SPI mode．In this mode，detailed failure diagnosis is available via the serial interface．

 дәрun ue sey pue sц！nәл！

 uo！！d！̣ンsəa ןeuo！ןoun」

Type	Ordering Code	Package
TLE 7209R	on request	P－DSO－20－12

－P－DSO－20－12 power package

 －Operating－frequency up to 30 kHz －Logic－inputs TTL／CMOS－compatible

－Continuos DC load current 3．5 $\mathrm{A}\left(T_{\mathrm{C}}<100^{\circ} \mathrm{C}\right)$
 $\wedge 8$ о४ \wedge s әбенן 1.1 Features
1 Overview

7 A H－Bridge for DC－Motor Applications

$$
|\stackrel{N}{\circ}| \stackrel{\rightharpoonup}{\bullet}|\vec{\infty}| \vec{\nu}|\vec{\sigma}| \stackrel{\rightharpoonup}{v}|\vec{\perp}| \vec{\omega} \mid
$$

$$
\vec{N}
$$

$$
\stackrel{\rightharpoonup}{\Delta} \mid \overrightarrow{0}
$$

$$
|\stackrel{\rightharpoonup}{0}|^{0}
$$

$$
\left.{ }^{\circ}\right|^{\infty} \mid
$$

$$
\left.\right|^{v}
$$

$$
\left.\right|^{0} \mid
$$

$$
|0|+
$$

 uo！̣oun－\quad loquik \quad on＇u！d Pin Definitions and Functions

$$
\begin{array}{l|l|l}
\hline 2 & \text { SCK/SF } & \text { SPI-Clock/Status-flag } \\
\hline 3 & \text { IN1 } & \text { Input } 1 \\
\hline
\end{array}
$$

$$
\begin{array}{l|l|l}
3 & \text { IN1 } & \text { Input } 1 \\
\hline 4 & V_{\mathrm{S}} \mathrm{CP} & \text { Supply voltage for internal charge pump } \\
\hline 5 & V_{\mathrm{S}} & \text { Supply voltage }
\end{array}
$$

460ZL

 \begin{tabular}{l|l|l}
14．Over current \& X \& X \\
\hline

 13．Over temperature

\hline 12．Under Voltage \& X \& X \& X \& X \& Z \& Z \& L \\
\hline
\end{tabular}

 9．DIS disconnected 8．IN2 disconnected | 7．IN1 disconnected | L | H | Z | X | H | X | H |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 6．Enable

Pos．	DIS	EN	IN1	IN2	OUT1	OUT2	SF $^{\mathbf{1}}$	$\begin{array}{l}\text { SP1）} \\ \text { DIA＿REG }\end{array}$
1．Forward	L	H	H	L	H	L	H	see Chapter 2 2．Reverse
L．Free－wheeling low	L	H	L	H	L	L	L	L
3． Lree－wheeling high	L	H	H	H	H	H	H	
4．Disable	H	X	X	X	Z	Z	L	

 To limit the output current at low power loss，a chopper current limitation is integrated as

 ground，to the supply voltage or across the load．Positive and negative voltage spikes，
 Four n－channel power－DMOS transistors build up the output H－bridge．Integrated circuits

4602L ヨา1

V1.1, 2002-11-26

For $165{ }^{\circ} \mathrm{C}<T_{\mathrm{j}}<175^{\circ} \mathrm{C}$ the current limit decreases from $I_{\mathrm{L}}=6.6 \mathrm{~A} \pm 1.1 \mathrm{~A}$ to
$I_{\mathrm{L}}=2.5 \mathrm{~A} \pm 1.1 \mathrm{~A}$ as shown in Figure 4

If short circuit messages from high- and low-side switch occur simultaneously within a
delay time of typically $2 \mu \mathrm{~s}$, the error bit "Short Circuit Over Load", SCOL is set. 2.3.3 Short circuit across the load

to Battery on output 1 (2)", SCB1 (SCB2) is set.
!!

