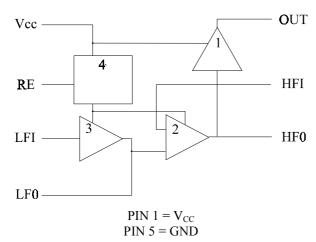
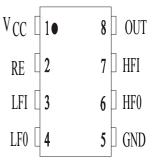

IN2410


# **Tone Ringer**

The IN2410 is a bipolar integrated circuit designed for telephone bell replacement.

- Designed for Telephone Bell Replacement
- Low Curent Drain
- Adjustable 2-frequency Tone
- Adjustable Warbling Rate
- Extension Tone Ringer Modules
- Alarms or Other Alerting Devices
- External Triggering or Ringer Disable
- Built-in hysteresis prevents false triggering and rotary dial 'Chirps'




#### **LOGIC DIAGRAM**



- 1. Output amplifier
- 2. High frequency oscillator
- 3. Low frequency oscillator
- Hysteresis regulator (Regulator circuit has built-in hysteresis to prevent false triggering and rotary dial "Chirps")

### PIN ASSIGNMENT





#### PIN DESCRIPTION

| Name            | Pin | Description                                                |  |
|-----------------|-----|------------------------------------------------------------|--|
| V <sub>CC</sub> | 1   | Positive power supply.                                     |  |
| $R_{\rm E}$     | 2   | Initiation of oscillation start input<br>External resistor |  |
| LFI             | 3   | Low frequency oscillator input                             |  |
| LF0             | 4   | Low frequency oscillator output                            |  |
| GND             | 5   | Negative power supply                                      |  |
| HF0             | 6   | High frequency oscillator output                           |  |
| HFI             | 7   | High frequency oscillator input                            |  |
| Out             | 8   | Tone output                                                |  |

#### **MAXIMUM RATINGS**\*

| Symbol           | Parameter                                   | Value       | Unit |
|------------------|---------------------------------------------|-------------|------|
| V <sub>CC</sub>  | DC Supply Voltage (Referenced to GND)       | to +30.0    | V    |
| $P_{\mathrm{D}}$ | Power Dissipation in Still Air, Plastic DIP | 400         | mW   |
| Tstg             | Storage Temperature                         | -65 to +150 | °C   |

<sup>\*</sup> Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

#### RECOMMENDED OPERATING CONDITIONS

| Symbol          | Parameter                             | Min  | Max  | Unit |
|-----------------|---------------------------------------|------|------|------|
| V <sub>CC</sub> | DC Supply Voltage (Referenced to GND) | 13.0 | 29.0 | V    |
| $T_{A}$         | Operating Temperature                 | -45  | +65  | °C   |

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation,  $V_{IN}$  and  $V_{OUT}$  should be constrained to the range  $GND \le (V_{IN} \text{ or } V_{OUT}) \le V_{CC}$ .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or  $V_{\text{CC}}$ ). Unused outputs must be left open.



