

3.3V CMOS ONE-TO-FOUR ADDRESS/CLOCK DRIVER

IDT74FCT163344/A/C

FEATURES:

- 0.5 MICRON CMOS Technology
- Typical tsk(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 25 mil pitch SSOP, 19.6 mil pitch TSSOP and 15.7 mil pitch TVSOP Packages
- Extended commercial range of -40°C to +85°C
- Vcc = 3.3V ± 0.3 V, Normal Range or Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4µW typ. static)
- Rail-to-Rail output swing for increased noise margin
- Low Ground Bounce (0.3V typ.)
- Inputs (except I/O) can be driven by 3.3V or 5V components

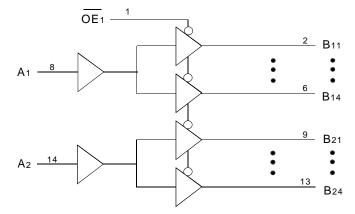
FUNCTIONAL BLOCK DIAGRAM

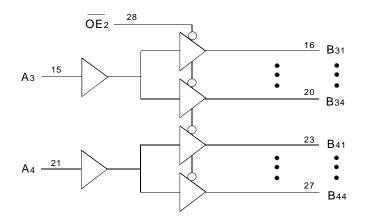
DESCRIPTION:

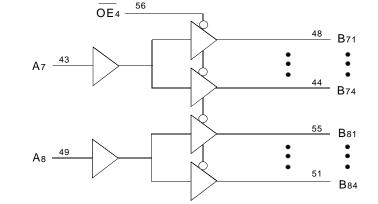
The FCT163344/A/C is a 1:4 address/clock driver built using advanced dual metal CMOS technology. This high-speed, low power device provides the ability to fanout to memory arrays. Eight banks, each with a fanout of 4, and 3-state control provide efficient address distribution. One or more banks may be used for clock distribution.

The FCT163344/A/C have series current limiting resistors. These offer low ground bounce, minimal undershoot and controlled output fall times, reducing the need for external series terminating resistors.

A large number of power and ground pins ensure reduced noise levels. All inputs are designed with hysteresis for improved noise margins.


The inputs of the FCT163344/A/C can be driven from either 3.3V or 5V device. This feature allows the use of these devices as translators in a mixed 3.3V/5V supply system.


29


OE3

A5 -36

A6 42

COMMERCIAL TEMPERATURE RANGE

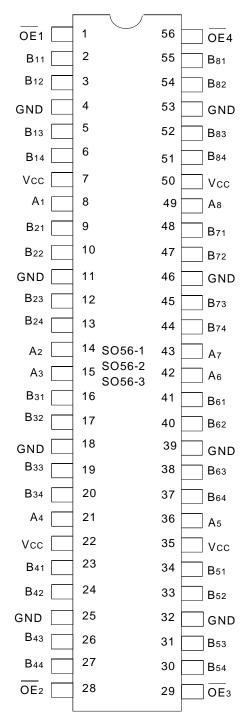
AUGUST 1999

34

30

41

37


B51

B54

B61

B64

PIN CONFIGURATION

SSOP/ TSSOP/ TVSOP TOP VIEW

COMMERCIALTEMPERATURERANGE

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Мах	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to +7	V
VTERM ⁽⁴⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
Tstg	Storage Temperature	-65 to +150	°C
Іоит	DC Output Current	-60 to +60	mA
	•	•	3v16-link

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. Input terminals.
- 4. Outputs and I/O terminals.

CAPACITANCE (TA = +25^oC, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
Cin	Input Capacitance	VIN = 0V	3.5	6	рF
Соит	Output Capacitance	Vout = 0V	3.5	7	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	Description
ŌĒx	3-State Output Enable Inputs (Active LOW)
Ax	Inputs
Вхх	3-State Outputs

FUNCTION TABLE

Inp	Outputs	
ŌĒx	Ах	Вхх
L	L	L
L	Н	Н
Н	Х	Z

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Z = High-Impedance

3v16-link

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Commercial: $T_A = -40^{\circ}$ C to $+85^{\circ}$ C, Vcc = 2.7V to 3.6V

