

XFP 850 nm Small Form Factor Module 10 Gigabit Pluggable Transceiver Compatible with XFP MSA Rev. 3.1 V23833-F0005-B101 V23833-F0005-B102

Preliminary Data Sheet

Features

Standards

- Compatible with IEEE 802.3ae[™]-2002
- Compatible with Fibre Channel 10GFC Draft 3.5
- Compatible with XFP MSA Rev. 3.1

Optical

- IEEE Ethernet: Serial 850 nm 10GBASE-SR
- T11 Fibre Channel: Serial 850 nm
 1200-M5-SN-I; 1200-M5E-SN-I; 1200-M6-SN-I
- Transmission distance
 - up to 82 m¹⁾ (50 μ m MMF)
 - up to 300 m¹⁾ (on special MMF)
- Vertical Cavity Surface Emitting Laser at 850 nm (VCSEL)
- · LC connector, multimode fiber
- Full duplex transmission mode

Ordering Information

Part Number	Standard	
V23833-F0005-B101	Separated	Multi-Protocol
V23833-F0005-B102	Common	Multi-Protocol

¹⁾ Maximum reach as defined by IEEE. Longer reach possible depending upon link implementation.

Applications

Monitoring and Control

- · Laser safety shut off
- Supply voltage 5 V / 3.3 V
- · Transmit power
- Received power RSSI
- Laser bias current
- Tx DIS
- Mod_NR
- Mod_DeSel
- Interrupt
- Mod_ABS
- P Down/RST
- Rx_Los

Mechanical

- Color coded beige for 850 nm
- Belly-to-belly applications
- Latching mechanism with low insertion force

Electrical

- Hot pluggable
- Power supply 5 V / 3.3 V only
- Total power consumption < 1.5 W max.
- XFI electrical interface
- Reference clock not required
- Management and control via 2-wire interface
- 30 pin connector, 0.8 mm pitch

Applications

- 10GBE, 10GFC and G.709 transmission systems for short range
- Integration on PCI card, with eventually mid-board mounting
- Belly-to-belly for high density applications
- Enterprise and campus network applications
- Storage applications
- Backplane and switch applications
- Aggregation point for lower date rate
- XFP evaluation kit V23833-F9909-Z001 available upon request

Pin Configuration

1 GND 2 V _{EE5} 3 MOD_DESEL 4 INTERRUPT 5 TX_DIS 6 V _{CC5} 7 GND 8 V _{CC3} 9 V _{CC3}	30 GND 29 TD+ 28 TD- 27 GND 26 GND 25 REFCLK- 24 REFCLK+ 23 GND 22 V _{CC2}	
10 SCL 11 SDA 12 MOD_ABS 13 MOD_NR 14 RX_LOS 15 GND	21 P_DOWN/RST 20 V _{CC2} 19 GND 18 RD+ 17 RD- 16 GND	
Bottom of Board (As viewed through top of board)	Top of Board	File: 2304

Figure 1 XFP Transceiver Electrical Pad Layout

Connector Pin Assignments

Pin No.	Signal Name
1	GND
2	V_{EE5}
3	MOD_DESEL
4	INTERRUPT
5	TX_DIS
6	$V_{\rm CC5}$
7	GND
8	V_{CC3}
9	V_{CC3}
10	SCL
11	SDA
12	MOD_ABS
13	MOD_NR
14	RX_LOS
15	GND

Pin No.	Signal Name
30	GND
29	TD+
28	TD-
27	GND
26	GND
25	REFCLK-
24	REFCLK+
23	GND
22	$V_{\rm CC2}$
21	P_DOWN
20	$V_{\rm CC2}$
19	GND
18	RD+
17	RD-
16	GND

