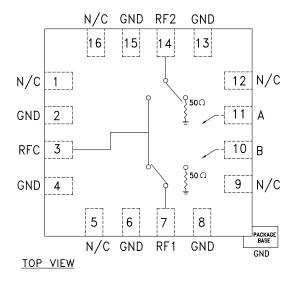
14

HMC547LP3


GaAs MMIC SPDT NON-REFLECTIVE SWITCH, DC - 20.0 GHz

Typical Applications

The HMC547LP3 is ideal for:

- Basestation Infrastructure
- Fiber Optics & Broadband Telecom
- Microwave Radio & VSAT
- Military Radios, Radar, & ECM
- Test Instrumentation

Functional Diagram

Features

High Isolation: >50 dB up to 5 GHz

>45 dB up to 15 GHz

Low Insertion Loss: 1.6 dB @ 10 GHz

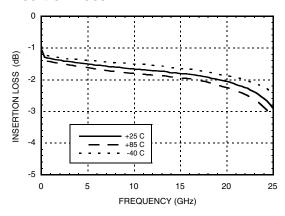
2.0 dB @ 20 GHz

Fast Switching

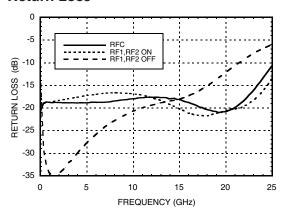
Non-Reflective Design

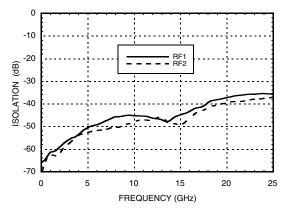
QFN SMT Package, 9 mm²

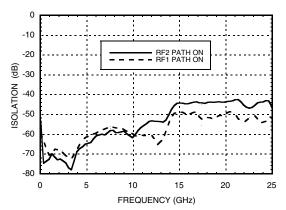
General Description

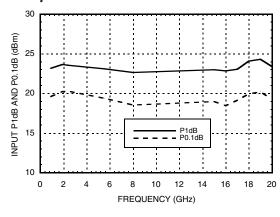

The HMC547LP3 is a general purpose broadband high isolation non-reflective GaAs MESFET SPDT switch in a low cost leadless QFN surface mount plastic package. Covering DC to 20 GHz, the switch offers high isolation and low insertion loss. The switch features >50 dB isolation up to 5 GHz and >45 dB isolation up to 15 GHz. The switch operates using complementary negative control voltage logic lines of -5/0V and requires no bias supply. The HMC547LP3 is packaged in a leadless QFN 3 x 3 mm surface mount package.

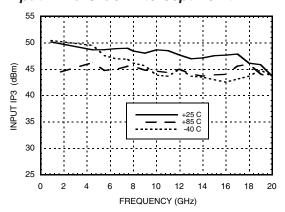
Electrical Specifications, $T_A = +25^{\circ}$ C, With 0/-5V Control, 50 Ohm System


Paramete	er	Frequency	Min.	Тур.	Max.	Units
Insertion Loss		DC - 5.0 GHz DC - 10.0 GHz DC - 15.0 GHz DC - 20.0 GHz		1.5 1.6 1.8 2.0	1.9 2.0 2.2 2.5	dB dB dB dB
Isolation		DC - 5.0 GHz DC - 15.0 GHz DC - 20.0 GHz	45 40 33	50 45 38		dB dB dB
Return Loss	"On State"	DC - 20.0 GHz		17		dB
Return Loss RF1, RF2	"Off State"	DC - 5.0 GHz DC - 15.0 GHz DC - 20.0 GHz		25 17 13		dB dB dB
Input Power for 1 dB Compress	ion	0.5 - 20.0 GHz	20	23		dBm
Input Third Order Intercept (Two-Tone Input Power= +7 dBm Each Tone)		0.5 - 10.0 GHz 0.5 - 20.0 GHz		48 45		dBm dBm
Switching Characteristics tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)		DC - 20 GHz		3 6		ns ns


