QUICKSWITCH ${ }^{\circledR}$ PRODUCTS

 3.3V HIGH SPEED DOUBLEWIDTH BUS SWITCH
FEATURES:

- 5Ω bidirectional switches connect inputs to outputs
- Pin compatibility with QS3245
- 250ps propagation delay
- Undershoot clamp diodes on all switch and control inputs
- LVTTL-compatible control inputs
- Available in 40-pin QVSOP package

APPLICATIONS:

- 3.3 V to 2.5 V Voltage translation
- 2.5 V to 1.8 V Voltage translation
- PCI bus isolation hot swap

DESCRIPTION:

The QS32XV245 is a 16-bit high speed bus switch controlled by LVTTLcompatible active lowenable signal. Whenclosed, the switches exhibitnearzero propagation delay without generating additional ground bounce or switching noise.
TheQS32XV245 is specially designed for directinterface between 3.3 V and 2.5 V devices without any external components. When operating from a3.3V supply, the logichighlevel atthe switchoutputis clampedto 2.5 V whenthe switch inputsignal exceeds 2.5 V . This device can be used for switching 2.5 V buses withoutsignal attenuation. The ON resistanceat 3.3 VV ccislessthan 5Ω typical, providing near zero propagation delay throughthe switch. Absence of DC path from switch I/O pins to Vcc or ground makes QS32XV245 an ideal device for hotswapping applications.

The QS32XV245 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

PIN CONFIGURATION

QVSOP
TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM $^{(2)}$	Supply Voltage to Ground	-0.5 to +4.6	V
VTERM $^{(3)}$	DC Switch Voltage Vs	-0.5 to +4.6	V
VTERM $^{(3)}$	DC Input Voltage VIN	-0.5 to +4.6	V
VAC	AC Input Voltage (pulse width $\leq 20 \mathrm{~ns})$	-3	V
Iout	DC Output Current	120	mA
Pmax	Maximum Power Dissipation $\left(\mathrm{TA}_{\mathrm{A}}=85^{\circ} \mathrm{C}\right)$	0.6	W
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. $V c c$ terminals.
3. All terminals except Vcc.

CAPACITANCE

$\left(\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{VIN}=0 \mathrm{~V}\right.$, Vout $\left.=0 \mathrm{~V}\right)$

Pins	Typ.	Max. ${ }^{(1)}$	Unit
Control Pins	4	6	pF
Quickswitch Channels (Switch OFF)	5	7	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names		Description
$\overline{\mathrm{O}} \overline{\mathrm{E}}$	OutputEnable	
An, Bn	Data $/ /$ Os	

FUNCTION TABLE(1)

OE1	OE2	A0 - A7	A8-A15	Function
H	H	Z	Z	Disconnect
L	H	B0-B7	Z	Connect
H	L	Z	B8-B15	Connect
L	L	B0-B7	B8-B15	Connect

NOTE:

1. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level
Z $=$ High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE
Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VcC}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$

Symbol	Parameter	Test Conditions	Min.	Typ. ${ }^{(1)}$	Max.	Unit
VIH	Input HIGH Level	Guaranteed Logic HIGH for Control Pins	2	-	-	V
VIL	Input LOW Level	Guaranteed Logic LOW for Control Pins	-	-	0.8	V
In	Input LeakageCurrent (Control Inputs)	$\mathrm{OV} \leq \mathrm{VIN} \leq \mathrm{Vcc}$	-	-	1	$\mu \mathrm{A}$
Ioz	Off-State Output Current (Hi-Z)	OV \leq Vout \leq Vcc, Switches OFF	-	0.001	1	$\mu \mathrm{A}$
Ron	Switch ON Resistance	$\mathrm{Vcc}=$ Min., Vin $=0 \mathrm{~V}$, Ion $=8 \mathrm{~mA}$	-	5	7	Ω
		Vcc $=$ Min., $\mathrm{VIN}=1.7 \mathrm{~V}$, Ion $=8 \mathrm{~mA}$	-	15	20	
		$\mathrm{VCC}=2.3 \mathrm{~V}, \mathrm{VIN}=0 \mathrm{~V}$, Ion $=8 \mathrm{~mA}$	-	7	-	
		$\mathrm{VCC}=2.3 \mathrm{~V}, \mathrm{~V}$ IN $=1.3 \mathrm{~V}$, $\mathrm{IoN}=8 \mathrm{~mA}$	-	25	-	
Vp	Pass Voltage ${ }^{(2)}$	$\mathrm{VIN}=\mathrm{Vcc}=3.3 \mathrm{~V}$, lout $=-5 \mu \mathrm{~A}$	2.5	2.7	2.9	V
		$\mathrm{VIN}=\mathrm{Vcc}=2.5 \mathrm{~V}$, Iout $=-5 \mu \mathrm{~A}$	-	1.8	-	

NOTES:

1. Typical values are at $\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Pass Voltage is guaranteed but not production tested.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	TestConditions ${ }^{(1)}$	Max.	Unit
ICCQ	Quiescent Power Supply Current	Vcc = Max., VIN = GND or Vcc, $f=0$	6	$\mu \mathrm{A}$
$\Delta \mathrm{lCC}$	Power Supply Current per Control Input HIGH ${ }^{(2)}$	$\mathrm{Vcc}=$ Max., $\mathrm{VIN}=3.4 \mathrm{~V}, \mathrm{f}=0$	50	$\mu \mathrm{A}$
ICCD	Dynamic Power Supply Current per MHz ${ }^{(3)}$	Vcc = Max., A and B pins open Control Inputs Toggling at 50\% Duty Cycle	0.15	$\mathrm{mA} / \mathrm{MHz}$

NOTES:

1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
2. Per TLL driven input $(\mathrm{V} \mathbb{I}=3.4 \mathrm{~V}$, control inputs only). A and B pins do not contribute to $\Delta \mathrm{lc}$.
3. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is guaranteed but not production tested.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VCC}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
Cload $=50 p F$, Rload $=500 \Omega$ unless otherwise noted.

Symbol	Parameter	Min. ${ }^{(1)}$	Typ.	Max.	Unit
tPLH tPHL	DataPropagation Delay (2,3) Anto/from Bn	-	-	0.25	ns
tPZL tPZH	Switch Turn-onDelay OEn to An/Bn	0.5	-	6.5	ns
tPLZ tPHZ	SwitchTurn-offDelay $\overline{\text { OEn }}$ to An/Bn	0.5	-	4	ns

NOTES:

1. Minimums are guaranteed but not production tested.
2. This parameter is guaranteed but not production tested.
3. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for $\mathrm{CL}^{2}=30 \mathrm{pF}$. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

TYPICAL ON RESISTANCE vs VIN AT Vcc $=3.3 \mathrm{~V}$

OUTPUT VI CHARACTERISTICS

3.3V TO 2.5V VOLTAGE TRANSLATION

2.5V TO 1.8V VOLTAGE TRANSLATION

ORDERINGINFORMATION

for SALES:
800-345-7015 or 408-727-6116
fax: 408-492-8674
www.idt.com
for Tech Support:
logichelp@idt.com (408) 654-6459

