

Preliminary 8Mb (256Kx36 & 512Kx18) and 4Mb (128Kx36 & 256Kx18) SRAM

Features

- 8Mb: 256K x 36 or 512K x 18 organizations
 4Mb: 128K x 36 or 256K x 18 organizations
- 0.25 Micron CMOS technology
- Synchronous Pipeline Mode of Operation with Self-Timed Late Write
- Single Differential HSTL Clock
- +2.5V Power Supply, Ground, 1.6V V_{DDQ}, and 0.95V V_{RFF}
- · HSTL Input and Output levels
- Registered Addresses, Write Enables, Synchronous Select, and Data Ins

- · Registered Outputs
- · Common I/O
- Asynchronous Output Enable and Power Down Inputs
- Boundary Scan using limited set of JTAG 1149.1 functions
- · Byte Write Capability and Global Write Enable
- 7 x 17 Bump Ball Grid Array Package with SRAM JEDEC Standard Pinout and Boundary SCAN Order
- Programmable Impedance Output Drivers

Description

The 4Mb and 8Mb SRAMs—IBM0436A41XLAB, IBM0418A41XLAB, IBM0418A81XLAB, and IBM0436A81XLAB—are Synchronous Pipeline Mode, high-performance CMOS Static Random Access Memories that are versatile, have wide I/O, and can achieve 3ns cycle times. Differential K clocks are used to initiate the read/write operation and all internal operations are self-timed. At the ris-

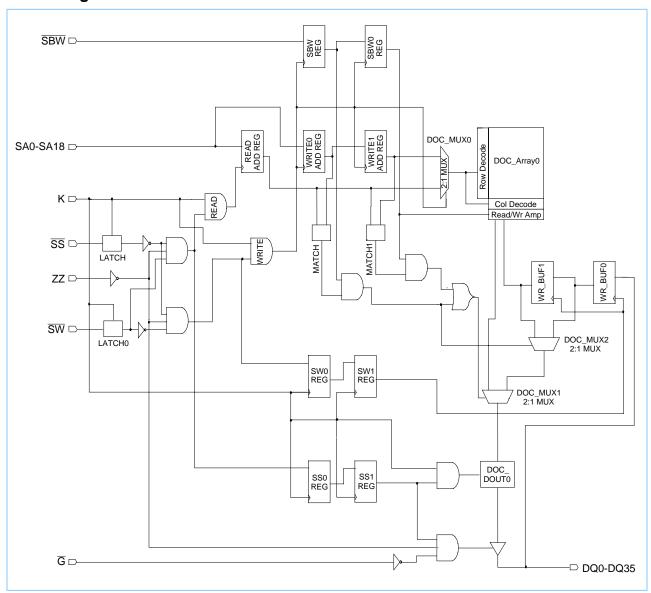
ing edge of the K clock, all Addresses, Write-Enables, Sync Select, and Data Ins are registered internally. Data Outs are updated from output registers off the next rising edge of the K clock. An internal Write buffer allows write data to follow one cycle after addresses and controls. The chip is operated with a single +2.5V power supply and is compatible with HSTL I/O interfaces.

x36 BGA Pinout (Top View)

	1	2	3	4	5	6	7
Α	V_{DDQ}	SA	SA	NC	SA	SA	V_{DDQ}
В	NC	NC	SA	NC	SA	NC,SA(8Mb)	NC
С	NC	SA	SA	V_{DD}	SA	SA	NC
D	DQ19	DQ18	V_{SS}	ZQ	V_{SS}	DQ9	DQ10
E	DQ22	DQ20	V_{SS}	<u>ss</u>	V _{SS}	DQ11	DQb13
F	V_{DDQ}	DQ21	V_{SS}	G	V _{SS}	DQ12	V_{DDQ}
G	DQ24	DQ23	SBWc	NC	SBWb	DQ14	DQb15
н	DQ25	DQ26	V_{SS}	NC	V_{SS}	DQ17	DQb16
J	V_{DDQ}	V_{DD}	V_{REF}	V_{DD}	V_{REF}	V_{DD}	V_{DDQ}
K	DQ34	DQ35	V_{SS}	K	V_{SS}	DQ8	DQ7
L	DQ33	DQ32	SBWd	ĸ	SBWa	DQ5	DQ6
M	V_{DDQ}	DQ30	V_{SS}	SW	V_{SS}	DQ3	V_{DDQ}
N	DQ31	DQ29	V_{SS}	SA	V_{SS}	DQ2	DQ4
Р	DQ28	DQ27	V_{SS}	SA	V_{SS}	DQ0	DQ1
R	NC	SA	M1*	V_{DD}	M2*	SA	NC
Т	NC	NC	SA	SA	SA	NC	ZZ
U	V_{DDQ}	TMS	TDI	TCK	TDO	NC	V_{DDQ}
	Note: * M1 and N	M2 are clock mode	pins. For this appl	ication, M1 and M	2 need to connect	to V_{SS} and V_{DD} , re	spectively.

x18 BGA Pinout (Top View)

	1	2	3	4	5	6	7
Α	V_{DDQ}	SA	SA	NC	SA	SA	V_{DDQ}
В	NC	NC	SA	NC	SA	NC,SA(8Mb)	NC
С	NC	SA	SA	V_{DD}	SA	SA	NC
D	DQ14	NC	V_{SS}	ZQ	V_{SS}	DQ0	NC
E	NC	DQ15	V _{SS}	SS	V _{SS}	NC	DQ1
F	V_{DDQ}	NC	V_{SS}	G	V _{SS}	DQ2	V_{DDQ}
G	NC	DQ16	SBWb	NC	NC	NC	DQ3
Н	DQ17	NC	V_{SS}	NC	V_{SS}	DQ4	NC
J	V_{DDQ}	V_{DD}	V_{REF}	V_{DD}	V_{REF}	V_{DD}	V_{DDQ}
K	NC	DQ13	V_{SS}	K	V _{SS}	NC	DQ8
L	DQ12	NC	NC	K	SBWa	DQ7	NC
M	V_{DDQ}	DQ10	V_{SS}	SW	V_{SS}	NC	V_{DDQ}
N	DQ11	NC	V_{SS}	SA	V _{SS}	DQ6	NC
Р	NC	DQ9	V_{SS}	SA	V _{SS}	NC	DQ5
R	NC	SA	M1	V_{DD}	M2	SA	NC
Т	NC	SA	SA	NC	SA	SA	ZZ
U	V_{DDQ}	TMS	TDI	TCK	TDO	NC	V_{DDQ}
	Note: * M1 and I	M2 are clock mode	pins. For this app	lication, M1 and M	12 need to connec	t to V _{SS} and V _{DD} re	espectively.


