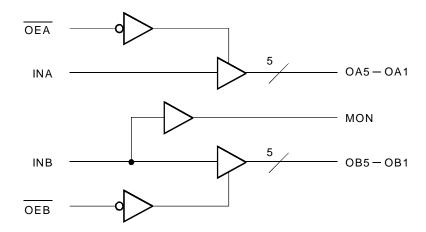


GUARANTEED LOW SKEW CMOS CLOCK DRIVER/BUFFER

IDT49FCT5805/A/B/C ADVANCE INFORMATION

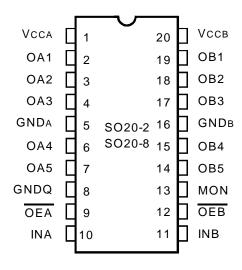
FEATURES:


- 10 CMOS outputs
- Monitor output
- Rail-to-rail output voltage swing
- Input hysteresis for better noise margin
- Monitor output
- Guaranteed low skew:
 - 0.3ns output skew
 - 0.6ns opposite transition
 - 1ns different devices
- Std., A, B, and C speed grades
- Available in QSOP and SOIC packages

DESCRIPTION

The 49FCT5805 clock buffer/driver circuits can be used for clock buffering schemes where low skew is a key parameter. This device offers two banks of five non-inverting outputs. The 49FCT5805 device provides low propagation delay buffering with on-chip skew of 0.3ns for sametransition, same-bank signals.

The 49FCT5805 is characterized for operation at -40°C to +85°C.


FUNCTIONAL BLOCK DIAGRAM

INDUSTRIAL TEMPERATURE RANGE

MARCH 2000

PIN CONFIGURATION

QSOP/ SOIC TOP VIEW

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit	
VTERM ⁽²⁾	Supply Voltage to Ground	- 0.5 to +7	V	
	DC Output Voltage VouT	- 0.5 to +7	V	
VTERM ⁽³⁾	DC Input Voltage VIN	- 0.5 to +7	٧	
VAC	AC Input Voltage (pulse wid	-3	V	
Іоит	DC Output Current VIN < 0	-20	mA	
	DC Output Current Max. Sir	nk Current/Pin	120	mA
Рмах	Maximum Power	Maximum Power QSOP		
	Dissipation (TA = 85°C)	.75	W	
Tstg	Storage Temperature	- 65 to +150	°C	

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc Terminals.
- 3. All terminals except Vcc.

CAPACITANCE (TA = $+25^{\circ}$ C, f = 1.0MHz, Vin = 0V)

	QSQ)P	SC	OIC	
Pins	Typ. Max. (1)		Тур.	Max. ⁽¹⁾	Unit
CIN	4	6	5	6	pF

NOTE

1. This parameter is guaranteed but not production tested.

PIN DESCRIPTION

Pin Names	1/0	Description
OEA, OEB	l	Output Enable Inputs
INA, INB	l	Clock Inputs
OAn, OBn	0	Clock Outputs
MON	0	Monitor Outputs (non-disable)

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Industrial: $T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = 5.0V \pm 10\%$, $V_{HC} = V_{CC} - 0.2V$, $V_{LC} = 0.2V$

Symbol	Parameter	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage	Guaranteed Logic HIGH for All Inputs	2	_	_	V
VIL	Input LOW Voltage	Guaranteed Logic LOW for All Inputs	_	_	0.8	V
Vic	Clamp Diode Voltage (3)	Vcc = Min., I _{IN} = -18mA	_	-0.7	-1.2	V
Vон	Output HIGH Voltage	Vcc = Min., VIN = VIH or VIL, IOH = -300μA	VHC	Vcc	_	
		Vcc = Min., VIN = VIH or VIL, IOH = -15mA	3.6	4.3	_	V
		Vcc = Min., VIN = VIH or VIL, IOH = -24mA	2.4	3.8	_	
Vol	Output LOW Voltage	Vcc = Min., VIN = VIH or VIL, IOL = 300μA	_	GND	V LC	V
		Vcc = Min., VIN = VIH or VIL, IOL = 64mA	_	0.3	0.55	
lin	Input Leakage Current	Vcc = Max., Vin = Vcc or GND	_	_	±1	μΑ
loz	Output Leakage Current	Vcc = Max., Vout = Vcc or GND	_	_	±1	μΑ
loff	I/O Power Off Leakage	$Vcc = 0V$, $Vin or Vo \le 4.5V$	_	_	±1	μΑ
los	Short Circuit Current (2,3)	Vcc = Max., Vout = GND	-60	_	_	mA
ΔV T	Input Hysteresis	VTLH - VTHL for All Inputs	_	0.2	_	٧

NOTES:

- 1. Typical values are at Vcc = 5.0V, TA = 25°C.
- 2. Not more than one output should be used to test this high power condition. Duration is less than one second.
- 3. Guaranteed by design but not tested.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions	Typ. ⁽³⁾	Max.	Unit	
Icc	Quiescent Power Supply Current	Vcc = Max., Vin = GND or Vcc	Vcc = Max., V _{IN} = GND or Vcc		0.5	mA
ΔΙCC	Supply Current per Input HIGH	Vcc = Max., VIN = 3.4V		0.5	2.5	mA
ICCD	Dynamic Power Supply Current per Output (2)	Vcc = Max., OEA = OEB = GND Outputs Enabled, 50% duty cycle	0.1	0.2	mA/MHz	
Ic	Total Supply Current Examples (2,4)	Vcc = Max., OEA = OEB = GND	VIN = GND or Vcc	5		mA
		50% duty cycle, fi = 10MHz Five outputs toggling	VIN = GND or 3.4V			
		Vcc = Max., OEA = OEB = GND	VIN = GND or Vcc	3		
		50% duty cycle, fi = 2.5MHz All outputs toggling	VIN = GND or 3.4V			

NOTES:

- 1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
- 2. Guaranteed by design but not tested. CL = 0pF.
- 3. Typical values are for reference only. Conditions are Vcc = 5.0V, TA = 25°C.
- 4. $IC = ICC + (\Delta ICC)(DH)(NT) + ICCD (fO)(NO)$

where:

DH = Input Duty Cycle

NT = Number of TTL HIGH inputs at DH

fo = Output Frequency

No = Number of outputs at fo

SKEW CHARACTERISTICS OVER OPERATING RANGE

 $T_A = -40^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 5.0V \pm 10\%$

CLOAD = 50pF, RLOAD = 500Ω unless otherwise noted.

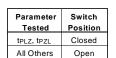
		49FCT5805		49FCT5805/A		49FCT5805/B		49FCT5805/C			
Symbol	Parameter (1)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
tsk(01)	Skew between all outputs, same transition, same bank	-	0.5	1	0.35	_	0.3	_	0.3	ns	
tsk(02)	Skew between outputs of all banks, same transition	_	0.7	_	0.7	_	0.5	_	0.4	ns	
tsk(P)	Pulse Skew; skew between opposite transitions of the same output (tphl - tplh)	_	1	-	1	_	0.8	_	0.6	ns	
tsk(t)	Part-to-part skew ⁽²⁾	ı	1.5	ı	1.5	_	1.2	_	1	ns	

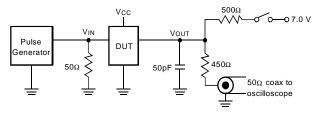
NOTES:

- 1. Skew parameters are guaranteed across temperature range, but not tested. Skew parameters are measured at 0.5Vcc.
- 2. tSK(T) only applies to devices of the same transition, part type, temperature, power supply voltage, loading, package, and speed grade.

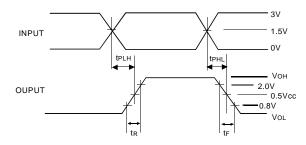
SWITCHING CHARACTERISTICS OVER OPERATING RANGE

 $T_A = -40^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 5.0V \pm 10\%$

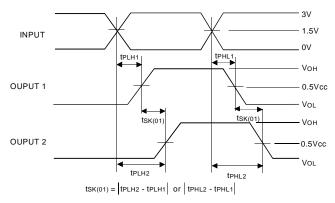

CLOAD = 50pF, RLOAD = 500Ω unless otherwise noted.

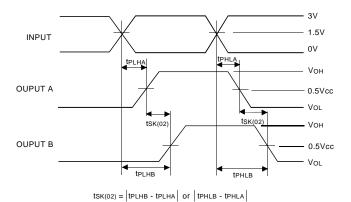

		49FCT5805		49FCT5805/A		49FCT5805/B		49FCT5805/C		
Symbol	Parameter (1)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
tPLH	Propagation Delay ⁽²⁾	1.5	5.6	1.5	5.3	1.5	5	1.5	4.5	ns
tphl	INA to OAn, INB to OBn									
tpzl	Output Enable Time	1.5	8	1.5	8	1.5	7	1.5	7	ns
tpzh										
tplz	Output Disable Time (3)	1.5	7	1.5	7	1.5	6	1.5	6	ns
tpzh										
tr	Output Rise Time, 0.8V to 2V (3)	1	1.5	_	1.5	1	1.5	1	1.5	ns
tF	Output Fall Time, 2Vcc to 0.8Vcc (3)	_	3	_	3	_	3	_	3	ns

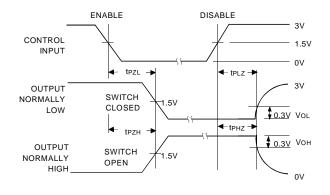
NOTES


- 1. Minimums guaranteed but not production tested. Timing parameters are measured at 0.5Vcc.
- 2. The propagation delay other range indicated by Min. and Max. specifications results from process and environmental variables. These propagation delays do not imply limit skew.
- 3. This parameter is guaranteed but not production tested.

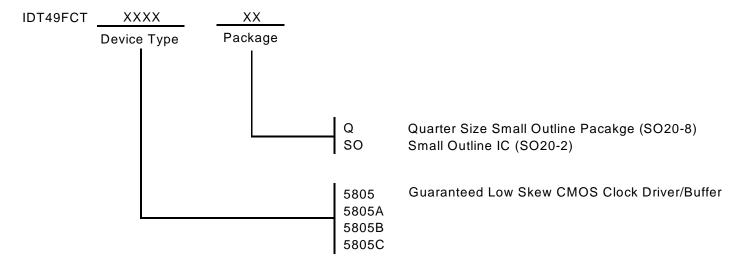
TEST CIRCUITS AND WAVEFORMS


Pulse generator for all pulses: f \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns


PROPAGATION DELAY


PULSE SKEW — tsk(P)

OUTPUT SKEW (SAME BANK) — tsk(01)


OUPUT SKEW (DIFFERENT BANKS) — tsk(02)

PART-TO-PART SKEW — tsk(T)

ENABLE AND DISABLE TIMES

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*