Symbol	Parameter	Test C	Test Conditions ⁽¹⁾		Тур. ⁽²⁾	Max.	Unit
Vih	Input HIGH Level (Input pins)	Guaranteed Logic HIGH Le	Guaranteed Logic HIGH Level		_	5.5	V
	Input HIGH Level (I/O pins)			2	_	Vcc+0.5	
Vil	Input LOW Level	Guaranteed Logic HIGH Le	vel	-0.5	-	0.8	V
	(Input and I/O pins)						
lн	Input HIGH Current (Input pins)	Vcc = Max.	VI = 5.5V	-	_	±1	μA
	Input HIGH Current (I/O pins)		VI = VCC	_	_	±1	
hL.	Input LOW Current (Input pins)		VI = GND	_	_	±1	
	Input LOW Current (I/O pins)		VI = GND	_	-	±1	
Іогн	High Impedance Output Current	Vcc = Max.	Vo = Vcc	_	-	±1	μA
lozl	(3-State Output pins)		Vo = GND	_	-	±1	
Vik	Clamp Diode Voltage	Vcc = Min., IIN = -18mA	Vcc = Min., IIN = -18mA		-0.7	-1.2	V
IODH	Output HIGH Current	VCC = 3.3V, VIN = VIH or VII	$V_{CC} = 3.3V, V_{IN} = V_{IH} \text{ or } V_{IL}, V_{O} = 1.5V^{(3)}$		-60	-110	mA
IODL	Output LOW Current	VCC = 3.3V, VIN = VIH or VII	$V_{CC} = 3.3V$, $V_{IN} = V_{IH}$ or V_{IL} , $V_{O} = 1.5V^{(3)}$		90	200	mA
Vон	Output HIGH Voltage	Vcc = Min.	Іон = –0.1mA	Vcc+0.2	-	—	V
		VIN = VIH or VIL	Iон = -3mA	2.4	3	_	
		Vcc = 3V	Iон = -8mA	2.4(5)	3	_	
		VIN = VIH or VIL					
Vol	Output LOW Voltage	Vcc = Min.	IOL = 0.1mA	_	_	0.2	V
		VIN = VIH or VIL	IOL = 16mA	_	0.2	0.4	
			IOL = 24mA	_	0.3	0.55	
		Vcc = 3V	IOL = 24mA		0.3	0.5	
		VIN = VIH or VIL					
los	Short Circuit Current ⁽⁴⁾	Vcc = Max., Vo = GND ⁽³⁾	Vcc = Max., Vo = GND ⁽³⁾		-135	-240	mA
VH	Input Hysteresis		_	-	150	—	mV
ICCL	Quiescent Power Supply Current	Vcc = Max.	Vcc = Max.		0.1	10	μA
Іссн		VIN = GND or Vcc					
lccz							

NOTES:

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

3. Not more than one output should be tested at one time. Duration of the test should not exceed one second.

4. This parameter is guaranteed but not tested.

5. VOH = Vcc -0.6V at rated current.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditi	Test Conditions ⁽¹⁾		Тур.(2)	Max.	Unit
Δlcc	Quiescent Power Supply Current TTL Inputs HIGH	$V_{CC} = Max.$ $V_{IN} = V_{CC} - 0.6V^{(3)}$		-	2	30	μA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max. Outputs Open OEx = GND One Input Bit Toggling Four Output Bits Toggling 50% Duty Cycle	VIN = VCC VIN = GND	-	230	320	μΑ/ MHz
Ic	Total Power Supply Current ⁽⁶⁾	Vcc = Max. Outputs Open fi = 10MHz 50% Duty Cycle OEx = GND One Input Bit Toggling Four Output Bits Toggling	VIN = VCC VIN = GND VIN = VCC -0.6V VIN = GND	-	2.3	3.2	mA
		Vcc = Max. Outputs Open fi = 2.5MHz	Vin = Vcc Vin = GND	-	4.6	6.4	
		50% Duty Cycle OEx = GND Eight Input Bits Toggling Thirty-Two Output Bits Toggling	VIN = VCC -0.6V VIN = GND	_	4.6	6.5	

NOTES:

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

3. Per TTL driven input; all other inputs at Vcc or GND.

4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.

5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.

