CD14538BMS

CMOS Dual Precision Monostable Multivibrator

November 1994

Features

- · High-Voltage Type (20V Rating)
- · Retriggerable/Resettable Capability
- Trigger and Reset Propagation Delays Independent of RX, CX
- Triggering From Leading or Trailing Edge
- Q and Q Buffered Outputs Available
- · Separate Resets
- · Wide Range of Output-Pulse Widths
- **Schmitt-Trigger Input Allows Unlimited Rise** and Fall Times On +TR and -TR Inputs
- 100% Tested For Maximum Quiescent Current at 20V
- Maximum Input Current of 1μA at 18V Over Full Package-Temperature Range:
 - 100nA at 18V and +25°C
- Noise Margin (Full Package-Temperature Range):
 - 1V at VDD = 5V
 - 2V at VDD = 10V
 - 2.5V at VDD = 15V
- 5V, 10V and 15V Parametric Ratings
- Standardized Symmetrical Output Characteristics
- Meets All Requirements of JEDEC Tentative Standards No. 13B, "Standard Specifications for Description of "B" Series CMOS Device's

Applications

- · Pulse Delay and Timing
- Pulse Shaping

Description

CD14538BMS dual precision monostable multivibrator provides stable retriggerable/resettable one-shot operation for any fixed-voltage timing application.

An external resistor (R_X) and an external capacitor (C_X) control the timing and accuracy for the circuit. Adjustment of R_Y and C_Y provides a wide range of output pulse widths from the Q and \overline{Q} terminals. The time delay from trigger input to output transition (trigger propagation delay) and the time delay from reset input to output transition (reset propagation delay) are independent of R_X and C_X . Precision control of output pulse widths is achieved through linear CMOS tech-

Leading-edge-triggering (+TR) and trailing-edge-triggering (-TR) inputs are provided for triggering from either edge of an input pulse. An unused +TR input should be tied to VSS. An unused -TR input should be tied to VDD. A RESET (on low level) is provided for immediate termination of the output pulse or to prevent output pulses when power is turned on. An unused RESET input should be tied to VDD. However, if an entire section of the CD14538BMS is not used, its inputs must be tied to either VDD or VSS. See Table 1.

In normal operation the circuit retriggers (extends the output pulse one period) on the application of each new trigger pulse. For operation in the non-retriggerable mode, \overline{Q} is connected to -TR when leading-edge triggering (+TR) is used or Q is connected to +TR when trailing-edge triggering (-TR) is used. The time period (T) for this multivibrator can be calculated by: $T = R_X C_X$.

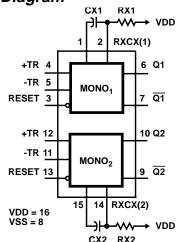
The minimum value of external resistance, R_X is $4K\Omega$. The minimum and maximum values of external capacitance, C_X , are 0pF and 100 μ F, respectively.

The CD14538BMS is interchangeable with type MC14538 and is similar to and pin-compatible with the CD4098B* and CD4538B**.

- * $T = 0.5 R_X C_X \text{ for } C_X \ge 1000 pF.$
- * $T = R_x C_x$; $C_x \min = 5000 pF$.

The CD14538BMS is supplied in these 16-lead outline packages:

Braze Seal DIP H4X Frit Seal DIP H₁L


Ceramic Flatpack H6W

Pinout

TOP VIEW 16 V_{DD} C_{X1} 1 R_XC_X (1) 2 15 C_{X2} **RESET (1)** 3 14 R_XC_X (2) +TR (1) 4 13 RESET (2) -TR (1) 5 12 +TR (2) Q1 6 11 -TR (2) 10 Q2 Q1 7 9 Q2 V_{SS} 8