Pin Description

Signal Name	Level	I/O	Pin No.	Description
Management a				Description
MOD_DESEL	LVTTL		3	Module De-select: when "L" allows
MOD_DEOLE				the module to respond to 2-wire serial interface command. "H" active
INTERRUPT	LVTTL	0	4	Interrupt: indicates presence of an important condition which can be read on the 2-wire serial interface. "H" active
TX_DIS	LVTTL	1	5	Transmitter Disable: transmitter laser source is turned off. "H" active
SCL	LVTTL	I	10	2-wire Interface Clock
SDA	LVTTL	I	11	2-wire Interface Data
MOD_ABS	LVTTL	0	12	Module Absent: indicating the modules not present. "H" active
MOD_NR	LVTTL	0	13	Module not ready: module operational fault
RX_LOS	LVTTL	0	14	Receiver Loss Of Signal Indicator
P_DOWN	LVTTL	I	21	Power Saving Mode: places the module in the stand-by condition. Active "H". During the falling edge set the module reset
Transmit Func	tions			
TD-	CML	I	28	Transmitter Inverted Data Input
TD+	CML	I	29	Transmitter Not-inverted Data Input
Receive Funct	ions			
RD-	CML	0	17	Receiver Data Output Inverted
RD+	CML	0	18	Receiver Data Output Not-inverted
REFCLK+	PECL	I	24	Reference Clock Not-inverted Input ¹⁾
REFCLK-	PECL	I	25	Reference Clock Inverted Input ¹⁾

Pin Description (cont'd)

Signal Name	Level	I/O	Pin No.	Description
DC Power	•	1	•	
GND	0 V	_	1,7,15,16,19, 23,26,27,30	Ground connection for both signal and chassis on the module
$\overline{V_{\text{CC5}}}$	+5 V	I	6	Positive power supply, nominal
$\overline{V_{\text{CC3}}}$	+3.3 V	I	8,9	Positive power supply, nominal
$\overline{V_{\text{CC2}}}$	+1.8 V	I	20,22	Positive power supply, nominal

 $^{^{\}mbox{\tiny 1)}}$ Reference clock not required. Input internally terminated 50 Ω to ground.

Description

Description

System Block Diagram

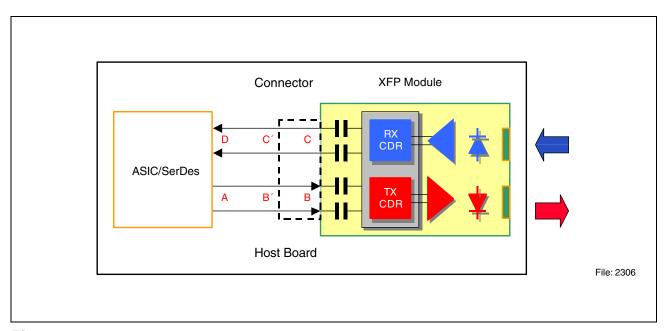


Figure 2

Optical Interface Standard Specifications

- IEEE 802.3ae[™]-2002 clause 52, 10GBASE-SR
- Fibre Channel 10GFC Draft 3.5, 1200-M5-SN-I
- Fibre Channel 10GFC Draft 3.5, 1200-M5E-SN-I
- Fibre Channel 10GFC Draft 3.5, 1200-M6-SN-I
- XFP MSA Rev. 3.1

Standard	Fiber Type	Minimum Modal Bandwidth at 850 nm (MHz*km)	Operating Range ¹⁾ (meters)
IEEE	62.5 µm MMF	160	2 to 26
	50 μm MMF	400	2 to 66
Fibre Channel	62.5 µm MMF	200	0.5 to 33
	50 μm MMF	500	0.5 to 82
	50 μm MMF	2000	0.5 to 300

¹⁾ Longer reaches possible depending upon link implementation.

Description

Electrical Interface Standard Specifications

IEEE 802.3ae[™]-2002 clause 45 & 47

XFP MSA Rev. 3.1

Environment: Thermal Management Recommendations

Operating air inlet temperature: 0°C - 50°C

Operating Airflow: 200 LFM (1.5 m/s)

Operating Humidity: 80% RH non-condensing Maximum operating case temperature is 70°C as defined by UL 1950.

Module can withstand and operate within specification with case temperature of 75°C for up to 96 hrs/yr. Transceiver requires airflow parallel to cooling fins. Maximum airflow required per XFP MSA is 3 m/s.

Fibers and Connectors

The transceiver LC features a duplex receptacle and is designed for multimode LC cables, 0° polished end face (PC).