Pin Description

SA0-SA18	Address Input SA0-SA18 for 512K x 18 SA0-SA17 for 256K x 36 SA0-SA17 for 256K x 18 SA0-SA16 for 128K x 36	G	Asynchronous Output Enable
DQ0-DQ35	Data I/O DQ0-DQ17 for 512K x 18 DQ0-DQ35 for 256K x 36	<u>\$\$</u>	Synchronous Select
K, K	Differential Input Register Clocks	M1, M2	Clock Mode Inputs- Selects Single or Dual Clock Operation.
SW	Write Enable, Global	V _{REF} (2)	HSTL Input Reference Voltage
SBWa	Write Enable, Byte a (DQ0-DQ8)	V _{DD}	Power Supply (+2.5V)
SBWb	Write Enable, Byte b (DQ9-DQ17)	V_{SS}	Ground
SBWc	Write Enable, Byte c (DQ18-DQ26)	V_{DDQ}	Output Power Supply
SBWd	Write Enable, Byte d (DQ27-DQ35)	ZZ	Synchronous Sleep Mode
TMS,TDI,TCK	IEEE 1149.1 Test Inputs (LVTTL levels)	ZQ	Output Driver Impedance Control
TDO	IEEE 1149.1 Test Output (LVTTL level)	NC	No Connect

Ordering Information

Part Number	Organization	Speed	Leads
IBM0418A41XLAB - 3		1.7ns Access / 3.0ns Cycle	
IBM0418A41XLAB - 4	256K x 18	2.0ns Access / 4.0ns Cycle	
IBM0418A41XLAB - 5		2.25ns Access /5.0ns Cycle	
IBM0436A41XLAB - 3		1.7ns Access / 3.0ns Cycle	
IBM0436A41XLAB - 3F	40017 20	1.7ns Access / 3.0ns Cycle	
IBM0436A41XLAB - 4	128K x 36	2.0ns Access / 4.0ns Cycle	
IBM0436A41XLAB - 5		2.25ns Access /5.0ns Cycle	7 × 47 DOA
IBM0418A81XLAB - 3		1.7ns Access / 3.0ns Cycle	7 x 17 BGA
IBM0418A81XLAB - 3F	512K x 18	1.7ns Access / 3.0ns Cycle	
IBM0418A81XLAB - 4	512K X 16	2.0ns Access / 4.0ns Cycle	
IBM0418A81XLAB - 5		2.25ns Access /5.0ns Cycle	
IBM0436A81XLAB -3		1.7ns Access / 3.0ns Cycle	
IBM0436A81XLAB -4	256K x 36	2.0ns Access / 4.0ns Cycle	
IBM0436A81XLAB -5		2.25ns Access /5.0ns Cycle	

Block Diagram

nary 8Mb (256Kx36 & 512Kx18) and 4Mb (128Kx36 & 256Kx18) SRAM

SRAM Features

Late Write

Late Write function allows for write data to be registered one cycle after addresses and controls. This feature eliminates one bus-turnaround cycle, necessary when going from a Read to a Write operation. Late Write is accomplished by buffering write addresses and data so that the write operation occurs during the next write cycle. When a read cycle occurs after a write cycle, the address and write data information are stored temporarily in holding registers. During the first write cycle preceded by a read cycle, the SRAM array will be updated with address and data from the holding registers. Read cycle addresses are monitored to determine if read data is to be supplied from the SRAM array or the write buffer. The bypassing of the SRAM array occurs on a byte-by-byte basis. When only one byte is written during a write cycle, read data from the last written address will have new byte data from the write buffer and remaining bytes from the SRAM array.

Mode Control

Mode control pins M1 and M2 are used to select four different JEDEC-standard read protocols. This SRAM supports Single Clock, Pipeline (M1 = V_{SS} , M2 = V_{DD}). This datasheet only describes Single Clock Pipeline functionality. Mode control inputs must be set with power up and must not change during SRAM operation. This SRAM is tested only in the Pipeline mode.

Sleep Mode

Sleep Mode is enabled by switching synchronous signal ZZ High. When the SRAM is in Sleep mode, the outputs will go to a High-Z state and the SRAM will draw standby current. SRAM data will be preserved and a recovery time (t_{ZZR}) is required before the SRAM resumes normal operation.

RQ Programmable Impedance

An external resistor, RQ, must be connected between the ZQ pin on the SRAM and V_{SS} to allow for the SRAM to adjust its output driver impedance. The value of RQ must be 5X the value of the intended line impedance driven by the SRAM. The allowable range of RQ to guarantee impedance matching is between 175Ω and 350Ω , with the tolerance described in Programmable Impedance Output Driver DC Electrical Characteristics on page 9. The RQ resistor should be placed less than two inches away from the ZQ ball on the SRAM module. The total external capacitance (including wiring) seen by the ZQ ball should be minimized (less than 7.5 pF).

