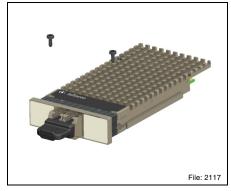


XPAK 850 nm Module 10 Gigabit Pluggable Transceiver Compatible with XPAK MSA Rev. 2.3 V23833-G2005-A101 V23833-G6005-A101 V23833-G6005-A111

Preliminary Data Sheet

Features


Standards

- Compatible with IEEE Std 802.3ae[™]-2002
- Compatible with Fibre Channel 10GFC Draft 3.5
- Compatible with XPAK MSA Rev. 2.3

Optical

- IEEE Ethernet: Serial 850 nm 10GBASE-SR
- T11 Fibre Channel: Serial 850 nm 1200-M5-SN-I; 1200-M5E-SN-I; 1200-M6-SN-I
- 10 Gigabit Fibre Channel: 10.51875 Gbit/s (V23833-G2005-A101)
- 10 Gigabit Ethernet: 10.3125 Gbit/s (V23833-G6005-A1x1)
- Transmission distance
 - up to 82 m¹⁾ (50 μ m MMF)
 - up to 300 m¹⁾ (on special MMF)
- Vertical Cavity Surface Emitting Laser at 850 nm (VCSEL)
- LC connector, multimode fiber
- Full duplex transmission mode
- Eye safety class 1M (IEC 60825-1:A2)

¹⁾ Maximum reach as defined by IEEE. Longer reach possible depending upon link implementation.

Part Number	Standard	De-Latch Mechanism	Connector	Laser Class
V23833-G2005-A101	Fibre Channel	Bail	LC	1M
V23833-G6005-A101	Ethernet	Bail	LC	1M
V23833-G6005-A111	Ethernet	None	LC	1M

Applications

- DOM
 - Loss Of Signal from receiver
 - Supply voltage monitor (+3.3 V, Adaptable Power Supply)
 - Transmit power
 - Module temperature
 - Received power
 - Transmit bias current monitor

Mechanical

- Mezzanine profile: 2.68" L x 1.42" W x 0.38" H (68.07 mm x 35.99 mm x 9.8 mm)
- Mezzanine module height for PCI card applications mid-board mounting
- Separated signal/chassis ground (a common signal/chassis ground module version is available upon request)
- Belly-to-belly applications
- De-latch mechanism with low extraction force (V23833-Gxxxx-Ax0x only)
- Built-in heat sink

Electrical

- Hot pluggable
- Power supply: +5.0 V, +3.3 V, Adaptable Power Supply (APS: +1.8 V)
- Total power consumption: 3.4 W typical
- · XAUI electrical interface
 - 3.125 Gbit/s Ethernet (V23833-G60xx-xxxx)
 - 3.1875 Gbit/s Fibre Channel (V23833-G20xx-xxxx)
- Management and control via MDIO 2-wire bus
- 70-pin connector

Applications

- 10 Gbit/s Ethernet and Fibre Channel transmission systems for Short Range (SR)
- Integration on PCI card
- Mid-board mounting
- Belly-to-belly for high density applications
- Enterprise and campus network applications
- Storage applications
- Backplane and switch applications
- Core and edge routers
- Aggregation point for lower date rate
- XPAK evaluation kit V23833-G9909-Z001 available upon request

Pin Configuration

	Top of Transceiver PCB	Bottom of Transceiver PCB (as viewed through top) File: 2301
	36 GND	35 GND
	37 GND	34 GND
	38 RESERVED	33 GND
	39 RESERVED	32 5.0 V
	40 GND	31 3.3 V
	41 RX LANE0+	30 3.3 V
	42 RX LANE0-	29 APS
	43 GND	28 APS
	44 RX LANE1+	27 APS SENSE
	45 RX LANE1–	26 RESERVED
	46 GND	24 VEND SPECIFIC 25 APS SET
	47 RX LANE2+	23 PRTAD0
	48 RX LANE2-	22 PRTAD1
	49 GND	21 PRTAD2
	50 RX LANE3+	20 PRTAD3
	51 RX LANE3-	19 PRTAD4
N N	52 GND	18 MDC
	54 GND	17 MDIO
Toward Bezel	55 TX LANEU+ 54 GND	16 VEND SPECIFIC
	56 TX LANE0- 55 TX LANE0+	15 VEND SPECIFIC
	57 GND 56 TX LANE0-	14 MOD DETECT
	58 TX LANE1+	13 RESERVED
	59 TX LANE1-	12 TX ON/OFF
	60 GND	11 VEND SPECIFIC
	61 TX LANE2+	10 RESET
	62 TX LANE2-	9 LASI
	63 GND	8 APS
	64 TX LANE3+	7 APS
	65 TX LANE3-	6 3.3 V
	66 GND	5 3.3 V
	67 RESERVED	4 5.0 V
	68 RESERVED	3 GND
	69 GND	1 GND
	70 GND	1 GND

Figure 1 XPAK Transceiver Electrical Pad Layout

Connector Pin Assignments

Pin No.	Signal Name
1	GND
2 3	GND
3	GND
4	+5.0 V DC Power
5	+3.3 V DC Power
6	+3.3 V DC Power
7	APS
8	APS
9	LASI
10	RESET
11	Vendor Specific
12	TX ON/OFF
13	Reserved
14	MOD DETECT
15	Vendor Specific
16	Vendor Specific
17	MDIO
18	MDC
19	PRTAD4
20	PRTAD3
21	PRTAD2
22	PRTAD1
23	PRTAD0
24	Vendor Specific
25	APS SET
26	Reserved
27	APS SENSE
28	APS
29	APS
30	+3.3 V DC Power
31	+3.3 V DC Power
32	+5.0 V DC Power
33	GND
34	GND
35	GND