CD14538BMS

Functional Diagram

Reliability Information Absolute Maximum Ratings Thermal Resistance nermal Resistance θ_{ja} Ceramic DIP and FRIT Package 80° C/W DC Supply Voltage Range, (VDD) -0.5V to +20V $_{20^{o}\text{C/W}}^{\theta_{jc}}$ (Voltage Referenced to VSS Terminals) Flatpack Package 70°C/W 20°C/W Input Voltage Range, All Inputs -0.5V to VDD +0.5V Maximum Package Power Dissipation (PD) at +125°C DC Input Current, Any One Input±10mA Operating Temperature Range.....-55°C to +125°C For TA = -55° C to $+100^{\circ}$ C (Package Type D, F, K).....500mW For TA = $+100^{\circ}$ C to $+125^{\circ}$ C (Package Type D, F, K) Derate Package Types D, F, K, H Storage Temperature Range (TSTG) -65°C to +150°C Linearity at 12mW/°C to 200mW Lead Temperature (During Soldering) +265°C Device Dissipation per Output Transistor 100mW At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for For TA = Full Package Temperature Range (All Package Types) 10s Maximum

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIMITS		
PARAMETER	SYMBOL	CONDITIONS (NOTE 1)		SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VD	D or GND	1	+25°C	-	10	μΑ
					+125°C	-	1000	μΑ
		VDD = 18V, VIN = VD	D or GND	3	-55°C	-	10	μΑ
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load	•	1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load	(Note 3)	1, 2, 3	+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.	4V	1	+25°C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V		1	+25°C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1	1.5V	1	+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V		1	+25°C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.	.5V	1	+25°C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	9.5V	1	+25°C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT = 1	13.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10	μΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μ/	4	1	+25°C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VE	DD or GND	7	+25°C	VOH>	VOL <	٧
		VDD = 20V, VIN = VD	D or GND	7	+25°C	VDD/2	VDD/2	
		VDD = 18V, VIN = VD	D or GND	8A	+125°C			
		VDD = 3V, VIN = VDD	or GND	8B	-55°C			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5V, VOL < 0.5V		1, 2, 3	+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5V, VOL < 0.5V		1, 2, 3	+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13.5V, VOL < 1.5V		1, 2, 3	+25°C, +125°C, -55°C	-	4	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	V

NOTES: 1. All voltages referenced to device GND, 100% testing being 3. For accuracy, voltage is measured differentially to VDD. Limit implemented.

2. Go/No Go test with limits applied to inputs

is 0.050V max.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A	LIMITS		ITS	
PARAMETER	SYMBOL	CONDITIONS (Note 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay _ TPH		VDD = 5V, VIN = VDD or GND	9	+25°C	-	600	ns
+TR or -TR to Q or Q	TPLH1		10, 11	+125°C, -55°C	-	810	ns
Propagation Delay	' I I		9	+25°C	-	500	ns
Reset to Q or Q	TPLH2		10, 11	+125°C, -55°C	-	675	ns
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
	TTLH		10, 11	+125°C, -55°C	1	270	ns

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	5	μΑ
				+125°C	-	150	μА
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μА
				+125°C	-	300	μА
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μА
				+125°C	-	600	μА
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	9.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA
				-55°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
				-55°C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA
				-55°C	4.2	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	-	-0.36	mA
				-55°C	-	-0.64	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.15	mA
				-55°C	-	-2.0	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-0.9	mA
				-55°C	-	-1.6	mA
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	-	-2.4	mA
				-55°C	-	-4.2	mA
Input Voltage Low	VIL1	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	-	3	V
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	+7	-	V