Programmable Impedance and Power-Up Requirements

Periodic readjustment of the output driver impedance is necessary as the impedance is greatly affected by drifts in supply voltage and temperature. One evaluation occurs every 64 clock cycles and each evaluation may move the output driver impedance level only one step at a time towards the optimum level. The output driver has 32 discrete binary weighted steps. The impedance update of the output driver occurs when the SRAM is in High-Z. Write and Deselect operations will synchronously switch the SRAM into and out of High-Z, therefore triggering an update. The user may choose to invoke asynchronous \overline{G} updates by providing a \overline{G} setup and hold about the K clock to guarantee the proper update. There are no power-up requirements for the SRAM; however, to guarantee optimum output driver impedance after power up, the SRAM needs 4096 clock cycles followed by a Low-Z to High-Z transition.

Power-Up and Power-Down Sequencing

The Power supplies need to be powered up in the following order: V_{DD} , V_{DDQ} , V_{REF} , and Inputs. The power-down sequencing must be the reverse. V_{DDQ} can be allowed to exceed V_{DD} by no more than 0.6V.

Clock Truth Table

K	ZZ	SS	SW	SBWa	SBWb	SBWc	SBWd	DQ (n)	DQ (n+1)	Mode
L→H	L	L	Н	Х	Х	Х	Х	Х	D _{OUT} 0-35	Read Cycle All Bytes
L→H	L	L	L	L	Н	Н	Н	Х	D _{IN} 0-8	Write Cycle 1st Byte
L→H	L	L	L	Н	L	Н	Н	Х	D _{IN} 9-17	Write Cycle 2nd Byte
L→H	L	L	L	Н	Н	L	Н	Х	D _{IN} 18-26	Write Cycle 3rd Byte
L→H	L	L	L	Н	Н	Н	L	Х	D _{IN} 27-35	Write Cycle 4th Byte
L→H	L	L	L	L	L	L	L	Х	D _{IN} 0-35	Write Cycle All Bytes
L→H	L	L	L	Н	Н	Н	Н	Х	High-Z	Abort Write Cycle
L→H	L	Н	Х	Х	Х	Х	Х	Х	High-Z	Deselect Cycle
Х	Н	Χ	Χ	X	Χ	Х	Х	High-Z	High-Z	Sleep Mode

Output Enable Truth Table

Operation (n, n+1)	G (n)	DQ (n)	DQ (n+1)
Read	L	D _{OUT} 0-35	D _{OUT} 0-35
Read	Н	High-Z	High-Z
Sleep (ZZ = H)	X	High-Z	High-Z
Write $(\overline{SW} = L)$	X	X	High-Z
Deselect (SS = H)	Х	Х	High-Z

Absolute Maximum Ratings

Item	Symbol	Rating	Units	Notes
Power Supply Voltage	V _{DD}	-0.5 to 2.825	V	1
Output Power Supply Voltage	V_{DDQ}	-0.5 to 2.825	V	1
Input Voltage	V _{IN}	-0.5 to 4.3	V	1, 2
DQ Input Voltage	V_{DQIN}	-0.5 to 2.825	V	1
Operating Temperature	T _A	0 to 85	°C	1
Junction Temperature	TJ	110	°C	1
Storage Temperature	T _{STG}	-55 to +125	°C	1
Short Circuit Output Current	Іоит	25	mA	1

^{1.} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

^{2.} Excludes DQ inputs.

8Mb (256Kx36 & 512Kx18) and 4Mb (128Kx36 & 256Kx18) SRAM

Recommended DC Operating Conditions $(T_A = 0 \text{ to } +85^{\circ}\text{C})$

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
Supply Voltage	V _{DD}	2.5 - 5%	2.5	2.5+ 10%	V	1
Output Driver Supply Voltage	V _{DDQ}	1.4	1.5	1.6	V	1
Input High Voltage	V _{IH}	V _{REF} + 0.1	_	V _{DDQ} + 0.3	V	1, 2
Input Low Voltage	V _{IL}	-0.3	_	V _{REF} -0.1	V	1, 3
Input Reference Voltage	V_{REF}	0.68	0.75	0.95	V	1, 6
Clocks Signal Voltage	V _{IN - CLK}	-0.3	_	V _{DDQ} + 0.3	V	1, 4
Differential Clocks Signal Voltage	V _{DIF - CLK}	0.1	_	V _{DDQ} + 0.6	V	1, 5
Clocks Common Mode Voltage	V _{CM - CLK}	0.55	_	0.90	V	1

- 1. All voltages referenced to V_{SS}. All V_{DD}, V_{DDQ} and V_{SS} pins must be connected.
 2. $V_{IH}(Max)DC = V_{DDQ} + 0.3 \text{ V}$, $V_{IH}(Max)AC = V_{DDQ} + 0.85 \text{ V}$ (pulse width $\leq 4.0 \text{ns}$).
- 3. $V_{IL}(Min)DC = -0.3 \text{ V}, V_{IL}(Min)AC = -1.5 \text{ V} \text{ (pulse width } \leq 4.0 \text{ns)}.$
- 4. V_{IN-CLK} specifies the maximum allowable DC excursions of each differential clock (K, \overline{K}).
- 5. $V_{\text{DIF-CLK}}$ specifies the minimum Clock differential voltage required for switching.
- 6. Peak to Peak AC component superimposed on V_{REF} may not exceed 5% of V_{REF}

DC Electrical Characteristics (T_A = 0 to +85°C, V_{DD} = 2.5V -5%, +10%)

