

Data Sheet March 2000 File Number 3125.4

CMOS Analog Switches

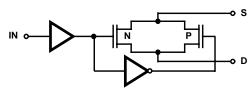
The HI-301 thru HI-307 series of switches are monolithic devices fabricated using CMOS technology and the Intersil dielectric isolation process. These switches feature break before-make switching, low and nearly constant ON resistance over the full analog signal range, and low power dissipation, (a few mW for the HI-301 and HI-303, a few hundred mW for the HI-307).

The HI-301 and HI-303 are TTL compatible and have a logic "0" condition with an input less than 0.8V and a logic "1" condition with an input greater than 4V. The HI-307 switches are CMOS compatible and have a low state with an input less than 3.5V and a high state with an input greater than 11V. (See pinouts for switch conditions with a logic "1" input.)

Ordering Information

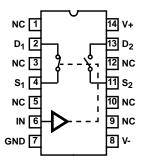
PART NUMBER	TEMP. RANGE (^O C)	PACKAGE	PKG. NO.
HI9P0301-5	0 to 75	14 Ld SOIC	M14.15
HI1-0303-2	-55 to 125	14 Ld CERDIP	F14.3
HI1-0303-5	0 to 75	14 Ld CERDIP	F14.3
HI9P0303-5	0 to 75	14 Ld SOIC	M14.15
HI9P0303-9	-40 to 85	14 Ld SOIC	M14.15
HI1-0307-5	0 to 75	14 Ld CERDIP	F14.3

Features

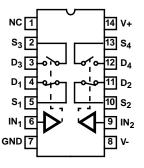

• Analog Signal Range (±15V Supplies) ±15
Low Leakage at 25°C
Low Leakage at 125°C
• Low On Resistance at 25°C
• Break-Before-Make Delay 60
Charge Injection

- · TTL, CMOS Compatible
- · Symmetrical Switch Elements
- Low Operating Power (Typ for HI-301 and HI-303) . . 1.0mW

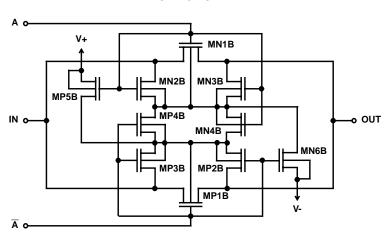
Applications

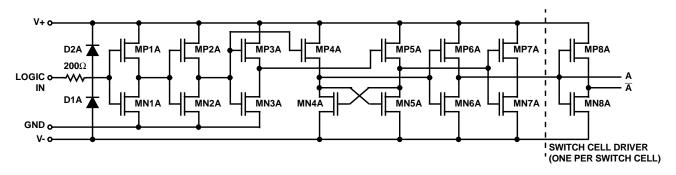

- · Sample and Hold (i.e., Low Leakage Switching)
- · Op Amp Gain Switching (i.e., Low On Resistance)
- · Portable, Battery Operated Circuits
- · Low Level Switching Circuits
- · Dual or Single Supply Systems

Functional Diagram


Pinouts Switch States Shown For A Logic "1" Input

LOGIC	SW1	SW2
0	OFF	ON
1	ON	OFF


DUAL SPDT HI-303 (CERDIP, SOIC) HI-307 (CERDIP) TOP VIEW


LOGIC	SW1, SW2	SW3, SW4
0	OFF	ON
1	ON	OFF

Schematic Diagrams

SWITCH CELL

DIGITAL INPUT BUFFER AND LEVEL SHIFTER

Absolute Maximum Ratings

Voltage Between Supplies (V+ to V-)	44V (±22V)
Digital Input Voltage	(V+) +4V to (V-) -4V
Analog Input Voltage	(V+) +1.5V to (V-) -1.5V
Typical Derating Factor	1.5mA/MHz Increase in ICCOP
ESD Classification	

Operating Conditions

Temperature Range	
HI-3XX-2	55 ⁰ C to 125 ⁰ C
HI-3XX-5	0°C to 75°C
HI-3XX-9	40°C to 85°C

