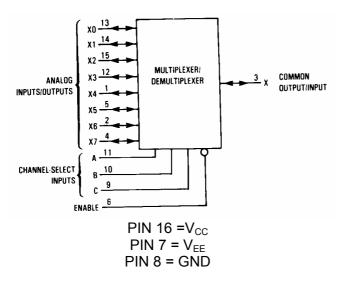
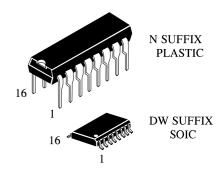
ANALOG MULTIPLEXER DEMULTIPLEXER

High-Performance Silicon-Gate CMOS

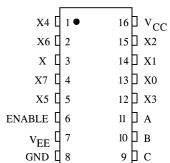

The IN74HC4051 utilize silicon-gate CMOS technology to achieve fast propagation delays, low ON resistances, and low OFF leakage currents. These analog multiplexers/demultiplexers control analog voltages that may vary across the complete power supply range (from $V_{\rm CC}$ to $V_{\rm EE}$).


The Channel-Select inputs determine which one of the Analog Inputs/Outputs is to be connected, by means of an analog switch, to the Common Output/Input.When the Enable pin is high, all analog switches are turned off.

The Channel-Select and Enable inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LS/ALSTTL outputs.

- Fast Switching and Propagation Speeds
- Low Crosstalk Between Switches
- Diode Protection on All Inputs/Outputs
- Analog Power Supply Range (V_{CC}-V_{EE})=2.0 to 12.0 V
- Digital (Control) Power Supply Range (V_{CC}-GND)=2.0 to 6.0 V
- Low Noise

LOGIC DIAGRAM Single-Pole, 8-Position Plus Common Off



ORDERING INFORMATION

IN74HC4051N Plastic IN74HC4051DW SOIC T_A = -55° to 125° C for all packages

PIN ASSIGNMENT

FUNCTION TABLE

Co	ON			
Enable	Select			Channels
	C B A			
L	L	L	L	X0
L	L	L	I	X1
L	L	Н	L	X2
L	L	Н	I	X3
L	Н	L	L	X4
L	Н	L	Н	X5
L	Η	Η	L	X6
Ĺ	Н	Н	Н	X7
Н	Χ	Χ	Χ	None

X = don't care

IN74HC4051

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V_{CC}	Positive DC Supply Voltage (Referenced to	-0.5 to +7.0	V
	GND)	-0.5 to +14.0	
	(Referenced to V_{EE})		
V _{EE}	Negative DC Supply Voltage (Referenced to GND)	-7.0 to +0.5	V
V_{IS}	Analog Input Voltage	V_{EE} - 0.5 to V_{CC} +0.5	V
V _{IN}	Digital Input Voltage (Referenced to GND)	-1.5 to V _{CC} +1.5	V
I	DC Input Current Into or Out of Any Pin	±25	mA
P_{D}	Power Dissipation in Still Air, Plastic DIP+	750	mW
	SOIC Package+	500	
Tstg	Storage Temperature	-65 to +150	°C
T_L	Lead Temperature, 1 mm from Case for 10	260	°C
	Seconds		
	(Plastic DIP or SOIC Package)		

Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	Positive Supply Voltage (Referenced to GND)	2.0	6.0	V
	(Referenced to V_{EE})	2.0	12.0	
V_{EE}	Negative DC Supply Voltage (Referenced to GND)	- 6.0	GND	V
V _{IS}	Analog Input Voltage	V_{EE}	V_{CC}	V
V_{IN}	Digital Input Voltage (Referenced to GND)	GND	V_{CC}	V
V _{IO} *	Static or Dynamic Voltage Across Switch	-	1.2	V
T _A	Operating Temperature, All Package Types	-55	+125	°C
t _r , t _f	Input Rise and Fall Time (Channel V _{CC} =2.0 V	0	1000	ns
	Select or Enable Inputs) $V_{CC} = 4.5 \text{ V}$	0	500	
	V _{CC} =6.0 V	0	400	

For voltage drops across the switch greater than 1.2 V (switch on), excessive V_{CC} current may be drawn;

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{IN} and V_{OUT} should be constrained to the range indicated in the Recommended Operating Conditions..

Unused digital input pins must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused Analog I/O pins may be left open or terminated.