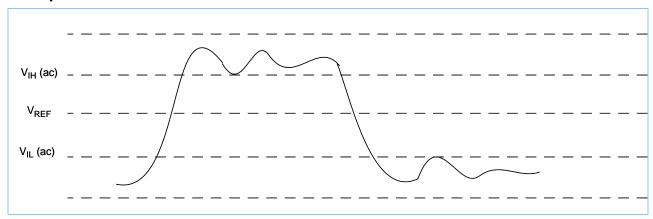
Parameter	Symbol	Min.	Max.	Units	Notes
Average Power Supply Operating Current - $x36$ ($I_{OUT} = 0$, $V_{IN} = V_{IH}$ or V_{IL} , $ZZ \& \overline{SS} = V_{IL}$)	I _{DD3} I _{DD3F} I _{DD4} I _{DD5}	_	0.470 0.450 0.420 0.370	A	1, 3
Average Power Supply Operating Current - x18 ($I_{OUT} = 0$, $V_{IN} = V_{IH}$ or V_{IL} , ZZ & $\overline{SS} = V_{IL}$)	I _{DD3} I _{DD3F} I _{DD4} I _{DD5}		0.450 0.430 0.400 0.350	А	1, 3
Power Supply Standby Current $(\overline{SS} = V_{IH}, ZZ = V_{IL}. All other inputs = V_{IH} or V_{IL}, I_{OUT} = 0)$	ISBSS	_	150	mA	1
Power Supply Sleep Current (ZZ = V_{IH} . All other inputs = V_{IH} or V_{IL} , $I_{OUT} = 0$)	I _{SBZZ}	_	100	mA	1, 5
Input Leakage Current, any input (except JTAG) (V _{IN} = V _{SS} or V _{DDQ})	I _{LI}	-2	+2	μА	
Output Leakage Current (V _{OUT} = V _{SS} or V _{DDQ} , DQ in High-Z)	I _{LO}	-5	+5	μА	
Output "High" Level Voltage (I _{OH} = -8mA)	V _{OH}	V _{DDQ} 4	V_{DDQ}	V	2, 4
Output "Low" Level Voltage (I _{OL} = +8mA)	V _{OL}	V _{SS}	V _{SS} +.4	V	2, 4
JTAG Leakage Current (V _{IN} = V _{SS} or V _{DD})	I _{LIJTAG}	-50	+10	μА	6

- 1. $I_{OUT} = Chip Output Current$.
- 2. Minimum Impedance Output Driver.
- 3. The numeric suffix indicates part operating at speed as indicated in AC Characteristics on page 11: i.e., I_{DD3} indicates 3ns cycle time.
- 4. JEDEC Standard JESD8-6 Class 1 Compatible.
- 5. When ZZ = High, spec is guaranteed at 75°C junction temperature.
- 6. For JTAG inputs only.

PBGA Thermal Characteristics

Item	Symbol	Rating	Units
Thermal Resistance Junction to Case	R⊝JC	1	°C/W

$\textbf{Capacitance} \,\, (T_A = 0 \,\, to \,\, +85^{\circ}\text{C}, \,\, V_{DD} = 2.5\text{V} \,\, \text{-}5\%, \,\, +10\%, \,\, f = 1\text{MHz})$


Parameter	Symbol	Test Condition	Max	Units
Input Capacitance	C _{IN}	$V_{IN} = 0V$	4	pF
Data I/O Capacitance (DQ0-DQ35)	C _{OUT}	V _{OUT} = 0V	4	pF

AC Input Characteristics

Item	Symbol	Min	Max	Notes
AC Input Logic High	V _{IH} (ac)	V _{REF} + 0.4		3
AC Input Logic Low	V _{IL} (ac)		V _{REF} - 0.4	3
Clock Input Differential Voltage	V _{DIF} (ac)	0.7		2
V _{REF} Peak to Peak ac Voltage	V _{REF} (ac)		5% V _{REF} (dc)	1

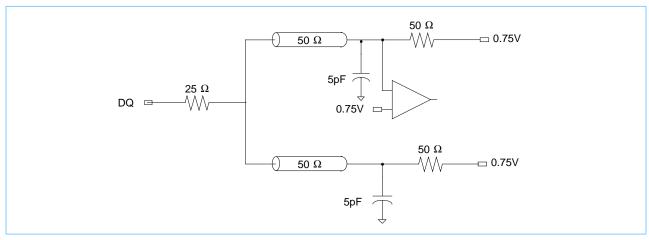
- 1. The peak to peak AC component superimposed on V_{REF} may not exceed 5% of the DC component of V_{REF} .
- 2. Performance is a function of $V_{\mbox{\scriptsize IH}}$ and $V_{\mbox{\scriptsize IL}}$ levels to clock inputs.
- 3. See the AC Input Definition figure below.

AC Input Definition

Programmable Impedance Output Driver DC Electrical Characteristics (T_A = 0 to +85°C,

 $V_{DD} = 2.5V - 5\%, +10\%, V_{DDQ} = 1.5V)$

Parameter	Symbol	Min.	Max.	Units	Notes
Output "High" Level Voltage	V _{OH}	V _{DDQ} / 2	V_{DDQ}	V	1, 3
Output "Low" Level Voltage	V_{OL}	V_{SS}	V _{DDQ} / 2	V	2, 3

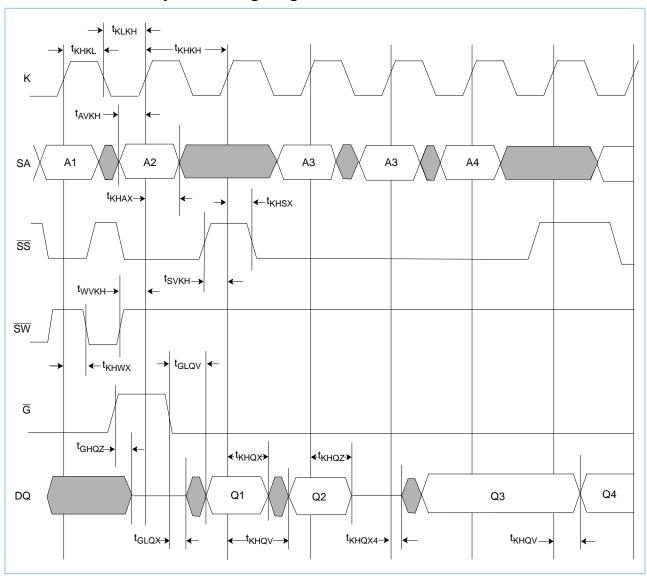

- 1. $I_{OH} = \left(\frac{VDDQ}{2}\right) / \left(\frac{RQ}{5} + 5\right) \pm 15\%$ @ $V_{OH} = V_{DDQ} / 2$ For: $175\Omega \le RQ \le 350\Omega$.
- $2. \quad I_{OL} = \quad \left(\frac{VDDQ}{2}\right) / \left(\frac{RQ}{5}\right) \quad \pm \ 15\% \ @ \ V_{OL} = V_{DDQ} \ / \ 2 \ For: \ 175\Omega \leq RQ \leq 350\Omega.$
- 3. Parameter tested with RQ = 250Ω and V_{DDO} = 1.5V.