6. IC = IQUIESCENT + INPUTS + IDYNAMIC

 $IC = ICC + \Delta ICC DHNT + ICCD (fCPNCP/2 + fiNi)$

Icc = Quiescent Current (IccL, IccH and Iccz)

 Δ Icc = Power Supply Current for a TTL High Input

DH = Duty Cycle for TTL Inputs High

NT = Number of TTL Inputs at DH

ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices)

NCP = Number of Clock Inputs at fCP

fi = Input Frequency

Ni = Number of Inputs at fi

SWITCHING CHARACTERISTICS OVER OPERATING RANGE⁽⁵⁾

			FCT1	63344	FCT16	3344A	FCT16	3344C	
Symbol	Parameter	Condition ⁽¹⁾	Mil. ⁽²⁾	Max.	Mil. ⁽²⁾	Max.	Mil. ⁽²⁾	Max.	Unit
t PLH	Propagation Delay	CL = 50pF	1.5	6.5	1.5	4.8	1.5	4.3	ns
t PHL	Ax to Bxx	$RL = 500\Omega$							
tPZH	Output Enable Time		1.5	8	1.5	6.2	1.5	5.8	ns
tPZL	OEx to Bxx								
tрнz	Output Disable Time		1.5	7	1.5	5.6	1.5	5.2	ns
t PLZ	OEx to Bxx								
tsk (b)	Skew between outputs of same bank and		_	0.75	1.5	0.5	—	0.35	ns
	same package (same transition) ^(3,4)								
tsk (o)	Skew between outputs of all banks of same		_	1	1.5	0.5	_	0.5	ns
	package (A1 thru A8 tied together) ^(3,4)								

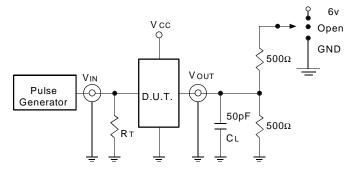
NOTES:

1. See test circuit and waveforms.

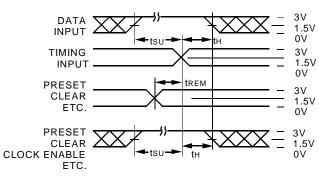
2. Minimum limits are guaranteed but not tested on Propagation Delays.

3. Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.

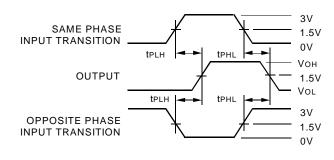
4. This parameter is guaranteed but not tested. Skew is not guaranteed when Vcc <0.3V.

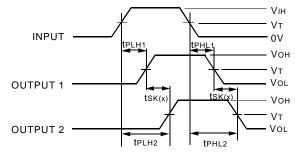

 Propagation Delays and Enable/Disable times are with Vcc = 3.3V ±0.3V, Normal Range. For Vcc = 2.7V to 3.6V, Extended Range, all Propagation Delays and Enable/Disable times should be degraded by 20%.

IDT74FCT163344/A/C 3.3V CMOS ONE-TO-FOUR ADDRESS/CLOCK DRIVER


COMMERCIALTEMPERATURERANGE

TEST CIRCUITS AND WAVEFORMS


TEST CIRCUITS FOR ALL OUTPUTS

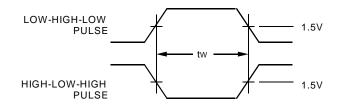

SET-UP, HOLD, AND RELEASE TIMES

PROPAGATION DELAY

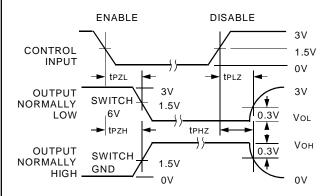
OUTPUT SKEW - tsk (x)

tSK(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|

SWITCH POSITION


Test	Switch
Open Drain	
Disable Low	6V
Enable Low	
Disable High	GND
Enable High	
All Other Tests	Open
·	3v16-link

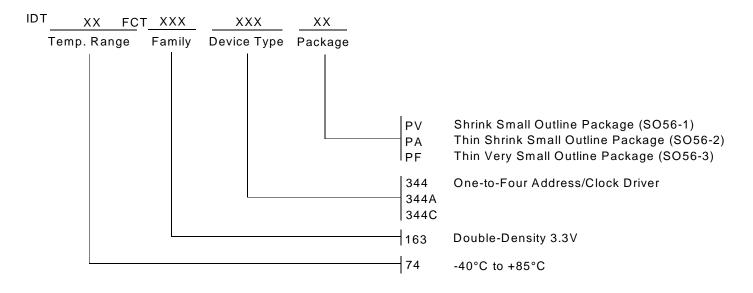
DEFINITIONS:


CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

PULSE WIDTH

ENABLE AND DISABLE TIMES


NOTES:

- 1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
- 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 3. If Vcc is below 3V, input voltage swings should be adjusted not to exceed Vcc.

NOTES:

- 1. For tSK(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2. The IDT logo is a registered trademark of Integrated Device Technology, Inc.