⁺Derating - Plastic DIP: - 10 mW/°C from 65° to 125°C SOIC Package: : - 7 mW/°C from 65° to 125°C

i. e., the current out of the switch may contain both V_{CC} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.

IN74HC4051

 $\textbf{DC ELECTRICAL CHARACTERISTICS} \ \ \text{Digital Section (Voltages Referenced to GND)} \ \ V_{\text{EE}} \text{=} \text{GND,}$

Except Where Noted

Except vv	nere Notea						
			V_{CC}	Guara	anteed L	imit	
Symbol	Parameter	Test Conditions	V	25 °C to	≤85	≤125	Unit
				-55°C	°C	°C	
V_{IH}	Minimum High-Level	R _{ON} = Per Spec	2.0	1.5	1.5	1.5	V
	Input Voltage,		4.5	3.15	3.15	3.15	
	Channel-Select or		6.0	4.2	4.2	4.2	
	Enable Inputs						
V_{IL}	Maximum Low -Level	R _{ON} = Per Spec	2.0	0.3	0.3	0.3	V
	Input Voltage,		4.5	0.9	0.9	0.9	
	Channel-Select or		6.0	1.2	1.2	1.2	
	Enable Inputs						
I _{IN}	Maximum Input	$V_{IN}=V_{CC}$ or GND,	6.0	±0.1	±1.0	±1.0	μΑ
	Leakage Current,	V _{EE} =-6.0 V					
	Channel-Select or						
	Enable Inputs						
I _{CC}	Maximum Quiescent	Channel Select = V _{CC} or GND					μΑ
	Supply Current (per	Enable = V _{CC} or GND					
	Package)	$V_{IS} = V_{CC}$ or GND					
		V_{IO} = 0 V V_{EE} = GND	6.0	2	20	40	
		$V_{EE} = -6.0$	6.0	8	80	160	

DC ELECTRICAL CHARACTERISTICS Analog Section

			V _{CC}		Guara	anteed	Limit	
Symbol	Parameter	Test Conditions	V	V	25 °C to	≤85	≤125	Unit
					-55°C	°C	°C	
R _{ON}	Maximum "ON"	V _{IN} =V _{IL} or V _{IH}	4.5	0.0	190	240	280	Ω
	Resistance	$V_{IS} = V_{CC}$ or V_{EE}	4.5	-4.5	120	150	170	
		$I_S \le 2.0 \text{ mA(Figure 1)}$	6.0	-6.0	100	125	140	
		V _{IN} =V _{IL} or V _{IH}	4.5	0.0	150	190	230	
		$V_{IS} = V_{CC}$ or V_{EE}	4.5	-4.5	100	125	140	
		(Endpoints)						
		$I_S \le 2.0 \text{ mA(Figure 1)}$	6.0	-6.0	80	100	115	
ΔR_{ON}	Maximum Difference in	$V_{IN}=V_{IL}$ or V_{IH}	4.5	0.0	30	35	40	Ω
	"ON" Resistance Between	$V_{IS} = 1/2 (V_{CC} - V_{EE})$	4.5	-4.5	12	15	18	
	Any Two Channels in the	$I_S \le 2.0 \text{ mA}$	6.0	-6.0	10	12	14	
	Same Package							
I _{OFF}	Maximum Off- Channel	$V_{IN}=V_{IL}$ or V_{IH}	6.0	-6.0	0.1	0.5	1.0	μΑ
	Leakage Current, Any	$V_{IO} = V_{CC} - V_{EE}$						
	One Channel	Switch Off (Figure 2)						
	Maximum Off- Channel	$V_{IN}=V_{IL}$ or V_{IH}	6.0	-6.0	0.2	2.0	4.0	
	Leakage Current,	$V_{IO} = V_{CC} - V_{EE}$						
	Common Channel	Switch Off (Figure 3)						
I _{ON}	Maximum On- Channel	$V_{IN}=V_{IL}$ or V_{IH}	6.0	-6.0	0.2	2.0	4.0	μΑ
	Leakage Current,	Switch to Switch =						
	Channel to Channel	V _{CC} - V _{EE} (Figure 4)						

IN74HC4051

AC ELECTRICAL CHARACTERISTICS(C_L =50pF,Input t_r = t_f =6.0 ns)

