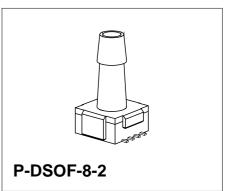
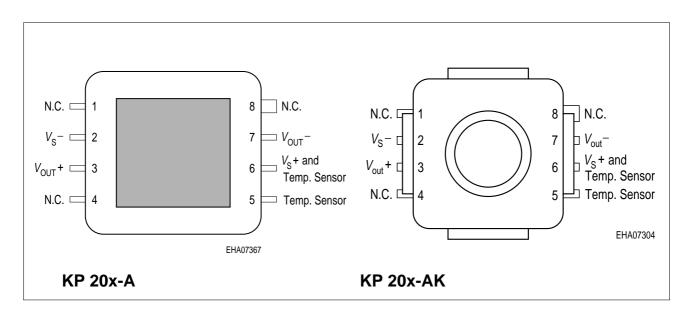

Surface Mount Piezoresistive Silicon Absolute Pressure Sensor


KP 202-A/AK KP 203-A/AK KP 205-A

Preliminary

Features

- High sensitivity and linearity
- Fast response
- Very small dimensions
- Low cost
- Produced in qualified semiconductor fabrication lines
- SMD housing
- Built in silicon temperature sensor



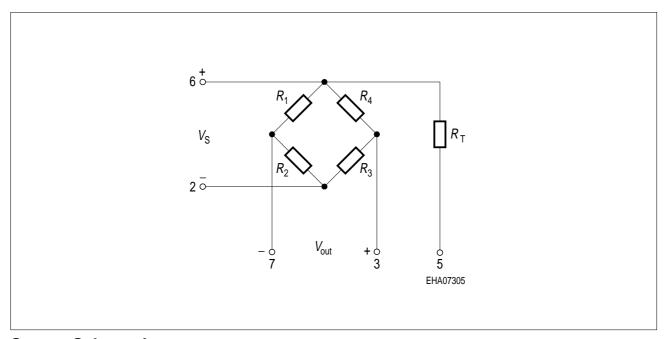
Туре	Marking	Ordering Code	Pressure Range	Package		
KP 202-A	KP 202-A	on request	0 60 kPa (0.6 bar)	P-DSOF-8-1		
KP 202-AK			0 60 kPa (0.6 bar)	P-DSOF-8-2		
KP 203-A	KP 203-A	on request	0 160 kPa (1.6 bar)	P-DSOF-8-1		
KP 203-AK			0 160 kPa (1.6 bar)	P-DSOF-8-2		
KP 205-A	KP 205-A	Q62705-K353	0 1000 kPa (10 bar)	P-DSOF-8-1		

Pin Configuration

1	Not connected
2	$V_{\rm S}$ –
3	V_{OUT} +
4	Not connected
5	Temperature Sensor
6	$V_{\rm S}$ + and Temperature Sensor
7	V_{OUT} –
8	Not connected

Data Sheet 2 1999-04-01

Electric Network


Four piezoresistors form a bridge circuit, providing a very accurate and linear output voltage, directly proportional to the applied pressure.

$$V_{\mathsf{OUT}} = V_{\mathsf{O}} + V_{\mathsf{FIN}} = V_{\mathsf{S}} \times \frac{R_1(p) \times R_3(p) - R_2(p) \times R_4(p)}{[R_1(p) + R_2(p)] \times [R_3(p) + R_4(p)]}$$

with

$$R_1(0) \cong R_2(0) \cong R_3(0) \cong R_4(0) \cong R_B$$

A temperature sensor chip R_T , that is built in the housing, can be used to compensate the temperature drift of the pressure sensor.

Sensor Schematic

Piezoresistors $R_1 \dots R_4$ denote the pressure sensitive resistors connected as a Wheatstone bridge. R_T is a KTY-series temperature dependent resistor with a positive TC.