Insertion Loss


Return Loss


Isolation Between Ports RFC and RF1/RF2


Isolation Between Ports RF1 and RF2

Input P1dB and P0.1dB Compression Point

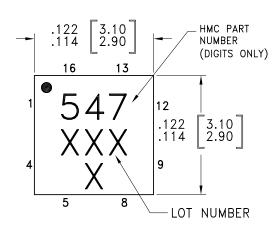
Input Third Order Intercept Point

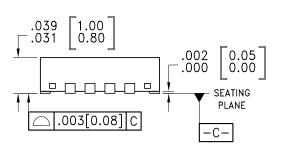
Absolute Maximum Ratings

RF Input Power (Vctl = -5V)	+23 dBm
1	
Control Voltage Range (A & B)	+0.5V to -7.5 Vdc
Hot Switch Power Level (Vctl = -5V)	+23 dBm
Channel Temperature	150 °C
Continuous Pdiss (T=85°C) (derate 4 mW/°C about 85°C)	0.26 W
Thermal Resistance (Insertion Loss Path)	420 °C/W
Thermal Resistance (Terminated Path)	250 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-55 to +85 °C
ESD Sensitivity (HBM)	Class 1C

Control Voltages

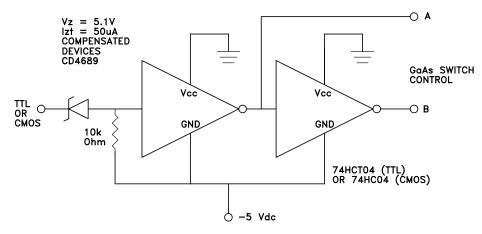
State	Bias Condition	
Low	0 to -0.2V @ 10 uA Max.	
High	-5V @ 3 uA Typ. to -7V @ 10 uA Typ. (± 0.5 Vdc)	


Truth Table


Control Input		Signal Path State		
Α	В	RFC to RF1	RFC to RF2	
High	Low	On	Off	
Low	High	Off	On	

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

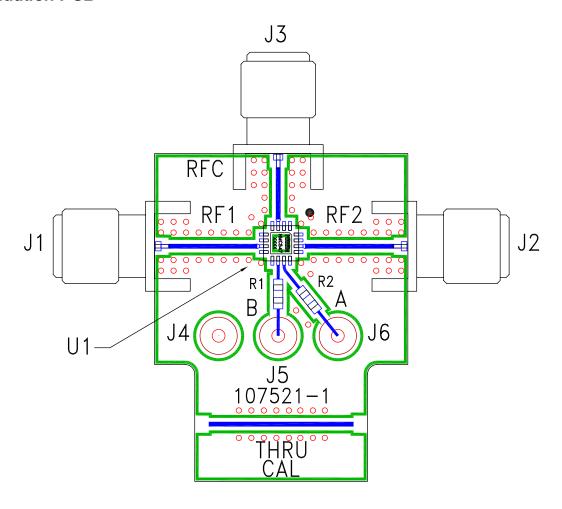
Outline Drawing



NOTES:

- MATERIAL PACKAGE BODY: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILICON IMPREGNATED.
- 2. LEAD AND GROUND PADDLE MATERIAL: COPPER ALLOY
- 3. LEAD AND GROUND PADDLE PLATING: Sn/Pb SOLDER
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 5. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM.
 PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 7. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 8. ALL GROUND LEADS, N.C. LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 9. CLASSIFIED AS MOISTURE SENSITIVITY LEVEL (MSL) 1.

Suggested Driver Circuit



Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 5, 9, 12, 16	N/C	This pin should be connected to PCB RF ground to maximize isolation	
2, 4, 6, 8, 13, 15	GND	Package bottom has exposed metal paddle that must also be connected to PCB RF ground.	
3, 7, 14	RFC, RF1, RF2	This pin is DC coupled and matched to 50 Ohm. Blocking capacitors are required if RF line potential is not equal to 0V.	
10	В	See truth table and control voltage table.	R
11	А	See truth table and control voltage table.	± c

Evaluation PCB

List of Materials for Evaluation PCB 105711 [1]

Item	Description	
J1 - J3	PC Mount SRI SMA Connector	
J4 - J6	DC Pin	
R1 - R2	100 Ohm Resistor, 0603 Pkg.	
U1	HMC547LP3 SPDT Switch	
PCB [2]	107521 Evaluation PCB	

^[1] Reference this number when ordering complete evaluation PCB[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 ohm impedance and the package ground leads and package bottom should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.

Notes: