

FAST CMOS OCTAL BIDIRECTIONAL TRANSCEIVERS

IDT54/74FCT245T/AT/CT/DT - 2245T/AT/CT IDT54/74FCT640T/AT/CT IDT54/74FCT645T/AT/CT/DT

FEATURES:

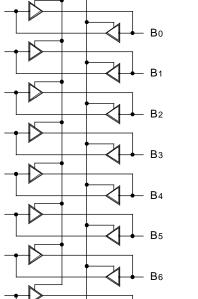
- Common features:
 - Low input and output leakage $\leq 1\mu A$ (max.)
 - CMOS power levels
 - True TTL input and output compatibility - VOH = 3.3V (typ.)
 - VOL = 0.3V (typ.)
 - Meets or exceeds JEDEC standard 18 specifications
 - Product available in Radiation Tolerant and Radiation Enhanced versions
 - Military product compliant to MIL-STD-883, Class B and DESC listed (dual marked)
 - Available in DIP, SOIC, SSOP, QSOP, CERPACK and LCC packages
- Features for FCT245T/FCT640T/FCT645T;
 - Std., A, C and D speed grades
 - High drive outputs (-15mA IOH, 64mA IOL)
- Features for FCT2245T:

T/R

An

A₂

A5


A6

A₇

- Std., A and C speed grades
- Resistor outputs (-15mA IOH, 12mA IOL Com.)
 - (-12mA IOH, 12mA IOL Mil.)
- Reduced system switching noise

FUNCTIONAL BLOCK DIAGRAM

ŌĒ Bo

FCT245T/2245T, FCT645T are non-inverting options. FCT640T is the inverting options.

B7

DESCRIPTION:

The IDT octal bidirectional transceivers are built using an advanced dual metal CMOS technology. The FCT245T/ FCT2245T, FCT640T and FCT645T are designed for asvnchronous two-way communication between data buses. The transmit/receive (T/\overline{R}) input determines the direction of data flow through the bidirectional transceiver. Transmit (active HIGH) enables data from A ports to B ports, and receive (active LOW) from B ports to A ports. The output enable (\overline{OE}) input, when HIGH, disables both A and B ports by placing them in HIGH Z condition.

The FCT245T/FCT2245T and FCT645T transceivers have non-inverting outputs. The FCT640T has inverting outputs.

The FCT2245T has balanced drive outputs with current limiting resistors. This offers low ground bounce, minimal undershoot and controlled output fall times-reducing the need for external series terminating resistors. The FCT2xxxT parts are plug-in replacements for FCTxxxT parts.

PIN CONFIGURATIONS

T/R A0 A1 A2 A3 A4 A5 A6 A7 GND	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
DIP/SOI	C/SSOP/QSOP/CERPACK	2539 drw 02
	TOP VIEW 15T/2245T, FCT645T only. T245T/2245T, FCT640T V = 2 + 20 + 19 4 + 1 + 18 + 10 5 + 17 + 10 6 + 20 - 2 + 16 + 10 7 + 15 + 10 8 + 14 + 10 9 + 10 + 11 + 12 + 13 V = 2 + 10 + 10 8 + 14 + 10 14 +	
		2539 drw 03
	LCC TOP VIEW	

MILITARY AND COMMERCIAL TEMPERATURE RANGES

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

AUGUST 1995

2539 drw 01

PIN DESCRIPTION

Pin Names	Description
ŌĒ	Output Enable Input (Active LOW)
T/R	Transmit/Receive Input
A0-A7	Side A Inputs or 3-State Outputs
B0-B7	Side B Inputs or 3-State Outputs

FUNCTION TABLE⁽²⁾

In	outs	
ŌĒ	T/R	Outputs
L	L	Bus B Data to Bus A ⁽¹⁾
L	н	Bus B Data to Bus B ⁽¹⁾
н х		High Z State
NOTES:	-	2539 tbl 02

2539 tbl 01 NOTES:

1. 640 is inverting from input to output.

2. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

ABSOLUTE MAX	(IMUM RATINGS ⁽¹⁾
--------------	------------------------------

Symbol	Rating	Commercial	Military	Unit	
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	<	
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	th Respect to Vcc +0.5 Vcc +0.5			
ΤΑ	Operating Temperature	0 to +70	-55 to +125	°C	
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	°C	
Тѕтс	Storage Temperature	-55 to +125	-65 to +150	°C	
Рт	Power Dissipation	0.5	0.5	W	
Ιουτ	DC Output Current	-60 to +120	-60 to +120	mA	
	Ourient		25	39 Ink	

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. No terminal voltage may exceed Vcc by +0.5V unless otherwise noted.

2. Input and Vcc terminals only.

3. Outputs and I/O terminals only.

CAPACITANCE (TA = +25°C, F = 1.0MHZ)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input	VIN = 0V	6	10	pF
	Capacitance				
COUT	Output	Vout = 0V	8	12	pF
	Capacitance				
NOTE:				25	- 39 lnk 04

NOTE:

1. This parameter is measured at characterization but not tested.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Commercial: TA = 0°C to +70°C, Vcc = $5.0V \pm 5\%$; Military: TA = -55°C to +125°C, Vcc = $5.0V \pm 10\%$

Symbol	Parameter	Test Cor	nditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
Vih	Input HIGH Level	Guaranteed Logic HIGH	H Level	2.0	—	—	V
VIL	Input LOW Level	Guaranteed Logic LOW	Level	—	—	0.8	V
Іін	Input HIGH Current ⁽⁴⁾	Vcc = Max.	VI = 2.7V	_	—	±1	μΑ
lı∟	Input LOW Current ⁽⁴⁾	VI = 0.5V		_	—	±1	
lozн	High Impedance Output Current	Vcc = Max. Vo = 2.7V		_	—	±1	μΑ
Iozl	(3-State Output pins) ⁽⁴⁾		Vo = 0.5V	_	—	±1	
li	Input HIGH Current ⁽⁴⁾	Vcc = Max., VI = Vcc (M	Max.)	_	—	±1	μΑ
Vik	Clamp Diode Voltage	Vcc = Min., IIN = -18m	A	_	-0.7	-1.2	V
Vн	Input Hysteresis	_			200	_	mV
Icc	Quiescent Power Supply Current	Vcc = Max., VIN = GND or Vcc			0.01	1	mA
		•					2539 lnk 05

OUTPUT DRIVE CHARACTERISTICS FOR FCT245T/640T/645T

Symbol	Parameter	Test Cor	nditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
Vон	Output HIGH Voltage	$V_{CC} = Min.$ $I_{OH} = -6mA MIL.$ $V_{IN} = V_{IH} or V_{IL}$ $I_{OH} = -8mA COM'L.$			3.3		V
			2.0	3.0	_	V	
Vol	Output LOW Voltage	IOH = -15mA COM'L. VCC = Min. IOL = 48mA MIL. VIN = VIH or VIL IOL = 64mA COM'L.			0.3	0.55	V
los	Short Circuit Current	Vcc = Max., Vo = GND	-60	-120	-225	mA	