Thermal Information

Thermal Resistance (Typical, Note 1)	θ_{JA} (oC/W)	θ_{JC} (oC/W)
CERDIP Package	95	40
SOIC Package	120	N/A
Maximum Junction Temperature		
Ceramic Packages		
Plastic Packages		150 ^o C
Maximum Storage Temperature Range	65	^o C to 150 ^o C
Maximum Lead Temperature (Soldering 1	0s)	300°C
(SOIC - Lead Tips Only)		

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE

Electrical Specifications Supplies = +15V, -15V; V_{IN} = Logic Input. HI-301 and HI-303: V_{IN} - for Logic "1" = 4V, for Logic "0" = 0.8V. HI-307: V_{IN} - for Logic "1" = 11V, for Logic "0" = 3.5V, Unless Otherwise Specified

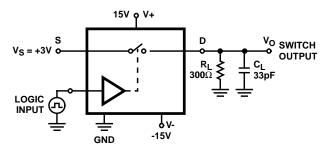
	TEMP		-2		-5, -9			
PARAMETER	(°C)	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
DYNAMIC CHARACTERISTICS		'	'	'		•	'	
Switch ON Time, t _{ON} (Note 13)	25	-	210	300	-	210	300	ns
Switch OFF Time, t _{OFF} (Note 13)	25	-	160	250	-	160	250	ns
Switch ON Time, t _{ON} (Note 14)	25	-	160	250	-	160	250	ns
Switch OFF Time, t _{OFF} (Note 14)	25	-	100	150	-	100	150	ns
Break-Before-Make Delay, t _{OPEN}	25	-	60	-	-	60	-	ns
Charge Injection Voltage, ∆V (Note 7)	25	-	3	-	-	3	-	mV
OFF Isolation (Note 6)	25	-	60	-	-	60	-	dB
Input Switch Capacitance, C _{S(OFF)}	25	-	16	-	-	16	-	pF
Output Switch Capacitance, C _{D(OFF)}	25	-	14	-	-	14	-	pF
Output Switch Capacitance, C _{D(ON)}	25	-	35	-	-	35	-	pF
Digital Input Capacitance, C _{IN}	25	-	5	-	-	5	-	pF
DIGITAL INPUT CHARACTERISTICS		1	'	1	ı	1	1	-
Input Low Level, V _{INL} (Note 13)	Full	-	-	0.8	-	-	0.8	V
Input High Level, V _{INH} (Note 13)	Full	4	-	-	4	-	-	V
Input Low Level, V _{INL} (Note 14)	Full	-	-	3.5	-	-	3.5	V
Input High Level, V _{INH} (Note 14)	Full	11	-	-	11	-	-	V
Input Leakage Current (Low), I _{INL} (Note 5)	Full	-	-	1	-	-	1	μА
Input Leakage Current (High), I _{INH} (Note 5)	Full	-	-	1	-	-	1	μА
ANALOG SWITCH CHARACTERISTICS			'	1		-	·	
Analog Signal Range	Full	-15	-	+15	-15	-	+15	V
ON Resistance, r _{ON} (Note 2)	25	-	35	50	-	35	50	Ω
	Full	-	40	75	-	40	75	Ω
OFF Input Leakage Current, I _{S(OFF)} (Note 3)	25	-	0.04	1	-	0.04	5	nA
	Full	-	1	100	-	0.2	100	nA

3

^{1.} θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

HI-301 thru HI-307

Electrical Specifications


Supplies = +15V, -15V; V_{IN} = Logic Input. HI-301 and HI-303: V_{IN} - for Logic "1" = 4V, for Logic "0" = 0.8V. HI-307: V_{IN} - for Logic "1" = 11V, for Logic "0" = 3.5V, Unless Otherwise Specified **(Continued)**