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIN		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay +TR	TPHL1	VDD = 10V	1, 2, 3	+25°C	-	300	ns
OR -TR to Q or Q	TPLH1	VDD = 15V	1, 2, 3	+25°C	-	220	ns
Propagation Delay Reset	TPHL2	VDD = 10V	1, 2, 3	+25°C	-	250	ns
to Q or Q	TPLH2	VDD = 15V	1, 2, 3	+25°C	-	190	ns
Transition Time	TTHL	VDD = 10V	1, 2, 3	+25°C	-	100	ns
	TTLH	VDD = 15V	1, 2, 3	+25°C	-	80	ns
Output Pulse Width	TW	VDD = 5V	1, 2, 3	+25°C	-	230	μs
Q or \overline{Q} C _X = .002 μ F, R _X = 100K		VDD = 10V	1, 2, 3	+25°C	-	232	μs
οχ =.002μι , τιχ = τουτ		VDD = 15V	1, 2, 3	+25°C	-	234	μs
Output Pulse Width	TW		1, 2, 3	+25°C	-	10.5	ms
$C_X = 0.1 \mu F$ $R_X = 100 K$		VDD = 10V	1, 2, 3	+25°C	-	10.6	ms
π, – 100π		VDD = 15V	1, 2, 3	+25°C	-	10.6	ms
Output Pulse Width	TW	VDD = 5V	1, 2, 3	+25°C	-	1.06	S
$C_X = 10\mu F$ $R_X = 100K$		VDD = 10V	1, 2, 3	+25°C	-	1.06	S
		VDD = 15V	1, 2, 3	+25°C	-	1.07	S
Minimum Retrigger Time	TRR	VDD = 5V	1, 2, 3	+25°C	0	-	ns
		VDD = 10V	1, 2, 3	+25°C	0	-	ns
		VDD = 15V	1, 2, 3	+25°C	0	-	ns
Minimum Input Pulse	TW	VDD = 5V	1, 2, 3	+25°C	-	140	ns
Width +TR, -TR, or Reset		VDD = 10V	1, 2, 3	+25°C	-	80	ns
		VDD = 15V	1, 2, 3	+25°C	-	60	ns
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIMITS		
PARAMETER	ETER SYMBOL CONDITIONS		NOTES TEMPERATUR		MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	25	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVPTH	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >	VOL <	V
		VDD = 3V, VIN = VDD or GND			VDD/2	VDD/2	
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-2	IDD	± 1.0μA
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP		MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD	
Initial Test (P	re Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A	
Interim Test	1 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A	
Interim Test	2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A	
PDA (Note	: 1)	100% 5004	1, 7, 9, Deltas		
Interim Test 3 (Post Burn-In)		100% 5004	1, 7, 9	IDD, IOL5, IOH5A, RONDEL10	
PDA (Note	: 1)	100% 5004	1, 7, 9, Deltas		
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11		
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11		
Group B	Subgroup B-5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11	
	Subgroup B-6	Sample 5005	1, 7, 9		
Group D		Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3	

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TE	TEST		RECORD
CONFORMANCE GROUPS	METHOD	PRE-IRRAD	POST-IRRAD	PRE-IRRAD	POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCIL	LATOR
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz
Static Burn-In 1 (Note 1)	6, 7, 9, 10	1, 3 - 5, 8, 11 - 13, 15	2, 14, 16			
Static Burn-In 2 (Note 1)	6, 7, 9, 10	1, 8, 15	2 - 5, 11 - 13, 14, 16			
Dynamic Burn- In (Note 1)	-	1, 4, 8, 12, 15	2, 14, 16	6, 7, 9, 10	5, 11	3, 13
Irradiation (Note 2)	2, 6, 7, 9, 10, 14	1, 8, 15	3 - 5, 11 - 13, 16			

NOTE:

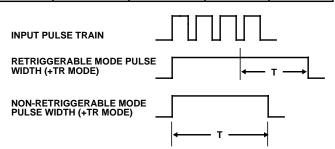

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of $47K \pm 5\%$; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$

TABLE 9. FUNCTIONAL TERMINAL CONNECTIONS

	VDD TO TERM #		VSS TO TERM #		INPUT PULSE TO TERM #		OTHER CONNECTIONS	
FUNCTION	MONO1	MONO2	MONO1	MONO2	MONO1	MONO2	MONO1	MONO2
Leading-Edge Trigger/ Retriggerable	3, 5	11, 13			4	12		
Leading-Edge Trigger/ Non-Retriggerable	3	13			4	12	5 - 7	11 - 9
Trailing-Edge Trigger/ Retriggerable	3	13	4	12	5	11		
Trailing-Edge Trigger/ Non-Retriggerable	3	13			5	11	4 - 6	12 - 10

NOTE:

- A triggerable one-shot multivibrator has an output pulse width which is extended one full time period (T) after application of the last trigger pulse.
- 2. A non-triggerable one-shot multivibrator has a time period (T) referenced from the application of the first trigger pulse.

