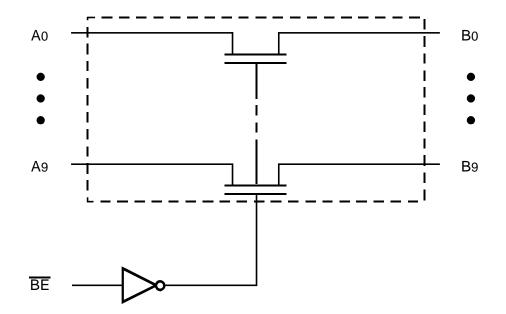


QUICKSWITCH[®] PRODUCTS HIGH-SPEED CMOS 10-BIT BUS SWITCH WITH FLOW-THROUGH PINOUT

FEATURES:

- · Enhanced N channel FET with no inherent diode to Vcc
- Near zero ground bounce
- · Undershoot clamp diodes on all switch and control inputs
- Available in QSOP and SOIC packages

DESCRIPTION:


The QS32861 provides a set of ten high speed CMOS, TTL-compatible bus switches. The Bus Enable (\overline{BE}) signal turns the switches on. The QS32861 includes internal 25 Ω series termination resistors to reduce reflection noise in high speed applications. When closed, the switch acts as the source (series) termination for the driver connected to it.

The QS32861 is characterized for operation at -40°C to +85°C.

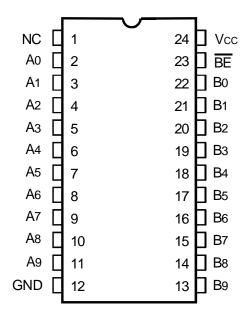
APPLICATIONS:

- · Hot-swapping, hot-docking
- Voltage translation (5V to 3.3V)
- Power conservation
- Capacitance reduction and isolation
- Clock gating
- Bus isolation

FUNCTIONAL BLOCK DIAGRAM

1

The IDT logo is a registered trademark of Integrated Device Technology, Inc.


INDUSTRIAL TEMPERATURE RANGE

MARCH 2002

IDTQS32861 HIGH-SPEED CMOS 10-BIT BUS SWITCH WITH FLOW-THROUGH PINOUT

INDUSTRIAL TEMPERATURE RANGE

PIN CONFIGURATION

QSOP/ SOIC TOP VIEW

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Supply Voltage to Ground	–0.5 to +7	V
VTERM ⁽³⁾	DC Switch Voltage Vs	-0.5 to +7	V
VTERM ⁽³⁾	DC Input Voltage VIN	-0.5 to +7	V
VAC	AC Input Voltage (pulse width \leq 20ns)	-3	V
Ιουτ	DC Output Current	120	mA
Рмах	Maximum Power Dissipation (TA = 85°C)	0.5	W
Tstg	Storage Temperature	-65 to +150	°C

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminals.

3. All terminals except Vcc.

CAPACITANCE

 $\left(TA=+25^{\circ}C,\,f=1.0MHz,\,V\text{in}=0V,\,V\text{out}=0V\right)$

Pins	Тур.	Max. ⁽¹⁾	Unit
Control Pins	3	5	pF
Quickswitch Channels (Switch OFF)	5	7	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	Description
ΒĒ	BusEnable
A0 - A9	Bus A
B0 - B9	Bus B

FUNCTION TABLE(1)

BE	A0 - A9	2A, 2Y I/Os
Н	Hi-Z	Disconnect
L	B 0 - B9	Connect

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Industrial: TA = -40°C to +85°C, Vcc = $5.0V \pm 5\%$

