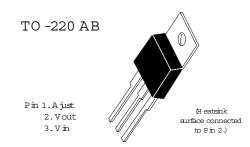
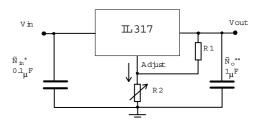
IL317 THREE-TERMINAL ADJUSTABLE OUTPUT POSITIVE VOLTAGE REGULATORS


The IL317 is adjustable 3-terminal positive voltage regulator capable of supplying in excess of 1.5 A over an output voltage range of 1.2 V to 37 V. These voltage regulator is exceptionally easy to use and require only two external resistors to set the output voltage. Further, it employ internal current limiting, thermal shutdown and safe area compensation, making

them essentially blow-out proof.


The IL317 serve a wide variety of applications to make a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the IL317 series can be used as a precision current regulator.

- Output Adjustable between 1.2 V and 37 V
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting Constant with Temperature
- Output Transistor Safe-Area Compensation
- Floating Operation for High Voltage Applications
- Standard 3-lead Transistor Packages
- Eliminates Stocking Many Fixed

Standard application

 $_{*}$ = C in is required if regulator is located an appreciable distance from power supply filter.

 $_{**} = \mbox{Co}$ is not needed for stability ; however, is does in prove transient response.

$$Vout = 1.25V(1+\frac{R2}{R1}) + I_{ADJ}*R2$$
 Since IaD J is controlled to less then 100 $_{
m L}$ A, the

Since IAD J is controlled to less then 100 $_{\rm L}\rm A$, the error associated with this term is negligible in most applications.

Maximum ratings

Rating	Symbol	Value	Unit
Input - Output Voltage Differential	Vi - Vo	40	Vdc
Power Dissipation and Thermal Characteristics	PD	Internally Limited	
Operating Junction Temperature Rang	TJ	-0 to +150	°C
Storage Junction Temperature Rang	Tstg	-65 to +150	°C

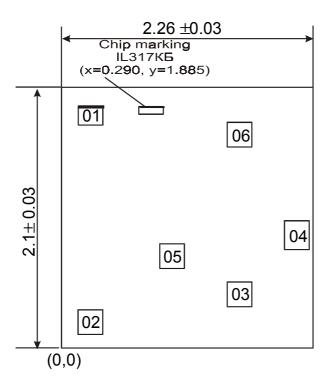
Electrical characteristics

(Vi-Vo= 5.0V, Io = 0.5 A, TJ = Tlow to Thigh (see Note 1); Imax = 1.5 A and Pmax = 20 W unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Line Regulation (TA=+25°C)	Regline	-	0.01	0.04	%/V
$3.0V \le Vi - Vo \le 40 V$					
Load Regulation(TJ=+25°C)	Regload				
10mA≤Io≤Imax,					
Vin ≤5V		-	5.0	25	mV
Vin≥5 V		-	0.1	0.5	%/Vo
Thermal Regulation (TA=+25°C)	_	-	0.03	0.07	%/W
20 ms Pulse					
Adjustment Pin Current	IAdj	-	50	100	μΑ
Adjustment Pin Current Change	ΔIAdj	-	0.2	5.0	μA
$2.5 \le Vi - Vo \le 40 V$,				
10mA ≤IL≤ Imax, PD ≤ Pmax					
Reference Voltage (Note 4)	Vref	1.2	1.25	1.3	V
$3.0 \le Vi - Vo \le 40 V$					
10mA ≤IL≤ Imax, PD ≤ Pmax					
Line Regulation (Note 3)	Regline	-	0.02	0.07	%/V
$3.0 \text{ V} \le \text{Vi} - \text{Vo} \le 40 \text{ V}$					
Load Regulation (Note 3)	Regload				
10mA≤Io≤Imax,					
Vin ≤5V		-	20	70	%/V
Vin≥5 V		-	0.3	1.5	%/V
Temperature Stability (Tlow \leq Tj \leq Ttigh)	Ts	-	0.7	-	
Minimum Load Current to	ILmin	-	3.5	10	mA
Maintain Regulation (Vi - $Vo = 40 \text{ V}$)					
Maximum Output Current	Imax				A
$Vi - Vo \le 15 V, P \le 20 W$		1.5	2.2	-	
$Vi - Vo = 40 V, P \le 20W, TA = +25^{\circ}C$		0.15	0.4	-	
RMS Nose, % of Vo	N	-	0.003	-	%/Vo
$TA=+25^{\circ}C$, 10 Hz $\leq f \leq$ 10 kHz					
Ripple Rejection, Vo = 10 V, f = 120 Hz	RR				dB
(Note 5)					
Without Cadj		-	65	-	
$Cadj = 10 \mu F$		66	80	_	
Long-Term Stability, Tj = Thigh (Note 6)	S	-	0.3	1.0	%/1.0 k
TA=+25°C for Endpoint Measurements					Hrs.
Thermal Resistance Junction to Case	$R_{ heta JC}$	-	5.0	-	°C/W

Notes: (1) Tlow = $0 \, ^{\circ}$ C, Thigh = $+125 \, ^{\circ}$ C

⁽²⁾ Imax = 0.5 A, Pmax


⁽³⁾ Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

⁽⁴⁾ Selected devices with tightened tolerance reference voltage available.

⁽⁵⁾ Cadj, when used, connected between the adjustment pin and ground.

⁽⁶⁾ Since Long - Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.

CHIP PAD DIAGRAM

Thickness of chip 0,46±0,02 mm

PAD LOCATION

Pad No	Symbol*	X	Y	Pad size**,	
				mm	
01	output	0.070	1.800	0.160x0.195	
02	adjust	0.070	0.090	0.180x0.185	
03	output	1.515	0.410	0.190x0.170	
04	input	2.010	0.935	0.180x0.205	
05	input	0.875	0.760	0.165x0.175	
06	output	1.515	1.575	0.190x0.170	

^{*} Pads 01, 03, 06 connected in the chip. Pads 04, 05 connected in the chip.

^{**} Pad size is given as per metallization layer