 Due to the chopper current regulation, the low-side switches are already protected

 puno by the following measures: The TLE 7209R is protected against short circuits, overload and invalid supply Voltage

Figure 6 SPI block－diagram

 The first two bits of an instruction may be used to establish an extended device－ select signal（High）the data output SDO goes into tristate． （Serial Clock Input）the SPI clock is provided by the master．In case of inactive slave master．SDI is the data input（Slave In），SDO the data output（Slave Out）．Via SCK
 SDO） controller provides the master function．The maximum baud rate is 2 MBaud （ 200 pF on

 әэедәəu｜－IdS レ・でも゙て
（ Λ s＝SWG）əpow－IdS でも゙て

 uo！！d！ıכsəa ！！

uo！！d！ıンsəa ！！nכı！
Table 3 SPI Instruction Format

MSB	6	5	4	3	2	1	0
7	0	INSTR4	INSTR3	INSTR2	INSTR1	INSR0	INSW
0	INP						
Table 4	SPI instruction Description						
Bit	Name	Description					
7,6	CPAD1，0	Chip Address（has to be＇0＇，＇0＇）					
$5-1$	INSTR（4－0）	SPI instruction（encoding）					
0	INSW	Even parity					

Table 3 SPI Instruction Format
means，the output data corresponding to an instruction byte sent during one SPI frame
are transmitted to SDO during the same SPI frame． requested in the instruction byte are applied to SDO within the same SPI frame．That of the TLE 7209R is 00．During read－access，the output data according to the register The uppermost 2 bit of the instruction byte contain the chip－address．The chip－address 2．4．2．4 SPI instruction
Figure 8 SPI communication

output bits consist of the verification－byte and the data－byte（see also Figure 8）．The
definition of these bytes is given in the subsequent sections．

2．4．2．5 Verification Byte

su！̣eməл OUS ‘ssəıppe p！！eли！	x	XXXXX	Sдә૫ł0 ॥	－
 	x	sдәцłо ॥е	00	－
అヨบ ${ }^{-}$ӨI口 peәд	1	00100	00	$\forall 1 \square^{-}$－${ }^{-}$
uо！sıəл реәл	1	10000	00	NOISY \wedge^{-}－${ }^{\text {a }}$
גə！！！	0	00000	00	LNヨOI－${ }^{-}$
	MSNI $07!9$	$\begin{array}{r} (0-\downarrow) \mathrm{y} \perp \mathrm{SNI} \\ \text { L-G H!q} \end{array}$	$\begin{array}{r} 0 ‘ \vdash Q \forall d O \\ 9^{\prime} \angle 4!9 \end{array}$	
uo！ıd！ıssog			ou！posuヨ	uo！fonılsulldS

Bit	Name	Description	latch behavior
0	DIA 10	Diagnosis-Bit1 of OUT1	see below
1	DIA 11	Diagnosis-Bit2 of OUT1	see below
2	DIA 20	Diagnosis-Bit1 of OUT2	see below
3	DIA 21	Diagnosis-Bit2 of OUT2	see below
4	CurrLim	is set to „0" in case of current limitation.	latched
5	CurrRed	is set to "0" in case of temperature dependent current limitation	latched
6	OT	is set to „0" in case of over temperature	latched
7	EN/DIS	is set to „0" in case of EN $=$ L or DIS $=\mathrm{H}$	not latched

Default value after reset is FF $_{\text {hex }}$. Acc Table 9 DIA_REG Description

Reading the IC version number（SPI Instruction：RD＿VERSION）：

$7 . . .0$	device－ID（7．．．0）	ID－No．： 10100010

Bit	Name	Description
$7 \ldots 0$	deve	

Table 12 Device Identifier Description

Reading the IC Identifier（SPI Instruction：RD＿IDENT）：
Table $\mathbf{1 1}$
Device Identifier Format
MSB
7

Both（SWR and MSR）will start with 0000b and are increased by 1 every time an
according modification of the hardware is introduced． and a lower 4 bit field utilized to identify the actual mask set revision（MSR）． updated with each redesign of the TLE 7209R．The contents is divided into an upper 4 The Version number may be utilized to distinguish different states of hardware and is