2539 lnk 06

OUTPUT DRIVE CHARACTERISTICS FOR FCT2245T

Parameter	Test C	Test Conditions ⁽¹⁾				Unit
Output LOW Current	VCC = 5V, VIN = VIH C	or VIL, VOUT = 1.5V ⁽³⁾	16	48	—	mA
Output HIGH Current	VCC = 5V, VIN = VIH C	VCC = 5V, VIN = VIH or VIL, VOUT = $1.5V^{(3)}$				mA
Output HIGH Voltage	Vcc = Min. VIN = VIH or VIL	Іон = –12mA MIL. Іон = –15mA COM'L.	2.4	3.3	—	V
Output LOW Voltage	Vcc = Min. VIN = VIH or VIL	IOL = 12mA	—	0.3	0.50	V
	Output LOW Current Output HIGH Current Output HIGH Voltage	Output LOW Current VCC = 5V, VIN = VIH of Output HIGH Current VCC = 5V, VIN = VIH of Output HIGH Voltage VCC = Min. VIN = VIH of VIL Output LOW Voltage VCC = Min.	Output LOW Current $VCC = 5V$, $VIN = VIH \text{ or } VIL$, $VOUT = 1.5V^{(3)}$ Output HIGH Current $VCC = 5V$, $VIN = VIH \text{ or } VIL$, $VOUT = 1.5V^{(3)}$ Output HIGH Voltage $VCC = Min$. $IOH = -12mA \text{ MIL}$. $VIN = VIH \text{ or } VIL$ $IOH = -15mA \text{ COM'L}$.Output LOW Voltage $VCC = Min$. $IOL = 12mA$	Output LOW Current $VCC = 5V$, $VIN = VIH \text{ or } VIL$, $VOUT = 1.5V^{(3)}$ 16Output HIGH Current $VCC = 5V$, $VIN = VIH \text{ or } VIL$, $VOUT = 1.5V^{(3)}$ -16Output HIGH Voltage $VCC = Min$. $IOH = -12mA \text{ MIL}$.2.4 $VIN = VIH \text{ or } VIL$ $IOH = -15mA \text{ COM'L}$.Output LOW Voltage $VCC = Min$. $IOL = 12mA$	Output LOW Current $VCC = 5V$, $VIN = VIH or VIL$, $VOUT = 1.5V^{(3)}$ 1648Output HIGH Current $VCC = 5V$, $VIN = VIH or VIL$, $VOUT = 1.5V^{(3)}$ -16-48Output HIGH Voltage $VCC = Min$. $IOH = -12mA MIL$.2.43.3 $VIN = VIH or VIL$ $IOH = -15mA COM'L$. $IOH = -15mA COM'L$.0.3Output LOW Voltage $VCC = Min$. $IOL = 12mA$ 0.3	Output LOW Current $VCC = 5V$, $VIN = VIH or VIL$, $VOUT = 1.5V^{(3)}$ 1648Output HIGH Current $VCC = 5V$, $VIN = VIH or VIL$, $VOUT = 1.5V^{(3)}$ -16-48Output HIGH Voltage $VCC = Min$. $IOH = -12mA$ MIL.2.43.3Output LOW Voltage $VCC = Min$. $IOH = -15mA$ COM'L.0.30.50

NOTES:

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 5.0V, +25°C ambient.

3. Not more than one output should be shorted at one time. Duration of the short circuit test should not exceed one second.

4. The test limit for this parameter is $\pm 5\mu A$ at TA = $-55^{\circ}C$.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Cor	Test Conditions ⁽¹⁾					Unit
ΔICC	Quiescent Power Supply Current TTL Inputs HIGH	$Vcc = Max.$ $VIN = 3.4V^{(3)}$				0.5	2.0	mA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max. Outputs Open	VIN = VCC VIN = GND	FCTxxxT		0.15	0.25	mA/ MHz
		$\overline{OE} = T/\overline{R} = GND$ One Input Toggling 50% Duty Cycle		FCT2xxxT	_	0.06	0.12	
Ic	Total Power Supply Current ⁽⁶⁾	Vcc = Max.	VIN = VCC	FCTxxxT		1.5	3.5	mA
		Outputs Open fi = 10MHz	VIN = GND	FCT2xxxT		0.6	2.2	
		50% Duty Cycle	VIN = 3.4	FCTxxxT	_	1.8	4.5	
		$\overline{OE} = T/\overline{R} = GND$ One Bit Toggling	VIN = GND	FCT2xxxT		0.9	3.2	
		Vcc = Max.	VIN = VCC	FCTxxxT		3.0	6.0 ⁽⁵⁾	
		Outputs Open fi = 2.5MHz	VIN = GND	FCT2xxxT	—	1.2	3.4 ⁽⁵⁾	
		50% Duty Cycle	VIN = 3.4	FCTxxxT	_	5.0	14.0 ⁽⁵⁾	
		$\overline{OE} = T/\overline{R} = GND$ Eight Bits Toggling	VIN = GND	FCT2xxxT		3.2	11.4 ⁽⁵⁾	2539 tbl 08

NOTES:

2539 tbl 08

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 5.0V, +25°C ambient.

3. Per TTL driven input ($V_{IN} = 3.4V$). All other inputs at Vcc or GND.

4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.

5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.

