm{VDD}=5.0 \mathrm{~V}$
OSC Frequency	$\mathrm{F}_{\mathrm{OSC}}$			6.0	MHz	$\mathrm{VDD}=5.0 \mathrm{~V}$
Input High Level	V_{IH}	4.0			V	$\mathrm{VDD}=5.0 \mathrm{~V}$ $\mathrm{VDD}=3.0 \mathrm{~V}$
Input Low Level	V_{IL}	2.5			0.8	V
$\mathrm{VDD}=5.0 \mathrm{~V}$ $\mathrm{VDD}=3.0 \mathrm{~V}$						
P04～P07 \＆Port1 Output High I（I／O）	I_{OH}	10			mA	$\mathrm{VDD}=5.0 \mathrm{~V}$ $\mathrm{Voh}=4.0 \mathrm{~V}$
P04～P07 \＆Port1 Output Sink I（I／O）	I_{OL}	20			mA	$\mathrm{VDD}=5.0 \mathrm{~V}$ $\mathrm{Vol}=0.8 \mathrm{~V}$
Port 2\＆Port3 Output High I（I／O）	I_{OH}	4			mA	$\mathrm{VDD}=5.0 \mathrm{~V}$ $\mathrm{Voh}=4.0 \mathrm{~V}$

Jess Technology Co．，Ltd．

Port 2 \＆Port3 Output Sink I（I／O）	I_{OL}	4			mA	$\mathrm{VDD}=5.0 \mathrm{~V}$ $\mathrm{Vol}=0.8 \mathrm{~V}$
CPU Clock	$\mathrm{F}_{\mathrm{CPU}}$	0.03		6.0	MHz	$\mathrm{F}_{\mathrm{CPU}}=\mathrm{F}_{\mathrm{OSC}} @ 5.0 \mathrm{~V}$

A／D CONVERSION CHARACTERISTICS（Topr $=0$ to $70{ }^{\circ} \mathrm{C}$ ）

PARAMETER	SYMBOL	CONDITIONS	Min．	Typ．	Max．	UNIT
Analog Reference Voltage	$\mathrm{AD}_{\mathrm{VRF}}$		3.0	--	$\mathrm{AV}_{\mathrm{DD}}$	V
Valid Voltage Range	$\mathrm{V}_{\mathrm{RING}}$	$\mathrm{AD}_{\mathrm{VRF}}=5 \mathrm{~V}$	0.5		4.0	V
Valid Voltage Range	$\mathrm{V}_{\mathrm{RING}}$	$\mathrm{AD}_{\mathrm{VRF}}=3 \mathrm{~V}$	0.5		2.0	V
Analog Input Voltage	$\mathrm{AV}_{\mathrm{IN}}$		$\mathrm{AV}_{\mathrm{SS}}$	--	$\mathrm{AV}_{\mathrm{DD}}$	V
Analog Supply Current	$\mathrm{I}_{\mathrm{REF}}$		--	0.5	1	mA
Input Impedance	Z			230		$\mathrm{~K} \Omega$
Differential nonlinear error ${ }^{1}$	E_{NL}				± 1	LSB
Differential nonlinear error ${ }^{2}$	$\mathrm{E}_{\mathrm{INL}}$				± 2	LSB
Offset error ${ }^{3}$	E_{OS}				± 2	LSB
Absolute Error ${ }^{4}$	$\mathrm{E}_{\mathrm{ABS}}$	$\mathrm{VDD}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$ Conversion Time	$\mathrm{AD}_{\mathrm{VRF}}=5 \mathrm{~V}, \mathrm{AV}_{\mathrm{SS}}=0 \mathrm{~V}$	--	--	± 3

1．The differential nonlinear error $\left(\mathrm{E}_{\mathrm{NL}}\right)$ is the step width difference of the actual and the ideal transfer curves．
2．The integral nonlinear error $\left(\mathrm{E}_{\mathrm{NL}}\right)$ is the peak difference between the centers of the actual and the ideal transfer curves．
3．The offset error $\left(\mathrm{E}_{\mathrm{OS}}\right)$ is the absolute difference of the straight lines，which fit the actual and the ideal transfer curves．
4．The absolute error $\left(\mathrm{E}_{\mathrm{ABS}}\right)$ is the maximum difference between the center of the steps of the actual and the ideal transfer curves for a non－calibrated ADC．