# **ELECTRICAL CHARACTERISTICS**(Voltages Referenced to GND, T<sub>A</sub> = -40 to +65°C)

|                   |                                          |                                                                      | Gua  | ranteed l | Limits |      |
|-------------------|------------------------------------------|----------------------------------------------------------------------|------|-----------|--------|------|
| Symbol            | Parameter                                | Test Conditions                                                      | Min  | Тур       | Max    | Unit |
| $V_{SI}$          | Initiation Supply Voltage (1)            | See Fig. 1                                                           | 16.8 |           | 21.2   | V    |
| $I_{SI}$          | Initiation Supply Current (1)            |                                                                      | 1.4  |           | 4.2    | mA   |
| $V_{SUS}$         | Sustaining Voltage (2)                   | See Fig. 1                                                           | 9.5  |           | 12.2   | V    |
| $I_{SUS}$         | Sustaining Current (2)                   | No Load V <sub>CC</sub> =V <sub>SYS</sub><br>See Fig. 1              | 0.7  |           | 2.5    | mA   |
| $V_{TR}$          | Trigger Voltage (3)                      | V <sub>CC</sub> =15V                                                 | 8.8  |           | 12.2   | V    |
| $I_{TR}$          | Trigger Current (3,5)                    | V <sub>CC</sub> =15V                                                 | 5.0  |           | 1000   | μΑ   |
| $V_{ m DIS}$      | Disable Voltage (4)                      | V <sub>CC</sub> =21V                                                 | -    |           | 0.7    | V    |
| $I_{DIS}$         | Disable Current (4)                      | $V_{CC}=15V$                                                         | -20  |           | -      | μΑ   |
| $V_{\mathrm{OH}}$ | High-Level Output<br>Voltage             | V <sub>CC</sub> =21V, I <sub>OH</sub> =-15mA,<br>Pin 6=GND, Pin 7=6V | 16.7 |           | 21.0   | V    |
| V <sub>OL</sub>   | Low-Level Output<br>Voltage              | V <sub>CC</sub> =21V, I <sub>OL</sub> =15mA,<br>Pin 6=6V, Pin 7=GND  | -    |           | 1.8    | V    |
| $I_{IN}$          | Maximun Input Leakage<br>Current (Pin 3) | Pin 3=6V,<br>Pin 4=GND, V <sub>CC</sub> =21V                         | -    |           | 1.0    | μΑ   |
|                   | (Pin 7)                                  | Pin 7=6V,<br>Pin 6=GND, V <sub>CC</sub> =21V                         | -    |           | 1.0    | μΑ   |
| $f_{H1}$          | High Frequency 1                         | $R_3=191K\Omega, C_3=6800pF$                                         | 461  |           | 563    | Hz   |
| $f_{H2}$          | High Frequency 2                         | $R_3=191K\Omega, C_3=6800pF$                                         | 576  |           | 704    | Hz   |
| $f_{L}$           | Low Frequency                            | $R_2=165K\Omega$ , $C_2=0.47\mu F$                                   | 9.0  |           | 11.0   | Hz   |

#### **Notes:**

- 1. Initiation supply voltage  $(V_{SI})$  is the supply voltage required to start the tone ringer oscillating.
- 2. Sustaining voltage ( $V_{SUS}$ ) is the supply voltage required to maintain oscillation.
- 3.  $V_{TR}$  and  $I_{TR}$  are the conditions applied to trigger in to start oscillation for  $V_{SUS} \le V_{CC} \le V_{SI}$ .
- 4.  $V_{DIS}$  and  $I_{DIS}$  are the conditions applied to trigger in to inhibit oscillation for  $V_{SI} \le V_{CC}$ .
- 5. Trigger current must be limited to this value externally.



### CIRCUIT CURRENT-SUPPLY VOLTAGE (NO LOAD)

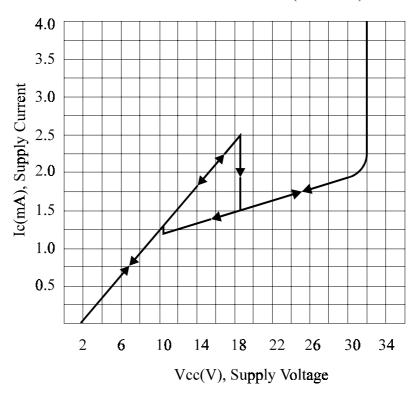



Figure 1

# **APPLICATION CIRCUIT**

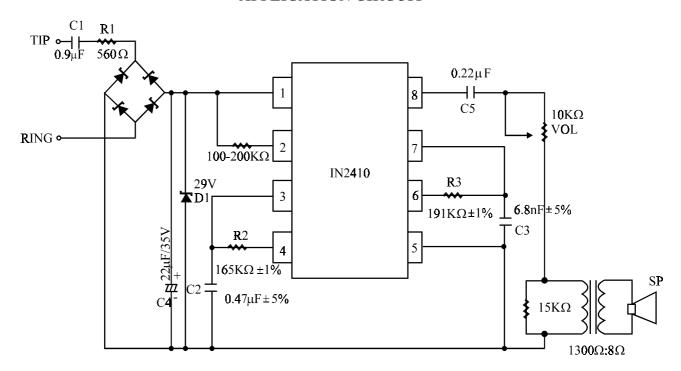



Figure 2

#### APPLICATION NOTE

The application circuit illustrates the use of the IN2410 devices in typical telephone or extension tone ringer application.

The AC ringer signal voltage appears across the TIP and RING inputs of the circuit and is attenuated by capacitor  $C_1$  and resistor  $R_1$ .

C<sub>1</sub> also provides isolation from DC voltages (48V) on the exchange line.

After full wave rectification by the bridge diode, the waveform is filtered by capacitor  $C_4$  to provide a DC supply for the tone ringer chip.

As this voltage exceeds the initiation voltage (V<sub>SI</sub>), oscillation starts.

With the components shown, the output frequency chops between  $512(f_{h1})$  and  $640Hz(f_{h2})$  at a  $10Hz(f_L)$  rate.