Power-Down Mode

During a rapid power-down condition, as would occur with a power-supply short circuit or with a poorly filtered power supply, the energy stored in C_X could discharge into Pin 2 or 14. To avoid possible device damage in this mode, when C_X is ≥ 0.5 microfarad, a protection diode with a 1-ampere or higher rating (1N5395 or equivalent) and a separate ground return for C_X should be provided as shown in Figure 1.

An alternate protection method is shown in Figure 2, where a 51-ohm current-limiting resistor is inserted in series with C_X . Note that a small pulse width decrease will occur however, and R_X must be appropriately increases to obtain the originally desired pulse width.

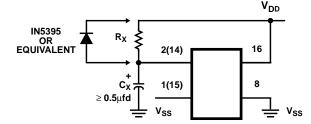


FIGURE 1. RAPID POWER-DOWN PROTECTION CIRCUIT

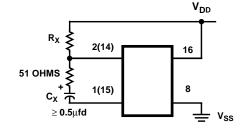


FIGURE 2. ALTERNATE RAPID POWER-DOWN PROTECTION CIRCUIT

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

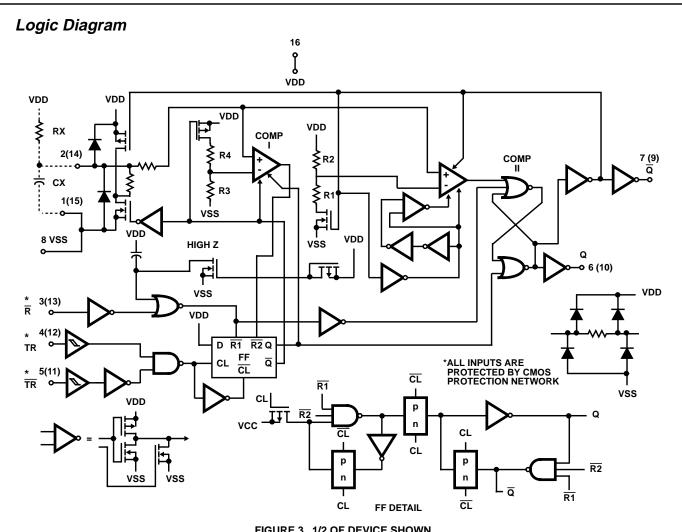


FIGURE 3. 1/2 OF DEVICE SHOWN

Typical Performance Characteristics

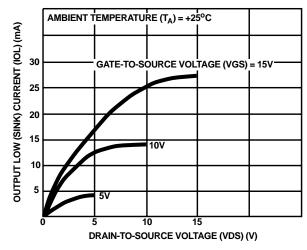


FIGURE 4. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

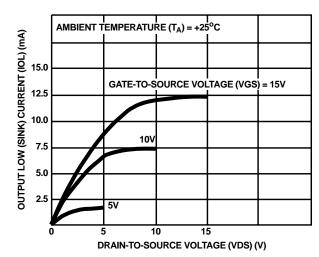


FIGURE 5. MINIMUM OUTPUT LOW (SINK) CURRENT **CHARACTERISTICS**

Typical Performance Characteristics (Continued)

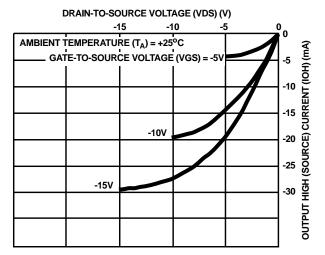


FIGURE 6. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

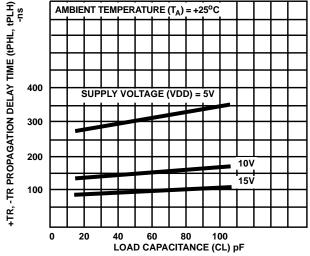


FIGURE 8. TYPICAL PROPAGATION DELAY TIME AS A FUNCTION OF LOAD CAPACITANCE (+TR OR -TR TO Q OR $\overline{\bf Q}$)



