

Features :

- Low-power consumption.
 -Active: 40mA lcc at 55ns.
 -Stand by :
 - 5 μA (CMOS input / output)
 - 1 μA (CMOS input / output, SL)
- * Single +2.7 to 3.3V Power Supply.
- * Equal access and cycle time.
- * 55/70/85/100 ns access time.
- * Tri-state output.
- Automatic power-down when deselected.
- * Multiple center power and ground pins for improved noise immunity.
- * Individual byte controls for both Read and Write cycles.

GLT6100L16

44 III A5

43 III A6

42 H A7

41 III OE

40 III BHE

39 III BLE

38 10 1/015

37 1014

36 1013

35 1/012

34 🎞 Vss

33 🖽 Vcc

32 1 1/O11 31 1 1/O10

30 1 1/O₉ 29 1 1/O₈

28 III NC

27 III A8

26 🖽 A9

25 III A10

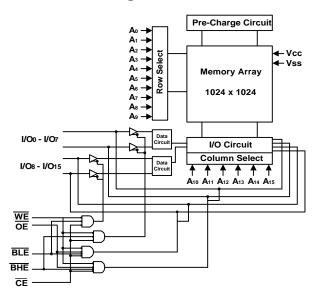
24 III A11

23 III NC

* Available in 44pin TSOPII Package.

Description :

The GLT6100L16 is a low power CMOS Static RAM organized as 65,536 words by 16 bits. Easy memory expansion is provided by an active LOW \overline{CE}


and **OE** pin.

This device has an automatic power – down mode feature when deselected. Separate Byte Enable controls (**BLE** and **BHE**) allow individual bytes to be accessed. BLE controls the lower bits I/O0 - I/O7. BHE controls the upper bits I/O8 - I/O15.

Writing to these devices is performed by taking Chip Enable \overline{CE} with Write Enable \overline{WE} and byte Enable ($\overline{BLE} / \overline{BHE}$) Low.

Reading from the device is performed by taking Chip Enable CE with Output enable \overline{OE} and byte Enable ($\overline{BLE} / \overline{BHE}$) Low while Write Enable \overline{WE} is held HIGH.

Function Block Diagram :

//36 11 14 //06 11 15 //07 111 16 WE 117 A15 111 18

Pin Configurations :

A4 🕮

A3 🎞

A2 III 3

1/0₀ Ⅲ 7

I/O2 🎞 9

I/O3 III 10

Vcc 11

Vss 🎞 12

I/O₄ Ⅲ 13

I/O₅ 000 14

A14 III 19

A13 1 20

A12 1 21

NC III 22

2

G-Link Technology Corporation 2701 Northwestern Parkway Santa Clara, CA 95051, U.S.A. **G-Link Technology Corporation, Taiwan** 6F No. 24-2, Industry E. RD. IV, Science Based Industrial Park, Hsin Chu, Taiwan.

GLT6100L16 <u>Ultra Low Power 64k x 16 CMOS SRAM</u>

May 2000(Rev. 0.3)

Pin Descriptions:

Name	Function						
$A_0 - A_{15}$	Address Inputs						
\overline{CE}_1 and CE_2	Chip Enable Input						
ŌĒ	Output Enable Input						
WE	Write Enable Input						
$I/O_0 - I/O_{15}$	Data Input and Data Output						
V _{cc}	3V Power Supply						
GND	Ground						
NC	No Connection						

Truth Table:

CE	OE	WE	BLE	BHE	I/00-I/07	I/O8-I/O15	Power	Mode
Н	Х	Х	Х	Х	High-Z	High-Z	Standby	Standby
L	L	Н	L	Н	Data Out	High-Z	Active	Low byte Read
L	L	н	Н	L	High-Z	Data Out	Active	High Byte Read
L	L	Н	L	L	Data Out	Data Out	Active	Word Read
L	Х	L	L	L	Data In	Data In	Active	Word Write
L	Х	L	L	Н	Data In	High-Z	Active	Low Byte Write
L	Х	L	Н	L	High-Z	Data In	Active	High byte Write
L	Н	Н	Х	Х	High-Z	High-Z	Active	Output Disable
L	Х	Х	Н	Н	High-Z	High-Z	Active	Output Disable

Absolute Maximum Ratings*

Parameter	Symbol	Minimum	Maximum	Unit
Voltage on Any Pin Relative to Gnd	Vt	-0.5	4.6	V
Power Dissipation	P _T	-	1.0	W
Storage Temperature (Plastic)	Tstg	-55	+150	°C
Temperature Under Bias	Tbias	-40	+85	°C

*Note : Stresses greater than those listed above Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any conditions outside those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

GLT6100L16 Ultra Low Power 64k x 16 CMOS SRAM

May 2000(Rev. 0.3)