The device ID is defined to allow identification of different IC－Types by software and is
fixed for the TLE 7209R． two numbers are read－only accessible via the SPI instructions RD＿INDENT and
RD＿VERSION as described in Section 2．4．2．4． and features plug \＆play functionality depending on the systems software release．The
two numbers are read－only accessible via the SPI instructions RD＿INDENT and The IC＇s identifier（device ID）and version number are used for production test purposes

2．4．2．7 Data－byte：Device Identifier and Version

Table 15 Diagnosis Truth Table for open load detection
Output stage inactive，EN＝low or DIS＝high，DMS＞4．5 V
:---
Load available
Open Load
SC $->$ GND on OUT1 and Open Load
SC $->$ GND on OUT2 and Open Load
SC $->V_{\text {S }}$ on OUT1 and Open Load
SC $->V_{\text {S }}$ on OUT2 and Open Load

uo！！d！ıכsəa ！！nכג！

21

V1．1，2002－11－26

	M／X	OS	－		ұuә！que－uo！pıun¢	て＇と＇६
－	M／X	G＇1	－	${ }^{\text {O¢4 }} \mathrm{y}$	әseo－uo！̣วun¢	
	○。	OSI	0t－	${ }^{L}$		ガでも
sessol бu！पข！！Ms of әnp uou！eo！！dde әчł u！ 	zHY	0ε	－	f	Kouenber．WMd	ع＇でє
әрои－IdS u！әэ！əә	\wedge	g＇s	s＇t	SWO_{Λ}		ででも
	\wedge	82	G	s_{Λ}		ト＇て＇¢
		＇xem	＇u！w			
улешәу	ทиก	sənıe＾		$-w \kappa s$	дәңәшелед	＇sod
y602L ヨ					uoəu！	

N

9て－トレ－Z00て「ト「トへ \qquad

3．4．10 Switch－off time

 zıno ‘rıno słndłno дәмоd

$\wedge 乙<\Pi$	$\forall \mathrm{H}$	001	－	－	$\mathrm{H}_{\text {I }}$	$\mathrm{N} \exists$ łueuno umop－ınd	$\angle \bullet \checkmark$ ¢
ヘ15	$\forall \mathrm{rr}$	－	GZL－	002－	71	SIO＇ZNI ‘LNI дuәuno dn－｜｜nd	$9 \cdot \downarrow \cdot \varepsilon$
－	\wedge	90	－	$1 \cdot 0$	$\Lambda^{\text {H }}{ }_{\Lambda}$	s！seupısKı ındul	$\bigcirc{ }^{\text {¢ }} \downarrow$ ¢
－	\wedge	1	－	－	${ }^{71} \Lambda$	＂MOI，，\％ndul	カナナを
－	\wedge	－	－	乙	${ }^{\mathrm{H}} \Lambda$	، 4 ¢6！ 4 ，，7ndu	$\varepsilon \downarrow \downarrow$

Logic Inputs IN1，IN2，DIS，EN

$\forall 0=1 \mathrm{O}_{I}{ }^{\prime} \mathrm{zH} 0=f$	$\forall \mathrm{m}$	02	－	－	an	ұuәuñ Kılddns	でヤ友
$\forall 0=1 \mathrm{IO}_{I}$＇z H ¢ $0 \mathrm{O}=f$	$\forall \mathrm{m}$	0ε	－	－			
	\wedge	¢	L＇t	－	$\pm \pm 0 \wedge \cap_{\Lambda}$		$1 \cdot \downarrow$－

 Power Supply

ad_{Λ} оł рәюгәииоо 	$\forall \mathrm{H}$	OS	02	－	$\mathrm{las}_{I^{-}}$	ıuอuņ ındu｜	$6 \varepsilon \cdot \downarrow \cdot \varepsilon$
－	－d	OL	－	－	$\mathrm{las}^{\text {J }}$	রı！oede〕 ınduı	$8 \varepsilon \cdot \downarrow$ ¢
－	\wedge	t＇0	－	1.0	${ }^{10 S^{\prime}}$		$\angle \varepsilon^{\prime} \dagger^{\prime} \varepsilon$
－	\wedge	－	－	乙	${ }^{\text {HIOS }}$／	әләך ¢б！	$9 \varepsilon \cdot \downarrow$ ¢
－	\wedge	1	－	－	$\mathrm{llas}^{\text {a }}$	өләา моา	¢ع＇ナ ¢

