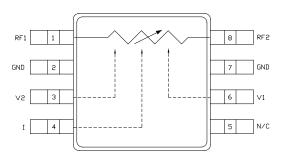


HMC346MS8G


GaAs MMIC SMT VOLTAGE-VARIABLE ATTENUATOR, DC - 8 GHz

Typical Applications

This attenuator is ideal for use as a VVA for DC - 8 GHz applications:

- Point-to-Point Radio
- VSAT Radio

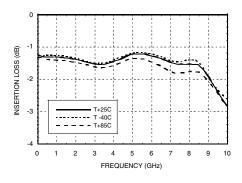
Functional Diagram

Features

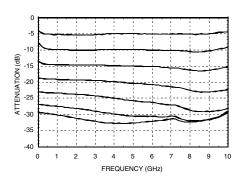
Wide Bandwidth: DC - 8 GHz Low Phase Shift vs. Attenuation 32 dB Attenuation Range

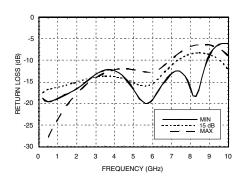
General Description

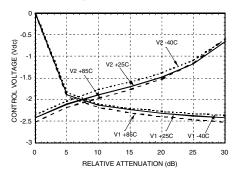
The HMC346MS8G is an absorptive Voltage Variable Attenuator (VVA) in an 8 lead surface-mount package operating from DC - 8 GHz. It features an on-chip reference attenuator for use with an external op-amp to provide simple single voltage attenuation control, 0 to -3V. The device is ideal in designs where an analog DC control signal must control RF signal levels over a 30 dB amplitude range. Applications include AGC circuits and temperature compensation of multiple gain stages in microwave point-to-point and VSAT radios.

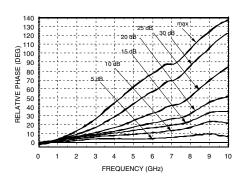

Electrical Specifications, $T_A = +25^{\circ} C$, 50 ohm system

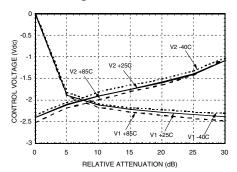
v03.0304


Parameter		Min	Typical	Max	Units
Insertion Loss	DC - 8 GHz		1.5	2.5	dB
Attenuation Range	DC - 8 GHz	27	32		dB
Return Loss	DC - 8 GHz	5	10		dB
Switching Characteristics					
	tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)		2 8		ns ns
Input Power for 0.25 dB Compression (0.5 - 8 GHz)					
	Min. Atten. Atten. >2 dB		+8 -2		dBm dBm
Input Third Order Intercept (0.5 - 8 GHz) (Two-tone Input Power = -8 dBm Each Tone)	Min. Atten. Atten. >2 dB		+25 +10		dBm dBm

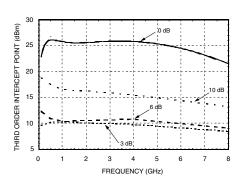

Insertion Loss vs. Temperature


Relative Attenuation

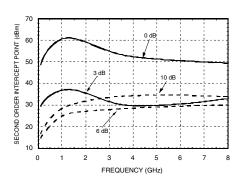

Return Loss vs. Attenuation


Relative Attenuation vs. Control Voltage @ 4 GHz

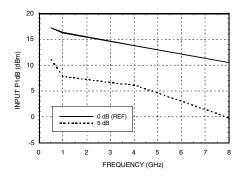
Relative Phase

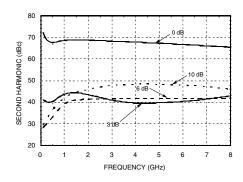


Relative Attenuation vs. Control Voltage @ 8 GHz



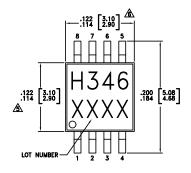
Input Third Order Intercept vs Attenuation*

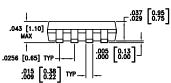

Input Second Order Intercept vs. Attenuation*

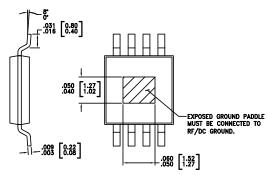

0.25 dB Compression vs. Attenuation

1 dB Compression vs. Attenuation

Second Harmonic vs. Attenuation


^{*}Two-tone input power = -8 dBm each tone, 1 MHz spacing.

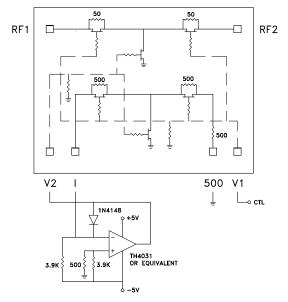



Absolute Maximum Ratings

RF Input Power	+18 dBm
Control Voltage Range	+1.0 to -5.0 Vdc
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

Outline Drawing

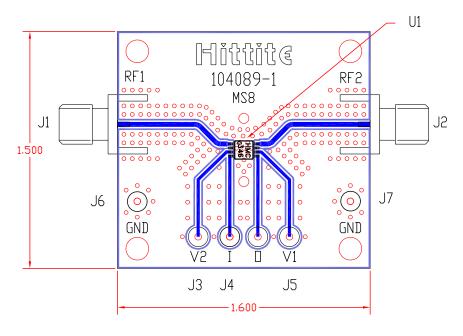
NOTES:


- PACKAGE BODY MATERIAL: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILICON IMPREGNATED.
- 2. LEADFRAME MATERIAL: COPPER ALLOY
- 3. LEADFRAME PLATING: Sn/Pb SOLDER
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS]. \wedge
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- $\overline{ \Bbb A }$ DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 7. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Pin Descriptions

Pin Number	Function	Description	Interface Schematic	
1, 8	RF1 RF2	This pin is DC coupled and matched to 50 Ohm. Blocking capacitors are required if RF line potential is not equal to 0V.		
2, 7	GND	This pin must be DC grounded.	=	
3, 6	V2, V1	Control Input (Master).	500	
4	I	Control Input (Slave).	500	
5	N/C	Not Connected.		

Single-Line Control Driver



External op-amp control circuit maintains impedance match while attenuation is varied. Input control ranges from 0 Volts (min. attenuation) to -2.5 Volts (max. attenuation.)

9

GaAs MMIC SMT VOLTAGE-VARIABLE ATTENUATOR, DC - 8 GHz

Evaluation PCB

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF ports should be 50 ohm impedance and the package ground leads and package bottom should be connected directly to the PCB RF ground plane, similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.

List of Material

Item	Description	
J1 - J2	PC Mount SMA RF Connector	
J3 - J7	DC PIN	
U1	HMC346MS8G	
PCB*	104089 Eval Board	
*Circuit Board Material: Rogers 4350		