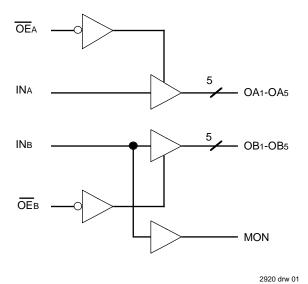


FAST CMOS BUFFER/CLOCK DRIVER

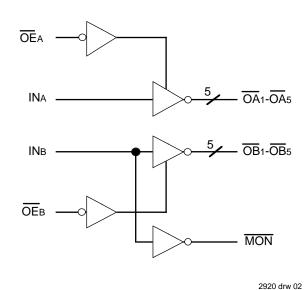
IDT49FCT805BT/CT IDT49FCT806BT/CT

FEATURES:

- 0.5 MICRON CMOS Technology
- Guaranteed low skew < 500ps (max.)
- Very low duty cycle distortion < 600ps (max.)
- · Low CMOS power levels
- TTL compatible inputs and outputs
- · TTL level output voltage swings
- High drive: -32mA IOH, 48mA IOL
- Two independent output banks with 3-state control
- 1:5 fanout per bank
- 'Heartbeat' monitor output
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- Available in DIP, SOIC, SSOP, QSOP, Cerpack and LCC packages


· Military product compliant to MIL-STD-883, Class B

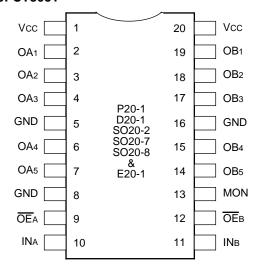
DESCRIPTION:


The IDT49FCT805BT/CT and IDT49FCT806BT/CT are clock drivers built using advanced dual metal CMOS technology. The IDT49FCT805BT/CT is a non-inverting clock driver and the IDT49FCT806BT/CT is an inverting clock driver. Each device consists of two banks of drivers. Each bank drives five output buffers from a standard TTL compatible input. The 805BT/CT and 806BT/CT have extremely low output skew, pulse skew, and package skew. The devices has a "heartbeat" monitor for diagnostics and PLL driving. The MON output is identical to all other outputs and complies with the output specifications in this document. The 805BT/CT and 806BT/CT offer low capacitance inputs with hysteresis.

FUNCTIONAL BLOCK DIAGRAMS

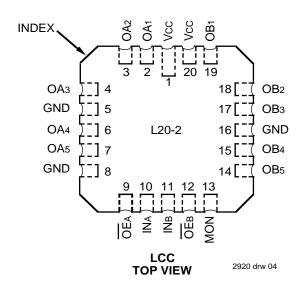
IDT49FCT805T

IDT49FCT806T

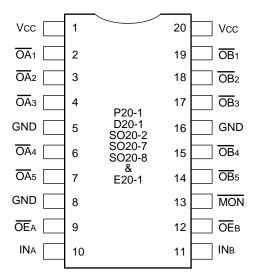


The IDT logo is a registered trademark of Integrated Device Technology, Inc.

1


PIN CONFIGURATIONS

IDT49FCT805T



DIP/SOIC/SSOP/QSOP/CERPACK TOP VIEW

2920 drw 03

IDT49FCT806T

DIP/SOIC/SSOP/QSOP/CERPACK
TOP VIEW
2920 drw 05

INDEX Vcc 3 2 20 19 OA₃ 18 [OB₂ GND OB₃ 17 **[** OA₄ 16 E GND L20-2 OA₅ 15 OB₄ **GND** OB₅ 14 10 11 12 13 2 ₹ LCC TOP VIEW 2920 drw 06

PIN DESCRIPTION

Pin Names	Description
ΘEA, ΘEΒ	3-State Output Enable Inputs (Active LOW)
INA, INB	Clock Inputs
OAn, OBn	Clock Outputs (FCT805T)
\overline{OA} n, \overline{OB} n	Clock Outputs (FCT806T)
MON	Monitor Output (FCT805T)
MON	Monitor Output (FCT806T)

2920 tbl 01

FUNCTION TABLE(1)

Inp	uts	49FC	Г805Т	49FCT806T		
ŌĒA, ŌĒB	INA, INB	OAn, OBn	MON	\overline{OA} n, \overline{OB} n	MON	
L	L	L	L	Н	Н	
L	Н	Н	Н	L	L	
Н	L	Z	L	Z	Н	
Н	Н	Z	Н	Z	L	

NOTE:

1. H = HIGH, L = LOW, Z = High Impedance

2920 tbl 02

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	Commercial	Military	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	>
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc +0.5	-0.5 to Vcc +0.5	>
Та	Operating Temperature	0 to +70	-55 to +125	°C
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	°C
Тѕтс	Storage Temperature	-55 to +125	-65 to +150	°C
Іоит	DC Output Current	-60 to +120	-60 to +120	mA