	TEMP		-2		-5, -9			
PARAMETER	(°C)	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OFF Output Leakage Current, I _{D(OFF)} (Note 3)	25	-	0.04	1	-	0.04	5	nA
	Full	-	1	100	-	0.2	100	nA
ON Leakage Current, I _{D(ON)} (Note 4)	25	-	0.03	1	-	0.03	5	nA
	Full	-	0.5	100	-	0.2	100	nA
POWER SUPPLY CHARACTERISTICS								
Current, I+ (Notes 8, 13)	25	-	0.09	0.5	-	0.09	0.5	mA
	Full	-	-	1	-	-	1	mA
Current, I- (Notes 8, 13)	25	-	0.01	10	-	0.01	100	μΑ
	Full	-	-	100	-	-	-	μΑ
Current, I+ (Notes 9, 13)	25	-	0.01	10	-	0.01	100	μΑ
	Full	-	-	100	-	-	-	μΑ
Current, I- (Notes 9, 13)	25	-	0.01	10	-	0.01	100	μΑ
	Full	-	-	100	-	-	-	μΑ
Current, I+ (Notes 10, 14)	25	-	0.01	10	-	0.01	100	μΑ
	Full	-	-	100	-	-	-	μΑ
Current, I- (Notes 10, 14)	25	-	0.01	10	-	0.01	100	μΑ
	Full	-	-	100	-	-	-	μΑ
Current, I+ (Notes 11, 14)	25	-	0.01	10	-	0.01	100	μΑ
	Full	-	-	100	-	-	-	μΑ
Current, I- (Notes 11, 14)	25	-	0.01	10	-	0.01	100	μΑ
	Full	-	-	100	-	-	-	μА

NOTES:

- 2. $V_S = \pm 10V$, $I_{OUT} = \mp 10$ mA. On resistance derived from the voltage measured across the switch under these conditions.
- 3. $V_S = \pm 14V$, $V_D = \mp 14V$.
- 4. $V_S = V_D = \pm 14V$.
- 5. The digital inputs are diode protected MOS gates and typical leakages of 1nA or less can be expected.
- 6. $V_S = 1V_{RMS}$, f = 500kHz, $C_L = 15pF$, $R_L = 1K$.
- 7. $V_S = 0V$, $C_L = 10nF$, Logic Drive = 5V pulse (HI-301 303), 15V pulse (HI-307). Switches are symmetrical; S and D may be interchanged. Charge Injection = $Q = C_1 \times \Delta V$.
- 8. $V_{IN} = 4V$ (one input, all other inputs = 0V).
- 9. $V_{IN} = 0.8V$ (all inputs).
- 10. $V_{IN} = 15V$ (all inputs).
- 11. V_{IN} = 0V (all inputs).
- 12. To drive from DTL/TTL circuits, pullup resistors to +5V supply are recommended.
- 13. HI-301 thru HI-303 only.
- 14. HI-307 only.

Test Circuits and Waveforms

SWITCH TYPE	V _{INH}
HI-301 and HI-303	4V
HI-307	15V

FIGURE 1A. TEST CIRCUIT

FIGURE 1B. MEASUREMENT POINTS

FIGURE 1. SWITCH $t_{\mbox{\scriptsize ON}}$ AND $t_{\mbox{\scriptsize OFF}}$

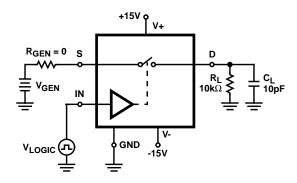


FIGURE 2A. TEST CIRCUIT



FIGURE 2B. TTL LOGIC INPUT

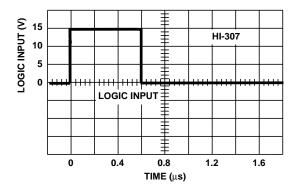


FIGURE 2C. CMOS LOGIC INPUT

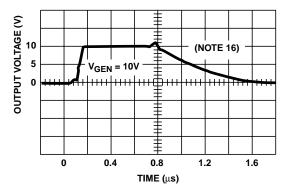


FIGURE 2D. V_{ANALOG} = 10V

Test Circuits and Waveforms (Continued)