			V _{CC}		ranteed l	_imit	
Symbol	Parametei	r	V	25 °C	≤85°C	≤125	Unit
				to		°C	
			-55°C				
$t_PLH,$	Maximum Propagation D	2.0	370	465	550	ns	
t_PHL	Select to Analog Output	(Figures 8 and	4.5	74	93	110	
	9)		6.0	63	79	94	
$t_PLH,$	Maximum Propagation [Delay , Analog	2.0	60	75	90	ns
t_PHL	Input to Analog Output (Figures 10 and	4.5	12	15	18	
	11)		6.0	10	13	15	
t_{PLZ} ,	Maximum Propagation De	2.0	290	364	430	ns	
t_{PHZ}	Analog Output (Figures 12 and 13)			58	73	86	
		6.0	49	62	73		
$t_{PZL},$	Maximum Propagation De	2.0	345	435	515	ns	
t_PZH	Analog Output (Figures 12	4.5	69	87	103		
		6.0	59	74	87		
C_{IN}	Maximum Input Capacita	ance, Channel-	-	10	10	10	pF
	Select or Enable Inputs						
$C_{I/O}$	Maximum Capacitance		-	35	35	35	pF
	Analog	All Switches					
	I/O	Off					
	Common O/I		-	130	130	130	
	Feedthrough		-	1.0	1.0	1.0	

		r Dissipation age) (Figure 14	Capacitance	(Per	Typical @25°C, V_{CC} =5.0 V, V_{EE} =0 V	
C _P		Used to determine the no-load dynamic		45	pF	
	powe P _D =C	r _{PD} V _{CC} ² f+I _{CC} V _{CC}	consum	ption:		

ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0.0 V)

BW Maximum On-Channel Adjust f_{in} Voltage to Obtain 0 dBm at Bandwidth or Minimum Increase f_{in} Frequence Until dB f_{in} 4.50 f_{in} 4.50 f_{in} 4.50 f_{in} 8.600 f_{i	25 °C	1.15-22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Unit
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		MHz
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	80	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	80	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	80	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Feedthrough Isolation (Figure 6) Adjust f_{in} Voltage to Obtain 0 dBm at V_{IS} f_{in} = 10 kHz, R_L =600 Ω , C_L =50 pF 2.25 -2.25 4.50 -4.50 6.00 -6.00 f_{in} = 1.0 MHz, R_L =50 Ω , C_L =10 pF 2.25 -2.25		
Isolation (Figure 6) V_{IS} f_{in} = 10 kHz, R_L =600 Ω , C_L =50 pF $\begin{bmatrix} 2.25 & -2.25 \\ 4.50 & -4.50 \\ 6.00 & -6.00 \end{bmatrix}$ f_{in} = 1.0 MHz, R_L =50 Ω , C_L =10 pF $\begin{bmatrix} 2.25 & -2.25 \\ -2.25 & -2.25 \end{bmatrix}$		dB
(Figure 6)		
$f_{in} = 1.0 \text{ MHz}, R_L = 50 \Omega, C_L = 10 \text{ pF}$ $4.50 -4.50 6.00 -6.00 2.25 -2.25$	50	
$f_{in} = 1.0 \text{ MHz}, R_L = 50 \Omega, C_L = 10 \text{ pF}$ $\begin{bmatrix} 6.00 & -6.00 \\ 2.25 & -2.25 \end{bmatrix}$	-50	
$f_{in} = 1.0 \text{ MHz}, R_L = 50 \Omega, C_L = 10 \text{ pF}$ 2.25 -2.25	-50	
	-50	
4.50 -4.50	-40 40	
	-40	
	-40	ma\ /
- Feedthrough $V_{IN} \le 1$ Mhz Square Wave $(t_r = t_f = 6)$		mV_P
Noise, ns) Channel Adjust R ₁ at Setup so that I _S = 0 A		Р
Channel Adjust R_L at Setup so that I_S = 0 A Select Input to Enable = GND 2.25 -2.25	25	
	105	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	135	
$R_L = 10 \Omega, C_L = 10 pF$ 2.25 -2.25	35	
· · · · · · · · · · · · · · · · · · ·	145	
	190	
THD Total f_{in} = 1 kHz, R_L =10 k Ω , C_L =50 pF	-100	%
Harmonic $THD = THD_{Measured} - THD_{Source}$, ,
i i i i i i i i i i i i i i i i i i i	0.10	
10 - 11	0.08	
, , , , , , , , , , , , , , , , , , , ,	0.05	
		1

^{*} Limits not tested. Determined by design and verified by qualification.