Pin No.	Signal Name
70	GND
69	GND
68	Reserved
67	Reserved
66	GND
65	TX LANE3-
64	TX LANE3+
63	GND
62	TX LANE2-
61	TX LANE2+
60	GND
59	TX LANE1-
58	TX LANE1+
57	GND
56	TX LANE0-
55	TX LANE0+
54	GND
53	GND
52	GND
51	RX LANE3-
50	RX LANE3+
49	GND
48	RX LANE2-
47	RX LANE2+
46	GND
45	RX LANE1-
44	RX LANE1+
43	GND
42	RX LANE0-
41	RX LANE0+
40	GND
39	Reserved
38	Reserved
37	GND
36	GND

Pin Description

Signal Name	Level	I/O	Pin No.	Description
Management	and Monitori	ng Por	ts	
MDIO	Open Drain	I/O	17	Management Data I/O. Requires external 10 - 22 $k\Omega$ pull-up to 1.8 V on host.
MDC	1.2 V CMOS	Ι	18	Management Data Clock Input
PRTAD4	1.2 V CMOS	I	19	Port Address Input bit 4
PRTAD3	1.2 V CMOS	I	20	Port Address Input bit 3
PRTAD2	1.2 V CMOS	I	21	Port Address Input bit 2
PRTAD1	1.2 V CMOS	I	22	Port Address Input bit 1
PRTAD0	1.2 V CMOS	I	23	Port Address Input bit 0
LASI	Open Drain	0	9	Link Alarm Status Interrupt Output. Open Drain Compatible Output with $10 - 20 \text{ k}\Omega$ pull-up on host. Logic high = Normal Operation Logic low = Status Flag Triggered
RESET	Open Drain	I	10	Reset Input. Open Drain Compatible Input with 10 kΩ pull-up to APS internal to transceiver. Logic high = Normal Operation Logic low = RESET Note: 1.8 V is APS
Vendor Specific			11,15,16,24	Vendor Specific Pins. Leave unconnected when not used.
TX ON/OFF	Open Drain	I	12	TX ON/OFF Input. Open Drain Compatible Input with 10 k Ω pull-up to APS internal to transceiver. Logic high = Transmitter On Logic low = Transmitter Off Note: 1.8 V is APS
MOD DETECT		0	14	Pulled low inside transceiver through a 1 $k\Omega$ resistor to Ground

Pin Description (cont'd)

Signal Name	Level	I/O	Pin No.	Description
Transmit Fun		l .		•
Reserved		1	68	Reserved For Future Use
Reserved		I	67	Reserved For Future Use
TX LANE 3-	AC-coupled,	I	65	Module XAUI Input Lane 3-
TX LANE 3+	Internally	I	64	Module XAUI Input Lane 3+
TX LANE 2-	biased	I	62	Module XAUI Input Lane 2-
TX LANE 2+	differential	I	61	Module XAUI Input Lane 2+
TX LANE 1-	XAUI	I	59	Module XAUI Input Lane 1-
TX LANE 1+		I	58	Module XAUI Input Lane 1+
TX LANE 0-		I	56	Module XAUI Input Lane 0-
TX LANE 0+		I	55	Module XAUI Input Lane 0+
Receive Fund	tions	•		
Reserved		0	38	Reserved For Future Use
Reserved		0	39	Reserved For Future Use
RX LANE 0+	AC-coupled,	0	41	Module XAUI Output Lane 0+
RX LANE 0-	Internally	0	42	Module XAUI Output Lane 0-
RX LANE 1+	biased	0	44	Module XAUI Output Lane 1+
RX LANE 1-	differential	0	45	Module XAUI Output Lane 1-
RX LANE 2+	XAUI	0	47	Module XAUI Output Lane 2+
RX LANE 2-		0	48	Module XAUI Output Lane 2-
RX LANE 3+		0	50	Module XAUI Output Lane 3+
RX LANE 3-		0	51	Module XAUI Output Lane 3-

Pin Description (cont'd)

Signal Name	Level	I/O	Pin No.	Description
DC Power		•	•	
GND	0 V DC	I	1,2,3,33,34, 35,36,37,40, 43,46,49,52, 53,54,57,60, 63,66,69,70	Ground connection for signal ground on the module
APS	+1.8 V	I	7,8,28,29	Input from Adaptive Power Supply
APS SENSE	+1.8 V	0	27	APS Sense Output. Connected to the APS input inside transceiver.
APS SET	GND	I	25	Feedback input from APS. Connected to GND through a zero Ω resistor inside the transceiver.
3.3 V	+3.3 V DC	I	5,6,30,31	DC Power Input, +3.3 V DC, Nominal
5.0 V	+5.0 V DC	I	4,32	DC Power Input, +5.0 V DC, Nominal
Reserved			26	Reserved for APD. Do not connect.
Reserved			13	Reserved. Do not connect.