Data Sheet 3 1999-04-01

Absolute Maximum Ratings

Parameter	Symbol	Limit Values	Unit
Supply voltage	$V_{\sf SMAX}$	12	V
Overpressure ¹⁾	p_{MAX}	250	kPa
Burst Pressure KP 202-A, KP 202-AK KP 203-A, KP 203-AK KP 205-A	$p_{\sf BURST}$	400 800 2000	kPa
Operating temperature range	T_{OP}	- 40 + 125	°C
Storage temperature range	T_{STG}	- 40 + 125	°C
Mechanical shock survival		2000	g

Overpressure is limited to p_{MAX} , due to absorption of gas into the protective gel covering the sensor at higher pressures. Abrupt decrease of pressure from values higher than p_{MAX} to low pressures can cause in the gel to rupture.

Electrical Characteristics

at $T_{\rm A}{\rm =}~25~^{\circ}{\rm C}$ and $V_{\rm S}{\rm =}~5~{\rm V}$ unless otherwise specified

Parameter	Symbol	Limit Values			Unit	
		min.	typ.	max.		
Pressure Range	P_{N}				kPa	
KP 202-A, KP 202-AK		0	_	60		
KP 203-A, KP 203-AK		0	_	160		
KP 205-A		0	_	1000		
Bridge Resistance	R_{B}	4	6	8	kΩ	
Sensitivity	S				$mV/V \times kPa$	
KP 202-A, KP 202-AK		0.24	0.44	0.74		
KP 203-A, KP 203-AK		0.11	0.20	0.30		
KP 205-A		0.036	0.052	0.080		
Full Scale Span $(p = p_N, V_S = 5 \text{ V})$	V_{FIN}				mV	
KP 202-A, KP 202-AK		72	132	222		
KP 203-A, KP 203-AK		88	160	240		
KP 205-A		180	260	400		
Offset signal	V_{O}	- 25	_	+ 25	mV	
$p = p_0$						

Data Sheet 4 1999-04-01

Electrical Characteristics (cont'd)

at $T_{\rm A}$ = 25 °C and $V_{\rm S}$ = 5 V unless otherwise specified

Parameter	Symbol	Limit Values			Unit
		min.	typ.	max.	
Linearity error (best fit straight line)	F_{L}				% $V_{\sf FIN}$
$p = p_0 \dots p_N$					
KP 202-A, KP 202-AK		_	± 0.3	_	
KP 203-A, KP 203-AK		_	± 0.3	_	
KP 205-A		_	± 0.3	-	
Pressure Hysteresis	P_{H}				% $V_{\sf FIN}$
KP 202-A, KP 202-AK		_	_	_	
KP 203-A, KP 203-AK		_	± 0.1	_	
KP 205-A		_	± 0.1	_	

Temperature Characteristics

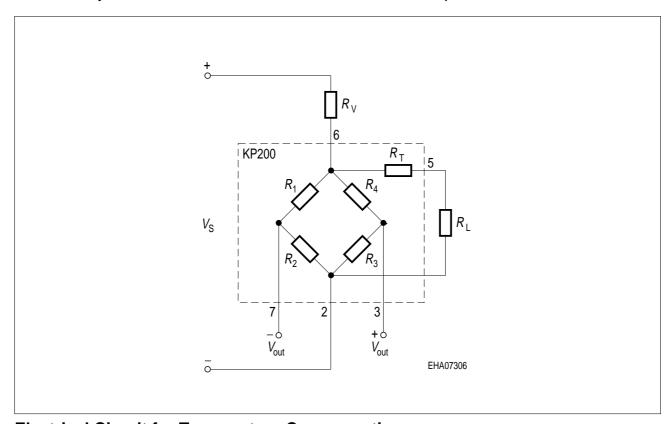
at T_1 = 25 °C, T_2 = 90 °C, T_3 = 25 °C and $V_{\rm S}$ = 5 V unless otherwise specified

Parameter	Symbol	Li	mit Values		Unit
		min.	typ.	max.	
Temperature Coefficient of Span 1)	TC_{VFIN}	_	- 0.17	-	% K ⁻¹
Temperature Coefficient of Offset ¹⁾ KP 202-A, KP 202-AK	TC_{V0}	_	± 0.01	_	% K ⁻¹
KP 203-A, KP 203-AK KP 205-A		_	± 0.01 ± 0.01		
Temperature Coefficient of Bridge Resistance ²⁾	TC_{RB}	_	+ 0.26	-	% K ⁻¹
Temperature Hysteresis of Span ³⁾ KP 202-A, KP 202-AK KP 203-A, KP 203-AK KP 205-A	TH_{VFIN}	_ _ _	± 0.4 ± 0.3 ± 0.2	_ _ _	% K ⁻¹
Temperature Hysteresis of Offset ³⁾ KP 202-A, KP 202-AK KP 203-A, KP 203-AK KP 205-A	TH _{V0}	 - - -	± 0.3 ± 0.3 ± 0.2	_ _ _	% $V_{\sf FIN}^{-1}$