AC Test Conditions $(T_A = 0 \text{ to } +85^{\circ}\text{C}, V_{DD} = 2.5\text{V} -5\%, +10\%, V_{DDQ} = 1.5\text{V})$

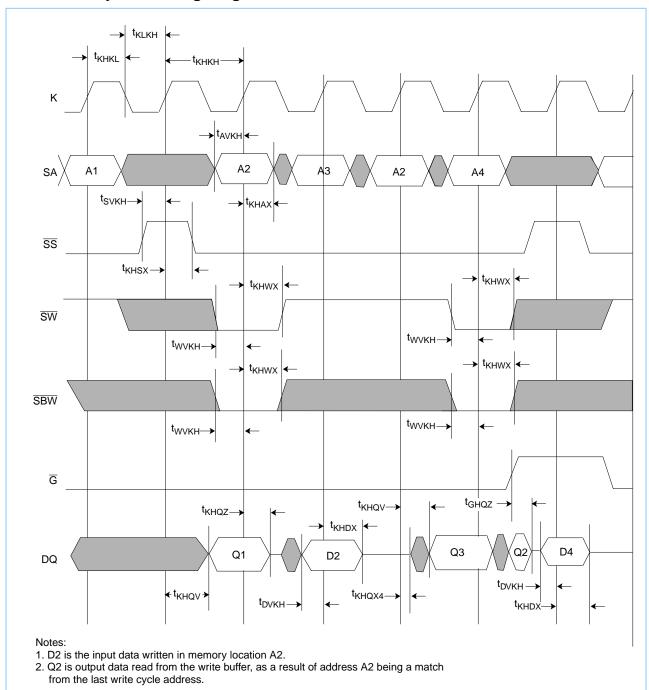
Parameter	Symbol	Conditions	Units	Notes
Output Driver Supply Voltage	V_{DDQ}	1.5		
Input High Level	V_{IH}	1.25	V	
Input Low Level	V _{IL}	0.25	V	
Input Reference Voltage	V _{REF}	0.75	V	
Differential Clocks Voltage	V _{DIF-CLK}	0.75	V	
Clocks Common Mode Voltage	V _{CM-CLK}	0.75	V	
Input Rise Time	T _R	0.5	ns	
Input Fall Time	T _F	0.5	ns	
I/O Signals Reference Level (except K, C Clocks)		0.75	V	
Clocks Reference Level		Differential Cross Point	V	
Output Load Conditions				1, 2

- 1. See the AC Test Loading figure below.
- 2. Parameter tested with RQ = 250Ω and V_{DDQ} = 1.5V.

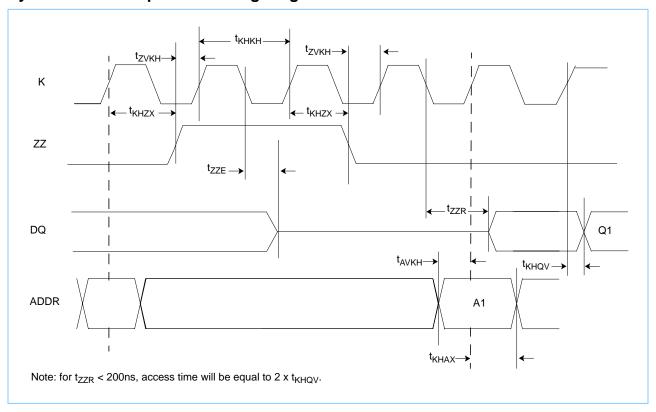
AC Test Loading



AC Characteristics ($T_A = 0$ to +85°C, $V_{DD} = 2.5V$ -5%, +10%)


Description	O make al	;	3	3	3F		4	į	5	11-7-	Nictor
Parameter	neter Symbol		Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units	Notes
Cycle Time	t _{KHKH}	3.0	_	3.3	_	4.0	_	5.0	_	ns	
Clock High Pulse Width	t _{KHKL}	1.2	_	1.5	_	1.5	_	1.5	_	ns	
Clock Low Pulse Width	t _{KLKH}	1.2	_	1.5	_	1.5	_	1.5	_	ns	
Clock to Output Valid	t _{KHQV}	_	1.7	_	1.8	_	2.0	_	2.25	ns	1
Address Setup Time	t _{AVKH}	0.5	_	0.5	_	0.5	_	0.5	_	ns	3
Address Hold Time	t _{KHAX}	0.5	_	0.5	_	0.5	_	1.0	_	ns	3
Sync Select Setup Time	t _{SVKH}	0.5	_	0.5	_	0.5	_	0.5	_	ns	3
Sync Select Hold Time	t _{KHSX}	0.5	_	0.5	_	0.5	_	1.0	_	ns	3
Write Enables Setup Time	t _{WVKH}	0.5	_	0.5	_	0.5	_	0.5	_	ns	3
Write Enables Hold Time	t _{KHWX}	0.5	_	0.5	_	0.5	_	1.0	_	ns	3
Data In Setup Time	t _{DVKH}	0.5	_	0.5	_	0.5	_	0.5	_	ns	3
Data In Hold Time	t _{KHDX}	0.5	_	0.5	_	0.5	_	1.0	_	ns	3
Data Out Hold Time	t _{KHQX}	0.5	_	0.5	_	0.5	_	0.5	_	ns	1
Clock High to Output High-Z	t _{KHQZ}	_	2.25	_	2.25	_	2.25	_	2.5	ns	1, 4
Clock High to Output Active	t _{KHQX4}	0.5	_	0.5	_	0.5	_	0.5	_	ns	1
Output Enable to High-Z	t _{GHQZ}	_	2.0	_	2.0		2.0	_	2.5	ns	1, 4
Output Enable to Low-Z	t _{GLQX}	0.5	_	0.5	_	0.5	_	0.5	_	ns	1
Output Enable to Output Valid	t _{GLQV}	_	2.0	_	2.0	_	2.0	_	2.5	ns	1
Output Enable Setup Time	t _{GHKH}	0.5	_	0.5	_	0.5	_	0.5	_	ns	1, 2
Output Enable Hold Time	t _{KHGX}	1.5	_	1.5	_	1.5	_	1.5	_	ns	1, 2
Sleep Mode Setup Time	t _{ZVKH}	1.0	_	1.0	_	1.0	_	1.0	_	ns	
Sleep Mode Hold Time	t _{KHZX}	1.0	_	1.0	_	1.0	_	1.0	_	ns	
Sleep Mode Recovery Time	t _{ZZR}	200	_	200	_	200	_	200	_	ns	5
Sleep Mode Enable Time	t _{ZZE}	_	6	_	7.4	_	8	_	10	ns	