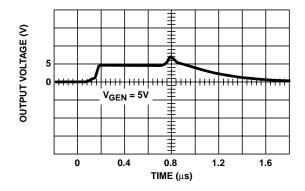


FIGURE 2E. V_{ANALOG} = 5V

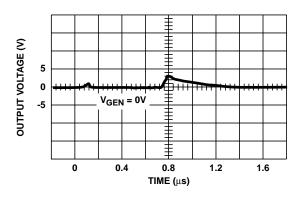


FIGURE 2F. V_{ANALOG} = 0V

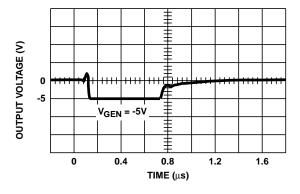


FIGURE 2G. V_{ANALOG} = -5V

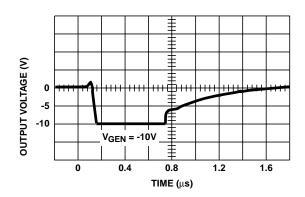
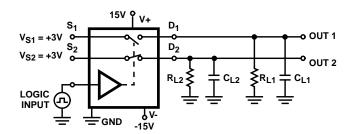



FIGURE 2H. V_{ANALOG} = -10V

NOTE:

15. If R_{GEN} , R_L or C_L is increased, there will be proportional increases in rise and/or fall RC times.

FIGURE 2. SWITCHING WAVEFORMS FOR VARIOUS ANALOG INPUT VOLTAGES

SWITCH TYPE	V _{INH}
HI-301, HI-303	5V
HI-307	15V

LOGIC INPUT V_{INH} $C_{\text{L1}} = R_{\text{L2}} = 300\Omega$ $C_{\text{L1}} = C_{\text{L2}} = 33\text{pF}$ OV $C_{\text{L1}} = C_{\text{L2}} = 33\text{pF}$ OUT 1

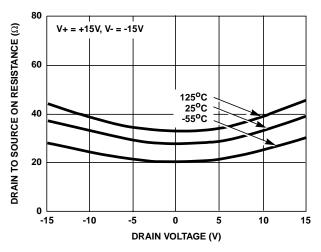

SWITCH OUTPUTS C_{OUT} $C_{\text{OUT$

FIGURE 3A. TEST CIRCUIT

FIGURE 3B. MEASUREMENT POINTS

FIGURE 3. BREAK-BEFORE-MAKE DELAY (tOPEN)

Typical Performance Curves

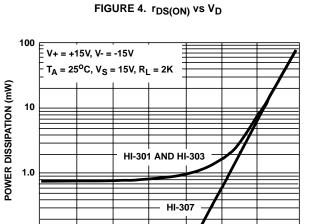


FIGURE 6. DEVICE POWER DISSIPATION vs SWITCHING FREQUENCY (SINGLE LOGIC INPUT)

100

1K

LOGIC SWITCHING FREQUENCY (50% DUTY CYCLE) (Hz)

