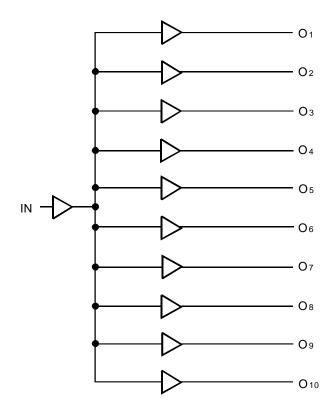


GUARANTEED LOW SKEW CMOS CLOCK DRIVER/BUFFER

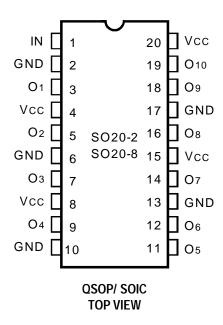
QS532807


FEATURES:

- JEDEC compatible LVTTL level
- 10 low skew clock outputs
- Clock input is 5V tolerant
- Pinout and function compatible with QS5807
- 25Ω on-chip resistors available for low noise
- Input hysteresis for better noise margin
- Guaranteed low skew:
 - 0.35ns output skew (same bank)
 - 0.6ns output skew (different bank)
 - 0.75ns part-to-part skew
- Available in QSOP and SOIC packages

DESCRIPTION:

The QS532807 clock driver/buffer circuit can be used for clock buffering schemes where low skew is a key parameter. The QS532807 offers ten non-inverting outputs. Designed in IDT's proprietary QCMOS process, these devices provide low propagation delay buffering with onchip skew of 0.35ns for same-transition, same bank signals. The QS532807 has on-chip series termination resistors for lower noise clock signals. The QS532807 series resistor version is recommended for driving unterminated lines with capacitive loading and other noise sensitive clock distribution circuits. These clock buffer products are designed for use in high-performance workstations, embedded and personal computing systems. Several devices can be used in parallel or scattered throughout a system for guaranteed low skew, system-wide clock distribution networks.


FUNCTIONAL BLOCK DIAGRAM

INDUSTRIAL TEMPERATURE RANGE

SEPTEMBER 2000

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
V _{TERM} (2)	Supply Voltage to Ground	- 0.5 to +4.6	٧
	DC Output Voltage Vouт	- 0.5 to Vcc+0.5	٧
V _{TERM} (3)	DC Input Voltage VIN	- 0.5 to +7	٧
Vac	AC Input Voltage (pulse width ≤20ns)	-3	٧
Іоит	DC Output Current VIN < 0	-20	mA
	DC Output Current Max. Sink Current/Pin	120	mA
Tstg	Storage Temperature	- 65 to +150	°C
TJ	Junction Temperature	150	°C

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc Terminals.
- 3. All terminals except Vcc.

CAPACITANCE $(T_A = +25^{\circ}C, f = 1.0MHz, V_{IN} = 0V)$

	QSOP		SOIC		
Pins	Тур.	Max. (1)	Тур.	Max. (1)	Unit
CIN	3	6	5	7	pF

NOTE:

1. This parameter is guaranteed but not production tested.

PIN DESCRIPTION

Pin Names	1/0	Description
IN	ĺ	Clock Input
Ox	0	Clock Outputs

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Industrial: $T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = 3.3V \pm 0.3V$

Symbol	Parameter	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage	Guaranteed Logic HIGH for All Inputs	2	1.7	5.5	٧
VIL	Input LOW Voltage	Guaranteed Logic LOW for All Inputs	-0.5	_	0.8	V
Vic	Clamp Diode Voltage (3)	Vcc = Min., IIN = -18mA	_	-0.7	-1.2	٧
Vон	Output HIGH Voltage	Vcc = Min., Iон = -100µA	Vcc - 0.2	_	_	٧
		Vcc = Min., IOH = -8mA	2.4	_	_	
		Vcc = Min., IoL = 100μA	_	_	0.2	
Vol	Output LOW Voltage	Vcc = Min., IoL = 6mA	_	_	0.4	٧
		Vcc = Min., IoL = 8mA	_	_	0.5	
lin	Input Leakage Current	Vcc = Max., Vin = Vcc or GND	_	_	±1	μΑ
loff	Input Power Off Leakage	Vcc = 0V, VIN = Vcc or GND	_	_	±1	μΑ
los	Short Circuit Current (2,3)	Vcc = Max., Vout = GND	-60	-195	_	mA
lodh	Output HIGH Current	Vcc = 3.3V, VIN = VIH or VIL, VO = 1.5V	-50	-80	-200	mA
IODL	Output LOW Current	Vcc = 3.3V, VIN = VIH or VIL, VO = 1.5V	50	112	200	mA
ΔV T	Input Hysteresis	VTLH - VTHL for All Inputs	_	0.2	_	٧
Rout	Output Resistance (4)	Vcc = Min., IoL = 12mA	_	28	_	Ω