FIGURE 10. TYPICAL TRANSITION TIME AS A FUNCTION OF LOAD CAPACITANCE

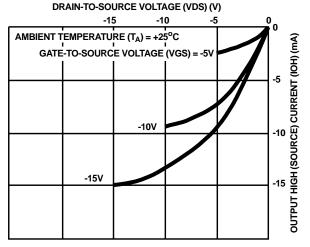


FIGURE 7. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

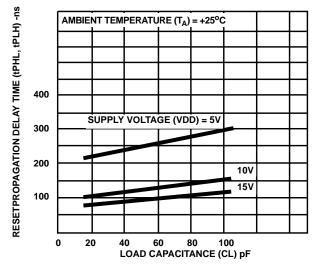


FIGURE 9. TYPICAL PROPAGATION DELAY TIME AS A FUNCTION OF LOAD CAPACITANCE (RESET TO Q OR $\overline{\mathbf{Q}}$)

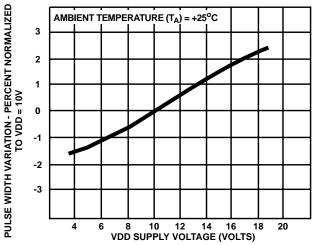


FIGURE 11. TYPICAL PULSE-WIDTH VARIATION AS A FUNCTION OF SUPPLY VOLTAGE

Typical Performance Characteristics (Continued)

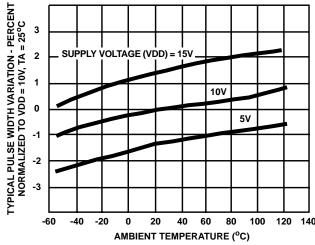


FIGURE 12. TYPICAL PULSE-WIDTH VARIATION AS A FUNCTION OF TEMPERATURE (RX = 100 K Ω , CX = 0.1 μ F)

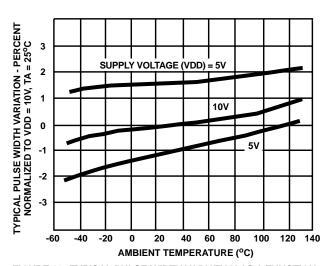


FIGURE 13. TYPICAL PULSE-WIDTH VARIATION AS A FUNCTION OF TEMPERATURE (RX = 100 $K\Omega$, CX = 2000pF)

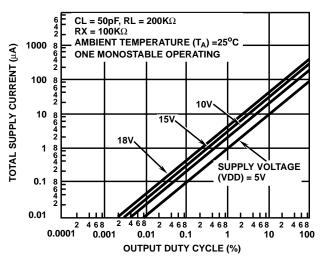


FIGURE 14. TYPICAL TOTAL SUPPLY CURRENT AS A FUNC-TION OF OUTPUT DUTY CYCLE

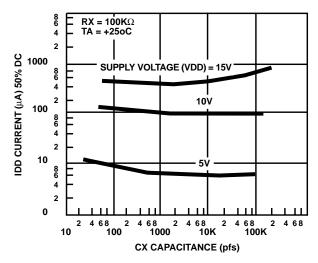
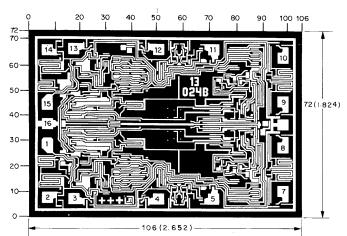



FIGURE 15. TYPICAL TOTAL SUPPLY CURRENT AS A FUNC-TION OF LOAD CAPACITANCE

Chip Dimension and Pad Layout

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN

72(1-824) **DIE THICKNESS:** 0.0198 inches - 0.0218 inches

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch)