International Rectifier

SAFE**IR** Series 10TTS08S

SURFACE MOUNTABLE PHASE CONTROL SCR

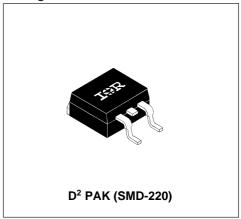
Description/Features

The 10TTS08S *SAFE* **IR** series of silicon controlled rectifiers are specifically designed for medium power switching and phase control applications. The glass passivation technology used has reliable operation up to 125° C junction temperature.

Typical applications are in input rectification (soft start) and these products are designed to be used with International Rectifier input diodes, switches and output rectifiers which are available in identical package outlines.

 V_{T} < 1.15V @ 6.5A I_{TSM} = 140A V_{RRM} = 800V

Output Current in Typical Applications


Applications	Single-phase Bridge	Three-phase Bridge	Units
NEMA FR-4 or G10 glass fabric-based epoxy with 4 oz (140 µm) copper	2.5	3.5	
Aluminum IMS, R _{thCA} = 15°C/W	6.3	9.5	Α
Aluminum IMS with heatsink, R _{thCA} = 5°C/W	14.0	18.5	

 $T_A = 55$ °C, $T_J = 125$ °C, footprint 300mm²


Major Ratings and Characteristics

Characteristics	10TTS08S	Units
I _{T(AV)} Sinusoidal	6.5	Α
waveform		
I _{RMS}	10	Α
V_{RRM}/V_{DRM}	800	V
I _{TSM}	140	Α
V _T @ 6.5 A, T _J = 25°C	1.15	V
dv/dt	150	V/µs
di/dt	100	A/µs
T _J range	-40 to 125	°C

Package Outline

10TTS08S SAFEIR Series

International

TOR Rectifier

Voltage Ratings

Part Number	V _{RRM} , maximum peak reverse voltage	V _{DRM} , maximum peak direct voltage	I _{RRM} /I _{DRM} 125°C
	V	V	mA
10TTS08S	800	800	1.0

Absolute Maximum Ratings

	Darameters	40TTC00C	l laita	Conditions	
	Parameters	10TTS08S	Units	Conditions	
I _{T(AV)}	Max.AverageOn-stateCurrent	6.5	Α	@ T _C =112°C,180° conduction half sine wa	ve
I _{T(RMS)}	Max.RMSOn-stateCurrent	10			
I _{TSM}	Max.PeakOneCycleNon-Repetitive	120	Α	10msSinepulse, rated V_{RRM} applied, $T_J = 1$	25°C
	SurgeCurrent	140		10ms Sine pulse, no voltage reapplied, $T_J =$	125°C
I ² t	Max. I ² t for fusing	72	A ² s	10msSinepulse, rated V_{RRM} applied, $T_J = 1$	25°C
		100		10msSinepulse, novoltage reapplied, $T_J = 1$	125°C
I ² √t	Max. I ² √t for fusing	1000	A ² √s	$t = 0.1$ to 10ms, no voltage reapplied, $T_J = 12$	25°C
V _{TM}	Max.On-stateVoltageDrop	1.15	V	@ 6.5A, T _J = 25°C	
r _t	On-state slope resistance	17.3	mΩ	$T_J = 125$ °C	
V _{T(TO)}	Threshold Voltage	0.85	V		
I _{RM} /I _{DN}	Max.Reverse and Direct	0.05	mA	$\frac{T_J = 25 ^{\circ}\text{C}}{V_R = \text{rated V}_{RRM} / V_R}$	
	Leakage Current	1.0		$T_J = 125 ^{\circ}\text{C}$	DRM
I _H	Typ. Holding Current	30	mA	Anode Supply = 6V, Resistive load, Initia	I I _T =1A
I _L	Max. Latching Current	50	mA	Anode Supply = 6V, Resistive load	
dv/dt	Max. rate of rise of off-state Voltage	150	V/µs	T _J = 25°C	
di/dt	Max. rate of rise of turned-on Current	100	A/µs		

Triggering

	Parameters	10TTS08S	Units	Conditions
P _{GM}	Max. peak Gate Power	8.0	W	
P _{G(AV)}	Max. average Gate Power	2.0		
+ I _{GM}	Max. paek positive Gate Current	1.5	Α	
- V _{GM}	Max. paek negative Gate Voltage	10	V	
I _{GT}	Max. required DC Gate Current	20	mA	Anode supply = 6V, resistive load, $T_J = -65$ °C
	to trigger	15		Anode supply = 6V, resistive load, T _J = 25°C
		10		Anode supply = 6V, resistive load, T _J = 125°C
V _{GT}	Max. required DC Gate Voltage	1.2	V	Anode supply = 6V, resistive load, T _J = - 65°C
	to trigger	1		Anode supply = 6V, resistive load, $T_J = 25$ °C
		0.7		Anode supply = 6V, resistive load, T _J = 125°C
V_{GD}	Max. DC Gate Voltage not to trigger	0.2		T _J = 125°C, V _{DRM} = rated value
I_{GD}	Max. DC Gate Current not to trigger	0.1	mA	T _J = 125°C, V _{DRM} = rated value

Switching

	Parameters	10TTS08S	Units	Conditions
t _{gt}	Typical turn-on time	0.8	μs	$T_J = 25$ °C
t _{rr}	Typical reverse recovery time	3		T _J = 125°C
tq	Typical turn-off time	100		

Thermal-Mechanical Specifications

	Parameters	10TTS08S	Units	Conditions
T _J	Max.JunctionTemperatureRange	-40to125	°C	
T _{stg}	Max.StorageTemperatureRange	-40to125	°C	
	SolderingTemperature	240	°C	for10seconds(1.6mmfromcase)
R _{thJC}	Max.ThermalResistanceJunction toCase	1.5	°C/W	DCoperation
R _{thJA}	Typ.ThermalResistanceJunction toAmbient(PCBMount)**	40	°C/W	
wt	ApproximateWeight	2(0.07)	g(oz.)	
Т	Case Style	D ² Pak(SN	ID-220)	

^{**}When mounted on 1" square (650 mm²) PCB of FR-4 or G-10 material 4 oz (140 µm) copper 40° C/W For recommended footprint and soldering techniques refer to application note #AN-994