Description

Description

System Block Diagram (10 Gbit/s Ethernet)

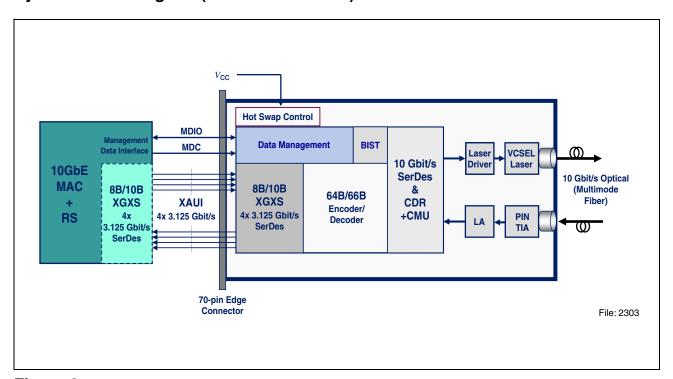


Figure 2

Optical Interface Standard Specifications

- IEEE Std 802.3ae[™]-2002 clause 52, 10GBASE-SR
- Fibre Channel 10GFC Draft 3.5, 1200-M5-SN-I
- Fibre Channel 10GFC Draft 3.5, 1200-M5E-SN-I
- Fibre Channel 10GFC Draft 3.5, 1200-M6-SN-I
- XPAK MSA 2.3

Standard	Fiber Type	Minimum Modal Bandwidth at 850 nm (MHz*km)	Operating Range ¹⁾ (meters)
IEEE	62.5 µm MMF	160	2 to 26
	50 μm MMF	400	2 to 66
Fibre Channel	62.5 µm MMF	200	0.5 to 33
	50 μm MMF	500	0.5 to 82
	50 μm MMF	2000	0.5 to 300

Longer reaches possible depending upon link implementation.

Description

Electrical Interface Standard Specifications

IEEE Std 802.3ae[™]-2002 clause 45 & 47

XPAK MSA 2.3

Environment: Thermal Management Recommendations

Operating air inlet temperature: 0°C - 50°C

Operating Airflow: 3 m/s maximum defined per XPAK MSA

Operating Humidity: 0% - 95% RH non-condensing

Module can withstand and operate with case temperature of 75°C for up to 96 hrs/yr. Transceiver requires airflow across cooling fins. Maximum airflow required per XPAK MSA is 3 m/s. Actual airflow required to provide adequate cooling for module is 1 m/s with a maximum air inlet temperature of 50°C. A maximum case temperature of 70°C must be observed.

Fibers and Connectors

The transceiver has LC receptacles for both Tx and Rx. The transceiver is designed for multimode LC cables, 0° polished endface (PC).

70-pin Connector

The module interface connector is a 70-pin, printed circuit board edge connection with a 0.5 mm pitch. The appropriate mating connector for the customer PCB is a 70-pin SMT, dual row, right angled, edge connector, 0.5 mm pitch (TycoAmp part number 1367337-1, Molex part number 74441-0003 or equivalent).

Cage Requirement

The cage assembly required to mount the XPAK module is defined by the MSA. There are two cage designs for the module, tall and mezzanine profile. For correct operation and EMI design the correct cage size must be selected for the appropriate module. Alternatively a flangeless cage design is specified where there is limited size. A sufficient EMI gasket that connects from the cage to the face plate must be fitted. The mechanical design must ensure that no air gaps exist between the cage and the face plate while the module is plugged in.

Recommended XPAK rail assembly, Molex part number 74732-0200.

Description

DOM Parameters

Parameter	Values			Unit
	min.	typ.	max.	
Transceiver Temperature Monitor Accuracy ¹⁾			±5	°C
Transmit Bias Current Monitor Accuracy ²⁾			±10	%
Transmit Power Monitor Accuracy ³⁾			±3	dB
Receive Power Monitor Accuracy ³⁾			±3	dB

¹⁾ 0 to 70°C case temperature.

Regulatory Compliance

Feature	Standard	Comments
ESD: Electrostatic Discharge to the Electrical Pins (HBM)	EIA/JESD22-A114-B (MIL-STD 883D Method 3015.7)	Class 1a (> 500 V)
Immunity: Against Electrostatic Discharge (ESD) to the Module Receptacle	EN 61000-4-2 IEC 61000-4-2	Discharges ranging from ±2 kV to ±15 kV to the front end / faceplate / receptacle cause no damage to module (under recommended conditions).
Immunity: Against Radio Frequency Electromagnetic Field	EN 61000-4-3 IEC 61000-4-3	With a field strength of 10 V/m, noise frequency ranges from 10 MHz to 2 GHz. No effect on module performance between the specification limits.
Emission: Electromagnetic Interference (EMI)	FCC 47 CFR Part 15, Class B EN 55022 Class B CISPR 22	Noise frequency range: 30 MHz to 40 GHz Radiated emission does not exceed specified limits when measured inside a shielding enclosure with MSA conform cutout.

²⁾ 0 to 12.5 mA.

³⁾ 0 to 6.5 mW.

Technical Data

Absolute Maximum Ratings

Parameter	Symbol	Limit Values		Unit
		min.	max.	
Storage Ambient Temperature ¹⁾	T_{As}	-20	85	°C
Operating Ambient Temperature ¹⁾	T_{Ao}	0	65	°C
Operating Case Temperature ¹⁾	T_{Co}	0	80	°C
Supply Voltage +5.0 V	V_5	0	6	V
Supply Voltage +3.3 V	V_3	0	4	V
Supply Voltage APS	$V_{\sf aps}$	0	2	V
Static Discharge Voltage, All Pins	ST _d		500	V
Average Receive Optical Power	Rx _{P max}		0	dBm

¹⁾ Non condensing.