30-pin Connector

The module interface connector is a 30-pin, printed circuit board edge connection with a 0.8 mm pitch. The appropriate mating connector for the customer PCB is a 30-pin SMT, dual row, right angled, edge connector, 0.8 mm pitch (TycoAmp part number 788862C or equivalent).

Cage/Heatsink Requirement

The cage/heatsink assembly required to mount the XFP module is defined by the MSA.

Description

Regulatory Compliance

Feature	Standard	Comments
ESD: Electrostatic Discharge to the Electrical Pins (HBM)	EIA/JESD22-A114-B (MIL-STD 883D Method 3015.7)	Class 1a (> 500 V)
Immunity: Against Electrostatic Discharge (ESD) to the Module Receptacle	EN 61000-4-2 IEC 61000-4-2	Discharges ranging from ±2 kV to ±25 kV to the front end / faceplate / receptacle cause no damage to module (under recommended conditions).
Immunity: Against Radio Frequency Electromagnetic Field	EN 61000-4-3 IEC 61000-4-3	With a field strength of 30 V/m, noise frequency ranges from 10 MHz to 2 GHz. No effect on module performance between the specification limits.
Emission: Electromagnetic Interference (EMI)	FCC 47 CFR Part 15, Class B EN 55022 Class B CISPR 22	Noise frequency range: 30 MHz to 40 GHz Radiated emission does not exceed specified limits.

Technical Data

Absolute Maximum Ratings

Parameter	Symbol	Lim	Limit Values	
		min.	max.	
Storage Ambient Temperature ¹⁾	T_{S}	-20	85	°C
Operating Ambient Temperature ^{1) 2)}	T_{A}	0	50	°C
Operating Case Temperature ¹⁾	T_{C}	0	80	°C
Supply Voltage +5.0 V	V_5	0	6	V
Supply Voltage +3.3 V	V_3	0	4	V
Static Discharge Voltage, All Pins	ST _d	-500	500	V
Average Receive Optical Power	Rx _{P max}		1.5	dBm

¹⁾ Non condensing.

Exceeding any one of these values may permanently destroy the device.

Recommended Operating Conditions

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Operating Case Temperature ¹⁾	T_{C}	0		70	°C
Transceiver Total Power Consumption	P		1.25		W
Supply Voltage +5.0 V	$V_{\rm CC5}$	4.75	5.0	5.25	٧
Supply Current +5.0 V	$I_{\rm CC5}$		50		mA
Supply Voltage +3.3 V	$V_{\rm CC3}$	3.14	3.3	3.47	V
Supply Current +3.3 V	I_{CC3}		300		mA

Worst case thermal location (see **Figure 15**).

²⁾ With specified airflow (see "Environment: Thermal Management Recommendations").

Optical Characteristics

 $(V_{CC5} = 4.75 \text{ V to } 5.25 \text{ V}, V_{CC3} = 3.14 \text{ V to } 3.47 \text{ V}, T_C = 0^{\circ}\text{C to } 70^{\circ}\text{C})$

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Transmitter	1	-1	-	1	1
Launch Power in OMA ¹⁾	$P_{O ext{-}OMA}$	-2.8			dBm
Average Launch Power	P_{O-Avg}	-3	-2	-1	dBm
Center Wavelength Range ¹⁾	$\lambda_{\text{C-Tx}}$	840	850	860	nm
RMS Spectral Width ¹⁾	σ_{l}		0.4	0.45	nm
Extinction Ratio	ER	3	5.5		dB
Relative Intensity Noise ₁₂ OMA	RIN			-128	dB/Hz
Eye Mask Definition	Ad	According to IEEE and Fibre Channel			
Transmitter and Dispersion Penalty	TDP			3.9	dB
Encircled Flux	EF	at 19 µn	n ≥ 86%, at	4.5 µm ≤ 30	%
Optical Return Loss Tolerance	ORL _T			12	dB
Average Launch Power of OFF Transmitter	P_{O-OFF}			-30	dBm
Receiver					
Stressed Receiver Sensitivity in OMA	P _{IN-S}			-7.5	dBm
Sensitivity in OMA ²⁾	P_{IN}			-11.1	dBm
Average Receive Power	P_{IN-max}			– 1	dBm
Signal Detect Deassert Level	P_{SDL}	-30			dBm
Signal Detect Assert Level	P_{SD}		-20	-13	dBm
Signal Detect Hysteresis	P_{SD}	1	2	4	dB
Receiver Reflectance	REF _{Rx}			-12	dB
Center Wavelength Range	$\lambda_{\text{C-Rx}}$	840		860	nm

¹⁾ Conforms to IEEE triple trade off between center wavelength, RMS spectral width and minimum OMA.

²⁾ Receiver sensitivity, which is defined for an ideal input signal is informative only.

Electrical DC Characteristics

($V_{\rm CC5}$ = 4.75 V to 5.25 V, $V_{\rm CC3}$ = 3.14 V to 3.47 V, $T_{\rm C}$ = 0°C to 70°C)

Symbol		Values		
	min.	typ.	max.	
istics nitoring Por	ts)	·		
R_{pullup}	10		22	kΩ
V_{oh}	2.4		3.5	V
V_{ol}			0.4	V
V_{ih}			2	V
V_{il}	0		0.8	V
$I_{\sf pd}$	-10	0	10	μΑ
	•			
V_{in_diff}	400		2000	mV p-p
	•	·		
TD+/-	240		1640	mV p-p di
RD+/-	680		1700	mV p-p di
	istics itoring Por $V_{\rm oh}$ $V_{\rm oh}$ $V_{\rm ih}$ $V_{\rm il}$ $V_{\rm in_diff}$	min. istics nitoring Ports) R_{pullup} 10 V_{oh} 2.4 V_{ol} 0 V_{ih} 0 V_{ih} 10	min. typ. istics nitoring Ports) R_{pullup} 10 V_{oh} 2.4 V_{ol} 0 V_{ih} 0 V_{ih} 0 V_{ih} 400 $V_{\text{in_diff}}$ 400	min. typ. max. distics nitoring Ports) Ports Post of the p

 $R_{\rm pull-up}$ = 10 k Ω to 3.3 V. $V_{\rm in}$ = 3.3 V.

³⁾ AC coupled in transceiver.

⁴⁾ AC coupled input at host board.

⁵⁾ AC coupled output at host board.

Electrical AC Characteristics

($V_{\rm CC5}$ = 4.75 V to 5.25 V, $V_{\rm CC3}$ = 3.14 V to 3.47 V, $T_{\rm C}$ = 0°C to 70°C)

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
XFI Input AC Characteristics (TD+/-)		•		•	
Baud Rate	TD+/-	9.95	10.3125	10.75	Gbit/s
Baud Rate Tolerance	TD _{tol}	-500		500	ppm
Differential Input Impedance	Z_{IN}	80	100	120	Ω
Differential Return Loss ¹⁾	S ₁₁	8			dB
Input Differential Skew ²⁾	T _{SKEWIN}		t.b.d.		ps
Total Jitter ³⁾	TJ_{TD}			0.61	UI pp
Deterministic Jitter ³⁾	TJ_{TD}			0.2	UI pp
XFI Output AC Characteristics (RD+/–)				·	•
Baud Rate	RD+/-	9.95	10.3125	10.75	Gbit/s
Baud Rate Tolerance	RD _{tol}	-100		100	ppm
Rise and Fall Times ⁴⁾	$t_{\rm r}, t_{\rm f}$	24			ps
Output Differential Skew	T _{SKEWOUT}		t.b.d.		ps
Output Differential Impedance	Z_{OUT}	80	100	120	Ω
Differential Output Return Loss ¹⁾	S ₂₂	8			dB
Total Jitter ⁵⁾	TJ _{RD}			0.34	UI
Deterministic Jitter ⁵⁾	DJ_RD			0.18	UI

Electrical AC Characteristics (cont'd)

($V_{\rm CC5}$ = 4.75 V to 5.25 V, $V_{\rm CC3}$ = 3.14 V to 3.47 V, $T_{\rm C}$ = 0°C to 70°C)