- 1. See AC Test Loading on page 10.
- 2. Output Driver Impedance update specifications for \overline{G} induced updates. Write and Deselect cycles will also induce Output Driver updates during High-Z.
- 3. During normal operation, V_{IH} , V_{IL} , T_{RISE} , and T_{FALL} of inputs must be within 20% of V_{IH} , V_{IL} , T_{RISE} , and T_{FALL} of Clock.
- 4. Verified by design and tested without guardbands.
- 5. For t_{ZZR}<200ns, access time will be equal to twice t_{KHQV}.


Read and Deselect Cycles Timing Diagram

Read Write Cycles Timing Diagram

Synchronous Sleep Mode Timing Diagram

8Mb (256Kx36 & 512Kx18) and 4Mb (128Kx36 & 256Kx18) SRAM

IEEE 1149.1 TAP and Boundary Scan

The SRAM provides a limited set of JTAG functions intended to test the interconnection between SRAM I/Os and printed circuit board traces or other components. There is no multiplexer in the path from I/O pins to the RAM core.

In conformance with IEEE Std. 1149.1, the SRAM contains a TAP controller, Instruction register, Boundary Scan register, Bypass register, and ID register.

The TAP controller has a standard 16-state machine that resets internally upon power-up, therefore, TRST signal is not required.

Signal List

. TCK: Test Clock

TMS: Test Mode SelectTDI: Test Data InTDO: Test Data Out

JTAG DC Operating Characteristics ($T_A = 0 \text{ to } +85^{\circ}\text{C}$)

Operates with JEDEC Standard 8-5 (2.5V) logic signal levels

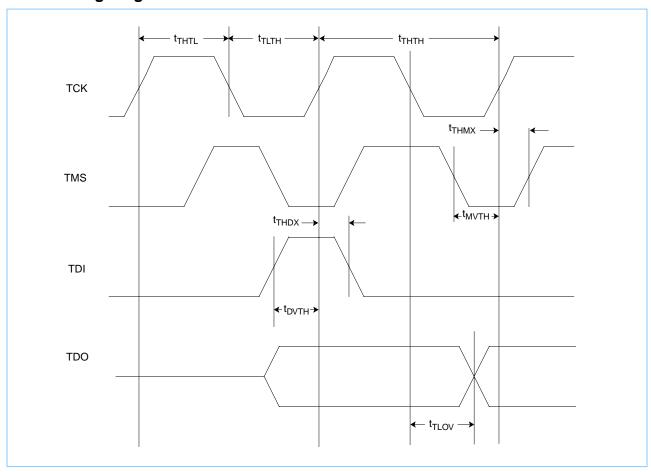
Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
JTAG Input High Voltage	V _{IH1}	1.7	_	V _{DD} +0.3	V	1
JTAG Input Low Voltage	V _{IL1}	-0.3	_	0.8	V	1
JTAG Output High Level	V _{OH1}	2.1	_	_	V	1, 2
JTAG Output Low Level	V _{OL1}	_	_	0.2	V	1, 3

^{1.} All JTAG inputs and outputs are LVTTL compatible only.

JTAG AC Test Conditions ($T_A = 0$ to +85°C, $V_{DD} = 2.5V$ -5%, +10%)

Parameter	Symbol	Conditions	Units
Input Pulse High Level	V _{IH1}	3.0	V
Input Pulse Low Level	V _{IL1}	0.0	V
Input Rise Time	T _{R1}	2.0	ns
Input Fall Time	T _{F1}	2.0	ns
Input and Output Timing Reference Level		1.25	V

^{2.} $I_{OH1} \ge -|2mA|$ at 2.1V.


^{3.} $I_{OL1} \ge +|2mA|$ at 0.2V.

JTAG AC Characteristics ($T_A = 0$ to +85°C, $V_{DD} = 2.5V$ -5%, +10%)

Parameter	Symbol	Min.	Max.	Units	Notes
TCK Cycle Time	t _{THTH}	20	_	ns	
TCK High Pulse Width	t _{THTL}	7	_	ns	
TCK Low Pulse Width	t _{TLTH}	7	_	ns	
TMS Setup	t _{MVTH}	4	_	ns	
TMS Hold	t _{THMX}	4	_	ns	
TDI Setup	t _{DVTH}	4	_	ns	
TDI Hold	t _{THDX}	4	_	ns	
TCK Low to Valid Data	t _{TLOV}	_	7	ns	1

^{1.} See the AC Test Loading figure on page 10.

