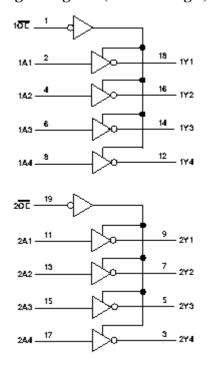

OCTAL BUFFER / DRIVER WITH 3-STATE OUTPUTS

This octal buffer/driver is designed specially to improve both the performance and density of 3-state memory address drivers, clock drivers and busoriented receivers and transmitters. When this device is used with the 'ALS241, 'AS241A, 'ALS244 and AS244A, the circuit designer has a choice of selected combinations of inverting and noninverting outputs, symmetrical active-low output-enable (OE) inputs and complementary OE and OE inputs. This device features high fan-out and improved fan-in.


The IN74ALS240A is characterized for operation from 0° C to 70° C.

Logic Symbol

Logic Diagram (Positive Logic)

INTEGRAL

	1	$U_{_{20}}$	
1A1 [2	19] 2 0 Ĕ
2Y4 [3	18] 1Y1
1A2 [4	17] 2A4
2Y3 [5	16] 1Y2
1A3 [6	15] 2A3
2Y2 [7	14] 1Y3
1A4 [8	13] 2A2
2Y1 [9	12] 1Y4
GND [10	11] 2A1

•	FUNCTION	TABLE

INP	OUTPUT	
OE	Α	Y
L	Н	L
L	L	Н
Н	Х	Z

ABSOLUTE MAXIMUM RATINGS

OVER OPERATING FREE-AIR TEMPERATURE RANGE

Supply voltage, Vcc	7 V
Input voltage, V _I	7 V
Voltage applied to a disabled 3-state output	5.5V
Operating free-air temperature range, T _A	0° C to 70° C.
Storage temperature range	-65°C to 150°C

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	4.5	5	5.5	V
V _{IH}	High-level input voltage	2			V
V _{IL}	Low-level input voltage			0.8	V
I _{OH}	High-level output current			-15	mA
I _{OL}	Low-level output current			24	mA
T _A	Operating free-air temperature	0		70	°C

Parameter	Tes	st Conditions	MIN	TYP**	MAX	UNIT
V _{IK}	$V_{CC} = 4.5V$	$I_I = -18 mA$			-1.2	V
	$V_{CC} = 4.5V$ to 5.5V	$I_{OH} = -0.4 mA$	V_{CC} -2			V
V _{OH}	$V_{CC} = 4.5V$	$I_{OH} = -3mA$	2.4	3.2		V
		$I_{OH} = -15 mA$	2			
V _{OL}	$V_{CC} = 4.5V$	$I_{OL}=12 \text{ mA}$		0.25	0.4	
		$I_{OL} = 24 \text{ mA}$		0.35	0.5	V
		$I_{OL} = 48 \text{ mA*}$		0.35	0.5	
I _{OZH}	$V_{CC} = 5.5 V$	$V_0 = 2.7 V$			20	μA
I _{OZL}	$V_{CC} = 5.5 V$	$V_0 = 0.4V$			-20	μA
II	$V_{CC} = 5.5 V$	$V_I = 7V$			0.1	mA
I _{IH}	$V_{CC} = 5.5 V$	$V_{I} = 2.7 V$			20	μA
I _{IL}	$V_{CC} = 5.5 V$	$V_{I} = 0.4 V$			-0.1	mA
I ₀ ***	$V_{CC} = 5.5 V$	$V_0 = 2.25V$	-30		-112	mA
		Output high		4	11	
I _{CC}	$V_{CC} = 5.5 V$	Outputs low		13	23	mA
		Outputs disabled		14	25	

ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE

*- Applies only to the -1 version and only if V_{CC} is between 4.75V and 5.25V

**- All typical values are at $V_{CC}=5V$, $T_A=25^{\circ}C$

***- The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS}

SWITCHING CHARACTERISTICS

			$V_{\rm CC} = 4.5$	V to 5.5 V	
Parameter	From (input)	To (output)	$C_L = 50 \text{ pF}$		UNIT
			$R_1 = 3$	$R_1 = 500 \ \Omega$	
			$R_2 = 500 \ \Omega$		
			$T_A = MIN$ to MAX*		
			MIN	MAX	
t _{PLH}	- A -	Y	2	9	ns
t _{PHL}			2	9	
t _{PZH}	ĐE	Y	5	13	ns
t _{PZL}			5	18	
t _{PHZ}	OE	Y	2	10	ns
t _{PLZ}			3	12	

*- For conditions shown as MIN and MAX, use the appropriate value specified under recommended operating conditions