The loudspeaker load is coupled through a  $1300\Omega$  to  $8\Omega$  ransformer.

The output coupling capacitor  $C_5$  is required with transformer coupled loads.

When driving a piezo-ceramic transducer type load, the coupling  $C_5$  and transformer (1300 $\Omega$ :8 $\Omega$ ) are not required. However, a current limiting resistor is required.

The low frequency oscillator oscillates at a rate  $(f_L)$  controlled by an external resistor  $(R_2)$  and capacitor  $(C_2)$ . The frequency can be determined using the relation  $f_L$ =1/1.289 $R_2$ \* $C_2$ . The high frequency oscillates at a  $f_{H1}$ ,  $f_{H2}$  controlled by an external resistor  $(R_3)$  and capacitor  $(C_3)$ . The frequency can be determined using the relation  $f_{H1}$ =1/1.504 $R_3$ \* $C_3$ ,  $f_{H2}$ =1/1.203 $R_3$ \* $C_3$ .

#### TRIGGERING IN2410 FROM CMOS OR TTL LOGIC

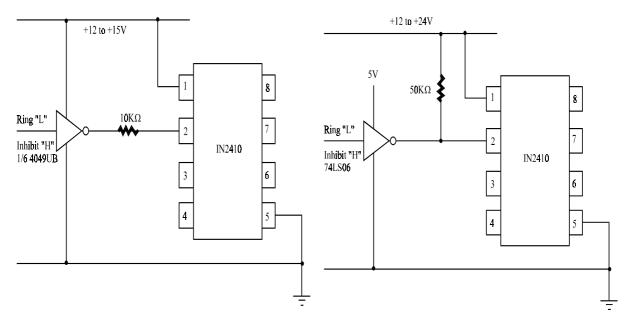



Figure 3 Figure 4



# **EQUIVALENT CIRCUIT (Pin 2 Input)**

### INHIVITING OSCILLATION

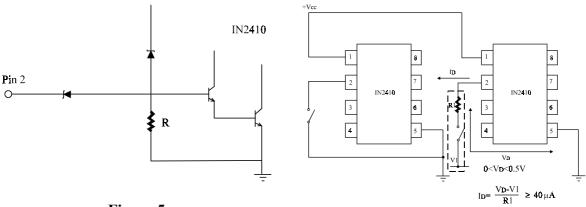



Figure 5

Figure 6

### PROGRAMMING THE IN2410 INITIATION SUPPLY VOLTAGE

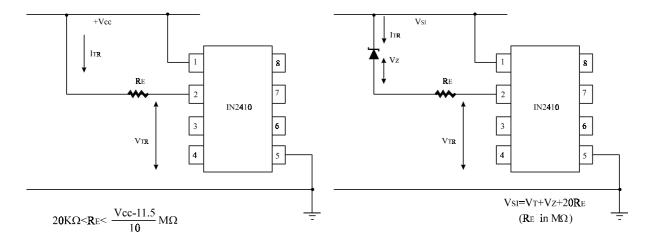
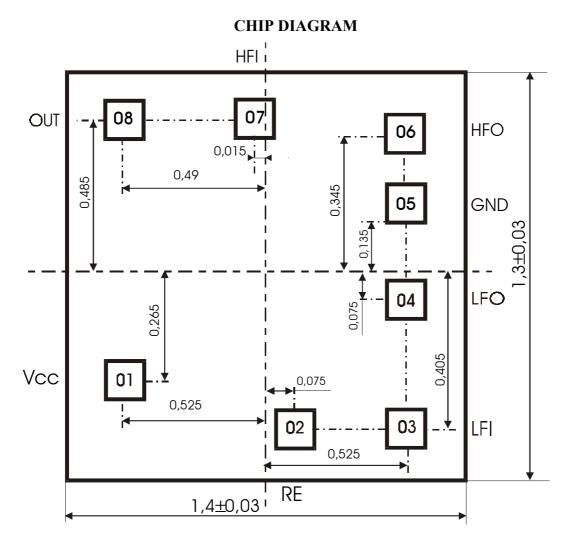




Figure 7

Figure 8

**IZ2410** 



Chip size 1,40 x 1,30 mm Pad size 0,130 x 0,130 mm

### **PAD LOCATION**

| Pad No | Symbol           |
|--------|------------------|
| 01     | Vcc              |
| 02     | $R_{\mathrm{E}}$ |
| 03     | LFI              |
| 04     | LFO              |
| 05     | GND              |
| 06     | HFO              |
| 07     | HFI              |
| 08     | OUT              |