JTAG Timing Diagram

8Mb (256Kx36 & 512Kx18) and 4Mb (128Kx36 & 256Kx18) SRAM

Scan Register Definition

Register Name	Bit Size x18	Bit Size x36
Instruction	3	3
Bypass	1	1
ID	32	32
Boundary Scan *	51	70

^{*} The Boundary Scan chain consists of the following bits:

- 36 or 18 bits for Data Inputs Depending on x18 or x36 Configuration
- 18 bits for SA0 SA17 for x36, 19 bits for SA0 SA15 for x18
- 4 bits for SBWa SBWd in x36, 2 bits for SBWa and SBWb in x18
- 9 bits for K, \overline{K} , ZQ, \overline{SS} , \overline{G} , \overline{SW} , ZZ, M1 and M2
- 3 bits for Place Holders for 8 Mb, 4bits for Place Holders for 4Mb

ID Register Definition

		Field Bit I	Number and Description		
Part	Revision Number (31:28)	Device Density and Configuration (27:18)	Vendor Definition (17:12)	Manufacturer JEDEC Code (11:1)	Start Bit(0)
128K x 36	0111	011 010 1011	xxxxxx	000 101 001 00	1
256K x 18	0111	011 100 1100	xxxxxx	000 101 001 00	1
512K x 18	0111	101 111 0100	xxxxxx	000 101 001 00	1
256K x 36	0111	101 101 0011	xxxxxx	000 101 001 00	1

Instruction Set

Code	Instruction	Notes
000	SAMPLE-Z	1
001	IDCODE	
010	SAMPLE-Z	1
011	PRIVATE	5
100	SAMPLE	4
101	PRIVATE	5
110	PRIVATE	5
111	BYPASS	2, 3

- 1. Places DQs in High-Z in order to sample all input data regardless of other SRAM inputs.
- 2. TDI is sampled as an input to the first ID register to allow for the serial shift of the external TDI data.
- 3. BYPASS register is initiated to V_{SS} when BYPASS instruction is invoked. The BYPASS register also holds the last serially loaded TDI when exiting the Shift DR state.
- 4. SAMPLE instruction does not place DQs in High-Z.
- 5. This instruction is reserved for the exclusive use of IBM. Invoking this instruction will cause improper SRAM functionality.

List of IEEE 1149.1 Standard Violations

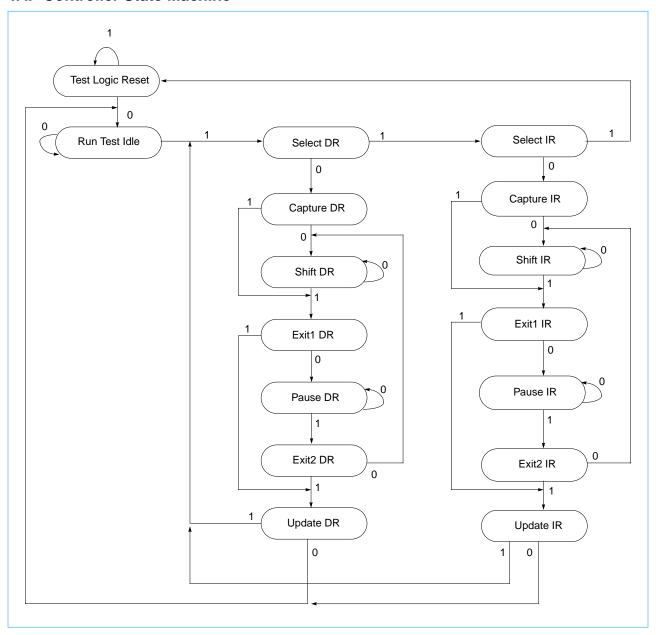
- 7.2.1.b, e
- 7.7.1.a-f
- 10.1.1.b, e
- 10.7.1.a-d
- 6.1.1.d

^{*} K and \overline{K} clocks connect to a differential receiver that generates a single-ended clock signal. This signal and its inverted value are used for Boundary Scan sampling.

Boundary Scan Order (128K x 36), (256K x 36) (PH = Place Holder)

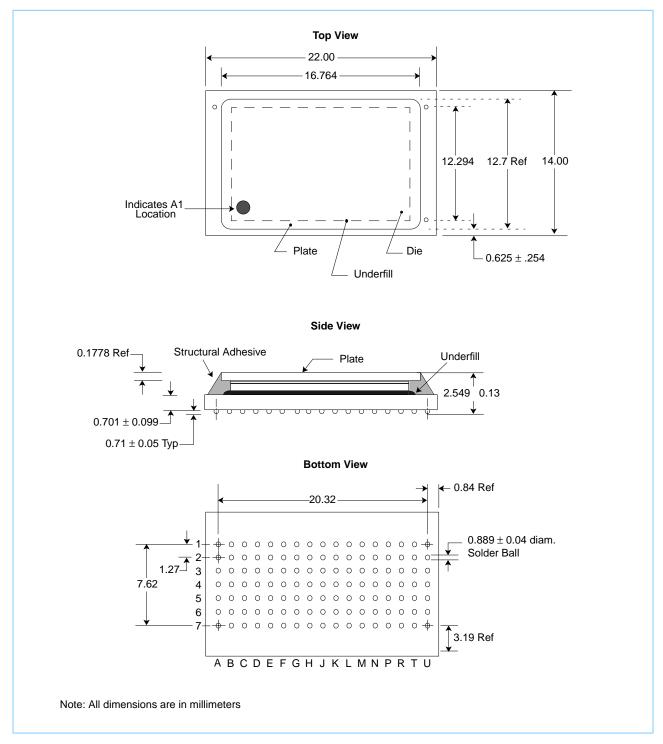
Exit Order	Signal	Bump #	Exit Order	Signal	Bump #	Exit Order	Signal	Bump #
1	M2	5R	25	DQ12	6F	49	DQ26	2H
2	SA	4P	26	DQ13	7E	50	DQ25	1H
3	SA	4T	27	DQ11	6E	51	SBWc	3G
4	SA	6R	28	DQ10	7D	52	ZQ	4D
5	SA	5T	29	DQ9	6D	53	SS	4E
6	ZZ	7T	30	SA	6A	54	PH ¹	4G
7	DQ0	6P	31	SA	6C	55	PH ²	4H
8	DQ1	7P	32	SA	5C	56	SW	4M
9	DQ2	6N	33	SA	5A	57	SBWd	3L
10	DQ4	7N	34	PH ¹ (4Mb), SA(8Mb)	6B	58	DQ34	1K
11	DQ3	6M	35	SA	5B	59	DQ35	2K
12	DQ5	6L	36	SA	3B	60	DQ33	1L
13	DQ6	7L	37	PH ¹	2B	61	DQ32	2L
14	DQ8	6K	38	SA	ЗА	62	DQ30	2M
15	DQ7	7K	39	SA	3C	63	DQ29	1N
16	SBWa	5L	40	SA	2C	64	DQ31	2N
17	K	4L	41	SA	2A	65	DQ28	1P
18	K	4K	42	DQ18	2D	66	DQ27	2P
19	G	4F	43	DQ19	1D	67	SA	3Т
20	SBWb	5G	44	DQ20	2E	68	SA	2R
21	DQ16	7H	45	DQ22	1E	69	SA	4N
22	DQ17	6H	46	DQ21	2F	70	M1	3R
23	DQ15	7G	47	DQ23	2G			
24	DQ14	6G	48	DQ24	1G			