Exceeding any one of these values may permanently destroy the device.

Recommended Operating Conditions

Parameter	Symbol		Values		
		min.	typ.	max.	
Operating Case Temperature ¹⁾	T_{C}	0		70	°C
Transceiver Total Power Consumption	P		3.4	3.8	W
Supply Voltage +5.0 V	$V_{\rm CC5}$	4.75	5.0	5.25	V
Supply Current +5.0 V	$I_{\rm CC5}$		50		mA
Supply Voltage +3.3 V	$V_{\rm CC3}$	3.14	3.3	3.47	V
Supply Current +3.3 V	I_{CC3}		550		mA
Supply Voltage APS	$V_{ m CC\ aps}$	1.746	1.8	1.854	V
Supply Current APS	I _{CC aps}		700		mA

Worst case thermal location, see **Figure 12**.

See also Environment: Thermal Management Recommendations.

Optical Characteristics

 $(V_{\rm CC5} = 4.75 \text{ V to } 5.25 \text{ V}, V_{\rm CC3} = 3.14 \text{ V to } 3.47 \text{ V}, V_{\rm CC aps} = 1.746 \text{ V to } 1.854 \text{ V}, T_{\rm C} = 0^{\circ}\text{C to } 70^{\circ}\text{C})$

Parameter	Symbol		Value	S	Unit
		min.	typ.	max.	
Transmitter	1	1	<u> </u>	l	'
Launch Power in OMA ¹⁾	$P_{O ext{-}OMA}$	-2.8			dBm
Average Launch Power	P_{O-Avg}	-3	-2	-1	dBm
Center Wavelength Range ¹⁾	$\lambda_{\text{C-Tx}}$	840	850	860	nm
RMS Spectral Width ¹⁾	σ_{l}		0.4	0.45	nm
Extinction Ratio	ER	3	5.5		dB
Relative Intensity Noise ₁₂ OMA	RIN			-128	dB/Hz
Eye Mask Definition	Ad	cording t	o IEEE and	Fibre Chann	iel
Transmitter and Dispersion Penalty	TDP			3.9	dB
Encircled Flux	EF	at 19 µr	6		
Optical Return Loss Tolerance	ORL _T			12	dB
Average Launch Power of OFF Transmitter	$P_{O\text{-}OFF}$			-30	dBm
Receiver	1	1	1	1	1
Stressed Receiver Sensitivity in OMA	P _{IN-S}			-7.5	dBm
Sensitivity in OMA ²⁾	P_{IN}			-11.1	dBm
Average Receive Power	P_{IN-max}			-1	dBm
Signal Detect Deassert Level	P_{SDL}	-30			dBm
Signal Detect Assert Level	P_{SD}		-20	-13	dBm
Signal Detect Hysteresis	P_{SD}	1	2	4	dB
Receiver Reflectance	REF _{Rx}			-12	dB
Center Wavelength Range	$\lambda_{\text{C-Rx}}$	840		860	nm
Electrical 3 dB Upper Cut-off Frequency	3dB _{CO}			12.3	GHz

¹⁾ Conforms to IEEE triple trade off between center wavelength, RMS spectral width and minimum OMA.

²⁾ Receiver sensitivity, which is defined for an ideal input signal is informative only.

Electrical DC Characteristics

 $(V_{\rm CC5} = 4.75 \text{ V to } 5.25 \text{ V}, \ V_{\rm CC3} = 3.14 \text{ V to } 3.47 \text{ V}, \ V_{\rm CC \, aps} = 1.746 \text{ V to } 1.854 \text{ V}, \ T_{\rm C} = 0^{\circ} \text{C to } 70^{\circ} \text{C})$

Parameter	Symbol	Value		S	Unit	
		min.	typ.	max.		
1.2 V CMOS (1.8 V CMOS Co (PRTAD; LASI; RESET; TX_O		O DC Ch	aracteristi	cs		
External Pull-up Resistor for Open Drain	R_{pullup}	10		22	kΩ	
Output High Voltage ²⁾	V_{oh}	1			V	
Output Low Voltage ²⁾	V_{ol}			0.15	V	
Input High Voltage	V_{ih}	0.84		1.854	V	
Input Low Voltage	V_{il}			0.36	V	
Input Pull-down Current ³⁾	$I_{\sf pd}$	20		120	μΑ	
(TXLANE[03]; RXLANE[03] Differential Input Amplitude (pk-pk) ⁴⁾	V_{in_xaui}	200		2500	mV	
Differential Output Amplitude (pk-pk)4)	$V_{ m out_xaui}$	800		1600	mV	
MDIO I/O DC Characteristics (MDIO; MDC)					,	
Output Low Voltage5)	V_{OL}	-0.3		0.2	V	
Output Low Current	I_{OL}			4	mA	
Input High Voltage	V_{IH}	0.84		1.854	V	
Input Low Voltage	V_{IL}	-0.3		0.36	V	
Pull-up Supply Voltage	V_{PU}	1.746	1.8	1.854	V	
Input Capacitance	C_{IN}			10	pF	
Load Capacitance	C_{LOAD}			470	pF	
External Pull-up Resistance	R_{LOAD}	200			Ω	

 $^{^{\}mbox{\tiny 1)}}$ For 1.8 V CMOS $V_{\rm oh}$ = 1.65 V min., $V_{\rm ol}$ = 0.15 V max., $V_{\rm ih}$ = 1.17 V min., $V_{\rm il}$ = 0.63 V max.