6. IC = IQUIESCENT + INPUTS + IDYNAMIC

 $Ic = Icc + \Delta Icc DHNT + IccD (fcP/2 + fiNi)$

Icc = Quiescent Current

 ΔIcc = Power Supply Current for a TTL High Input (VIN = 3.4V)

DH = Duty Cycle for TTL Inputs High

NT = Number of TTL Inputs at DH

ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices)

fi = Input Frequency

Ni = Number of Inputs at fi

All currents are in milliamps and all frequencies are in megahertz.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

				FCT245T FCT2245T			FCT245AT FCT2245AT				
			Co	m'l.	м	il.	Co	m'l.	м	il.	
Symbol	Parameter	Conditions ⁽¹⁾	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Unit
tPLH tPHL	Propagation Delay A to B, B to A	C∟ = 50 pF R∟ = 500Ω	1.5	7.0	1.5	7.5	1.5	4.6	1.5	4.9	ns
tPZH tPZL	Output Enable Time OE to A or B		1.5	9.5	1.5	10.0	1.5	6.2	1.5	6.5	ns
tPHZ tPLZ	Output Disable Time OE to A or B		1.5	7.5	1.5	10.0	1.5	5.0	1.5	6.0	ns
tPZH tPZL	Output Enable Time T/ \overline{R} to A or B ⁽³⁾		1.5	9.5	1.5	10.0	1.5	6.2	1.5	6.5	ns
tPHZ tPLZ	Output Disable Time T/\overline{R} to A or $B^{(3)}$		1.5	7.5	1.5	10.0	1.5	5.0	1.5	6.0	ns

2534 tbl 09

			FCT245CT FCT2245CT				FCT2	45DT			
			Co	m'l.	м	il.	Co	m'l.	м	il.	
Symbol	Parameter	Conditions ⁽¹⁾	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Unit
t PLH	Propagation Delay	C∟ = 50 pF	1.5	4.1	1.5	4.5	1.5	3.8	_	—	ns
t PHL	A to B, B to A	R∟ = 500Ω									
t PZH	Output Enable Time		1.5	5.8	1.5	6.2	1.5	5.0	—	—	ns
tPZL	OE to A or B										
t PHZ	Output Disable Time		1.5	4.8	1.5	5.2	1.5	4.3	_		ns
tPLZ	OE to A or B										
tPZH	Output Enable Time		1.5	5.8	1.5	6.2	1.5	5.0	_	_	ns
tPZL	T/\overline{R} to A or $B^{(3)}$										
tPHZ	Output Disable Time		1.5	4.8	1.5	5.2	1.5	4.3	_	_	ns
tPLZ	T/\overline{R} to A or $B^{(3)}$										

2534 tbl 10

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

				FCT	640T		FCT640AT				FCT640CT				
			Com'l.		Mil.		Com'l.		Mil.		Com'l.		Mil.		
Symbol	Parameter	Conditions ⁽¹⁾	Min. ⁽²⁾	Max.	Unit										
tPLH tPHL	Propagation Delay A to B, B to A	CL = 50 pF RL = 500Ω	2.0	7.0	2.0	8.0	1.5	5.0	1.5	5.3	1.5	4.4	1.5	4.7	ns
tPZH tPZL	Output Enable Time OE to A or B		2.0	13.0	2.0	16.0	1.5	6.2	1.5	6.5	1.5	5.8	1.5	6.2	ns
tPHZ tPLZ	Output Disable Time \overline{OE} to A or B		2.0	10.0	2.0	12.0	1.5	5.0	1.5	6.0	1.5	4.8	1.5	5.2	ns
tPZH tPZL	Output Enable Time T/ \overline{R} to A or B ⁽³⁾		2.0	13.0	2.0	16.0	1.5	6.2	1.5	6.5	1.5	5.8	1.5	6.2	ns
tPHZ tPLZ	Output Disable Time T/\overline{R} to A or $B^{(3)}$		2.0	10.0	2.0	12.0	1.5	5.0	1.5	6.0	1.5	4.8	1.5	5.2	ns

NOTES:

1. See test circuit and waveforms.

2. Minimum limits are guaranteed but not tested on Propagation Delays.

3. This parameter is guaranteed but not tested.

5

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

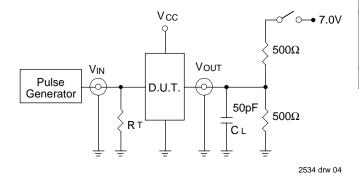
				FCT645T				FCT645AT			
			Com'l.		Mil.		Com'l.		Mil.		
Symbol	Parameter	Conditions ⁽¹⁾	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Unit
tPLH tPHL	Propagation Delay A to B, B to A	C∟ = 50 pF R∟ = 500Ω	1.5	9.5	1.5	11.0	1.5	4.6	1.5	4.9	ns
tPZH tPZL	Output Enable Time OE to A or B		1.5	11.0	1.5	12.0	1.5	6.2	1.5	6.5	ns
tPHZ tPLZ	Output Disable Time OE to A or B		1.5	12.0	1.5	13.0	1.5	5.0	1.5	6.0	ns
tPZH tPZL	Output Enable Time T/ \overline{R} to A or B ⁽³⁾		1.5	11.0	1.5	12.0	1.5	6.2	1.5	6.5	ns
tPHZ tPLZ	Output Disable Time T/ \overline{R} to A or B ⁽³⁾		1.5	12.0	1.5	13.0	1.5	5.0	1.5	6.0	ns

2534 tbl 12

				FCT6	45CT		FCT645DT				
			Com'l.		Mil.		Com'l.		Mil.		
Symbol	Parameter	Conditions ⁽¹⁾	Min. ⁽²⁾	Max.	Unit						
tPLH tPHL	Propagation Delay A to B, B to A	C∟ = 50 pF R∟ = 500Ω	1.5	4.1	1.5	4.5	1.5	3.8	_		ns
tPZH tPZL	Output Enable Time OE to A or B		1.5	5.8	1.5	6.2	1.5	5.0	_		ns
tPHZ tPLZ	Output Disable Time OE to A or B		1.5	4.8	1.5	5.2	1.5	4.3	—	_	ns
tPZH tPZL	Output Enable Time T/ \overline{R} to A or B ⁽³⁾		1.5	5.8	1.5	6.2	1.5	5.0	—	_	ns
tPHZ tPLZ	Output Disable Time T/\overline{R} to A or $B^{(3)}$		1.5	4.8	1.5	5.2	1.5	4.3	_		ns

NOTES:

1. See test circuit and waveforms.


2. Minimum limits are guaranteed but not tested on Propagation Delays.

3. This parameter is guaranteed but not tested.

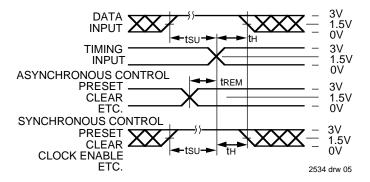
2534 tbl 13

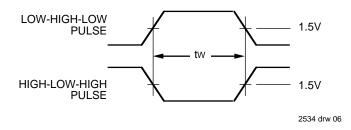
TEST CIRCUITS AND WAVEFORMS

TEST CIRCUITS FOR ALL OUTPUTS

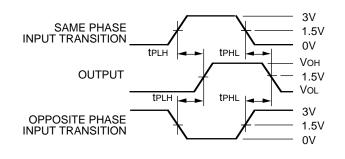
SET-UP, HOLD AND RELEASE TIMES

SWITCH POSITION

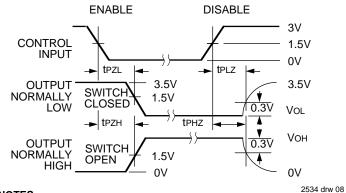

Test	Switch
Open Drain Disable Low	Closed
Enable Low	
All Other Tests	Open


DEFINITIONS:

2534 lnk 14

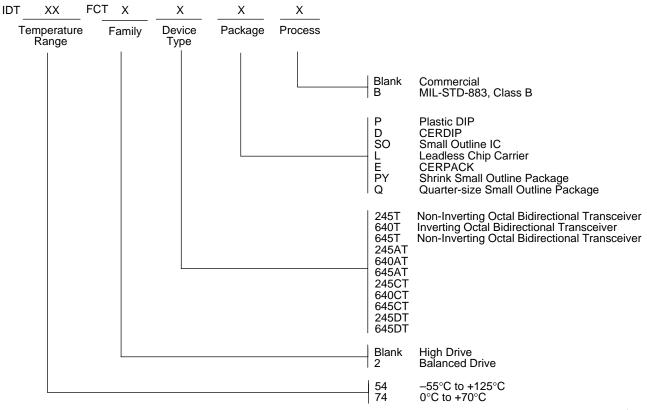

CL= Load capacitance: includes jig and probe capacitance. RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

PULSE WIDTH



PROPAGATION DELAY

ENABLE AND DISABLE TIMES



NOTES:

2534 drw 07

- 1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH
- 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns

ORDERING INFORMATION

2539 drw 09