NOTES: 2920 lnk 03

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. No terminal voltage may exceed Vcc by +0.5V unless otherwise noted.
- 2. Input and Vcc terminals.
- 3. Output and I/O terminals.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified

Commercial: $T_A = 0^{\circ}\text{C}$ to $+70^{\circ}\text{C}$. $V_{CC} = 5.0\text{V} + 5\%$: Military: $T_A = -55^{\circ}\text{C}$ to $+125^{\circ}\text{C}$. $V_{CC} = 5.0\text{V} + 10\%$

Symbol	Parameter	Test Con	nditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
VIH	Input HIGH Level	Guaranteed Logic HIGH	2.0		_	V	
VIL	Input LOW Level	Guaranteed Logic LOW	Level	_	_	0.8	V
IIн	Input HIGH Current ⁽⁵⁾	Vcc = Max.	VI = 2.7V	_		±1	μΑ
liL	Input LOW Current ⁽⁵⁾	Vcc = Max.	VI = 0.5V	_		±1	μΑ
lozн	High Impedance Output Current	Vcc = Max.	Vo = 2.7V	_		±1	μΑ
lozL	(3-State Output pins) ⁽⁵⁾		Vo = 0.5V	_	_	±1	μΑ
lı .	Input HIGH Current ⁽⁵⁾	Vcc = Max., VI = Vcc (N	лах.)	_	_	±1	μΑ
Vik	Clamp Diode Voltage	Vcc = Min., IIN= -18mA	_	-0.7	-1.2	V	
los	Short Circuit Current	Vcc = Max. ⁽³⁾ , Vo = GN	D	-60	-120	-225	mA
Voн	Output HIGH Voltage	VCC = Min. IOH = -12mA MIL. VIN = VIH or VIL IOH = -15mA COM'L.		2.4	3.3		V
			IOH = -24mA MIL. IOH = -32mA COM'L. ⁽⁴⁾	2.0	3.0	-	
VoL	Output LOW Voltage	Vcc = Min. Vin = Vih or Vil	IOL = 32mA MIL. IOL = 48mA COM'L.	_	0.3	0.55	V
IOFF	Input/Output Power Off Leakage ⁽⁵⁾	Vcc = 0V, Vin or Vo ≤ 4.5V		_		±1	μΑ
VH	Input Hysteresis for all inputs	_		_	150	_	mV
ICCL ICCH ICCZ	Quiescent Power Supply Current	Vcc = Max., Vin = GNI	D or Vcc	_	5	500	μА

2920 lnk 05 NOTES:

- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Not more than one output should be tested at one time. Duration of the test should not exceed one second.
- 4. Duration of the condition can not exceed one second.
- 5. The test limit for this parameter is $\pm 5\mu A$ at $T_A = -55^{\circ}C$.

CAPACITANCE ($TA = +25^{\circ}C$, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input	VIN = 0V	4.5	6.0	pF
	Capacitance				
Соит	Output Capacitance	Vout = 0V	5.5	8.0	pF

NOTE:

2920 lnk 04

1. This parameter is measured at characterization but not tested.

3

POWER SUPPLY CHARACTERISTICS

	Parameter	Test Conditions ⁽¹⁾			Typ. ⁽²⁾	Max.	Unit
ΔΙCC	Quiescent Power Supply Current TTL Inputs HIGH	VCC = Max. $VIN = 3.4V^{(3)}$		_	0.5	2.0	mA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max. Outputs Open OEA = OEB = GND 50% Duty Cycle	VIN = VCC VIN = GND	_	60	100	μΑ/ MHz/bit
Ic	Total Power Supply Current ⁽⁶⁾	Vcc = Max. Outputs Open fo = 25MHz	VIN = VCC VIN = GND	_	1.5	3.0	mA
		50% Duty Cycle OEA = OEB =Vcc Mon. Output Toggling	VIN = 3.4V VIN = GND	_	1.8	4.0	
		Vcc = Max. Outputs Open fo = 50MHz	VIN = VCC VIN = GND	_	33	55.5 ⁽⁵⁾	
		50% Duty Cycle OEA = OEB = GND Eleven Outputs Toggling	VIN = 3.4V VIN = GND	_	33.5	57.5 ⁽⁵⁾	

NOTES:

2920 tbl 06

- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Per TTL driven input; (VIN = 3.4V); all other inputs at Vcc or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. Values for these conditions are examples of the lcc formula. These limits are guaranteed but not tested.
- 6. IC = IQUIESCENT + INPUTS + IDYNAMIC
 - $IC = ICC + \Delta ICC DHNT + ICCD (foNo)$

Icc = Quiescent Current (IccL, IccH and Iccz)

ΔICC = Power Supply Current for a TTL High Input (VIN = 3.4V)

