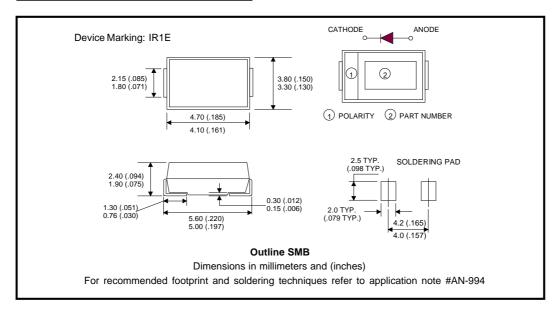

International Rectifier

10BQ030

SCHOTTKY RECTIFIER

1 Amp


Major Ratings and Characteristics

Characteristics	10BQ030	Units
I _{F(AV)} Rectangular waveform	1.0	Α
V _{RRM}	30	V
I _{FSM} @t _p =5 ms sine	430	А
V _F @ 1.0Apk, T _J =125°C	0.30	V
T _J range	- 55 to 150	°C

Description/ Features

The 10BQ030 surface-mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

Bulletin PD-20708 rev. F 03/03

International TOR Rectifier

Voltage Ratings

Part number	10BQ030	
V _R Max. DC Reverse Voltage (V)	30	
V _{RWM} Max. Working Peak Reverse Voltage (V)		

Absolute Maximum Ratings

	Parameters	10BQ	Units	Conditions		
I _{F(AV)}	Max. Average Forward Current	1.0	Α	50% duty cycle @ T _L = 106 °C, r	ectangular wave form.	
I _{FSM}	Max. Peak One Cycle Non-Repetitive	430		5μs Sine or 3μs Rect. pulse	Following any rated load condition and	
	Surge Current * See Fig. 6	90		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied	
E _{AS}	Non-Repetitive Avalanche Energy	3.0	mJ	T _J =25 °C, I _{AS} =1A, L=6mH		
I _{AR}	Repetitive Avalanche Current	1.0	Α	Current decaying linearly to zero in 1 µsec		
				Frequency limited by T _J max. V	a=1.5 x Vr typical	

Electrical Specifications

	Parameters		10BQ	Units		Conditions
V _{FM}	Max. Forward Voltage Drop	(1)	0.420	V	@ 1A	T,= 25 °C
			0.470	V	@ 2A	1 _J = 25 C
V _{FM}	Max. Forward Voltage Drop	(1)	0.300	V	@ 1A	T,= 125 °C
			0.370	V	@ 2A	., .25 5
			0.5	mA	T _J = 25 °C	
I _{RM}	Max. Reverse Leakage Current	(1)	5.0	mA	T _J = 100 °C	V _R = rated V _R
			15	mA	T _J = 125 °C	
C _T	Max. Junction Capacitance		200	pF	$V_R = 5V_{DC}$, (test signal range 100KHz to 1Mhz) 25°C	
L _s	Typical Series Inductance		2.0	nΗ	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change		10000	V/µs		
	(Rated V _R)					

⁽¹⁾ Pulse Width < 300µs, Duty Cycle < 2%

Thermal-Mechanical Specifications

	Parameters	10BQ	Units	Conditions
TJ	Max. Junction Temperature Range (*)	-55 to 150	°C	
T _{stg}	Max. Storage Temperature Range	-55 to 150	°C	
R _{thJL}	Max. Thermal Resistance Junction to Lead (**)	25	°C/W	DC operation
R _{thJA}	Max. Thermal Resistance Junction	80	°C/W	
	to Ambient			
wt	Approximate Weight	0.10 (0.003)	g (oz.)	
	Case Style	SMB		Similar DO-214AA
	Device Marking	IR1E		

 $[\]frac{\text{(*)}}{\text{dTj}} < \frac{\text{dPtot}}{\text{Rth(j-a)}} < \frac{1}{\text{Rth(j-a)}}$ thermal runaway condition for a diode on its own heatsink