ındul ełtea ids＇Ias łnduı

$\mathrm{ã}_{\Lambda}$ оł рәюәаииол әอ．nos łuauno dn ॥n ${ }_{\text {d }}$	$\forall \mathrm{r}$	0 S	02	－	${ }^{\text {NSO }}{ }^{-}$	ұuәuņ ınduı	ャ¢＇†＇ε
－	－d	01	－	－	NSO^{2}	Kıloedej ındu｜	\＆と＇†＇
－	\wedge	\vdash°	－	$1 \cdot 0$	${ }^{\mathrm{NSO}} \cap \mathrm{\nabla}$		ટと＇ャ¢
－	\wedge	－	－	乙	HNSO_{\square}	เəләา чচ！${ }^{\text {¢ }}$	เย＇ャ¢
рәюәәә s！प602ZL ヨา	\wedge	1	－	－	TNSO_{Ω}	рəөә М0า	$0 \varepsilon^{\prime} \nabla^{\prime} \varepsilon$

Input CSN，Chip Select Signal

3.4 .25	Low Level	$U_{\text {SCKL }}$	-	-	1	V	-									
3.4 .26	High Level	$U_{\text {SCKH }}$	2	-	-	V	-									
3.4 .27	Hysteresis	$\Delta U_{\text {SCK }}$	0.1	-	0.4	V	-									
3.4 .28	Input Capacity	$C_{\text {SCK }}$	-	-	10	pF	-									
3.4 .29	Input Current	$-I_{\text {SCK }}$	-	20	50	$\mu \mathrm{~A}$	Pull－up current source connected to V_{DD}		3.4 .25	Low Level	$U_{\text {SCKL }}$	-	-	1	V	-
:---	:---	:---	:---	:---	:---	:---	:---									

y602L ヨา1

3．4．46	Diagn．Threshold	$V_{\text {OUT1 }}$	0.8	－	－	V	$\begin{aligned} & \text { DMS }>4.5 \mathrm{~V}, \mathrm{EN}< \\ & 0.8 \mathrm{~V} \text { or DIS }>4.5 \mathrm{~V} \end{aligned}$
	Load is available	$V_{\text {OUT2 }}$	0.8	－	－	V	
	Load is missing	$V_{\text {OUT1 }}$	1	－	$V_{\text {S }}$	V	
		$V_{\text {OUT2 }}$	－	－	0.8	V	
3．4．47	Diagn．Current	IOUT2 －IOUT1	$\begin{array}{\|l\|} \hline 700 \\ 1000 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1000 \\ 1500 \end{array}$	$\begin{aligned} & 1400 \\ & 2000 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { DMS }>4.5 \mathrm{~V}, \mathrm{EN}< \\ & 0.8 \mathrm{~V} \text { or DIS }>4.5 \mathrm{~V} \end{aligned}$
3．4．48	Tracking Diag．C	－	1.2	1.5	1.7	－	$I_{\text {OUT } 1} / I_{\text {OUT2 }}$
3．4．49	Delay Time	$t_{\text {D }}$	30	－	100	ms	－

epow－Ids	$\forall \mathrm{m}$	01	－	－	SWa_{I}	łueגıņ ındu｜	St＇t＇
эpow－6ely－sntels	\wedge	8.0	－	－	SWO_{Λ}		

Supply－Input for the SPI－Interface and Selection Pin for SPI－or SF－Mode Note：All in－and output pin capacities are guaranteed by design

