HD74LVC374A

Octal D-type Flip Flops with 3-state Outputs

HITACHI

Description

The HD74 LVC374A has eight edge trigger D type flip flops with three state outputs in a 20 pin package. Data at the D inputs meeting set up requirements, are transferred to the Q outputs on positive going transitions of the clock input. When the clock input goes low, data at the D inputs will be retained at the outputs until clock input returns high again. When a high logic level is applied to the output control input, all outputs go to a high impedance state, regardless of what signals are present at the other inputs and the state of the storage elements. Low voltage and high speed operation is suitable at the battery drive product (note type personal computer) and low power consumption extends the life of a battery for long time operation.

Features

- $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ to 5.5 V
- All inputs V_{IH} (Max.) $=5.5 \mathrm{~V}\left(@ \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}\right.$ to 5.5 V$)$
- All outputs $\mathrm{V}_{\text {OUT }}($ Max. $)=5.5 \mathrm{~V}\left(@ \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}\right.$ or output off state $)$
- Typical $\mathrm{V}_{\text {OL }}$ ground bounce $<0.8 \mathrm{~V}\left(@ \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
- Typical V_{OH} undershoot $>2.0 \mathrm{~V}\left(@ \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
- High output current $\pm 24 \mathrm{~mA}$ ($@ \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 5.5 V)

Function Table

Inputs

$\overline{\mathbf{G}}$	CK	D	Output Q
H	X	X	Z
L	\uparrow	L	L
L	\uparrow	H	H
L	L	X	Q $_{0}$
H			

H: High level
L: Low level
X: Immaterial
Z: High impedance
\uparrow : Low to high transition
Q_{0} : Level of Q before the indicated steady input conditions were established.

Pin Arrangement

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	V_{CC}	-0.5 to 6.0	V	
Input diode current	I_{K}	-50	mA	$\mathrm{~V}_{\mathrm{I}}=-0.5 \mathrm{~V}$
Input voltage	V_{I}	-0.5 to 6.0	V	
Output diode current	I_{OK}	-50	mA	$\mathrm{~V}_{\mathrm{O}}=-0.5 \mathrm{~V}$
		50	mA	$\mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{Cc}}+0.5 \mathrm{~V}$
Output voltage	V_{O}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V	Output "H" or "L"
Output current		-0.5 to 6.0	V	Output "Z" or $\mathrm{V}_{\mathrm{Cc}}:$ OFF
V_{CC}, GND current / pin	I_{O}	± 50	mA	
Storage temperature	I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	100	mA	
	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$	

Note: The absolute maximum ratings are values which must not individually be exceeded, and furthermore, no two of which may be realized at the same time.

Recommended Operating Conditions

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	V_{cc}	1.5 to 5.5	V	Data hold
		2.0 to 5.5	V	At operation
Input / output voltage	V	0 to 5.5	V	G, CK, D
	V_{0}	0 to V_{cc}	V	Output "H" or "L"
		0 to 5.5	V	Output "Z" or $\mathrm{V}_{\text {cc }}$:OFF
Operating temperature	Ta	-40 to 85	${ }^{\circ} \mathrm{C}$	
Output current	I_{OH}	-12	mA	$\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$
		$-24^{\text {2 }}$	mA	$\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$ to 5.5 V
	I_{OL}	12	mA	$\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$
		24^{*}	mA	$\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$ to 5.5 V
Input rise / fall time ${ }^{\text {+1 }}$	$t_{r}, t_{\text {f }}$	10	ns / V	

Notes: 1. This item guarantees maximum limit when one input switches.
Waveform : Refer to test circuit of switching characteristics.
2. duty cycle $\leq 50 \%$

Electrical Characteristics

Item	Symbol	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$		Unit	Test Conditions
			Min	Max		
Input voltage	$\mathrm{V}_{\text {IH }}$	2.7 to 3.6	2.0	-	V	
		4.5 to 5.5	$\mathrm{V}_{\mathrm{cc}} \times 0.7$	-	V	
	VIL	2.7 to 3.6	-	0.8	V	
		4.5 to 5.5	-	$\mathrm{V}_{\mathrm{cc}} \times 0.3$	V	
Output voltage	$\mathrm{V}_{\text {OH }}$	2.7 to 5.5	$\mathrm{V}_{\mathrm{cc}}-0.2$	-	V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
		2.7	2.2	-	V	$\mathrm{I}_{\text {OH }}=-12 \mathrm{~mA}$
		3.0	2.4	-	V	
		3.0	2.2	-	V	$\mathrm{I}_{\text {OH }}=-24 \mathrm{~mA}$
		4.5	3.8	-	V	
	V_{oL}	2.7 to 5.5	-	0.2	V	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$
		2.7	-	0.4	V	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$
		3.0	-	0.55	V	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$
		4.5	-	0.55	V	
Input current	$\mathrm{I}_{\text {IN }}$	0 to 5.5	-	± 5.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND
Off state output current	$\mathrm{I}_{\text {oz }}$	2.7 to 5.5	-	± 5.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}, \text { GND } \\ & \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V} \text { or GND } \end{aligned}$
Output leak current	$\mathrm{I}_{\text {OFF }}$	0	-	20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }} / \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$
Quiescent supply current		2.7 to 3.6	-	± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }} / \mathrm{V}_{\text {Out }}=3.6$ to 5.5 V
		2.7 to 5.5	-	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}$ or GND
	$\Delta l_{\text {cc }}$	3.0 to 3.6	-	500	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\text { one input at }\left(\mathrm{V}_{\mathrm{Cc}}-0.6\right) \mathrm{V} \text {, }$ $\text { other inputs at } \mathrm{V}_{\mathrm{cc}} \text { or GND }$