DH = Duty Cycle for TTL Inputs High

N⊤ = Number of TTL Inputs at DH

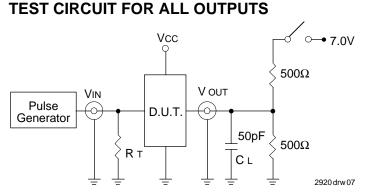
ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

fo= Output Frequency

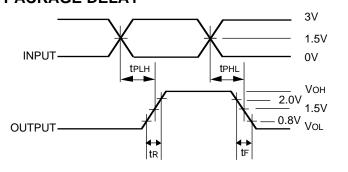
No= Number of Outputs at fo

All currents are in milliamps and all frequencies are in megahertz.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE^(3,4)


			IDT4	9FCT8	05BT/80	06BT	IDT4	9FCT8	05CT/80	6СТ	
			Coi	m'l.	М	il.	Coi	m'l.	М	il.	
Symbol	Parameter	Condition ⁽¹⁾	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Unit
tPLH tPHL	Propagation Delay INA to OAn, INB to OBn	CL = 50pF $RL = 500\Omega$	1.5	5.0	1.5	5.7	1.5	4.5	1.5	5.2	ns
tR	Output Rise Time		_	1.5	_	2.0	_	1.5	_	2.0	ns
tF	Output Fall Time		_	1.5	_	1.5	_	1.5	_	1.5	ns
tsk(o)	Output skew: skew between outputs of all banks of same package (inputs tied together)		_	0.7	_	0.9	_	0.5	_	0.7	ns
tsk(p)	Pulse skew: skew between opposite transitions of same output (tphl-tplh)		_	0.7	_	0.9	_	0.6	_	0.8	ns
tsĸ(t)	Package skew: skew between outputs of different packages at same power supply voltage, temperature, package type and speed grade		_	1.2	_	1.5	_	1.0	_	1.2	ns
tPZL tPZH	Output Enable Time OEA to OAn, OEB to OBn		1.5	6.0	1.5	6.5	1.5	5.0	1.5	6.0	ns
tPLZ tPHZ	Output Disable Time OEA to OAn, OEB to OBn		1.5	6.0	1.5	6.5	1.5	5.0	1.5	6.0	ns

NOTES:


2920 tbl 07

- 1. See test circuits and waveforms.
- 2. Minimum limits are guaranteed but not tested on Propagation Delays.
- tPLH, tPHL, tSK(t) are production tested. All other parameters guaranteed but not production tested.
 Propagation delay range indicated by Min. and Max. limit is due to Vcc, operating temperature and process parameters. These propagation delay limits do not imply skew.

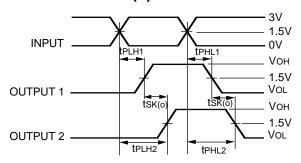
TEST CIRCUITS AND WAVEFORMS

PACKAGE DELAY

2920 drw 08

ENABLE AND DISABLE TIME SWITCH POSITION

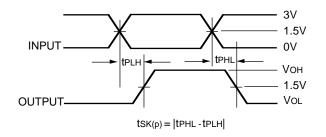
Test	Switch
Disable LOW	Closed
Enable LOW	
Disable HIGH	Open
Enable HIGH	


DEFINITIONS:

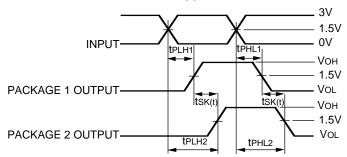
2920 lnk 08

CL= Load capacitance: includes jig and probe capacitance.

T = Termination resistance: should be equal to ZouT of the Pulse Generator.


OUTPUT SKEW- tsk(o)

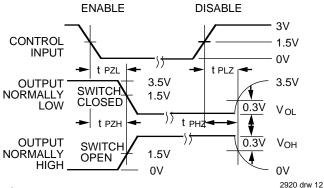
tSK(o) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|


2920 drw 09

PULSE SKEW - tsk(p)

2920 drw 10

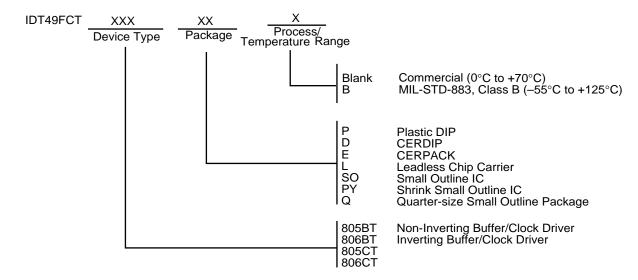
PACKAGE SKEW - tsk(t)



tSK(t) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|

Package 1 and Package 2 are same device type and speed grade

2920 drw 11


ENABLE AND DISABLE TIMES

NOTES:

- Diagram shown for input Control Enable-LOW and input Control Disable-HIGH
- 2. Pulse Generator for All Pulses: $f \le 1.0 MHz$; $tF \le 2.5 ns$; $tR \le 2.5 ns$

ORDERING INFORMATION

2920 drw 13

9.2 7