10K

100K

10

0.1

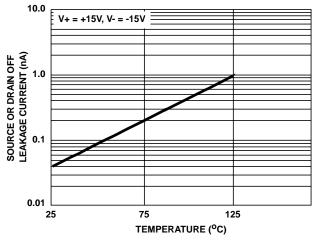


FIGURE 8. IS(OFF) OR ID(OFF) vs TEMPERATURE†

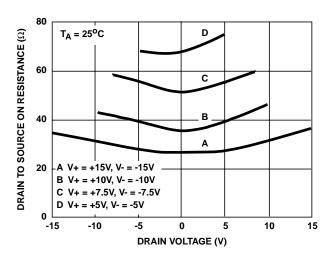


FIGURE 5. r_{DS(ON)} vs V_D

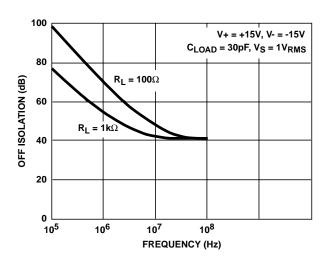


FIGURE 7. OFF ISOLATION vs FREQUENCY

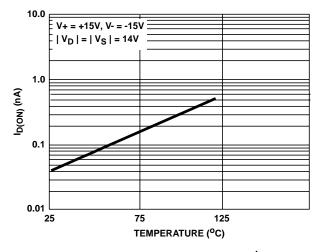


FIGURE 9. I_{D(ON)} vs TEMPERATURE†

† The net leakage into the source or drain is the N-Channel leakage minus the P-Channel leakage. This difference can be positive, negative or zero depending on the analog voltage and temperature, and will vary greatly from unit to unit.

Typical Performance Curves (Continued)

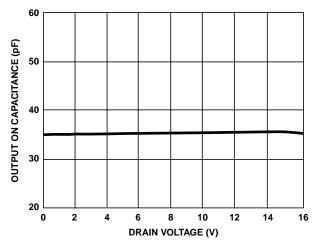


FIGURE 10. OUTPUT ON CAPACITANCE vs DRAIN VOLTAGE

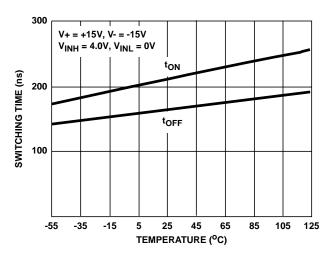


FIGURE 12. SWITCHING TIME vs TEMPERATURE, HI-301 AND HI-303

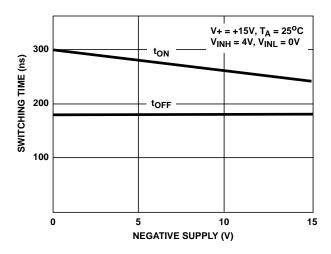


FIGURE 14. SWITCHING TIME vs NEGATIVE SUPPLY VOLTAGE, HI-301 AND HI-303

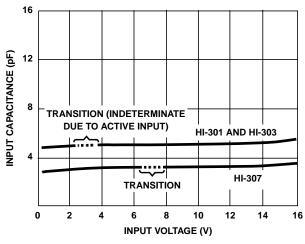


FIGURE 11. DIGITAL INPUT CAPACITANCE vs INPUT VOLTAGE

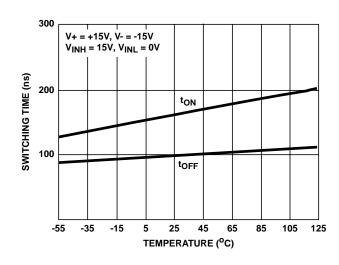


FIGURE 13. SWITCHING TIME vs TEMPERATURE, HI-307

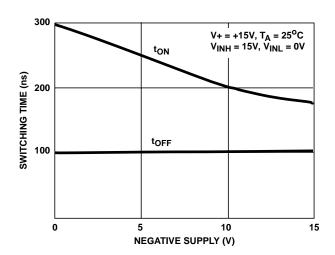


FIGURE 15. SWITCHING TIME vs NEGATIVE SUPPLY VOLTAGE, HI-307

Typical Performance Curves (Continued)