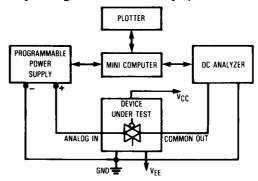
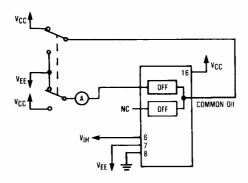
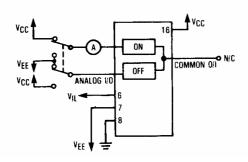



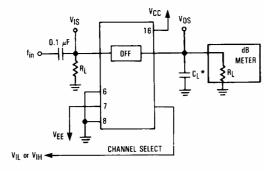
Figure 1. On Resistance Test Set-Up



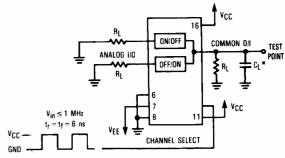
Figure 2. Maximum Off Channel Leakage Current, Any One Channel, Test Set-U_P

Figure 3. Maximum Off Channel Leakage Current, Common Channel, Test Set-U_P




Figure 4. Maximum On Channel Leakage Current, Channel to Channel, Test Set-U_P

* Includes all probe and jig capacitance.


Figure 5. Maximum On Channel Bandwidth,

Test Set-U_P

* Includes all probe and jig capacitance.

Figure 6. Off Channel Feedthrough
Isolation, Test Set-U_P

* Includes all probe and jig capacitance.

Figure 7.Feedthrough Noise, Channel Select to
Common Out, Test Set-U_P

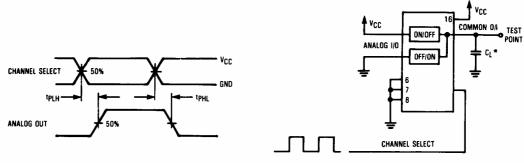


Figure 8. Switching Weveforms

* Includes all probe and jig capacitance.

Figure 9. Test Set-U_P, Channel Select to Analog

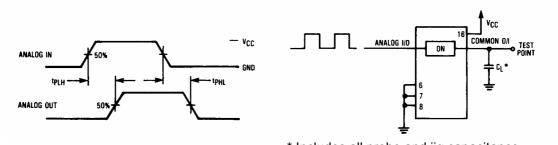


Figure 10. Switching Weveforms

* Includes all probe and jig capacitance. Figure 11. Test Set-U_P, Analog In to Analog Out

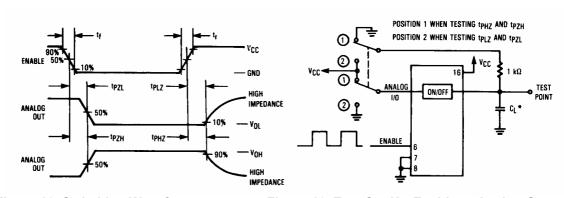


Figure 12. Switching Weveforms

Figure 13. Test Set-U_P, Enable to Analog Out

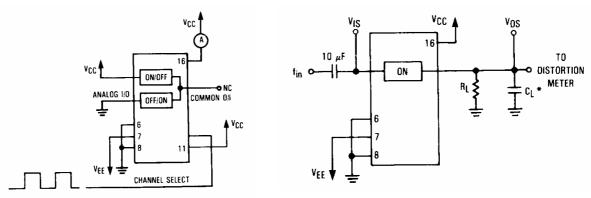
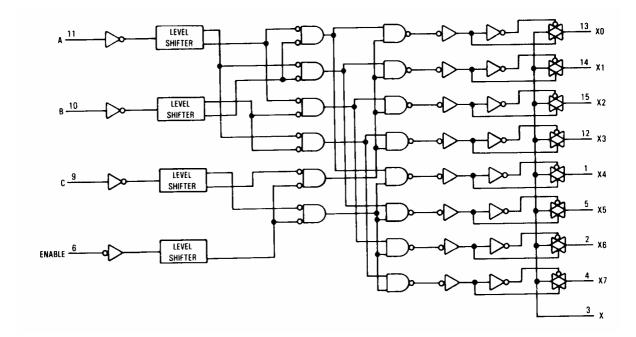



Figure 14. Power Dissipation * Incl Capacitance, Test Set-Up Figure 15.

* Includes all probe and jig capacitance
Figure 15. Total Harmonic Distortion, Test Set-U_P
EXPANDED LOGIC DIAGRAM