 $^{^{2)}}$ $R_{\rm pull-up}$ = 10 k Ω to 1.8 V. $^{3)}$ $V_{\rm in}$ = 1.8 V.

⁴⁾ AC coupled.

 $I_{OL} = 100 \, \mu A.$

Electrical AC Characteristics

 $(V_{CC5} = 4.75 \text{ V to } 5.25 \text{ V}, V_{CC3} = 3.14 \text{ V to } 3.47 \text{ V}, V_{CC aps} = 1.746 \text{ V to } 1.854 \text{ V}, T_C = 0^{\circ}\text{C to } 70^{\circ}\text{C})$

Parameter	Symbol		Values		
		min.	typ.	max.	
XAUI Input AC Characteristics (TXLANE[03])			'	•	
Baud Rate Fibre Channel Ethernet	R _{XAUIIN}		3.1875 3.125		Gbit/s
Baud Rate Tolerance	R _{TOLXAUI}	-100		100	ppm
Differential Input Impedance	Z_{INXAUI}	80	100	120	Ω
Differential Return Loss ¹⁾	S ₁₁	10			dB
Input Differential Skew ²⁾	t _{SKEWIN}			75	ps
Jitter Amplitude Tolerance ³⁾	J _{XAUITOL}				
XAUI Output AC Characteristic (RXLANE[03])	s				
Baud Rate Fibre Channel Ethernet	R _{XAUIOUT}		3.1875 3.125		Gbit/s
Baud Rate Variation	R _{XAUIVAR}	-100		100	ppm
Rise and Fall Times 20% - 80%	$t_{r,}t_{f}$	40		100	ps
Output Differential Skew	$t_{\sf SKEWOUT}$			15	ps
Output Differential Impedance	$Z_{OUTXAUI}$	80	100	120	Ω
Differential Output Return Loss¹)	S ₂₂	10			dB
Total Jitter ⁴⁾	TJ _{XAUI}			0.35	UI
Deterministic Jitter ⁴⁾	DJ _{XAUI}			0.17	UI
Power-On Reset AC Character	istics	•	•	•	<u> </u>
Power-On Reset and TX_ONOFF Characteristics	Accord	ing to XEI	NPAK MSA I 2002-9-9	ssue 3.0 D	raft 4.0,

Electrical AC Characteristics (cont'd)

 $(V_{\rm CC5} = 4.75 \text{ V to } 5.25 \text{ V}, \ V_{\rm CC3} = 3.14 \text{ V to } 3.47 \text{ V}, \ V_{\rm CC \, aps} = 1.746 \text{ V to } 1.854 \text{ V}, \ T_{\rm C} = 0^{\circ} \text{C to } 70^{\circ} \text{C})$

Parameter	Symbol		Values		
		min.	typ.	max.	
MDIO I/O AC Characteristics (MDIO; MDC)	•	•	•	·	·
MDIO Data Hold Time	t_{HOLD}	10			ns
MDIO Data Setup Time	t_{SU}	10			ns
Delay from MDC Rising Edge to MDIO Data Change	t _{DELAY}			300	ns
MDC Clock Rate	f_{MAX}			2.5	MHz

¹⁰⁰ MHz to 2.5 GHz.

Mechanical Characteristics

Parameter	Symbol		Values		
		min.	typ.	max.	
Module Retention Force (latch strength)	F _{RET}		200		N
Module Insertion Force	F _{IN}		40		N
Module Extraction Force (with kick-out)	F _{EXT-K}		16		N
Module Extraction Force (without kick-out)	F _{EXT}		25		N
0-80 UNF Screw Torque ¹⁾	τ _{0-80 UNF}			10	cNm

Two 0-80 UNF screws are used to secure the XPAK module (no bail de-latch version V23833-Gxxxx-Ax1x) in the cage. The XPAK module is supplied with the screws assembled, and removal is required prior to insertion into the cage.

²⁾ At crossing point.

³⁾ Per IEEE Std 802.3ea.

⁴⁾ At near-end. No pre-equalization. 1 UI = 320 ps.

Eye Safety

Eye Safety

This laser based multimode transceiver is a Class 1M product. It complies with IEC 60825-1 and FDA 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice 50, dated July 26, 2001.

INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH OPTICAL INSTRUMENTS CLASS 1M LASER PRODUCT

To meet laser safety requirements the transceiver shall be operated within the Absolute Maximum Ratings.

Attention: All adjustments have been made at the factory prior to shipment of the devices. No maintenance or alteration to the device is required.

Tampering with or modifying the performance of the device will result in voided product warranty.

Note: Failure to adhere to the above restrictions could result in a modification that is considered an act of "manufacturing", and will require, under law, recertification of the modified product with the U.S. Food and Drug Administration (ref. 21 CFR 1040.10 (i)).