Recommended Operating Conditions (TA = $-25^{\circ}C$ to $+85^{\circ}C^{**}$)

Parameter	Symbol	Min	Тур	Max	Unit
Querely Malta as	V _{cc}	2.7	3.0	3.3	V
Supply Voltage	Gnd	0.0	0.0	0.0	V
	V _{IH}	2.2	-	V _{cc} +0.5	V
Input Voltage	V _{IL}	-0.5*	-	0.6	V

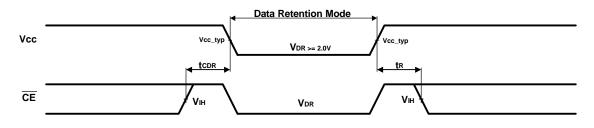
* V_{IL} min = -2.0V for pulse width less than $t_{RC}/2$.

** For Industrial Temperature.

DC Operating Characteristics (Vcc=2.7 to 3.3V, T_A =-25°C to + 85°C)

Doromotor	Parameter Sym. Test Conditions		nditiona	5	55	70		85		100		Unit
Farameter	Sym.	Test Co	nullions	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Input Leakage Current	I _U	V _{CC} = Max, Vin = Gnd to V _{CC}	2		1		1		1		1	μA
Output Leakage Current	I _{LO}	$\overline{CE} = V_{IH} \text{ or } V_{C}$ $V_{OUT} = Gnd \text{ to } V_{C}$			1		1		1		1	μΑ
Operating Power Supply Current	Icc	CE =V _{IL} ,V _{IN} =	V _{IH} or V _{IL} , I _{OUT} =0		3		3		3		3	mA
Average Operating	I _{CC1}	I _{OUT} = 0mA, Min Cycle, 100%	b Duty		40		35		30		30	mA
Current	I _{CC2}	$\overline{CE} \le 0.2V$ $I_{OUT} = 0mA$, Cycle Time=1µs	<u>CE</u> ≤ 0.2V		3		3		3		3	mA
Standby Power Supply Current(TTL Level)	I _{SB}	CE =V _{IH}			0.5		0.5		0.5		0.5	mA
Standby Power Supply Current (CMOS Level)	I _{SB1}	$V_{\rm IN} \ge 0.2 V 0 I$	GLT6100L16LL		5		5		5		5	μΑ
		$V_{IN} \ge V_{CC}$ -0.2V	GLT6100L16SL		1		1		1		1	μΑ
Output Low Voltage	Vol	$I_{OL} = 2 \text{ mA}$			0.4		0.4		0.4		0.4	V
Output High Voltage	V _{OH}	I _{OH} = -2 mA		2.4		2.4		2.4		2.4		V

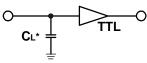
Data Retention


Parameter	Sym.	Test Conditions	Min.	Max.	Unit
V_{CC} for Data retention	V _{DR}	$\overline{CE} \ge V_{CC} - 0.2V$	2.0	-	V
Data Retention Current	I _{CCDR}			1	μA
Chip Deselect to Data Retention Time	t _{CDR}	$V_{IN} \ge V_{CC}$ -0.2V or	0	-	ns
Operating Recovery Time ⁽²⁾	t _R	$V_{IN} \le 0.2V$	t _{RC}	-	ns

G-Link Technology Corporation

2701 Northwestern Parkway Santa Clara, CA 95051, U.S.A. **G-Link Technology Corporation, Taiwan** 6F No. 24-2, Industry E. RD. IV, Science Based Industrial Park, Hsin Chu, Taiwan.

Data Retention Waveform (TA = -25°C to + 85°C)


AC Test Conditions

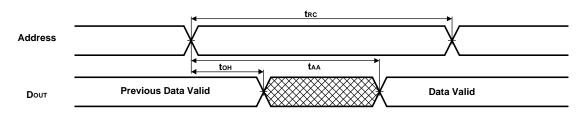
Input Pulse Levels	0.6V to 2.2V
Input Rise and Fall Time	5 ns
Input and Output Timing	
Reference Level	1.4V

Output Load Condition

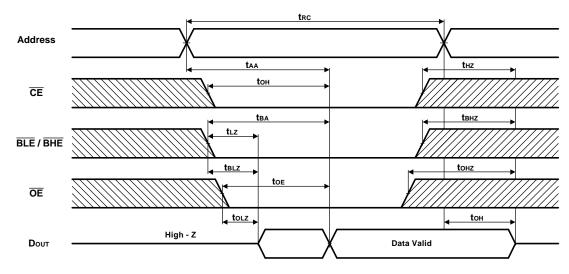
55ns / 70ns / 85ns	$C_L = 30 pf + 1TTL Load$
Load 100ns	$C_L = 100 pf + 1TTL Load$