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
3.3 V CMOS I/O AC Character (SDA; SCL)	ristics for I ² (C Signals	3		•
SCL Clock Frequency	$f_{\sf SCL}$	0		400	kHz
SCL Period Low	t_{LOW}	1.3			μs
SCL Period High	t _{HIGH}	0.6			μs
Bus Free Time ⁶⁾	t_{BUF}	1.3			μs
Start Condition Setup Time	t _{SU_START}	0.6			μs
Stop Condition Setup Time	$t_{ m SU_STOP}$	0.6			μs
Start Condition Hold Time	t _{H_START}	0.6			μs
Data Hold Time	t_{H_DATA}	0			μs
Data Setup Time	t _{SU_DATA}	100			ns
SDA and SCL Rise and Fall Time	$t_{\rm r},t_{\rm f}$			300	ns

^{1) 100} MHz - 5.5 GHz above 5.5 GHz see XFP MSA 3.1.

²⁾ Not defined at crossing point.

³⁾ Per XFP MSA 3.1 table 17, 1 UI = 96.97 ps.

⁴⁾ 20%, 80%.

⁵⁾ Per XFP MSA 3.1 table 19, 1 UI = 96.97 ps.

⁶⁾ Between stop and start condition.

Timing Parameters for XFP Management

Parameter	Symbol	Values		Unit
		min.	max.	
TX_DIS Assert Time ¹⁾	t_off		10	μs
TX_DIS Negate Time ²⁾	t_on		2	ms
Time to Initialize ³⁾	t_init		300	ms
INTERRUPT Assert Delay ⁴⁾	Interrupt_on		200	ms
INTERRUPT Negate Delay ⁵⁾	Interrupt_off		500	μs
P_DOWN/RST Assert Delay ⁶⁾	P_Down/RST_on		100	μs
MOD_NR Assert Delay ⁷⁾	Mod_nr_on		1	ms
MOD_NR Negate Delay ⁸⁾	Mod_nr_off		1	ms
P_DOWN Reset Time ⁹⁾		10		μs
RX_LOS Assert Delay ¹⁰⁾	t_loss_on		100	μs
RX_LOS Negate Delay ¹¹⁾	t_loss_off		100	μs

¹⁾ Rising edge of TX_DIS to fall of output signal below 10% of nominal.

²⁾ Falling edge of TX_DIS to rise of output signal above 90% of nominal.

From power on or hot plug after supply or from falling edge of P_DOWN/RST.

⁴⁾ From occurrence of the condition triggering INTERRUPT.

⁵⁾ From clear on read INTERRUPT flags.

⁶⁾ From power down initiation.

⁷⁾ From occurrence of fault to assertion of MOD_NR.

From clearance of signal to negation of MOD_NR.

⁹⁾ Min. length of P_DOWN assert to initiate reset.

¹⁰⁾ From occurrence of loss of signal to assertion of RX_LOS.

¹¹⁾ From occurrence of presence of signal to negation of RX_LOS.

Eye Safety

Eye Safety

This laser based multimode transceiver is a Class 1M product. It complies with IEC 60825-1/A2: 2001 and FDA performance standards for laser products (21 CFR 1040.10 and 1040.11) except for deviations pursuant to Laser Notice 50, dated July 26, 2001.

INVISIBLE LASER RADIATION CLASS 1M LASER PRODUCT DO NOT VIEW DIRECTLY WITH OPTICAL INSTRUMENTS

To meet laser safety requirements the transceiver shall be operated within the Absolute Maximum Ratings.

Note: All adjustments have been made at the factory prior to shipment of the devices. No maintenance or alteration to the device is required.

Tampering with or modifying the performance of the device will result in voided product warranty.

Failure to adhere to the above restrictions could result in a modification that is considered an act of "manufacturing", and will require, under law, recertification of the modified product with the U.S. Food and Drug Administration (ref. 21 CFR 1040.10 (i)).