Laser Data

Wavelength	850 nm
Accessible Emission Limit (as defined by IEC: 7 mm aperture at 100 mm distance)	749 µW
Beam divergence (full angle)	22°

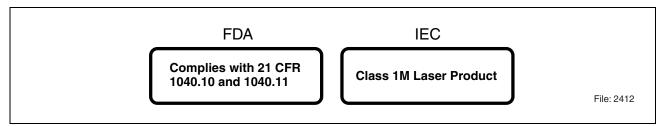


Figure 3 Required Labels

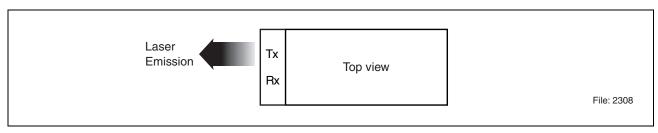


Figure 4 Laser Emission

Application Notes

NVRAM Register Contents

Addres	SS	Group	XENPAK MSA 3.0	Value		Comment
Dec	Hex		Definition	Dec	Hex	
32775	8007	Header	XENPAK MSA version supported	30	1E	Rev. 3.0
32776	8008		NVR size in bytes	1	1	256
32777	8009			0	0	
32778	800A		Number of bytes used	0	0	181
32779	800B			181	B5	
32780	800C		Basic field address	11	В	В
32781	800D		Customer field address	119	77	77
32782	800E		Vendor field address	167	A7	A7
32783	800F		Extended vendor field address	0	0	0
32784	8010			0	0	0
32785	8011		Reserved	0	0	0
32786	8012	Basic	Transceived type	4	4	XPAK
32787	8013		Connector	2	2	LC
32788	8014		Encoding	1	1	NRZ
32789	8015		Bit rate	40	28	10313
32790	8016			73	49	
32791	8017		Protocol	1	1	10GBE
32792	8018		Standards compliance codes	1	1	SR
32793	8019			0	0	not used
32794	801A			0	0	not used
32795	801B			0	0	not used
32796	801C			0	0	not used
32797	801D			0	0	not used
32798	801E			0	0	not used
32799	801F			0	0	not used
32800	8020			0	0	not used
32801	8021			0	0	not used
32802	8022		Range	0	0	0.3 km
32803	8023			30	1E	

Addres	ss	Group	XENPAK MSA 3.0	NPAK MSA 3.0 Value		Comment
Dec	Hex		Definition	Dec	Hex]
32804	8024	Basic	Fiber type	1	1	MM
32805	8025			0	0	
32806	8026		Wavelength channel 0	1	1	850 nm
32807	8027			76	4C	
32808	8028			8	8	
32809	8029		Wavelength channel 1	0	0	not used
32810	802A			0	0	not used
32811	802B			0	0	not used
32812	802C		Wavelength channel 2	0	0	not used
32813	802D			0	0	not used
32814	802E			0	0	not used
32815	802F		Wavelength channel 3	0	0	not used
32816	8030			0	0	not used
32817	8031			0	0	not used
32818	8032		Package OUI	1	1	00-0A-CB
32819	8033			67	43	
32820	8034			76	4C	
32821	8035			32	20	
32822	8036		Vendor OUI	3	3	00-13-19
32823	8037			34	22	
32824	8038			96	60	
32825	8039			0	0	
32826	803A		Vendor name	73	49	1
32827	803B			78	4E	N
32828	803C			70	46	F
32829	803D			73	49	1
32830	803E			78	4E	N
32831	803F			69	45	E
32832	8040			79	4F	0
32833	8041	1		78	4E	N

Addres	SS	Group	XENPAK MSA 3.0		Value		Comment
Dec	Hex		Definition		Dec	Hex	
32834	8042	Basic	Vendor name		32	20	
32835	8043			-	70	46	F
32836	8044			-	79	4F	0
32837	8045			-	32	20	
32838	8046			<u> </u>	71	47	G
32839	8047			-	109	6D	m
32840	8048			Ī	98	62	b
32841	8049			Ī	72	48	Н
32842	804A		Vendor part number		86	56	V
32843	804B				50	32	2
32844	804C			Ī	51	33	3
32845	804D				56	38	8
32846	804E			Ī	51	33	3
32847	804F				51	33	3
32848	8050				45	2D	-
32849	8051				71	47	G
32850	8052				1)	1)	1)
32851	8053				48	30	0
32852	8054				48	30	0
32853	8055				53	35	5
32854	8056				65	41	Α
32855	8057				49	31	1
32856	8058				2)	2)	2)
32857	8059			-	49	31	1
32858	805A		Vendor revision		66	42	В
32859	805B				50	32	2

Address		Group	XENPAK MSA 3.0	Va	lue	Comment
Dec	Hex		Definition	Dec	Hex	
32860	805C	Basic	Vendor serial number	80	50	
32861	805D			80	50	
32862	805E			80	50	
32863	805F			80	50	
32864	8060			80	50	
32865	8061			80	50	
32866	8062			80	50	
32867	8063			80	50	
32868	8064			80	50	
32869	8065			80	50	
32870	8066			80	50	
32871	8067			80	50	
32872	8068			80	50	
32873	8069			80	50	
32874	806A			80	50	
32875	806B			80	50	
32876	806C		Year code			
32877	806D					
32878	806E					
32879	806F					
32880	8070		Month code			
32881	8071					
32882	8072		Day code			
32883	8073					
32884	8074		Lot code			
32885	8075	İ				
32886	8076		5 V stressed environment reference	1	1	50 mA
32887	8077		3.3 V stressed environment reference	1	1	550 mA
32888	8078		APS stressed environment reference	2	2	750 mA

Addres	Address Group		XENPAK MSA 3.0	Va	lue	Comment
Dec	Hex		Definition	Dec	Hex	
32889	8079	Basic	Nominal APS voltage	20	14	+1.8 V
32890	807A		DOM capability	193	C1	default
32891	807B		Optional capability	0	0	none
32892	807C		reserved	0	0	
32893	807D		Basic checksum			
32894	807E		Customer area			
to	to					
32941	80AD					
32942	80AE		Vendor specific			
to	to					
33030	8106					