AC Test Loads and Waveforms

*Including Scope and Jig Capacitance


Read Cycle ⁽⁹⁾ (Vcc=2.7V to 3.3V, T _A = -25°C to + 85°C)

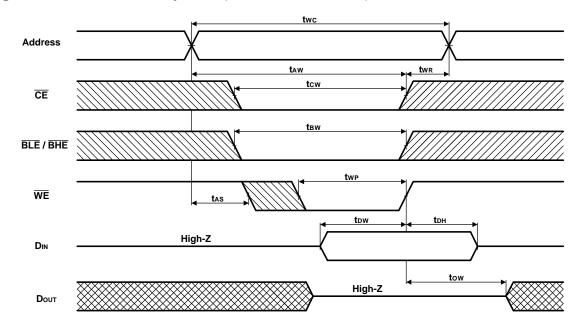
			5	7	0	8	5	1(00		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Note
Read Cycle Time	t _{RC}	55		70		85		100		ns	
Address Access Time	t _{AA}		55		70		85		100	ns	
Chip Enable Access Time	t _{ACE}		55		70		85		100	ns	
Output Enable Access Time	t _{OE}		35		40		40		50	ns	
Output Hold from address Change	t _{OH}	10		10		10		10		ns	
Chip Enable to Output in Low-Z	t _{LZ}	10		10		10		10		ns	4,5
Chip Disable to Output in High-Z	t _{HZ}		25		30		35		40	ns	3,4,5
Output Enable to Output in Low-Z	t _{OLZ}	5		5		5		5		ns	
Output Disable to Output in High-Z	t _{OHZ}		25		25		30		35	ns	
BLE , BHE Enable to Output in Low-Z	t _{BLZ}	5		5		5		5		ns	4,5
BLE , BHE Disable to Output in High-Z	t _{BHZ}		25		25		30		35	ns	3,4,5
BLE , BHE Access Time	t _{BA}		35		40		40		50	ns	


G-Link Technology Corporation 2701 Northwestern Parkway Santa Clara, CA 95051, U.S.A.

Timing Waveform of Read Cycle 1 (Address Controlled)

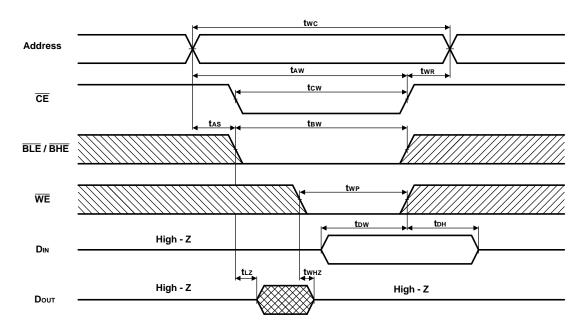
Timing Waveform of Read Cycle 2 $^{(14\mathcharmannew 16)}$

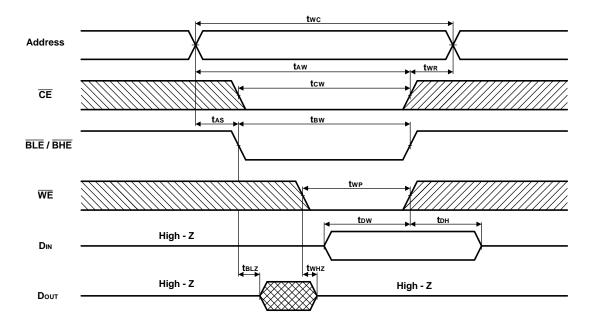
Write Cycle $^{(11)}$ (Vcc=2.7V to 3.3V, T_A = -25°C to + 85°C)


Parameter	Symbol	5	5	7	0	8	5	10	00	Unit	Note
i drameter	Cymbol	Min	Max	Min	Max	Min	Max	Min	Max	Onic	Note
Write Cycle Time	t _{WC}	55		70		85		100		ns	
Chip Enable to Write End	t _{CW}	50		60		70		80		ns	
Address Setup to Write End	t _{AW}	50		60		70		80		ns	
Address Setup Time	t _{AS}	0		0		0		0		ns	
Write Pulse Width	t _{WP}	45		50		60		70		ns	
Write Recovery Time	t _{WR}	0		0		0		0		ns	
Data Valid to Write End	t _{DW}	25		30		35		40		ns	
Data Hold Time	t _{DH}	0		0		0		0		ns	
Write Enable to Output in High-Z	t _{WHZ}		25		30		35		40	ns	
Output Active from Write End	tow	5		5		5		5		ns	
BLE , BHE Setup to Write End	t _{BW}	50		60		70		80		ns	

G-Link Technology Corporation

2701 Northwestern Parkway Santa Clara, CA 95051, U.S.A.


G-Link Technology Corporation, Taiwan 6F No. 24-2, Industry E. RD. IV, Science Based Industrial Park, Hsin Chu, Taiwan.