Change in value of TC V_{FIN} or TCV between 25 °C and 125 °C relative to V_{FIN} (25 °C) Change in RB between 25 °C and 125 °C relative to RB (25 °C)

Data Sheet 5 1999-04-01

Change in V_0 (25 °C) or V_{FIN} (25 °C) after temperature cycle 25 °C \rightarrow 125 °C \rightarrow 25 °C relative to V_{FIN} (25 °C)

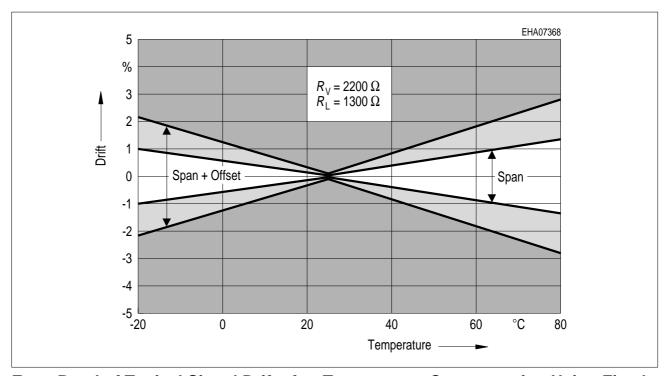

Temperature Compensation

Cost-effective temperature compensation can be achieved using standard ohmic resistors in combination with the built in temperature sensor.

With fixed values for $R_{\rm V}$ and $R_{\rm L}$ a temperature compensation error of the output signal (span plus offset) of typical less then \pm 1% is achieved in the range 10 °C to 40 °C (see figure below).

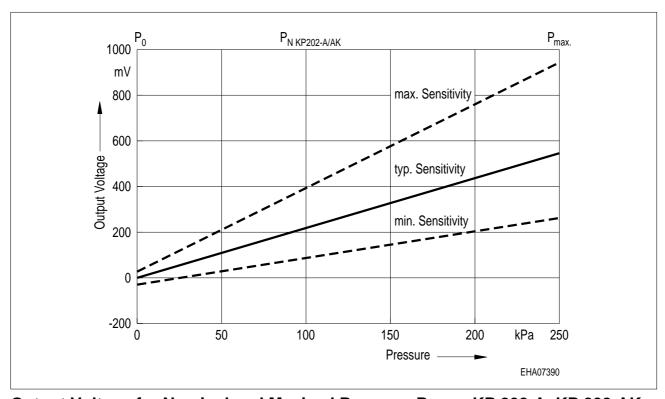
A better temperature compensation is possible by measurement of the temperature coefficients of the sensor. In this case R_{V} is optimized as described in Siemens databook 03.97 pages 45-46 (or website: http://www.siemens.de/semiconductor).

Alternatively an ASIC can be used for calibration and compensation.