¹⁾ V23833-G2005-A101: Dec = 50, Hex = 32, Comment = 2

V23833-G6005-A101: Dec = 54, Hex = 36, Comment = 6

V23833-G6005-A111: Dec = 54, Hex = 36, Comment = 6

²⁾ V23833-G2005-A101: Dec = 48, Hex = 30, Comment = 0 V23833-G6005-A101: Dec = 48, Hex = 30, Comment = 0

V23833-G6005-A111: Dec = 49, Hex = 31, Comment = 1

PCB Cage Footprints

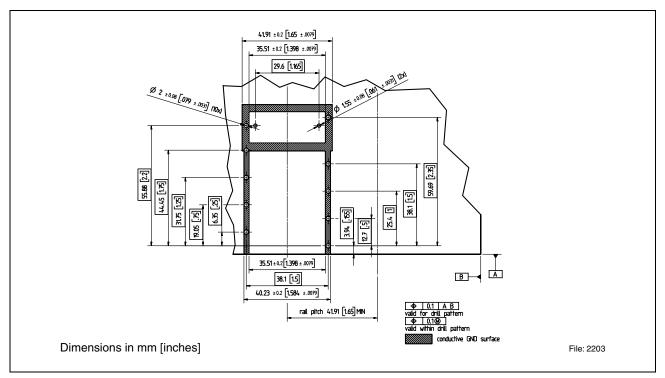


Figure 5 Standard Mounting

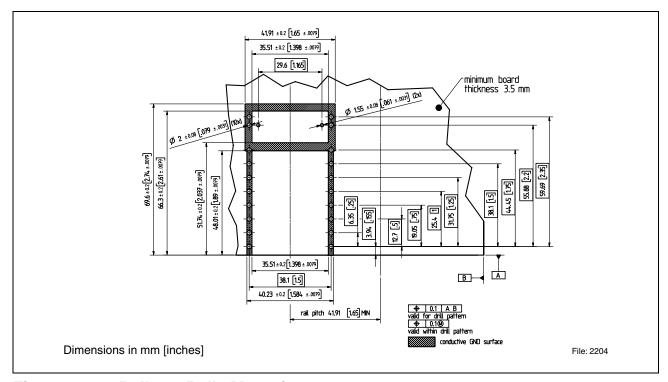


Figure 6 Belly-to-Belly Mounting

Host Board Layouts

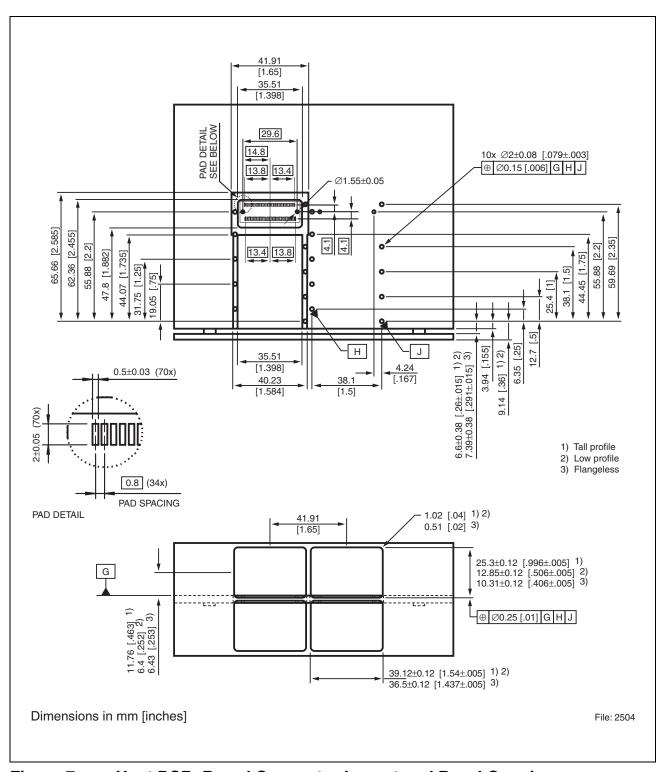


Figure 7 Host PCB, Board Connector Layout and Bezel Opening

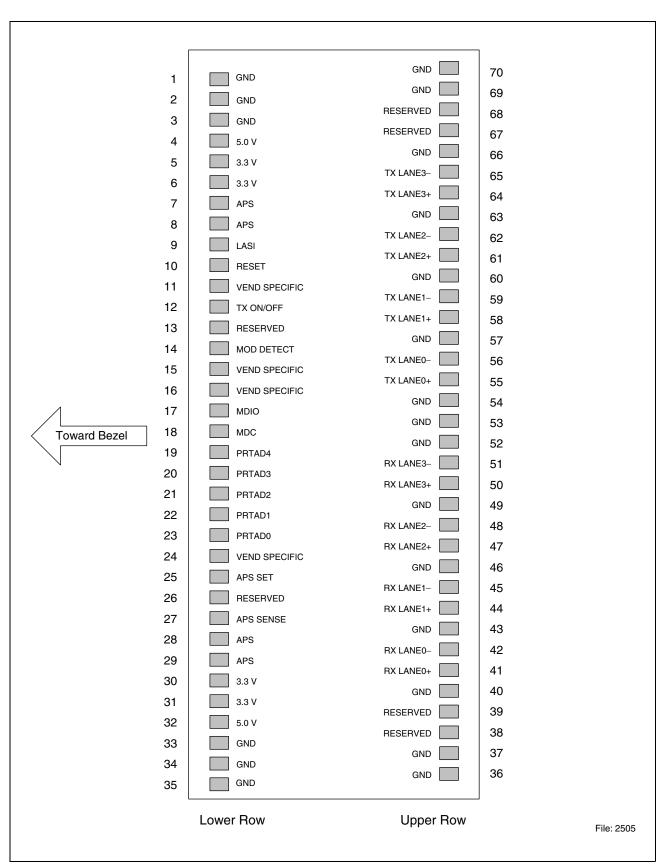


Figure 8 Host Board Pad Layout

Package Outlines

Package Outlines

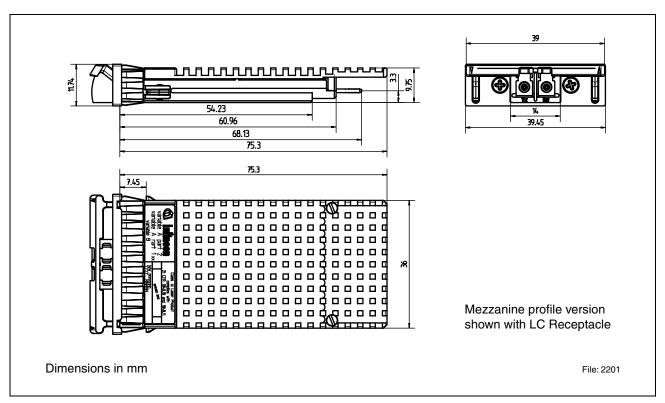


Figure 9 XPAK with Bail De-Latch Mechanism

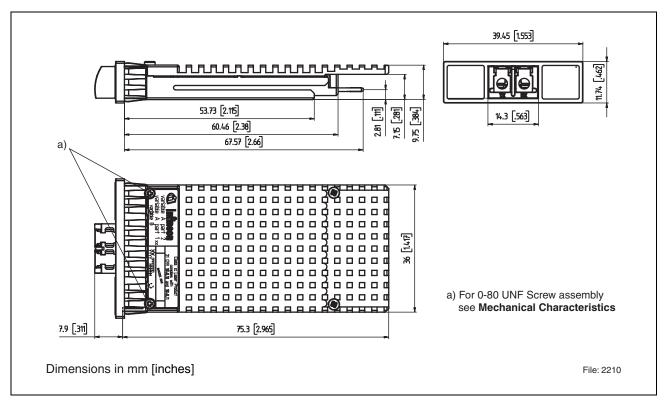


Figure 10 XPAK with No De-Latch Mechanism

Package Outlines

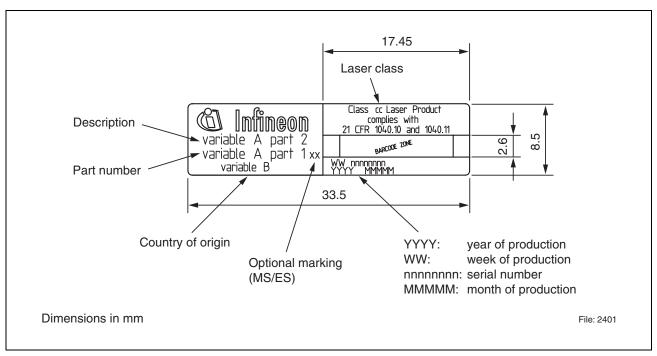


Figure 11 Label Description

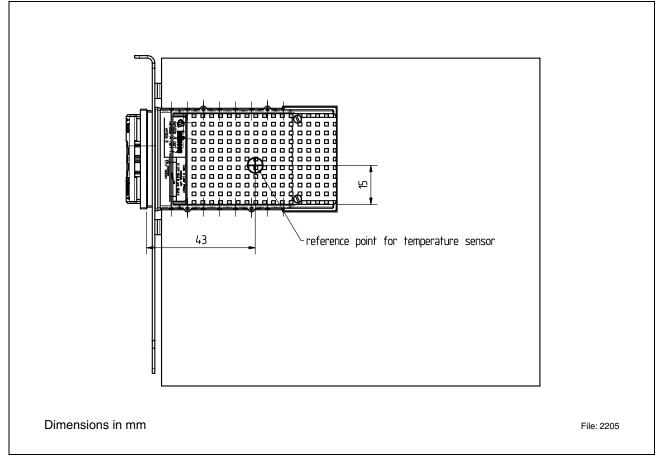


Figure 12 XPAK Temperature Reference Point

V23833-G2005-A101, V23833-G6005-A101, V23833-G6005-A111

Revision History:		2004-05-13	DS3				
Previous	Version:	2004-02-23					
Page	Subjects	(major changes since last revision	on)				
	V23833-0	66005-A111 added					
1, 2	Optical F	eatures changed					
2	Electrica	Features changed					
9	Environn	nent: Thermal Management Reco	mmendations changed				
9	Fibers an	Fibers and Connectors changed					
9	Cage Red	quirement changed					
11	Table "Re	commended Operating Condition	ns" changed				
14	Table "Ele	ectrical AC Characteristics" chan	ged				
15	Table "Me	chanical Characteristics" added					
16	Table "La Figure 3	ty changed ser Data" added Required Labels added Laser Emission added					
17	NVRAM F	NVRAM Register Contents added					
25	Figure 10 XPAK with No De-Latch Mechanism added						

Edition 2004-05-13

Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany
© Infineon Technologies AG 2004. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.