Timing Waveform of Write Cycle 1 (Address Controlled)^(22~25,28)

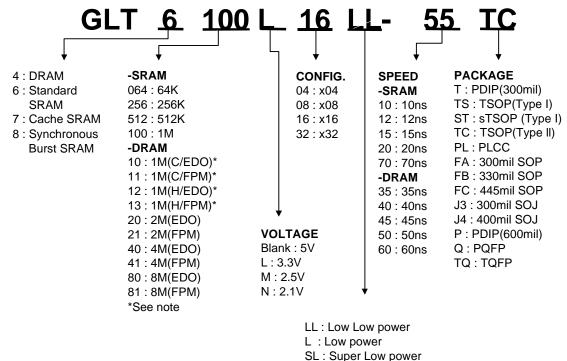
Timing Waveform of Write Cycle 2 (CE Controlled) (22~26,28)

Notes :

- 1. L-version includes this feature.
- 2. This Parameter is samples and not 100% tested.
- 3. For test conditions, see AC Test Condition.
- 4. This parameter is tested with CL = 5pF. Transition is measured \pm 500mV from steady state voltage.
- 5. This parameter is guaranteed, but is not tested.
- 6. WE is HIGH for read cycle.
- 7. CE and OE are LOW for read cycle.
- 8. Address valid prior to or coincident with CE transition LOW.
- 9. All read cycle timings are referenced from the last valid address to the first transition address.
- 10. CE or WE must be HIGH during address transition.
- 11. All write cycle timings are referenced from the last valid address to the first transition address.
- 12. WE are high for read cycle.
- 13. All read cycle timing is referenced from the last valid address to the first transition address.
- 14. t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit condition referenced to V_{OH} or V_{OL} levels.
- 15. At any given temperature and voltage condition $t_{HZ}(max.)$ is less than t_{LZ} (min.) both for a given device and from device to device.
- 16. Transition is measured \pm 200mV from steady state voltage with load. This parameter is sampled and not 100% tested.
- 17. Device is continuously selected with $\overline{CE} = V_{IL}$.
- 18. Address valid prior to coincident with CE transition Low.
- 19. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read write cycle.
- 20. For test conditions, see AC Test Condition.
- 21. All write timing is referenced from the last valid address to the first transition address.
- 22. A write occurs during the overlap of a low CE and WE . A write begins at the latest transition among CE and

WE going low: A write ends at the earliest transition among CE going high and WE going high. twp is

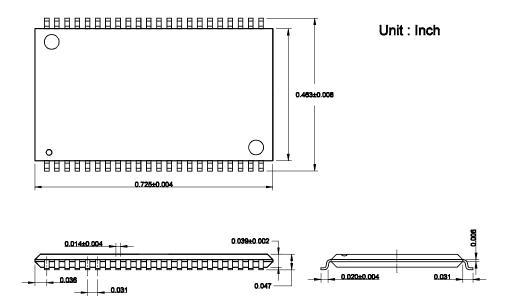
measured from the beginning of write to the end of write.


- 23. t_{CW} is measured from the later of \overline{CE} going low to end of write.
- 24. t_{AS} is measured from the address valid to the beginning of write.
- 25. t_{WR} is measured from the end of write to the address change.
- 26. If OE, CE and WE are in the Read Mode during this period, the I/O pins are in the output Low-Z state.
- 27. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.
- 28. If CE goes low simultaneously with WE going low or after WE going low, the outputs remain high impedance state.
- 29. D_{OUT} is the read data of the new address.
- 30. When CE is low : I/O pins are in the outputs state. The input signals in the opposite phase leading to the output should not be applied.
- 31. For test conditions, see AC Test Condition.

Ordering Information

Part Number	SPEED	POWER	PACKAGE
GLT6100L16LL-55TC	55ns	Normal	TSOPII 32L
GLT6100L16LL-70TC	70ns	Normal	TSOPII 32L
GLT6100L16LL-85TC	85ns	Normal	TSOPII 32L
GLT6100L16LL-100TC	100ns	Normal	TSOPII 32L
GLT6100L16SL-55TC	55ns	Normal	TSOPII 32L
GLT6100L16SL-70TC	70ns	Normal	TSOPII 32L
GLT6100L16SL-85TC	85ns	Normal	TSOPII 32L
GLT6100L16SL-100TC	100ns	Normal	TSOPII 32L

Parts Numbers (Top Mark) Definition :


Note : C→CDROM , H→HDD. Example :

1.GLT710008-15T 1Mbit(128Kx8)15ns 5V SRAM PDIP(300mil)Package type. 2.GLT44016-40J4 4Mbit(256Kx16)40ns 5V DRAM SOJ(400mil)Package type.

Package Information

44 pin Small Outline J-form Package (TSOPII)