$\left\|\begin{array}{l} \omega \\ \stackrel{\rightharpoonup}{\omega} \\ \stackrel{\rightharpoonup}{2} \end{array}\right\|$	$\begin{aligned} & \omega \\ & \stackrel{\rightharpoonup}{+} \\ & \stackrel{A}{N} \end{aligned}$	$\begin{gathered} \omega \\ \stackrel{+}{+} \\ \pm \end{gathered}$	$\left\lvert\, \begin{aligned} & \omega \\ & \stackrel{\rightharpoonup}{+} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}\right.$
	$\begin{aligned} & \hline \stackrel{\otimes}{0} \\ & \text { O} \\ & \stackrel{0}{\gtrless} \\ & \hline \end{aligned}$		（1）
$\overline{\widehat{y}}$	合		－
$\stackrel{\rightharpoonup}{\circ}$	1		1
1	1	1	1
$\stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{0}$	1	\bigcirc
$\overline{5}$	\％	$<$	＜
		$\begin{aligned} & \overline{\mathrm{g}} \\ & 0 \\ & \text { II } \\ & \text { N} \\ & \text { B } \end{aligned}$	

 Oas łndıno

suouplpuoo $150 \perp$	ท！un	＇xew	$\cdot \mathrm{d} /{ }_{4}$	－u！	10qu＊s	ләәәиеле $^{\text {d }}$	${ }^{\text {Sod }}$
		sonje＾\！					
		рө！！！				$0 \square-$－＾8	＞$\wedge 9$
							も゙と

 \qquad
Temperature Thresholds

3．4．50	Cycle－Time（1）	$t_{\text {cyc }}$（1）	200	－	－	ns	referred to master
3．4．51	Enable Lead Time	$t_{\text {lead }}(2)$	100	－	－	ns	referred to master
3．4．52	Enable Lag Time	$t_{\text {lag }}(3)$	150	－	－	ns	referred to master
3．4．53	Data Valid	$t_{\mathrm{v}}(4)$	${ }_{-}^{-}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & \hline 40 \\ & 150 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & C_{\mathrm{L}}=40 \mathrm{pF} \\ & C_{\mathrm{L}}=200 \mathrm{pF} \\ & \text { referred to } \end{aligned}$ TLE 7209R
3．4．54	Data Setup Time	$t_{\text {su }}(5)$	50	－	－	ns	referred to master
3．4．55	Data Hold Time	$t_{\text {h }}(6)$	20	－	－	ns	referred to master
3．4．56	Disable Time	$t_{\text {dis }}(7)$	－	－	100	ns	referred to TLE 7209R
3．4．57	Transfer Delay	$t_{\text {dt }}$（8）	150	－	－	ns	referred to master
3．4．58	Select time	$t_{\text {SCKH }}(9)$	50	－	－	ns	referred to master
3．4．59	Access time	$\begin{aligned} & t_{\mathrm{SCKL}} \\ & (10) \end{aligned}$	8.35	－	－	$\mu \mathrm{s}$	referred to master
3．4．60	Clock inactive before chips elect becomes valid	（11）	200	－	－	ns	－
3．4．61	Clock inactive after chips elect becomes invalid	（12）	200	－	－	ns	－

SPI Timing（see Figure 13）

Preliminary Datasheet

27

V1．1，2002－11－26
Figure 10 Output Delay Time

t
Timing Diagrams

sweлБе！の Ки！ш！

[^0]
Figure 14 Application Example with SPI-Interface

0
uol!eo!!dd \forall

[^1]
uo!!eo!!ddv

[^2]
9Z-トا-Z00Z ‘•・へ
mu u！suo！suәm！a

 of that life－support device or system，or to affect the safety or effectiveness of that device or system．Life support Infineon Technologies Components may only be used in life－support devices or systems with the express written
approval of Infineon Technologies，if a failure of such components can reasonably be expected to cause the failure question please contact your nearest Infineon Technologies Office．
 sбu！uлem
 ио！！ешлојии Infineon Technologies is an approved CECC manufacturer
 Terms of delivery and rights to technical change reserved．

 Published by Infineon Technologies AG，
St．－Martin－Strasse 53，
D－81541 München，Germany
© Infineon Technologies AG 2002 ． Edition 2002－11－26

[^0]: y60zく ヨา1

[^1]: $\underline{\text { uol!ev!!dd }} \boldsymbol{y}$
 460ZL

[^2]: (lnfineon