Preliminary Data Sheet I2145 12/97

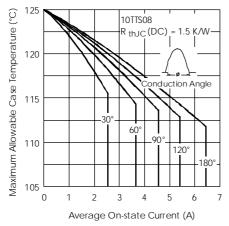


Fig. 1 - Current Rating Characteristics

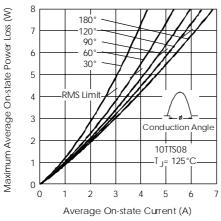


Fig. 3 - On-state Power Loss Characteristics

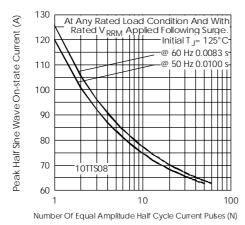


Fig. 6 - Maximum Non-Repetitive Surge Current

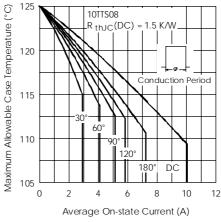


Fig. 2 - Current Rating Characteristics

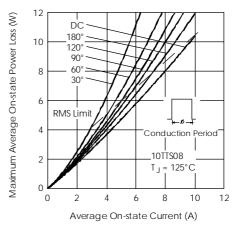


Fig. 4 - On-state Power Loss Characteristics

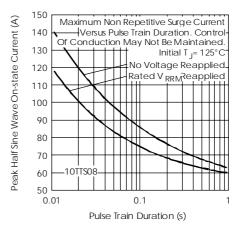


Fig. 7 - Maximum Non-Repetitive Surge Current

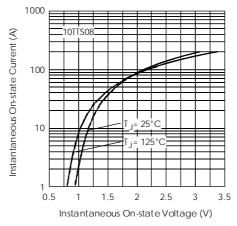


Fig. 7 - On-state Voltage Drop Characteristics

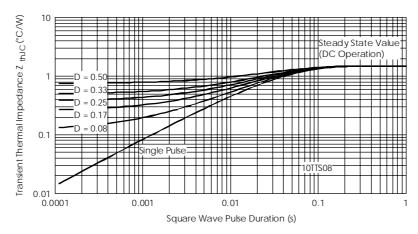
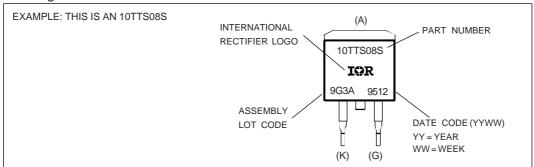
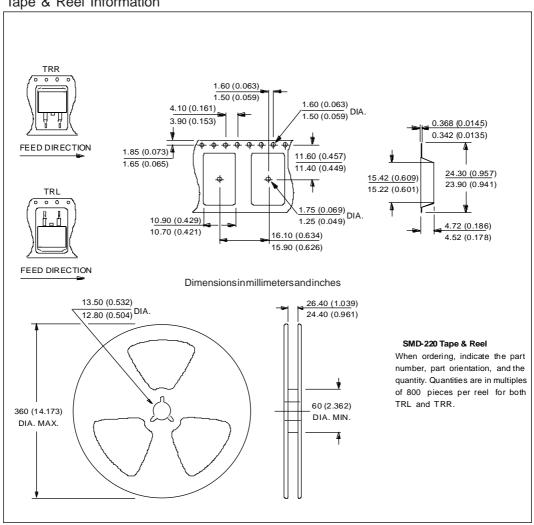
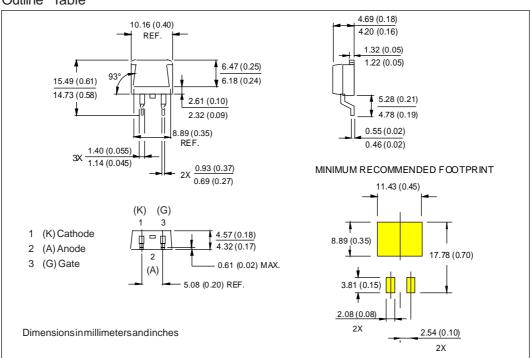
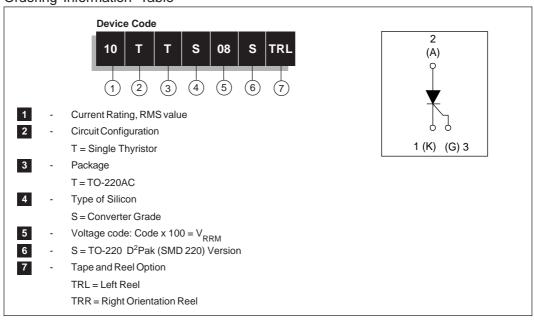




Fig. 8 - Thermal Impedance \mathbf{Z}_{thJC} Characteristics


Marking Information


Tape & Reel Information

Outline Table

Ordering Information Table

Preliminary Data Sheet I2145 12/97

International IOR Rectifier

WORLDHEADQUARTERS: 233 Kansas St., El Segundo, California 90245 U.S.A Tel: (310) 322-3331 Fax: (310) 322-3332 EUROPEANHEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, U.K. Tel: ++ 44 1883 732020 Fax: ++ 44 1883 733408

IR CANADA: 7231 Victoria Park Ave., Suite #201, Markham, Ontario L3R 2Z8 Tel: (905) 475 1897. Fax: (905) 475 8801

IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 Fax: ++ 49 6172 96590 Sax: ++ 49

http://www.irf.com

Fax-On-Demand: +44 1883 733420

Data and specifications subject to change without notice