Laser Emission Data

Wavelength	850 nm
Maximum total output power	743 μW / –1.3 dBm
(as defined by IEC: 7 mm aperture at 100 mm distance)	
Beam divergence (full angle) / NA (half angle)	20° / 0.18 rad

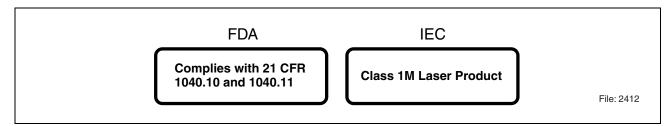


Figure 3 Required Labels

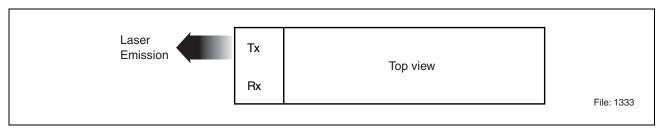


Figure 4 Laser Emission

Application Notes

Host Board Layouts

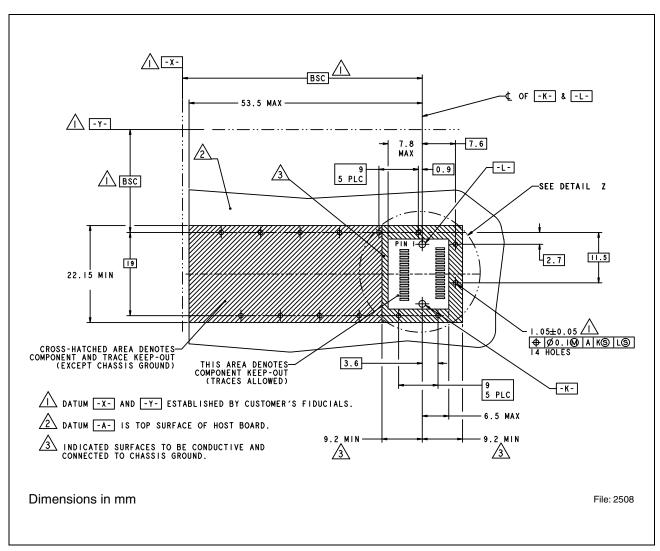


Figure 5 XFP Host Board Mechanical Layout

Detail Z see Figure 6.