NOTES:

- 1. Typical values are at Vcc = 3.3V, TA = 25°C.
- 2. Not more than one output should be used to test this high power condition. Duration is less than one second.
- 3. Guaranteed by design but not tested.
- 4. Output resistance represents the total output impedance of the logic device and includes added series termination resistance.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions		Typ. ⁽²⁾	Max.	Unit
Icc	Quiescent Power Supply Current	Vcc = Max., Vin = GND or Vcc		0.01	100	μΑ
Δlcc	Supply Current per Input HIGH	Vcc = Max., Vin = 3V		0.1	30	μΑ
		Input toggling at 50% duty cycle				
ICCD	Dynamic Power Supply Current per Output (1)	Vcc = Max., outputs Enabled		60	90	μ A /MHz
Ic	Total Power Supply Current Examples (1,3)	VCC = Max.,	VIN = GND or Vcc	6	10	mA
		Input at 50% duty cycle				
		fi = 10MHz				
		VCC = Max.,	VIN = GND or Vcc	1.5	3	
		Input at 50% duty cycle				
		$f_1 = 2.5MHz$				

NOTES

- 1. Guaranteed by design but not tested. CL = 0pF.
- 2. Typical values are for reference only. Conditions are Vcc = 3.3V, TA = 25°C.
- 3. $IC = ICC + (\Delta ICC)(DH)(NT) + ICCD (fo)(No)$

where:

DH = Input Duty Cycle

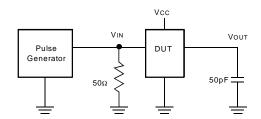
NT = Number of TTL HIGH inputs at DH (one)

fo = Output Frequency

No = Number of outputs at fo (ten)

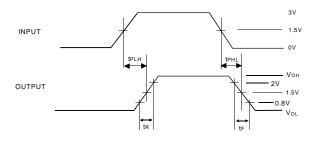
SWITCHING CHARACTERISTICS OVER OPERATING RANGE

 $T_A = -40^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 3.3V \pm 0.3V$

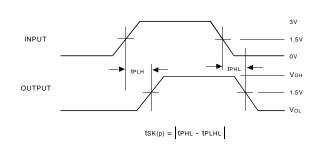

CLOAD = 50pF (no resistor)

Symbol	Parameter (1)	Min.	Max.	Unit
tsk(01)	Skew between all outputs, same transition	Ī	0.5	ns
tsk(p)	Pulse Skew; skew between opposite transitions of the same output (tphl - tplh)	1	0.5	ns
tsk(t)	Part-to-part skew (2)	_	1	ns
tplh tphl	Propagation Delay ⁽³⁾ IN to Ox	1.5	5.2	ns
tr	Output Rise Time, 0.8V to 2V	l	2	ns
tF	Output Fall Time, 2V to 0.8V	l	2	ns

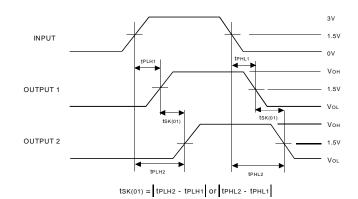
NOTES:

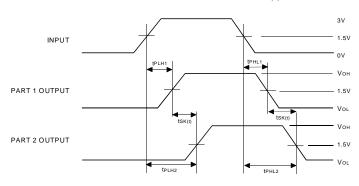

- 1. Skew parameters are guaranteed across temperature range, but not tested.
- 2. tsk(T) only applies to devices of the same transition, part type, temperature, power supply voltage, loading, and package.
- 3. The propagation delay range indicated by Min. and Max. specifications results from process and environmental variables. These propagation delays do not imply limit skew.

TEST CIRCUITS AND WAVEFORMS

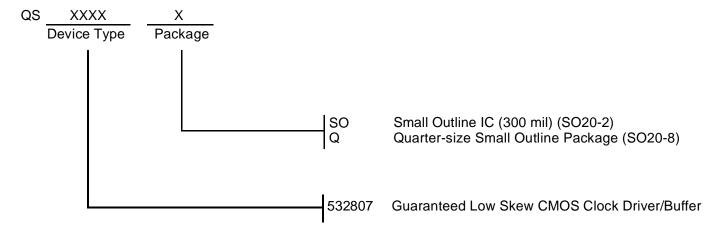


Pulse generator for all pulses: $f \le 1.0 MHz$; $tF \le 2.5 ns$; $tR \le 2.5 ns$


PROPAGATION DELAY


PULSE SKEW — tsk(P)

OUTPUT SKEW — tsk(01)



PART-TO-PART SKEW — tsk(T)

tSK(t) = tPLH2 - tPLH1 or tPHL2 - tPHL1

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*