FEATURES:

- Enhanced N channel FET with no inherent diode to Vcc
- 5Ω bidirectional switches connect inputs to outputs
- Pin compatible with FCT16245
- Flowthrough pinout for easy layout
- Zero propagation delay, zero ground bounce
- TTL-compatible input and output levels
- Undershoot clamp diodes on all switch and control inputs
- Available in SSOP package

DESCRIPTION:

The QS316245 provides a set of 16 high-speed CMOS TTL-compatible bus switches (two banks of 8 switches each) in a flow-thru pinout. The low ON resistance of the QS316245 allows inputs to be connected to outputs without adding propagation delay and without generating additional ground bounce noise. The Output Enable ($\overline{\mathrm{OEx}})$ signal turns the switche on similar to the $\overline{\mathrm{O}} \overline{\mathrm{Ex}}$ signal of the $74^{\prime} 245$. The QS316245 is ideally suited for 5 V to 3.3V translation, bus switching and isolation, and hot insertion.

QuickSwitch devices provide an order of magnitude faster speed than conventional logic devices.

APPLICATIONS:

- Hot-swapping, hot-docking
- Voltage translation (5V to 3.3V)
- Bus switching, isolation
- Power conservation, clock gating
- Logic replacement

FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM $^{(2)}$	Supply Voltage to Ground	-0.5 to +7	V
VTERM $^{(3)}$	DC Switch Voltage to Ground	-0.5 to +7	V
VTERM $^{(3)}$	DC Input Voltage VIn	-0.5 to +7	V
VAC	AC Input Voltage (pulse width $\leq 20 \mathrm{~ns})$	-3	V
Iout	DC Output Current	120	mA
Pmax	Maximum Power	0.5	W
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc terminals.
3. All terminals except Vcc

CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V} \mathbb{N}=0 \mathrm{~V}, \mathrm{~V}\right.$ Out $\left.=0 \mathrm{~V}\right)$

Pins	Typ.	Max. $^{(1)}$	Unit
Control Inputs	3	5	pF
Quickswitch Channels (Switch OFF)	5	7	pF

NOTE:

1. This parameter is guaranteed but not production tested.

PIN DESCRIPTION

Pin Names	I/O	Description
$A x$	$1 / O$	Bus A
$B x$	$1 / O$	Bus B
$\bar{O} \bar{E} \bar{x}$	1	Bus Enable

FUNCTION TABLE ${ }^{(1)}$

$\overline{\mathrm{OEx}}$	Ax	Function
L	Bx	Connect
H	Z	Disconnect

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level
X = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Test Conditions	Min.	Typ. ${ }^{(1)}$	Max.	Unit
VIH	Input HIGH Voltage	Guaranteed Logic HIGH for Control Inputs	2	-	-	V
VIL	InputLOW Voltage	Guaranteed Logic LOW for Control Inputs	-	-	0.8	V
IIN	InputLeakage Current(Control Inputs)	$\mathrm{OV} \leq \mathrm{VIN} \leq \mathrm{Vcc}$	-	-	± 1	$\mu \mathrm{A}$
Ioz	Off-State Current(Hi-Z)	OV \leq Vout \leq Vcc, Switches OFF	-	-	± 1	$\mu \mathrm{A}$
Ron	Switch ON Resistance	Vcc $=$ Min., VIN $=0 \mathrm{~V}$, $\mathrm{ION}=30 \mathrm{~mA}$	-	5	7	Ω
		Vcc $=$ Min., VIN $=2.4 \mathrm{~V}$, ION $=15 \mathrm{~mA}$	-	10	12	
Vp	Pass Voltage ${ }^{(2)}$	$\mathrm{VIN}=\mathrm{VCC}=5 \mathrm{~V}$, Iout $=-5 \mu \mathrm{~A}$	3.7	4	4.2	V

NOTES:

1. Typical values are at $\mathrm{Vcc}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Pass voltage is guaranteed but not production tested.

TYPICAL ON RESISTANCE vs Vin AT Vcc $=5 \mathrm{~V}$

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	TestConditions ${ }^{(1)}$	Max.	Unit
ICCQ	Quiescent Power Supply Current	Vcc $=$ Max., VIN $=$ GND or Vcc, $f=0$	3	$\mu \mathrm{A}$
$\triangle \mathrm{lcC}$	Power Supply Current per Control Input HIGH ${ }^{(2)}$	Vcc $=$ Max., VIN $=3.4 \mathrm{~V}, \mathrm{f}=0$	1.5	mA
ICCD	Dynamic Power Supply Current per MHz ${ }^{(3)}$	Vcc = Max., A and B Pins Open, Control Inputs Toggling @ 50\% Duty Cycle	0.25	mA/MHz

NOTES:

1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
2. Per TTL-driven input $(\mathrm{VIN}=3.4 \mathrm{~V})$. A and B pins do not contribute to $\Delta \mathrm{lcc}$.
3. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is guaranteed but not production tested.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%$
CLOAD $=50 \mathrm{pF}$, RLOAD $=500 \Omega$ unless otherwise noted.

Symbol	Parameter	Min. ${ }^{(1)}$	Typ.	Max.	Unit
tPLH tPHL	DataPropagationDelay(2) Ax to Bx, Bx to Ax	-	-	$0.255^{(3)}$	ns
tPZL tPZH	Switch Turn-On Delay OEx to Ax/Bx	1.5	-	6.5	ns
tPLZ tPHZ	Switch Turn-OffDelay (2) OEx to Ax/Bx	1.5	-	5.5	ns

NOTES:

1. Minimums are guaranteed but not production tested.
2. This parameter is guaranteed but not production tested.
3. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns at $\mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

ORDERINGINFORMATION

for Tech Support:
logichelp@idt.com
(408) 654-6459