^(**) Mounted 1 inch square PCB

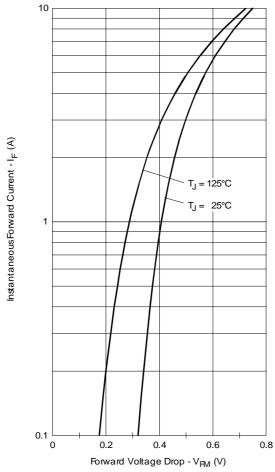


Fig. 1 - Maximum Forward Voltage Drop Characteristics

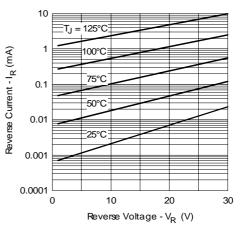


Fig. 2 - Typical Peak Reverse Current Vs. Reverse Voltage

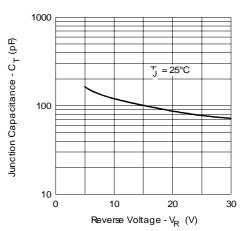


Fig. 3-Typical Junction Capacitance Vs. Reverse Voltage

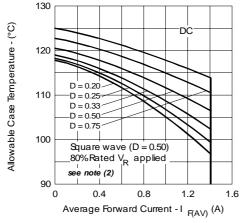


Fig. 4 - Maximum Average Forward Current Vs. Allowable Lead Temperature

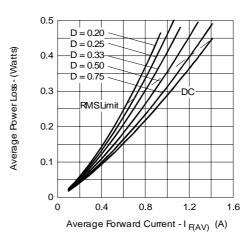


Fig. 5 - Maximum Average Forward Dissipation Vs. Average Forward Current

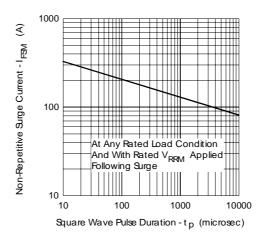
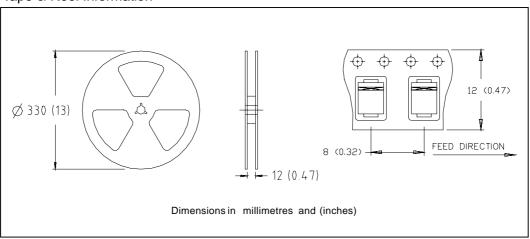
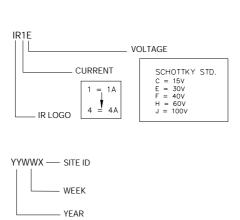



Fig. 6 - Maximum Peak Surge Forward Current Vs. Pulse Duration

 $\begin{tabular}{ll} \textbf{(2)} & Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC};$ \\ & Pd = Forward Power Loss = $I_{F(AV)} \times V_{FM} @ (I_{F(AV)}/D)$ (see Fig. 6); \\ & Pd_{REV} = Inverse Power Loss = $V_{R1} \times I_R (1-D); \ I_R @ V_{R1} = 80\% \ rated V_R (1-D); \\ & Pd_{REV} = Inverse Power Loss = V_{R1} \times I_R (1-D); \\ & Pd_{REV} = V_{R1} \times I_R (1-D); \\ & Pd_{R1} = V_{R1} \times I_R (1-D); \\ & Pd_{R1} = V_{R1} \times I_R (1-D); \\ & Pd_{R2} = V_{R2} \times I_R (1-D); \\ & Pd_{R2} = V_{$


Tape & Reel Information

Marking & Identification

Each device has 2 rows for identification. The first row designates the device as manufactured by International Rectifier as indicated by the letters "IR", and the Part Number (indicates the current and the voltage rating). The second row indicates the year, the week of manufacturing and the Site ID.

Ordering Information

10BQ SERIES - TAPE AND REEL

WHEN ORDERING, INDICATE THE PART NUMBER AND THE QUANTITY (IN MULTIPLES OF 3000 PIECES).

EXAMPLE: 10BQ030TR - 6000 PIECES

10BQ SERIES - BULK QUANTITIES

WHEN ORDERING, INDICATE THE PART NUMBER AND THE QUANTITY (IN MULTIPLES OF 1000 PIECES).

EXAMPLE: 10BQ030 - 2000 PIECES

Bulletin PD-20708 rev. F 03/03

10BQ030

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level.

Qualification Standards can be found on IR's Web site.

International IOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 03/03