Symbol	Parameter	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Level	Guaranteed Logic HIGH for Control Pins	2	—	—	V
Vil	Input LOW Level	Guaranteed Logic LOW for Control Pins	-	-	0.8	V
lin	Input LeakageCurrent (Control Inputs) ⁽²⁾	$0V \le VIN \le VCC$	_	±0.01	±1	μA
loz	Off-State Output Current (Hi-Z)	$0V \le VOUT \le VCC$, Switches OFF	_	±0.01	±1	μA
Ron ⁽³⁾	Switch ON Resistance	VCC = Min., $VIN = 0V$, $ION = 30mA$	15	20	35	Ω
		VCC = Min., $VIN = 2.4V$, $ION = 15mA$	18	25	40	
Vp	Pass Voltage ⁽²⁾	$V_{IN} = V_{CC} = 5V$, lout = $-5\mu A$	3.7	4	4.2	V


NOTES:

1. Typical values are at Vcc = 5.0V, TA = 25°C.

2. Pass Voltage is guaranteed but not production tested.

3. Rout changed on March 8, 2002. See rear page for more information.

TYPICAL ON RESISTANCE vs Vin AT Vcc = 5V

(Volts)

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾	Тур ⁽²⁾	Max.	Unit
lcco	Quiescent Power Supply Current	Vcc = Max., VIN = GND or Vcc, f = 0	0.2	3	μA
Δlcc	Power Supply Current per Control Input HIGH	Vcc = Max., VIN = 3.4V ⁽³⁾ , f = 0	_	2.5	mA
ICCD	Dynamic Power Supply Current per MHz ⁽⁴⁾	Vcc = Max., A and B pins open BE Input Toggling at 50% Duty Cycle	_	0.25	mA/MHz

NOTES:

1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.

2. Typical values are at Vcc = 5.0V, 25°C ambient.

3. Per TLL driven input (VIN = 3.4V, control inputs only). A and B pins do not contribute to ∆Icc.

4. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The A and B pins generate no significant AC or DC currents as they transition. This parameter is guaranteed but not production tested.

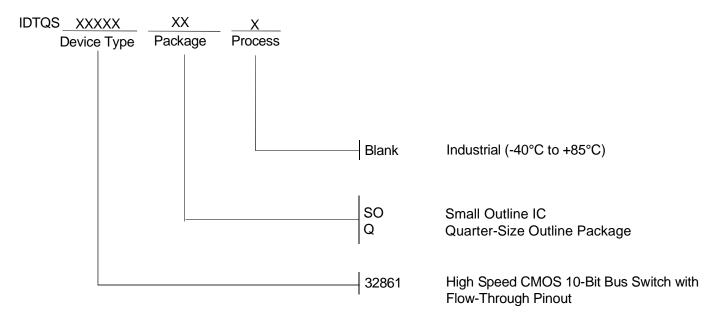
SWITCHING CHARACTERISTICS OVER OPERATING RANGE

 $T_A = -40^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 5.0V \pm 5\%;$

CLOAD = 50pF, RLOAD = 500Ω unless otherwise noted.

Symbol	Parameter	Min. ⁽¹⁾	Тур.	Max.	Unit
t PLH	Data Propagation Delay ^(2,4)	—	_	1.25 ⁽³⁾	ns
t PHL	A to B or B to A				
tрzн	Switch Turn-on Delay	1.5	_	7.5	ns
tPZL	BE to A or B				
tрнz	Switch Turn-off Delay ⁽²⁾	1.5	_	5.5	ns
tPLZ	BE to A or B				

NOTES:


1. Minimums are guaranteed but not production tested.

2. This parameter is guaranteed but not production tested.

3. The time constant for the switch alone is of the order of 1.25ns for $C_L = 50pF$.

4. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

ORDERING INFORMATION

As per PCN L0201-02, the Output Resistance (Row) specifications have changed as of March 8, 2002. The original specifications were:

Parameter	Description	Min.	Тур.	Max.	Unit
Ron	VCC = Min, VIN = 0V, ION = 30mA	20	28	40	Ω
	Vcc = Min, VIN = 2.4V, ION = 15mA	20	35	48	

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 *for SALES:* 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com

for Tech Support: logichelp@idt.com (408) 654-6459