^{1.} Input of PH register connected to V_{SS} . 2. Input of PH register connected to V_{DD} .


Boundary Scan Order (256K x 18), (512K x 18) (PH = Place Holder)

Exit Order	Signal	Bump #	Exit Order	Signal	Bump #
1	M2	5R	27	PH ¹	2B
2	SA	6T	28	SA	3A
3	SA	4P	29	SA	3C
4	SA	6R	30	SA	2C
5	SA	5T	31	SA	2A
6	ZZ	7T	32	DQ14	1D
7	DQ5	7P	33	DQ15	2E
8	DQ6	6N	34	DQ16	2G
9	DQ7	6L	35	DQ17	1H
10	DQ8	7K	36	SBWb	3G
11	SBWa	5L	37	ZQ	4D
12	ĸ	4L	38	SS	4E
13	К	4K	39	PH ¹	4G
14	G	4F	40	PH ²	4H
15	DQ4	6H	41	SW	4M
16	DQ3	7G	42	DQ13	2K
17	DQ2	6F	43	DQ12	1L
18	DQ1	7E	44	DQ10	2M
19	DQ0	6D	45	DQ11	1N
20	SA	6A	46	DQ9	2P
21	SA	6C	47	SA	3Т
22	SA	5C	48	SA	2R
23	SA	5A	49	SA	4N
24	PH ¹ (4Mb), SA(8Mb)	6B	50	SA	2T
25	SA	5B	51	M1	3R
26	SA	3B			

Input of PH register connected to V_{SS}.
 Input of PH register connected to V_{DD}.



TAP Controller State Machine

7 x17 BGA Dimensions

References

The following document gives recommendations, restrictions, and limitations for 2nd level attach process:

Double Sided 4Mb SRAM Coupled Cap PBGA Card Assembly Guide

Qualification information, including the scope of application conditions qualified, is available from your marketing representative.

Note: This document contains information on products in the sampling and/or initial production phases of development. This information is subject to change without notice. Verify with your IBM field applications engineer that you have the latest version of this document before finalizing a design.

8Mb (256Kx36 & 512Kx18) and 4Mb (128Kx36 & 256Kx18) SRAM

Revision Log

Revision	Contents of Modification
9/98	Initial release.
11/98	Changed part numbers from Rev A to B.
12/98	Update t _{KHQX4} from 1.0ns to 0.5ns
3/99	Updated programmable impedance tables.
7/99	Corrected 7 x17 BGA Dimensions. Added 3F speed sort.
10/00	Third Revision (03). In Programmable Impedance Output Driver DC Electrical Characteristics on page 9: $I_{OH} = \left(\frac{VDDQ}{2}\right) / \left(\frac{RQ}{5} + 5\right) \pm 15\% \ @ \ V_{OH} = V_{DDQ} / 2 \ For: 175\Omega \le RQ \le 350\Omega$ $I_{OL} = \left(\frac{VDDQ}{2}\right) / \left(\frac{RQ}{5}\right) \pm 15\% \ @ \ V_{OL} = V_{DDQ} / 2 \ For: 175\Omega \le RQ \le 350\Omega$ In DC Electrical Characteristics on page 8: Changed I_{SBSS} from 120 mA to 150 mA Changed I_{SBSS} from 65 mA to 100 mA On page 14, updated timing for Synchronous operation. On page 11: Added Sleep Mode Setup time spec: $t_{ZVKH} = 1.0$ ns Added Sleep Mode Hold time spec: $t_{KHZX} = 1.0$ ns On page 21, enhanced the BGA diagram. Added 3N speed sort and deleted 3F speed sort.
12/05/00	Made various minor editorial changes and format refinements.

© Copyright International Business Machines Corporation 1998

All Rights Reserved
Printed in the United States of America December 2000

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or both.

IBM IBM Logo

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons. The information contained in this document does not affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environments may vary.

While the information contained herein is believed to be accurate, such information is preliminary, and should not be relied upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will IBM be liable for damages arising directly or indirectly from any use of the information contained in this document.

IBM Microelectronics Division 1580 Route 52, Bldg. 504 Hopewell Junction, NY 12533-6351

The IBM home page can be found at http://www.ibm.com

The IBM Microelectronics Division home page can be found at http://www.chips.ibm.com

crrh2516.04 12/00