Switching Characteristics

Item	Symbol	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$			Unit	From (Input)	To (Output)
			Min	Typ	Max			
Maximum clock frequency	$\mathrm{f}_{\text {max }}$	2.7	80.0	-	-	MHz		
		3.3 ± 0.3	100.0	150.0	-	MHz		
		5.0 ± 0.5	125.0	-	-	MHz		
Propagation delay time	$\mathrm{t}_{\text {PLH }}$	2.7	-	-	9.5	ns	CK	Q
	$\mathrm{t}_{\text {PHL }}$	3.3 ± 0.3	1.5	-	8.5	ns		
		5.0 ± 0.5	-	-	7.0	ns		
Output enable time	$\mathrm{t}_{\text {zH }}$	2.7	-	-	9.5	ns	$\overline{\mathrm{G}}$	Q
	t_{zL}	3.3 ± 0.3	1.5	-	8.5	ns		
		5.0 ± 0.5	-	-	7.0	ns		
Output disable time	t_{Hz}	2.7	-	-	8.5	ns	$\overline{\mathrm{G}}$	Q
	$t_{L Z}$	3.3 ± 0.3	1.5	-	7.5	ns		
		5.0 ± 0.5	-	-	6.5	ns		
Setup time	$\mathrm{t}_{\text {su }}$	2.7	2.0	-	-	ns		
		3.3 ± 0.3	2.0	-	-	ns		
		5.0 ± 0.5	2.0	-	-	ns		
Hold time	t_{n}	2.7	1.5	-	-	ns		
		3.3 ± 0.3	1.5	-	-	ns		
		5.0 ± 0.5	1.5	-	-	ns		
Pulse width	t_{w}	2.7	3.3	-	-	ns		
		3.3 ± 0.3	3.3	-	-	ns		
		5.0 ± 0.5	3.3	-	-	ns		
Between output pins skew ${ }^{* 1}$	$\mathrm{t}_{\text {osLH }}$	2.7	-	-	-	ns		
	$\mathrm{t}_{\text {OSHL }}$	3.3 ± 0.3	-	-	1.0	ns		
		5.0 ± 0.5	-	-	1.0	ns		
Input capacitance	$\mathrm{C}_{\text {IN }}$	2.7	-	3.0	-	pF		
Output capacitance	C	2.7	-	15.0	-	pF		

Note: 1. This parameter is characterized but not tested.

$$
\text { tos }_{\text {LH }}=\left|t_{\text {PLHm }}-t_{\text {PLHn }}\right|, \text { tos }_{\text {HL }}=\left|t_{\text {PHLM }}-t_{\text {PHLL }}\right|
$$

Test Circuit

Note: 1. $\mathrm{C}_{\llcorner }$includes probe and jig capacitance.
Waveforms - 1

Waveforms - 2

Waveforms - 3

TEST	$\mathrm{Vcc}=2.7 \mathrm{~V}$ $3.3 \pm 0.3 \mathrm{~V}$	$\mathrm{Vcc}=5.0 \pm 0.5 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{IH}}$	2.7 V	Vcc
$\mathrm{V}_{\text {ref }}$	1.5 V	$50 \% \mathrm{Vcc}$
$\mathrm{V}_{\mathrm{OH} 1}$	3 V	Vcc
$\mathrm{V}_{\mathrm{OL} 1}$	GND	GND

Notes: 1. $\mathrm{t}_{\mathrm{r}}=2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=2.5 \mathrm{~ns}$
2. Input waveform : $\mathrm{PRR}=10 \mathrm{MHz}$, duty cycle 50%
3. Waveform - A shows input conditions such that the output is "L" level when enable by the output control.
4. Waveform - B shows input conditions such that the output is " H " level when enable by the output control.

Hitachi Code	TTP-20DA
JEDEC	-
EIAJ	-
Weight (reference value)	0.07 g

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HITACHI

Hitachi, Ltd.

Semiconductor \& Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL NorthAmerica : http:semiconductor.hitachi.com/

Asia (Singapore)
Asia (Taiwan)
Asia (HongKong) Japan
: http://www.hitachi-eu.com/hel/ecg
http://www.has.hitachi.com.sg/grp3/sicd/index.htm
http://www.hitachi.com.tw/E/Product/SICD_Frame.htm
http://www.hitachi.com.hk/eng/bo/grp3/index.htm
http://www.hitachi.co.jp/Sicd/indx.htm

For further information write to:

Hitachi Semiconductor
America) Inc.
179 East Tasman Drive, San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223

Hitachi Europe GmbH
Electronic components Group Dornacher Stra§e 3
D-85622 Feldkirchen, Munich Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9293000
Hitachi Europe Ltd Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322

Hitachi Asia Pte. Ltd. 16 Collyer Quay \#20-00 Hitachi Tower Singapore 049318
Tel: 535-2100
Fax: 535-1533
Hitachi Asia Ltd.
Taipei Branch Office
3F, Hung Kuo Building. No.167,
Tun-Hwa North Road, Taipei (105)
Tel: <886> (2) 2718-3666
Fax: <886> (2) 2718-8180

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.