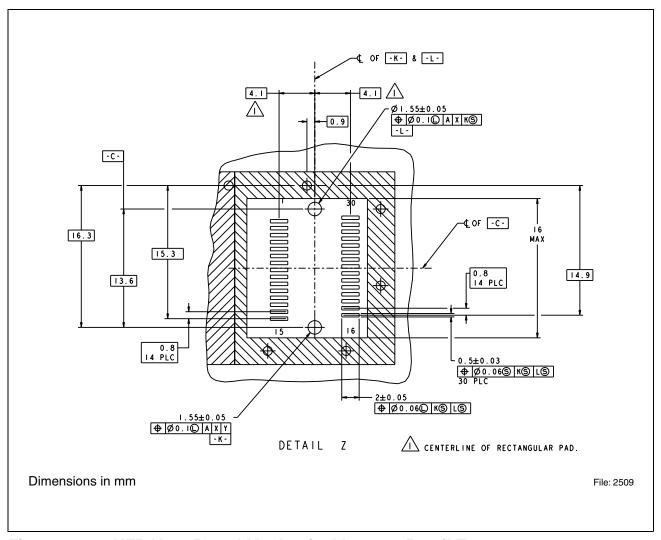


Figure 6 XFP Host Board Mechanical Layout, Detail Z

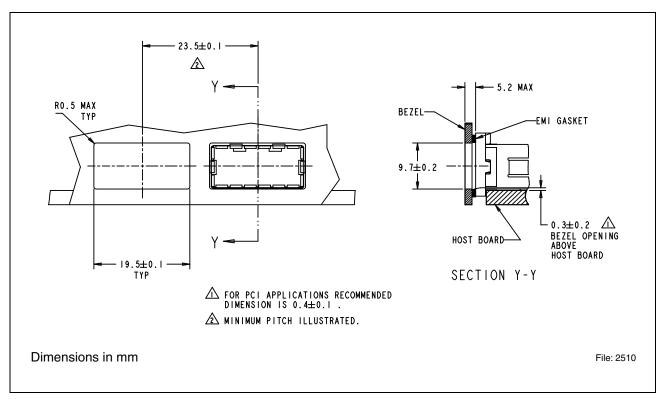


Figure 7 Recommended Single Sided Bezel Design

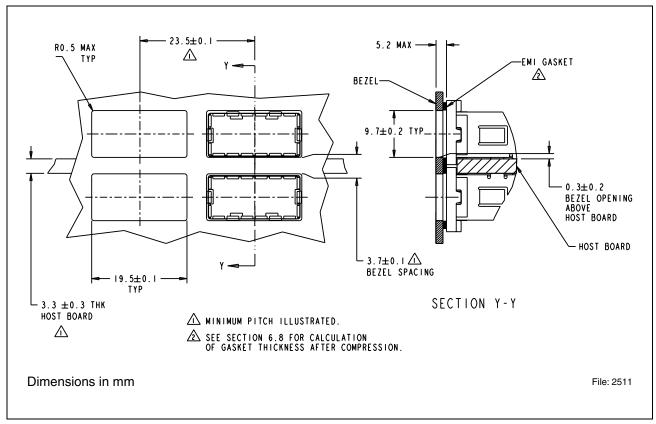


Figure 8 Recommended Double Sided Mounting Bezel Design

Mechanical

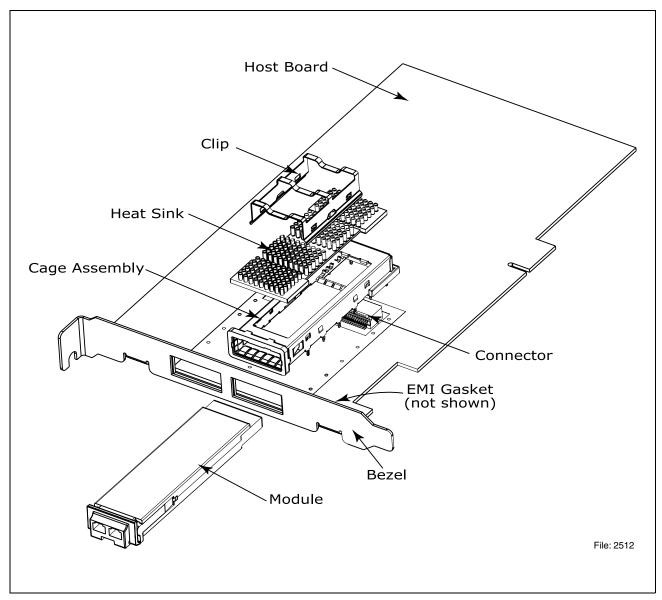


Figure 9 PCI Card Application

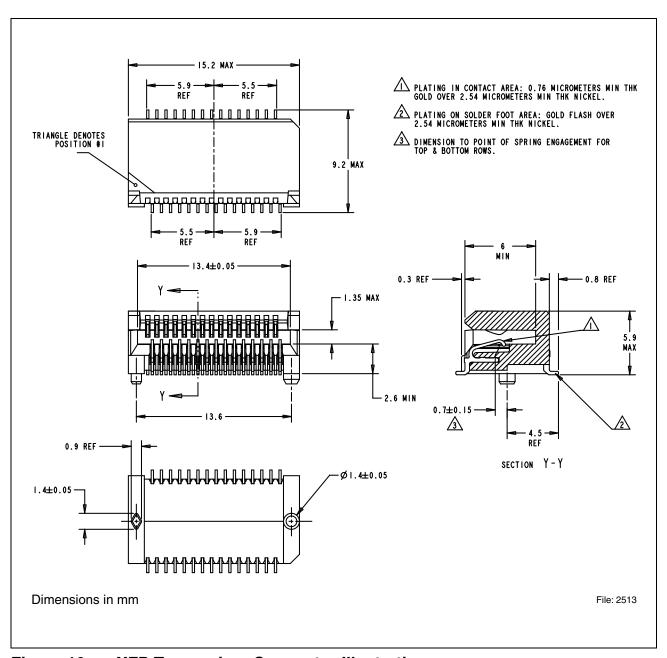


Figure 10 XFP Transceiver Connector Illustration



Figure 11 Host PCB XFP Pinout

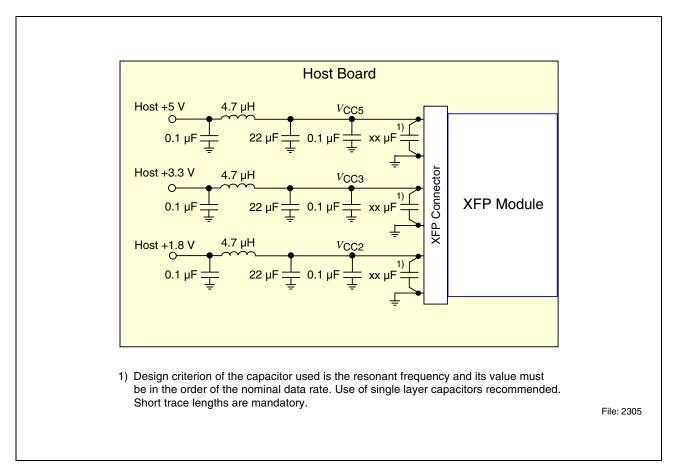


Figure 12 Recommended Host Board Supply Filtering Network

Package Outlines

Package Outlines

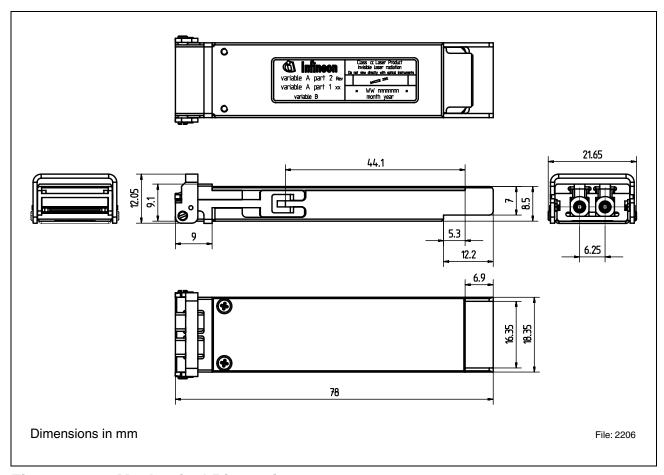


Figure 13 Mechanical Dimensions

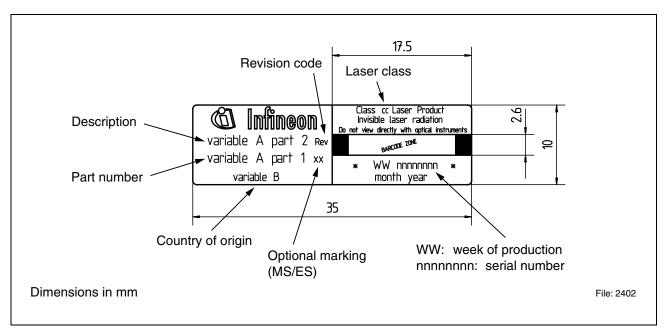


Figure 14 Label Description

Package Outlines

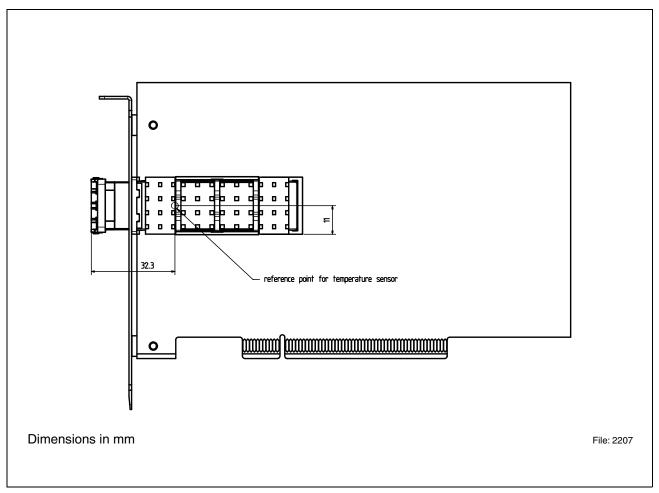


Figure 15 XFP Temperature Reference Point

V23833-F0005-B101 V23833-F0005-B102

Revision H	istory:	2004-06-16	DS0			
Previous Ve	ersion:	none				
Page	Subjects (major changes since last revision)					

Edition 2004-06-16

Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany
© Infineon Technologies AG 2004. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.