IN472-3 ## **Liquid Crystal Display Controller** The IN472-3-3 Liquid Crystal Display (LDC) Controller is a perpheral member of the COPSTM family, fabricated using CMOS technology. The IN472-3 drives a multiplexed liquid crystal directly. Data is loaded serially and is held in internal latches. The In472-3 contains an on-chip oscillator and generates all the multi-level waveforms for back-planes and segment outputs on a triplex display. One IN472-3 can drive 36 segments multiplexed as 3 x 12 (4^{1} /₂ digit display). Two IN472-3 devices can be used together to drive 72 segments (3 x 24) which could be an 8^{1} /₂ digit display. - Direct interface to TRIPLEX LCD - Low power dissipation (100 µW typ.) - Low cost - Compatible with all COP400 processors - Needs no refresh from processor - On-chip oscillator and latches - Expandable to longer displays - Software compatible with COP470 V.F.Display Driver Chip - Operates from display voltage - MICROWIRETM compatible serial I/O - 20-pin Dual-In-Line package ## **Pin Description** | Pin | Description | |-------------|---| | CS | Chip select | | $V_{ m DD}$ | Power supply (display voltage) | | GND | Ground | | DI | Serial data input | | SK | Serial clock input | | BP_A | Display backplane A (or oscillator in) | | BP_B | Display backplane B | | BP_C | Display backplane C (or oscillator out) | | SA1~SA4 | 12 multiplexed outputs | ## PIN ASSIGNMENT | SB1 | | 1 ● | 20 | þ | SA4 | |------------|---|-----|-----------|---|-----| | SC3 | Г | 2 | 19 | þ | SA3 | | SB3 | | 3 | 18 | þ | SC1 | | CS | | 4 | 17 | þ | BPF | | v_{DD} | Г | 5 | 16 | þ | BPC | | GND | | 6 | 15 | þ | BPA | | D 1 | Г | 7 | 14 | þ | SK | | SA2 | | 8 | 13 | þ | SC4 | | SB4 | Г | 9 | 12 | þ | SC2 | | SB2 | | 10 | 11 | þ | SA1 | | | | | | | | **DC ELECTRICAL CHARACTERISTICS** (GND=0 V, V_{DD} =3.0 V to 5.5 V, T_A = 0°C to 70°C (depends on display characteristics) | Symbol | | | Guarant | | | |---------------------------------|--|------------------------|--------------------------|------------------------|------| | | Parameter | Test
Conditions | Min | Max | Unit | | V_{DD} | Power Supply Voltage | | 3.0 | 5.5 | V | | I_{DD} | Power Supply Current (Note 1) | V _{DD} =5.5 V | | 250 | μΑ | | V_{IL} | Input Levels DI, SK, CS | | | 0.8 | V | | V_{IH} | | | 0.7 V _{DD} | V_{DD} | | | $V_{\rm IL}$ | BPA (as Osc. in) | | | 0.6 | V | | V_{IH} | | | V _{DD} -0.6 | V_{DD} | | | V _{OL} | Output Levels, BPC (as Osc. Out) | | | 0.4 | V | | V_{OH} | | | V _{DD} -0.4 | V_{DD} | | | V _{BPA,BPB,BPC}
ON | Backplane Outputs (BPA,BPB,BPC) | During | $V_{ m DD}$ - ΔV | $V_{ m DD}$ | V | | V _{BPA,BPB,BPC}
OFF | | BP + Time | $1/3V_{DD}$ - ΔV | $1/3V_{DD} + \Delta V$ | | | V _{BPA,BPB,BPC}
ON | Backplane Outputs (BPA,BPB,BPC) | During | 0 | ΔV | V | | V _{BPA,BPB,BPC}
OFF | | BP - Time | $2/3V_{DD}$ - ΔV | $2/3V_{DD} + \Delta V$ | | | V _{SEG} ON | Segment Outputs $(SA_1 \sim SA_4)$ | During | 0 | ΔV | V | | V _{SEG} OFF | | BP + Time | $2/3V_{DD}$ - ΔV | $2/3V_{DD} + \Delta V$ | | | V _{SEG} ON | Segment Outputs (SA ₁ ~ SA ₄) | During | V_{DD} - ΔV | V_{DD} | V | | V _{SEG} OFF | | BP - Time | $1/3V_{DD}$ - ΔV | $1/3V_{DD} + \Delta V$ | | | | Internal Oscillator Frequency | | 15 | 80 | kHz | | | Frame Time (Int. Osc. ÷ 192) | | 2.4 | 12.8 | ms | | 1/T _{SCAN} | Scan Frequency | | 39 | 208 | Hz | | | SK Clock Frequency | | 4 | 250 | kHz | | | SK Width | | 1.7 | | μs | | t _{SETUP} | DI Data Stup | | 1.0 | | μs | | t _{HOLD} | DI Data Hold | | 100 | | ns | | t_{SETUP} | CS | | 1.0 | | μs | | t _{HOLD} | 1 | | 1.0 | | | | | Output Loading Capacitance | | | 100 | pF | Note 1: Power supply current as measured in stand-alone mode with all outputs open and all inputs at V_{DD} . Note 2: $\Delta V~$ - $0.05V_{DD}.$ Figure 1. Serial Load Timing Diagram Figure 2. Backplane and Segment Waveforms