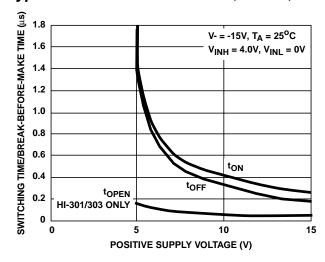


FIGURE 16. SWITCHING TIME AND BREAK-BEFORE-MAKE TIME vs POSITIVE SUPPLY VOLTAGE, HI-301 AND HI-303

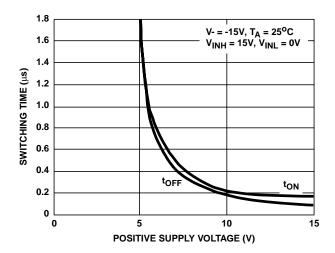


FIGURE 17. SWITCHING TIME vs POSITIVE SUPPLY VOLTAGE, HI-307

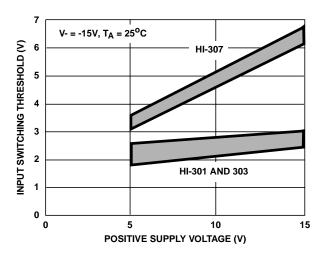
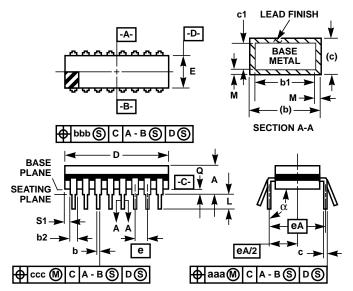
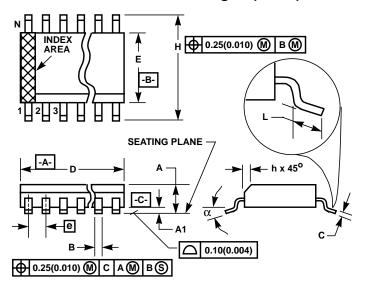



FIGURE 18. INPUT SWITCHING THRESHOLD vs POSITIVE SUPPLY VOLTAGE

Ceramic Dual-In-Line Frit Seal Packages (CERDIP)

NOTES:


- Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
- The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
- Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
- Corner leads (1, N, N/2, and N/2+1) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.
- This dimension allows for off-center lid, meniscus, and glass overrun.
- 6. Dimension Q shall be measured from the seating plane to the base plane.
- 7. Measure dimension S1 at all four corners.
- 8. N is the maximum number of terminal positions.
- 9. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 10. Controlling dimension: INCH.

F14.3 MIL-STD-1835 GDIP1-T14 (D-1, CONFIGURATION A) 14 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE

	INC	HES	MILLIM		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
А	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
С	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	0.785	-	19.94	5
Е	0.220	0.310	5.59	7.87	5
е	0.100	BSC	2.54	-	
eA	0.300	BSC	7.62 BSC		-
eA/2	0.150	BSC	3.81	BSC	-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	6
S1	0.005	-	0.13	-	7
α	90°	105 ⁰	90°	105 ⁰	-
aaa	-	0.015	-	- 0.38	
bbb	-	0.030	- 0.76		-
ccc	-	0.010	-	0.25	-
М	-	0.0015	-	0.038	2, 3
N	1	4	1	4	8

Rev. 0 4/94

Small Outline Plastic Packages (SOIC)

NOTES:

- Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side.
- 4. Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.
- 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
- 6. "L" is the length of terminal for soldering to a substrate.
- 7. "N" is the number of terminal positions.
- 8. Terminal numbers are shown for reference only.
- The lead width "B", as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch).
- Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

M14.15 (JEDEC MS-012-AB ISSUE C)
14 LEAD NARROW BODY SMALL OUTLINE PLASTIC
PACKAGE

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
А	0.0532	0.0688	1.35	1.75	-
A1	0.0040	0.0098	0.10	0.25	-
В	0.013	0.020	0.33	0.51	9
С	0.0075	0.0098	0.19	0.25	-
D	0.3367	0.3444	8.55	8.75	3
E	0.1497	0.1574	3.80	4.00	4
е	0.050 BSC		1.27 BSC		-
Н	0.2284	0.2440	5.80	6.20	-
h	0.0099	0.0196	0.25	0.50	5
L	0.016	0.050	0.40	1.27	6
N	14		14		7
α	0°	8º	0°	8º	-

Rev. 0 12/93

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902

TEL: (321) 724-7000 FAX: (321) 724-7240 **EUROPE**

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium

TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05

ASIA

Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310

FAX: (886) 2 2715 3029