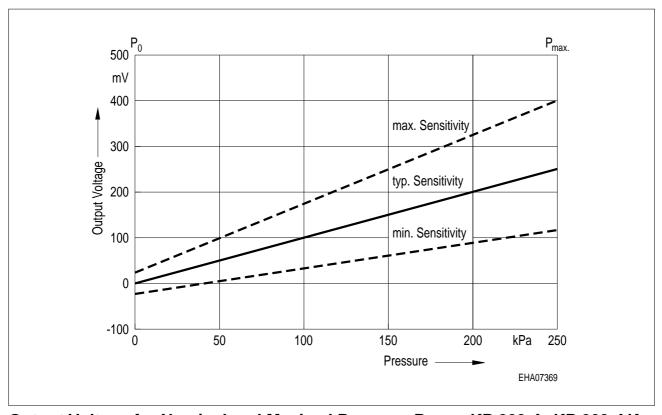


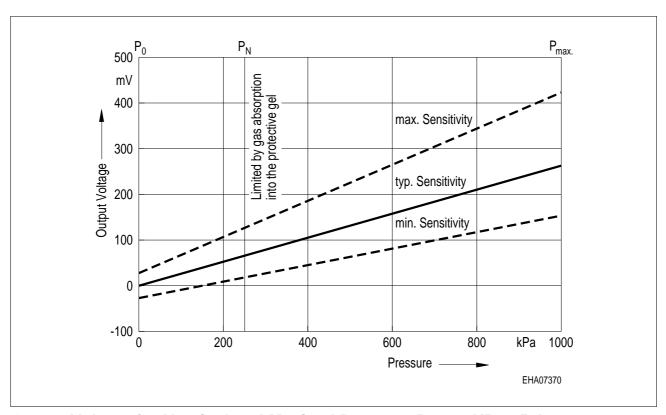
Electrical Circuit for Temperature Compensation

Broken line denotes sensor assembly. R_{V} and R_{I} need to be added externally.


Data Sheet 6 1999-04-01

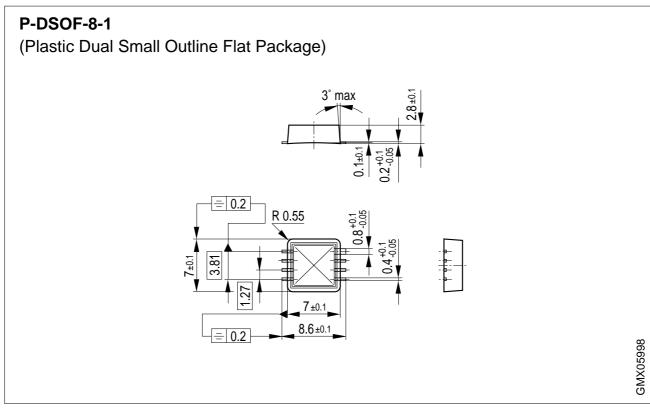
Error Band of Typical Signal Drift after Temperature Compensation Using Fixed Values for $R_{\rm V}$ and $R_{\rm L}$


Using fixed resistor $R_{\rm V}$ = 2200 Ω and $R_{\rm L}$ = 1300 Ω . Graph shows typical results for compensated span + offset signals.


Output Voltage for Nominal and Maximal Pressure Range KP 202-A, KP 202-AK

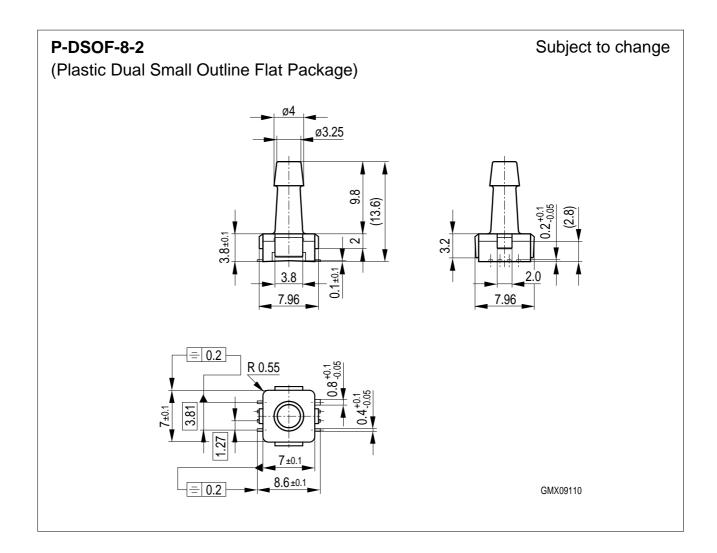
Data Sheet 7 1999-04-01

Output Voltage for Nominal and Maximal Pressure Range KP 203-A, KP 203-AK



Output Voltage for Nominal and Maximal Pressure Range KP 205-A

Data Sheet 8 1999-04-01


Package Outlines

The package is made of a thermoplast housing and copper leadframe with NiPdAu finish. The chip is glued into the premolded plastic package using silicone glue, gold-wire bonded and covered with a protective gel.

For the products KP 20x-AK a cap is mounted on the housing.

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

Dimensions in mm