Features

－Plastic package has Underwriters Laboratory

DO－41

Flammability Classification 94V－0
－Fast switching for high efficiency
－Construction utilizes void－free molded plastic technique
－ 1.0 ampere operation at $\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$ with no thermal runaway
－High temperature soldering guaranteed： $250^{\circ} \mathrm{C} / 10$ seconds， $0.375^{\prime \prime}(9.5 \mathrm{~mm})$ lead length， 5 lbs ．$(2.3 \mathrm{~kg})$ tension

Mechanical Data

－Case：DO－41 molded plastic body
－Terminals：Plated axial leads，solderable per
MIL－STD－750，method 2026
－Polarity：Color band denotes cathode end
－Mounting Position：Any
－Weight： 0.012 ounce， 0.33 gram

DIMENSIONS					
DIM	inches		mm		Note
	Min．	Max．	Min．	Max．	
A	0.165	0.205	4.2	5.2	
B	0.079	0.106	2.0	2.7	中
C	0.028	0.034	0.71	0.86	中
D	1.000	-	25.40	-	

Mximum Ratings and Electrical Characteristics

Ratings at $25^{\circ} \mathrm{C}$ ambient temperature unless otherwise specified．

	Symbols	1N4933	1N4934	1N4935	1N4936	1N4937	Units
Maximum repetitive peak reverse voltage	$\mathrm{V}_{\text {RRM }}$	50	100	200	400	600	Volts
Maximum RMS voltage	$V_{\text {RMS }}$	35	70	140	280	420	Volts
Maximum DC blocking voltage	V_{DC}	50	100	200	400	600	Volts
Maximum average forward rectified current $0.375^{\prime \prime}(9.5 \mathrm{~mm})$ lead length at $T_{A}=75^{\circ} \mathrm{C}$	$I_{\text {（AV）}}$	1.0					Amp
Peak forward surge current 8.3 mS single half sine－wave superimposed on rated load（MIL－STD－750D 4066 mothed）at $T_{A}=75^{\circ} \mathrm{C}$	$I_{\text {FSM }}$	30.0					Amps
Maximum instantaneous forward voltage at 1．0A	$V_{\text {F }}$	1.2					Volts
Maximum DC reverse current $\quad \mathrm{T}_{A}=25^{\circ} \mathrm{C}$ at rated DC blocking voltage $\quad T_{A}^{A}=100^{\circ} \mathrm{C}$	I_{R}	$\begin{gathered} 5.0 \\ 100.0 \end{gathered}$					$\mu \mathrm{A}$
Maximum reverse recovery time（Note 1） $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	T_{r}	200.0					nS
Typical junction capacitance（Note 2）	C ${ }$	15.0					$\rho \mathrm{F}$
Typical thermal resistance（Note 3）	$\begin{aligned} & \mathbf{R}^{\mathrm{R}_{\text {(iJJ } \mathrm{JL}}} \\ & \hline \end{aligned}$	$\begin{aligned} & 55.0 \\ & 25.0 \end{aligned}$					${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating junction and storage temperature range	$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$	-50 to +150					${ }^{\circ} \mathrm{C}$

Notes：

（1）Reverse recovery test conditions：$I_{F}=0.5 \mathrm{~A}, I_{R}=1.0 \mathrm{~A}, I_{\pi}=0.25 \mathrm{~A}$
（2）Measured at 1.0 MHz and applied reverse voltage of 4.0 volts
（3）Thermal resistance from junction to ambient and from junction to lead at $0.375^{\prime \prime}(9.5 \mathrm{~mm})$ lead length，P．C．B．mounted

RATINGS AND CHARACTERISTIC CURVES

FIG. 5 - TYPICAL JUNCTION CAPACITANCE

Voltage, \%

FIG. 6 - TYPICAL TRANSIENT THERMAL IMPEDANCE

