32-Bit Microcontroller **CMOS**

FR30 Series

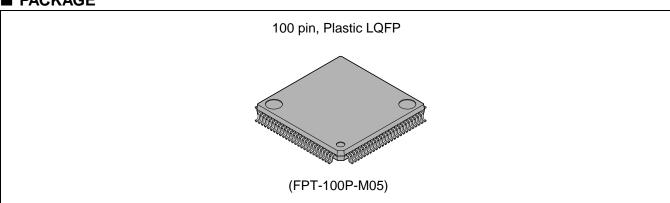
MB91F127/F128

■ DESCRIPTION

This model, designed on the basis of 32-bit RISC CPU (FR30 series), is a standard single-chip micro controller with built-in I/O resources and bus control functions. The functions are suitable for built-in control that requires high-speed CPU processing.

MB91F127 includes 256 Kbytes built-in flash memory and 14 Kbytes built-in RAM. MB91F128 includes 510 Kbytes built-in flash memory and 14 Kbytes built-in RAM.

The specifications of the devices are best suited for applications requiring high-level CPU processing capabilities, such as navigation system, high-performance FAX, and printer controller.


■ FEATURES

FR-CPU

- 32-bit RISC (FR30), load/store architecture, 5-step pipeline
- Operating frequency: Internal 25 MHz
- General register: 32bit x 16 registers
- 16-bit fixed-length instructions (primitives), 1 instruction/1 cycle
- · Instructions of memory-to-memory transfer, bit processing, and barrel shift: Instructions suitable for built-in control

(Continued)

■ PACKAGE

- Function entry/exit instructions, multi load/store instruction for register data: High-level language compatible instructions
- Register interlock functions: Simple description of assembler language
- Branch instructions with delay slot: Reduced overhead on branching process
- · Built-in multiplier/ Supporting at instruction level

Signed 32-bit multiplying: 5 cycles Signed 16-bit multiplying: 3 cycles

• Interrupt (saving PC and PS): 6 cycles, 16 priority levels

Bus interface

- Maximum of 25 MHz internal operation rate
- 25-bit address bus (32 MB space)
- 16-bit address output, 8/16-bit data input/output
- Basic bus cycle: 2-clock cycle
- Chip selection outputs specifiable in a minimum of 64 Kbytes steps : 6 outputs
- Automatic wait cycle: Specifiable flexibly from 0 cycle to 7 cycles for each area
- Supporting time-division input/output interface for address/data (for area 1 only)
- · Unassigned data/address terminals are available as input/output ports
- Supporting little endian mode (selecting one area from area 1 to area 5)

DMAC (DMA controller)

- 8 channels
- Transfer factor : Interrupt request of built-in resources
- Transfer sequence: Step transfer/Block transfer/Burst transfer/Consecutive transfer
- Transfer data length: Selectable among 8 bits, 16 bits, and 32 bits
- Pausing is allowed by interrupt request

UART

- 3 channels
- Full-duplex double buffer
- Data length: 7 to 9 bits (no parity), 6 to 8 bits (with parity)
- Asynchronous (start-stop synchronization) or CLK synchronous communication is selectable
- Multi processor mode
- Built-in 16-bit timer (U-Timer) used as a baud-rate generator: Generates an arbitrary baud rate
- External clock is available as a transfer clock
- Error detection : parity, frame, and overrun

A/D converter (sequential transducer)

- 8/10-bit resolution, 8 channels
- Sequential comparison and transducer: At 25 MHz, 5.2 μs
- Built-in sample and hold circuit
- Conversion mode: Selectable among single conversion, scan conversion, and repeat conversion
- Activation: Selectable among software, external trigger, and built-in timer

Reload timer

- 16-bit timer: 3 channels
- Internal clock: 2-clock cycle resolution, selectable among 2/8/32 dividing and external clock

(Continued)

Other interval timers

16-bit timer: 3 channels (U-Timer)

• PPG timer: 4 channels

• 16-bit OCU: 4 channels, ICU: 4 channels, Free-run timer: 1 channel

• Watchdog timer: 1 channel

Flash memory 510 KB

• 510 KB FLASH ROM: Read/Write/Erase is allowed with a same power

Built- in RAM 14 KB

• D-bus RAM 12 KB, C-bus RAM 2 KB

Bit search module

• Position of a first bit that changes between "1" and "0" is searched in one cycle, within an MSB of one word.

Interrupt controller

- External interrupt input: Normal interrupt×6 (INT0 to INT5)
- Internal interrupt factors: UART, DMAC, A/D, Reload timer, UTIMER, delay interrupt, PPG, ICU, and OCU
- Priority levels are programmable (16 levels)

Reset factors

Power-on reset/watchdog timer/software reset/external reset

Low power consumption mode

• Sleep/stop mode

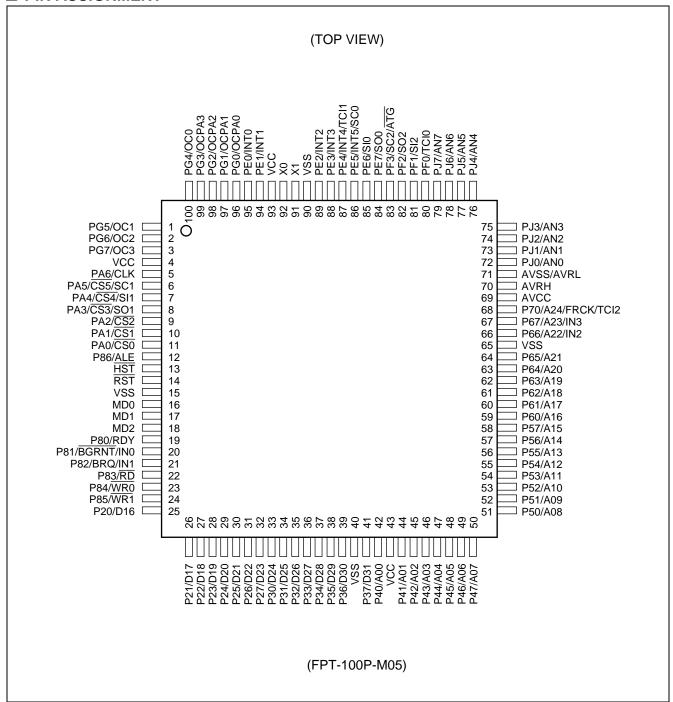
Clock control

- Built-in PLL circuit, selectable among 1-multiplication, and 2-multiplication
- Gearing function: Operation clock frequencies are freely and independently specifiable for CPU and peripherals.

Gear clocks are selectable among 1/1, 1/2, 1/4, and 1/8 (or among 1/2, 1/4, 1/8, and 1/16). Upper limit of peripheral operations is 25 MHz.

Others

• Package: LQFP-100


• CMOS technology: 0.35 μm

• Power supply voltage: 3.3 V±0.3 V

■ SERIES CONFIGURATION

Model name	MB91F127	MB91F128	MB91FV129
Outline	Quantity production	Quantity production	Evaluation product
FLASH memory	256 KB	510 KB	510 KB
D-bus RAM	12 KB	12 KB	16 KB
C-bus RAM	2 KB	2 KB	2 KB

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

Note that the numbers in the table are not pin numbers on a package.

No.	Pin name	Input/output circuit type	Description
1 2 3 4 5 6 7 8	D16/P20 D17/P21 D18/P22 D19/P23 D20/P24 D21/P25 D22/P26 D23/P27	D	Bit 16 through bit 23 of external data bus. The terminals are available as general I/O ports (P20 through P27) when external bus width is specified at 8 bits or in single-chip mode.
9 10 11 12 13 14 15	D24/P30 D25/P31 D26/P32 D27/P33 D28/P34 D29/P35 D30/P36 D31/P37	D	Bit 24 through bit 31 of external data bus. The terminals are available as general I/O ports (P30 through P37) when the terminals are not used.
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	A00/P40 A01/P41 A02/P42 A03/P43 A04/P44 A05/P45 A06/P46 A07/P47 A08/P50 A09/P51 A10/P52 A11/P53 A12/P54 A13/P55 A14/P56 A15/P57	D	Bit 00 through bit 15 of external address bus. The terminals are available as general I/O ports (P40 through P47 and P50 through P57) when the terminals are not used as address buses.
33 34 35 36 37 38 39 40	A16/P60 A17/P61 A18/P62 A19/P63 A20/P64 A21/P65 A22/P66/IN2 A23/P67/IN3	D	Bit 16 through bit 23 of external address bus. The terminals are available as general I/O ports (P60 through P67) when the terminals are not used as address busses. [IN2,IN3]: Input terminals of input capture. This function is active when input capture is operating.

No.	Pin name	Input/output circuit type	Description				
41	A24/P70/FRCK/ TCI2	D	Bit 24 of external address bus. [P70] A24, FRCK and TCI2 are available as general input ports when they are not used. [FRCK] External clock input of free-run timer. This function is active when external clock input of free-run timer is used. [TCI2] External clock input of timer 2. This function is active when external clock input of timer 2 is used.				
42	RDY/P80	D	External ready input. Enter "0" when bus cycle under execution does not complete. This terminal is available as general input/output port when it is not used.				
43	BGRNT/P81/IN0	D	External bus open receive output. This terminal outputs "L" when an external bus is released. This terminal is available as general input/output port when it is not used. [IN0] Input capture input. This function is active when input capture is under input operation.				
44	BRQ/P82/IN1	D	External bus open request input. Enter "1" when releasing external bus. This terminal is available as general input/output port when it is not used. [IN1] Input capture input. This function is active when input capture is under input operation.				
45	RD/P83	D	External bus read strobe. This terminal is available as general input/output port when it is not used.				
46	WR0/P84	D	External bus write strobe.Control signals and data bus byte positions are related as the following:				
			16-bit bus width Single chip mode				
			D31 to D24 WR0 WR0 (port allowed)				
47	WR1/P85	D	D23 to D16 WR1 (port allowed) (port allowed)				
			Note: WR1 is set to Hi-z during resetting. For using with 16-bit bus width, use an external pull-up resistor. [P84 or P85] Available as general input/output ports when WR0 and WR1 are not used.				
48 49 50	CS0/PA0 CS1/PA1 CS2/PA2	D	Chip select 0 output (Low active) Chip select 1 output (Low active) Chip select 2 output (Low active) [PA0,1,or 2] Available as general input/output ports when CS0, CS1 and CS2 are not used.				

No.	Pin name	Input/output circuit type	Description	
51 52 53	CS3/PA3/SO1 CS4/PA4/SI1 CS5/PA5/SC1	D	Chip select 3, 4, 5 output (Low active). [PA3,4,5] Available as general input/output ports when channel 1 of chip select UART is not used. [SO1,SI1,SC1] Data output, data input, and clock terminals of UART1. Active when UART1 operation is allowed.	
54	CLK/PA6	D	System clock output. Outputs a same clock as the same frequency of external bus operation. [PA6] Available as general input/output ports it is not used.	
55 56 57 58 59 60 61 62	OCPA0/PG0 OCPA1/PG1 OCPA2/PG2 OCPA3/PG3 OC0/PG4 OC1/PG5 OC2/PG6 OC3/PG7	D	[OCPA0 to 3] PPG timer outputs. The function is active when PPG timer output is allowed. [OC0 to 3] Output comparison output. The function is active when output comparison output is allowed. [PB0-7] Available as general input/output ports it is not used.	
63 64 65	MD0 MD1 MD2	В	Mode terminals 0 through 2. The terminals specify basic operation mode of MCU. Use the terminals by connecting them directly to VCC or VSS.	
66 67	X0 X1	А	Clock (oscillation) input. Clock (oscillation) output.	
68	RST	С	External reset input.	
69	HST	С	Hardware standby input.	
70	P86/ALE	D	[ALE] Address latch signal output. The function is active when ALE output of EPCR is allowed.	
71 72	INT0/PE0 INT1/PE1 INT2/PE2	D	[INT0,1,2,3] External interrupt request inputs. The input is used whenever necessary if external interrupt is allowed. Output of other functions must be suspended if not on purpose.	
	INT3/PE3		[PE0,1,2,3] General input/output port	
75 76	INT4/PE4/TCI1 INT5/PE5/SC0	D	[INT4,5] External interrupt request inputs. The input is used whenever necessary if concerned external interrupt is allowed. Output of other functions must be suspended if not on purpose. [TCI1] External clock input of timer 1. [SC0] Clock input of UART0.	
			[PE4,5] General input/output port	
77	SI0/PE6	D	[SI0] Data input of UART0. This function is active when data input of UART0 is allowed.	
			[PE6]General input/output port	
78	SO0/PE7	D	[SO0] Data output of UART0. This function is active when data output of UART0 is allowed.	
			[PE7] General input/output port	

(Continued)

No.	Pin name	Input/output circuit type	Description
79	PF0/TCI0	D	[TCI0] External clock input of timer 0.
79	PPO/TOIO		[PF0] General input/output port
80	SI2/PF1	D	[SI2] Data input of UART2. This function is active when data input of UART2 is allowed.
			[PF1] General input/output port
81	SO2/PF2	D	[SO2] Data output of UART2. This function is active when data output of UART2 is allowed.
01	302/FF2		[PF2] General input/output port. This function is active when data output of UART2 is disallowed.
82	SC2/PF3/ATG	D	[SC2] Clock input of UART2 [ATG]External trigger input of A/D converter The input is used whenever necessary if a function concerned is selected. Output of other functions must be suspended if not on purpose.
			[PF3] General input/output port
	AN0/PJ0 AN1/PJ1 AN2/PJ2		[AN0 to AN7] Analog input of A/D converter. This function is active when analog input is specified in AIC register.
83 to 90	AN3/PJ3 AN4/PJ4 AN5/PJ5 AN6/PJ6 AN7/PJ7	E	[PJ0 through PJ7] General input/output ports
91	AVCC	_	VCC power supply for A/D converter
92	AVRH	_	Reference voltage of A/D converter (high potential side). Be sure to turn on or off this terminal with a potential higher than AVRH applied to VCC.
93	AVSS/AVRL	_	A/D converter VSS power source and reference voltage (low potential side).
94 to 96	VCC	_	Power sources of digital circuits. Be sure to connect power source to all terminals when the device is used.
97 to 100	VSS	_	Ground level of digital circuits.

Note: Most of the above terminals multiplex inputs and outputs of I/O ports and resources, as indicated as "XXXX/PXX". If the outputs of ports and resources conflict with each other on the terminals, resources take preferences.

■ INPUT/OUTPUT CIRCUIT TYPE

Туре	Circuit	Remarks
А	X1 Clock input X0 STANDBY	 For 25 MHz system Oscillation feedback register : Approx. 1MΩ Standby control is available.
В	Control signal Mode input Diffused resistor	CMOS level input High-voltage control is available for FLASH test.
С	Diffused resistor N-channel transistor Digital input	CMOS level hysteresis input Standby control is not available.
D	Diffused resistor Digital output Digital output Digital output Digital input	 CMOS level output CMOS level hysteresis input Standby control is available
E	Diffused resistor Analog input STANDBY Digital output Digital input	 Standby control is available CMOS level output CMOS level hysteresis input Analog input

■ HANDLING DEVICES

1. Preventing latch up

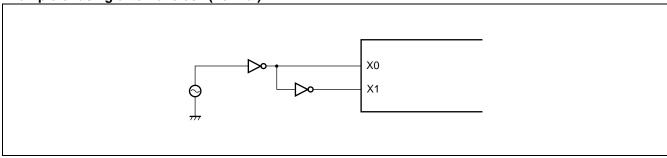
On a CMOS IC, latch up may occur when a voltage higher than VCC or a voltage lower than VSS is applied to input terminal or output terminal, or when a voltage exceeding rated level is applied across VCC and VSS. Latch up causes drastic increase of power source current, which may result in destruction of the element by heat. Take extra care not to exceed maximum rating in use. Also, take extra care so that analog terminal does not exceed digital power source.

2. Treatment of unused input terminals

Leaving unused terminals open may cause malfunction. Apply pull-up or pull-down treatment on unused terminals.

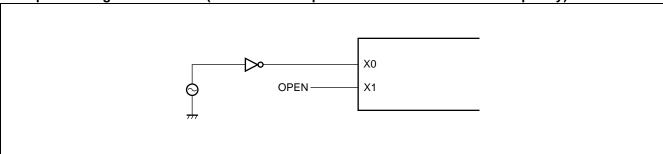
3. External reset input

Complete resetting of internal system requires inputting "L" level signal to $\overline{\mathsf{RST}}$ terminal for a minimum of 5 machine cycles.


4. Notes on using external clock

When using an external clock, supply a clock signal to X0 terminal and supply its antiphase clock to X1 terminal simultaneously. In this case, do not use STOP mode (oscillation stop mode). (Because X1 terminal halts with "H" output under STOP status.)

Under a 12.5 MHz frequency, the device operates with a clock supplied to X0 terminal only.


Figures show examples of using an external clock.

Example of using external clock (normal)

Note: STOP mode (oscillation stop mode) is not available.

Example of using external clock (allowed under operation at 12.5 MHz or lower frequency)

5. Connecting power supply terminals (VCC, VSS)

If two or more VCC, VSS terminals are used, the terminals to be placed under the same potentials are connected with each other internally for preventing malfunctions such as latch up. However, for reducing unwanted radiation, preventing malfunctions of strobe signals and observing total power and current ratings, be sure to connect all of these terminals to power supply and ground externally.

Connecting power supply to VCC - VSS in impedance as low as possible is desirable.

6. Crystal oscillator circuit

Noises around X0 and X1 terminals causes malfunction of the device. Design printed wiring so that X0, X1, and crystal oscillator (or ceramic oscillator), and bypass capacitor to the ground are aligned as close as possible one another. Also the wiring of those elements should not cross with other wiring if possible. Printed wiring with ground wires around X0 and X1 terminals ensures more stable operations. Such designing is strongly recommended.

7. Treating NC terminals

Be sure to leave NC terminals open.

8. Mode terminals (MD0 through MD2)

Do not connect the mode terminals directly to VCC or VSS.

For preventing malfunctions caused by noises, make printed traces between the mode terminals and VCC or VSS as short as possible, and connect the elements in lower impedance.

9. Turning power on

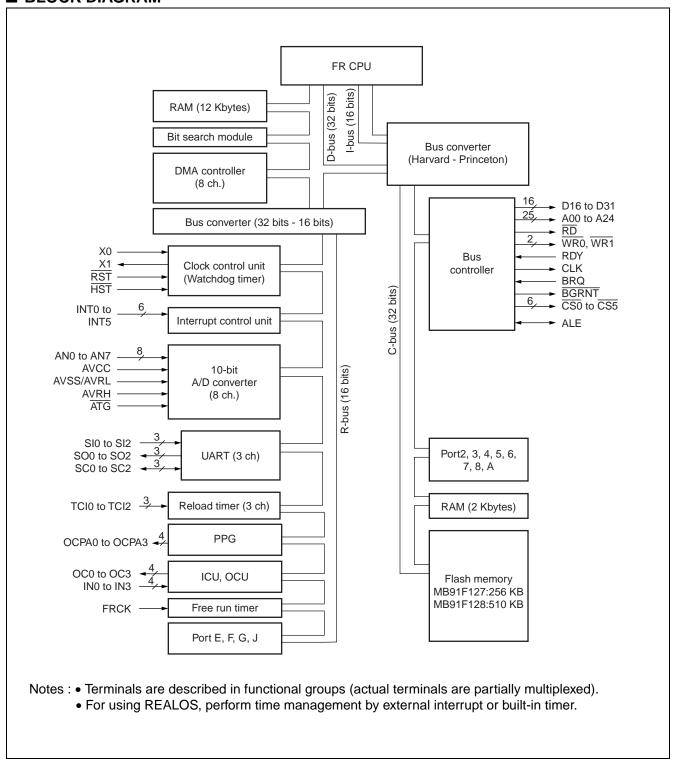
Be sure to turn on the power of the device with \overline{RST} terminal placed under "L" level. Ensure a period at a minimum of 5 cycles of internal operation clock before placing the terminal under "H" level.

10. Terminal status upon turning on power

Status upon turning on the power is indefinite. Upon turning on the power, oscillation starts and the circuit is initialized.

11. Oscillation input upon turning on power

Upon turning on the power, be sure to input a clock signal until oscillation stabilizing wait status is released.


12. Initializing power-on reset

The device includes some built-in registers that are initialized only with power-on reset operation. For initializing the registers, perform power-on reset by turning on the power again.

13. Recovery from Sleep/Stop status

For recovering from Sleep/Stop status initiated by a program in C-Bus RAM, reset the device instead of recovering by an interrupt process.

■ BLOCK DIAGRAM

■ CPU CORE MEMORY SPACE

• MB91F127

	External ROM External bus mode	Internal ROM External bus mode	Single-chip mode	
0000 0000н	I/O	I/O	I/O	Direct addressing areas
0000 0800н	I/O	I/O	I/O	I/O map
0000 1000н	Access inhibit	Access inhibit	Access inhibit	
	Internal RAM 12 KB	Internal RAM 12 KB	Internal RAM 12 KB	
0000 4000н	Access inhibit	Access inhibit	Access inhibit	
0001 0000н		External area	Access inhibit	0001 0000н
		Internal RAM 2 KB	Internal RAM 2 KB	0008 0800н
	External area	Access inhibit	Access inhibit	000С 0000н
		FLASH ROM 256 KB	FLASH ROM 256 KB	
FFFF FFFFH		External area	Access inhibit	0010 0000н FFFF FFFFн

Note: External area is not accessible in single-chip mode. When accessing to external areas, select the internal ROM external bus mode in mode register.

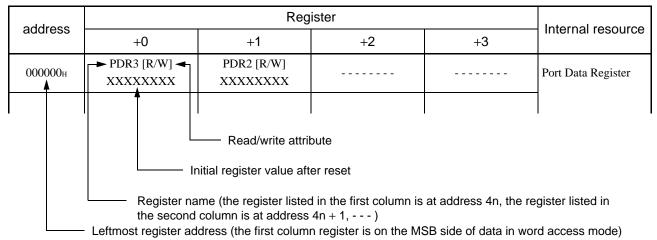
Direct addressing areas

The areas described below are used for I/O processes. The areas, referred to as "direct addressing areas," allow specifying an operand address directly by an instruction. The direct addressing areas varies as the following, depending on size of the data to be accessed.

Byte-data access: 0 to 0FFH
Half-word data access: 0 to 1FFH
Word-data access: 0 to 3FFH

• MB91F128

	External ROM External bus mode	Internal ROM External bus mode	Single-chip mode	
0000 0000н	I/O	I/O	I/O	Direct addressing areas
0000 0800н	I/O	I/O	I/O	I/O map
0000 1000н	Access inhibit	Access inhibit	Access inhibit	
	Internal RAM 12 KB	Internal RAM 12 KB	Internal RAM 12 KB	
0000 4000н				
	Access inhibit	Access inhibit	Access inhibit	
0001 0000н		External area	Access inhibit	0001 0000н
		Internal RAM 2 KB	Internal RAM 2 KB	0008 0000н
	External area			0008 0800н
		FLASH ROM 510 KB	FLASH ROM 510 KB	
				0010 0000н
FFFF FFFFH		External area	Access inhibit	FFFF FFFFH


Note: External area is not accessible in single-chip mode. When accessing to external areas, select the internal ROM external bus mode in mode register.

Direct addressing areas

The areas described below are used for I/O processes. The areas, referred to as "direct addressing areas," allow specifying an operand address directly by an instruction. The direct addressing areas varies as the following, depending on size of the data to be accessed.

Byte-data access: 0 to 0FFH
Half-word data access: 0 to 1FFH
Word-data access: 0 to 3FFH

■ LEGEND OF I/O MAP

Note: Register bit values indicate initial values as shown below:

"1" : Initial value"1"
"0" : Initial value"0"
"X" : Initial value "X"

"-" : Register does not exist physically in this position.

■ I/O MAP

Address		Reg	ister		Internal resource
Address	+0	+1	+2	+3	Internal resource
000000н	PDR3 [R/W] XXXXXXXX	PDR2 [R/W] XXXXXXXX	_	_	
000004н	PDR7 [R/W]	PDR6 [R/W] XXXXXXXX	PDR5 [R/W] XXXXXXXX	PDR4 [R/W] XXXXXXXX	
000008н	_	PDRA [R/W] XXXXXXXX	_	PDR8[R/W] XXXXXX	Port data Registe
00000Сн		_	_	1	
000010н	_	_	PDRE [R/W] XXXXXXXX	PDRF [R/W] XXXXXXXX	
000014н	PDRG [R/W] XXXXXXXX	_	_	PDRJ [R/W] XXXXXXXX	
000018н	_	_	_	_	Reserved
00001Сн	SSR [R/W] 00001-00	SIDR [R/W] XXXXXXXX	SCR [R/W] 00000100	SMR [R/W] 00 0 - 00	UART0
000020н	SSR [R/W] 00001-00	SIDR [R/W] XXXXXXXX	SCR [R/W] 00000100	SMR [R/W] 00 0 - 00	UART1
000024н	SSR [R/W] 00001-00	SIDR [R/W] XXXXXXXX	SCR [R/W] 00000100	SMR [R/W] 00 0 - 00	UART2
000028н	TMRL XXXXXXXX	R [W] XXXXXXXX	TMR [W] XXXXXXXX XXXXXXX		Dalaad Timar O
00002Сн	_	_		R [R/W] 00000000	Reload Timer 0
000030н		.R [W] XXXXXXXX		R [W] XXXXXXXX	Reload Timer 1
000034н	_	_		R [R/W] 00000000	- Reload Timer I
000038н	_	_	_	_	Reserved
00003Сн		.R [W] XXXXXXXX		R [W] XXXXXXXX	Reload Timer 2
000040н	_	_	TMCSR [R/W]		- Reload Tilliel 2
000044н	IPCF XXXXXXXX	P1[R] XXXXXXXX	IPCP0[R] XXXXXXXX XXXXXXX		
000048н		P3[R] XXXXXXXX	IPCP2[R] XXXXXXXX XXXXXXX		16 bit ICU
00004Сн	_	ICS23[R/W] 00000000	ICS01[R/W] 00000000		
000050н	ADCI 00101-XX	R [W] XXXXXXXX	ADCS 000000000	[R/W] 00000000	A/D converter (Serially compared)

A -l -l		Regis	ster		Internal management
Address	+0	+1	+2	+3	Internal resource
000054н	OCCP1[R/W] XXXXXXXX XXXXXXX			CP0[R/W] XX XXXXXXXX	— 16 bit OCU
000058н	OCCP XXXXXXXX	3[R/W] XXXXXXXX		CCP2[R/W] XX XXXXXXXX	10 bit 000
00005Сн	_	_			Reserved
000060н	_	_			Reserved
000064н	OCS2, XXX00000			S0, 1[R/W] 000 0000XX00	16 bit OCU
000068н	_	_			Reserved
00006Сн	TCDT [R/W] 00000000 00000000		TCCS [R/W] 0 00000000		Free run timer
000070н	_		_		Reserved
000074н	_	_	_		Reserved
000078н	UTM/UTI 00000000			UTIMC[R/W] 0 00001	U-Timer0
00007Сн	UTM/UTI 00000000	MR [R/W] 00000000	_	UTIMC[R/W] 0 00001	U-Timer1
000080н	UTM/UTI 00000000		_	UTIMC[R/W] 0 00001	U-Timer2
000084н	-	_			Reserved
000088н	_	_			Reserved
00008Сн	_	_	_		Decembed
000090н	_	_	_		Reserved
000094н	EIRR [R/W] 00000000	ENIR [R/W] 00000000	_		External interrupt/
000098н	EHVR [R/W] 0000	ELVR [R/W] 00000000		_	NMI

Address		Internal resource				
Address	+0	+1	+2	+3	- internal resource	
00009Сн		-	_			
0000А0н		_				
0000А4н			_			
0000А8н			_			
0000АСн		-	_			
0000В0н			_			
0000В4н			_		Reserved	
0000В8н		-	_			
0000ВСн		-	_			
0000С0н		-	_			
0000С4н		-	_			
0000С8н		-	_			
0000ССн		-	_			
0000D0н	_	_	DDRE [W] 00000000	DDRF [W] 00000000	Port direction register	
0000Д4н		AIC3[W] 11111111	_	_	A/D converter	
0000D8н	DDRG [W] 00000000		_	DDRJ [W] 00000000	Port direction register	
0000DСн	GCN1 00110010			GCN2[R/W] 00000000	PPG ctl	
0000Е0н	PTMF 11111111			R0 [W]	DDCO	
0000Е4н	PDUT XXXXXXXX		PCNH0[R/W] 0000000 -	PCNL0[R/W] 00000000	PPG0	
0000Е8н	PTMR1 [R] PCSR1 [W] 11111111 11111111 XXXXXXXX XXXXXXXX		DDC4			
0000ЕСн	PDUT1 [W] XXXXXXXX XXXXXXX		PCNH1[R/W] 0000000 -	PCNL1[R/W] 00000000	PPG1	
0000F0н	PTMR2 [R] PCSR2 [W] 11111111 11111111 XXXXXXXX XXXXXXXX		DDC2			
0000F4н	PDUT2 [W] XXXXXXXX XXXXXXX		PCNH2[R/W] 0000000 -	PCNL2[R/W] 00000000	PPG2	
0000F8н	PTMF 11111111			PCSR3 [W] XXXXXXXX XXXXXXX		
0000FCн		3 [W]	PCNH3[R/W] 0000000 -	PCNL3[R/W] 00000000	- PPG3	

A dduccc		Reg	ister		Internal reserves	
Address —	+0	+1	+2	+3	Internal resource	
000100н to 0001FCн		Reserved				
000200н		DPDP	[R/W] 	000		
000204н	00	DACSR 000000 00000000	[R/W] 00000000 000000	000	DMAC	
000208н						
00020Сн						
000210н to 0002FCн		Reserved				
000300н to 0003ECн		Reserved				
0003F0н	BSD0 [W] XXXXXXXX XXXXXXXX XXXXXXXX					
0003F4 н	BSD1 [R/W] XXXXXXXX XXXXXXXX XXXXXXXX					
0003F8н	F8H BSDC [W] XXXXXXXX XXXXXXXX XXXXXXXX					
0003FСн	XXXX	BSRR XXXX XXXXXXX	[R/W] XXXXXXXX XXXX	(XXXX		

Address		Reg	ister		Internal resource	
Address	+0	+1	+2	+3	- internal resource	
000400н	ICR00 [R/W] 11111	ICR01[R/W] 11111	ICR02[R/W] 11111	ICR03[R/W] 11111		
000404н	ICR04[R/W] 11111	ICR05[R/W] 11111	ICR06[R/W] 11111	ICR07[R/W] 11111		
000408н	ICR08 [R/W] 11111	ICR09[R/W] 11111	ICR10[R/W] 11111	ICR11[R/W] 11111		
00040Сн	ICR12[R/W] 11111	ICR13[R/W] 11111	ICR14[R/W] 11111	ICR15[R/W] 11111		
000410н	ICR16[R/W] 11111	ICR17[R/W] 11111	ICR18[R/W] 11111	ICR19[R/W] 11111		
000414н	ICR20[R/W] 11111	ICR21[R/W] 11111	ICR22[R/W] 11111	ICR23[R/W] 11111		
000418н	ICR24 [R/W] 11111	ICR25[R/W] 11111	ICR26[R/W] 11111	ICR27[R/W] 11111	Interrupt controller	
00041Сн	ICR28[R/W] 11111	ICR29[R/W] 11111	ICR30[R/W] 11111	ICR31[R/W] 11111		
000420н	ICR32[R/W] 11111	ICR33[R/W] 11111	ICR34[R/W] 11111	ICR35[R/W] 11111		
000424н	ICR36[R/W] 11111	ICR37[R/W] 11111	ICR38[R/W] 11111	ICR39[R/W] 11111		
000428н	ICR40[R/W] 11111	ICR41[R/W] 11111	ICR42[R/W] 11111	ICR43[R/W] 11111		
00042Сн	ICR44[R/W] 11111	ICR45[R/W] 11111	ICR46[R/W] 11111	ICR47[R/W] 11111		
000430н	DICR [R/W]	HRCL [R/W] 11111	_	_	Delay interrupt	
000434н to 00047Сн		-	_		Reserved	
000480н	RSRR/WTCR [R/W] 1XXXX - 00	STCR [R/W] 000111	PDDR [R/W] 0000	CTBR [W] XXXXXXXX	Clock controller	
000484н	GCR [R/W] 110011 - 1	WPR [W] XXXXXXXX	_	_	- block	
000488н	PTCR [R/W] 00 0		_		PLL controller block	
00048Сн to 0005FСн		_	_		Reserved	

(Continued)

Address	Register						
Address	+0	+1	+2	+3	Internal resource		
000600н	DDR3 [W] 00000000	DDR2 [W] 00000000	_	_			
000604н	DDR7 [W]	DDR6 [W] 00000000	DDR5 [W] 00000000	DDR4 [W] 00000000	Data direction reg- ister		
000608н	_	DDRA [W] -0000000	_	DDR8 [W] 000000			
00060Сн	ASR′ 00000000			1 [W] 00000000			
000610н	ASR2 00000000	2 [W] 00000010		2 [W] 00000000			
000614н	ASR3 00000000		AMR3 [W] 00000000 00000000 AMR4 [W] 00000000 00000000 AMR5 [W] 00000000 00000000				
000618н	ASR4 00000000						
00061Сн	ASR5 00000000						External bus inter- face
000620н	AMD0 [R/W] XX111	AMD1 [R/W] 0 00000	AMD32[R/W] 00000000	AMD4 [R/W] 0 00000			
000624н	AMD5[R/W] 0 00000	DSCR [W] 00000000		[R/W] 00 000			
000628н	EPCF 1 - 1100		EPCR1 [W]				
00062Сн	DMCR- 00000000		DMCR: 00000000	5 [R/W] 0000000-			
000630н to 0007BCн		_	_		Reserved		
0007С0н	FSTR [R/W] 000XXXX0	_	_	_	Flash memory		
0007С4н to 0007F8н		_	_		Reserved		
0007FСн	_	_	LER [W]	MODR [W] XXXXXXXX	Little endian register mode register		

Note: Do not issue RMW instructions to a register with write-only bit.

RMW instructions (RMW : Read modify write)

AND Rj, @Ri OR Rj, @Ri EOR Rj, @Ri
ANDH Rj, @Ri ORH Rj, @Ri EORH Rj, @Ri
ANDB Rj, @Ri ORB Rj, @Ri EORB Rj, @Ri
BANDL #u4, @Ri BORL #u4, @Ri BEORL #u4, @Ri
BANDH #u4, @Ri BORH #u4, @Ri BEORH #u4, @Ri

Data in "Reserved" or "-" area is indefinite.

■ INTERRUPT CAUSES, INTERRUPT VECTORS AND INTERRUPT CONTROL REGISTER ALLOCATIONS

Intown out access	Interrup	ot number	Interru	pt level	TBR default
Interrupt causes	Decimal	Hexadecimal	Register*1	Offset	Address*2
Reset	0	00	_	3FСн	000FFFCн
Reserved by system	1	01	_	3F8н	000FFFF8н
Reserved by system	2	02	_	3F4н	000FFFF4н
Reserved by system	3	03	_	3F0н	000FFFF0 _H
Reserved by system	4	04	_	3ЕСн	000FFFECн
Reserved by system	5	05	_	3Е8н	000FFFE8н
Reserved by system	6	06	_	3Е4н	000FFFE4н
Reserved by system	7	07		3Е0н	000FFFE0н
Reserved by system	8	08	_	3DСн	000FFFDCн
Reserved by system	9	09	_	3D8н	000FFFD8н
Reserved by system	10	0A	_	3D4н	000FFFD4н
Reserved by system	11	0B	_	3D0н	000FFFD0н
Reserved by system	12	0C	_	3ССн	000FFFCCн
Reserved by system	13	0D	_	3С8н	000FFFC8н
Undefined instruction exception	14	0E	_	3С4н	000FFFC4н
NMI request	15	0F	15 (F _H) fixed	3С0н	000FFFC0н
External interrupt 0	16	10	ICR00	3ВСн	000FFFBCн
External interrupt 1	17	11	ICR01	3В8н	000FFFB8н
External interrupt 2	18	12	ICR02	3В4н	000FFFB4н
External interrupt 3	19	13	ICR03	3В0н	000FFFB0н
UART 0 reception complete	20	14	ICR04	3АСн	000FFFACн
UART 1 reception complete	21	15	ICR05	3А8н	000FFFA8н
UART 2 reception complete	22	16	ICR06	3А4н	000FFFA4н
UART 0 transmission complete	23	17	ICR07	3А0н	000FFFA0н
UART 1 transmission complete	24	18	ICR08	39Сн	000FFF9Сн
UART 2 transmission complete	25	19	ICR09	398н	000FFF98н

Intonuount correct	Interrup	t number	Interrup	ot level	TBR default	
Interrupt causes	Decimal	Hexadecimal	Register*1	Offset	Address*2	
DMAC 0 (end, error)	26	1A	ICR10	394н	000FFF94н	
DMAC 1 (end, erro)	27	1B	ICR11	390н	000FFF90н	
DMAC 2 (end, erro)	28	1C	ICR12	38Сн	000FFF8Сн	
DMAC 3 (end, erro)	29	1D	ICR13	388н	000FFF88н	
DMAC 4 (end, erro)	30	1E	ICR14	384н	000FFF84н	
DMAC 5 (end, erro)	31	1F	ICR15	380н	000FFF80н	
DMAC 6 (end, erro)	32	20	ICR16	37Сн	000FFF7Сн	
DMAC 7 (end, erro)	33	21	ICR17	378н	000FFF78н	
A/D (sequential type)	34	22	ICR18	374н	000FFF74н	
Reload timer 0	35	23	ICR19	370н	000FFF70н	
Reload timer 1	36	24	ICR20	36Сн	000FFF6Сн	
Reload timer 2	37	25	ICR21	368н	000FFF68н	
External interrupt 4	38	26	ICR22	364н	000FFF64н	
External interrupt 5	39	27	ICR23	360н	000FFF60н	
Reserved by system	40	28	ICR24	35Сн	000FFF5Сн	
Reserved by system	41	29	ICR25	358н	000FFF58н	
U-TIMER 0	42	2A	ICR26	354н	000FFF54н	
U-TIMER 1	43	2B	ICR27	350н	000FFF50 _H	
U-TIMER 2	44	2C	ICR28	34Сн	000FFF4Сн	
FLASH memory	45	2D	ICR29	348н	000FFF48н	
Reserved by system	46	2E	ICR30	344н	000FFF44н	
Reserved by system	47	2F	ICR31	340н	000FFF40н	
PPG0	48	30	ICR32	33Сн	000FFF3Сн	
PPG1	49	31	ICR33	338н	000FFF38н	
PPG2	50	32	ICR34	334н	000FFF34н	
PPG3	51	33	ICR35	330н	000FFF30н	
ICU0 (capture)	52	34	ICR36	32Сн	000FFF2Сн	
ICU1 (capture)	53	35	ICR37	328н	000FFF28н	
ICU2 (capture)	54	36	ICR38	324н	000FFF24н	
ICU3 (capture)	55	37	ICR39	320н	000FFF20н	

(Continued)

Interrupt course	Interrup	t number	Interru	ot level	TBR default
Interrupt causes	Decimal	Hexadecimal	Register*1	Offset	Address*2
OCU0 (match)	56	38	ICR40	31Сн	000FFF1Сн
OCU1 (match)	57	39	ICR41	318н	000FFF18н
OCU2 (match)	58	3A	ICR42	314н	000FFF14н
OCU3 (match)	59	3B	ICR43	310н	000FFF10н
Reserved by system	60	3C	ICR44	30Сн	000FFF0Сн
16 bit free-run timer	61	3D	ICR45	308н	000FFF08н
Reserved by system	62	3E	ICR46	304н	000FFF04н
Delay interrupt cause bit	63	3F	ICR47	300н	000FFF00н
Reserved by system (used by REALOS) *3	64	40	_	2FСн	000FFEFCн
Reserved by system (used by REALOS) *3	65	41	_	2F8н	000FFEF8⊦
Used by INT	66 to 255	42 to FF	_	2F4н to 000н	000FFEF4н to 000FFC00н

^{*1 :} ICR specifies interrupt levels for interrupt requests, using the registers in interrupt controller. ICR is provided for each interrupt request.

Information: An 1 Kbyte area starting with an address indicated by TBR is the vector area for EIT. Size of the area for one vector is 4 byte. Relation between a vector number and a vector address is as follows:

vctadr =
$$TBR + vctofs$$

= $TBR + (3FCH - 4 \times vct)$

Vctadr Vector address, vctofs: Vector offset, vct: Vector number

^{*2 :} TBR is a register that indicates a head address of the vector table for EIT.

An address that is found by adding offset values defined by TBR and EIT cause, is a vector address.

^{*3 :} If REALOS/FR is used, 0x40 and 0x41 interrupts are used for system code.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

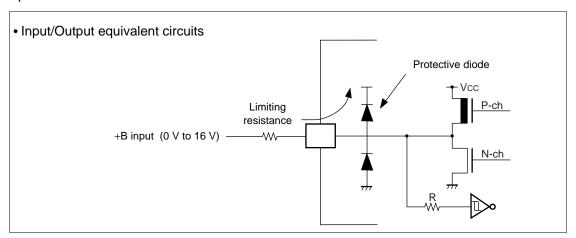
(Vss = AVss = 0 V)

Parameter	Symbol	Ra	ating	Unit	Remarks
Farameter	Symbol	Min	Max	Ullit	Remarks
Power supply voltage	Vcc	Vss - 0.3	Vss + 4.0	V	
Analog supply voltage	AVcc	Vss - 0.3	Vss + 4.0	V	*1
Analog reference voltage	AVRH	Vss - 0.3	Vss + 4.0	V	*1
Input voltage	Vı	Vss - 0.3	Vcc + 0.3	V	
Analog input voltage	VIA	Vss - 0.3	Avcc + 0.3	V	
Output voltage	Vo	Vss - 0.3	Vcc + 0.3	V	
Maximum clamp current	ICLAMP	- 2.0	+ 2.0	mA	*5
Total maximum clamp current	Σ ICLAMP		20	mA	*5
"L" level maximum output current	loL		10	mA	*2
"L" level average output current	lolav		4	mA	*3
"L" level maximum total output current	ΣΙοι		100	mA	
"L" level average total output cur- rent	Σ lolav	_	50	mA	*4
"H" level maximum output current	Іон	_	-10	mA	*2
"H" level average output current	lohav	_	-4	mA	*3
"H" level maximum total output current	ΣІон	_	-50	mA	
"H" level average total output current	ΣΙομαν	_	-20	mA	*4
Power consumption	Pd	_	500	mW	
Operating temperature	TA	-30	+70	°C	
Storage temperature	Tstg	-55	+150	°C	

^{*1 :} Care must be taken that AV $_{CC}$, AVRH do not exceed V $_{CC}$ + 0.3 V. Also, care must be taken that AVRH do not exceed AV $_{CC}$.

- Use within recommended operating conditions.
- Use at DC voltage (current) .
- The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.

^{*2 :} Maximum output current defines a peak value of a specific terminal.


^{*3 :} Average output current defines a mean value of current flow within a period of 100 ms in a specific terminal.

^{*4 :} Average total output current defines a mean value of current flow within a period of 100 ms in all terminals.

^{*5: •} Aplicable to pins: D16 to D31, A00 to A24, RDY, BGRNT, BRQ, RD, WR0, WR1, CS0 to CS5, CLK, OCPA0 to OCPA3, OC0 to OC3, ALE, INT0 to INT5, SI0, SI2, SO0, SO2, TCI0, SC2

(Continued)

- The value of the limiting resistance should be set so that when the signal is applied the input current to the microcontroller pins does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the VCC pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power suplly is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the input pin open.
- Sample recommended circuits

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(Vss = AVss = 0 V)

Parameter	Symbol	Va	lue	Unit	Remarks	
raiailletei	Зуппоп	Min	Max	Oille	Remarks	
		3.0	3.6		Normal operation	
Power supply	Vcc	2.0	3.6	V	Retain RAM data under "stop" condition	
Analog supply voltage	Avcc	Vss - 0.3	Vss + 3.6	V		
Analog reference voltage	AVRH	AVss	AVcc	V		
Operating temperature	TA	-30	+70	°C		

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

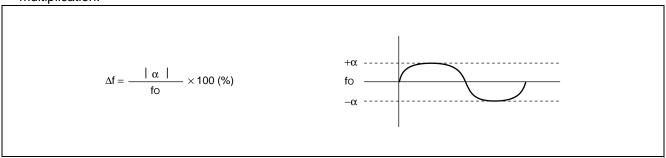
(AVcc = Vcc = 3.3 V \pm 0.3 V, AVss = Vss = 0 V, TA = -30 °C to +70 °C)

Davamatar	0	Din nama	Condition		Value		11:4	Damarka
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
"H" level input voltage	Vihs	Hysteresis input terminal	_	0.8 × Vcc	_	Vcc + 0.3	V	*
"L" level input voltage	VILS	Hysteresis input terminal	_	Vss-0.3	_	0.2 × Vcc	V	*
"H" level output voltage	Vон	Port2 to PortJ	$V_{CC} = 3.3 \text{ V}$ $I_{OH} = -4.0 \text{ mA}$	Vcc-0.5	_	_	V	
"L" level output voltage	Vol	Port2 to PortJ	Vcc = 3.3 V IoL = 4.0 mA	_	_	0.4	٧	
Input leak current	lu	Port2 to PortJ	Vcc = 3.6 V Vss < VI < Vcc	_	_	±5	μΑ	
	Icc		25 MHz Vcc = 3.3 V	_	75	100	mA	
Power supply	Icc	VCC	25 MHz Vcc = 3.3 V		85	120	mA	FLASH writing
current	Iccs	VCC	25 MHz Vcc = 3.3 V	_	60	85	mA	Sleeping
	Іссн		T _A = 25 °C Vcc = 3.3 V	_	10	150	μΑ	Stopping
Input capacity	Cin	Other than AVCC, AVSS, AVRH, VCC, VSS	_	_	10	_	pF	

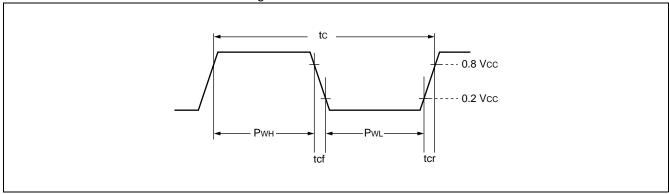
^{*:} Refer to "■ INPUT/OUTPUT CIRCUIT TYPE".

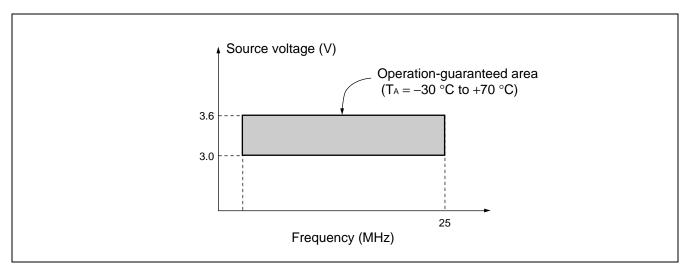
4. AC Characteristics

(1) Clock Timing Ratings


$$(Vcc = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ AVss} = \text{Vss} = 0 \text{ V}, \text{ T}_{A} = -30 \,^{\circ}\text{C to } +70 \,^{\circ}\text{C})$$

Paramet	or	Symbol	Condition	Val	lue	Unit	Remarks
Paramet	eı	Syllibol	Condition	Min	Max	Offic	Remarks
Clock frequency (High speed, autor lation)	matic oscil-			10	25	MHz	Self oscillation allowable range
Clock frequency (High speed, PLL	used)	fc		10	25	MHz	PLL-use allowable area for self oscillation and external clock input *1
Clock frequency (High speed, 1/2 division in- put)			_	10	25	MHz	External clock input allowable range
Clock cycle time		t c		40	100	ns	
Frequency regulati (when locked)	Frequency regulation (when locked)			_	10	%	*2
Input clock pulse w	vidth	Pwh, Pwl	_	9.5	_	ns	
Input clock rise and	d fall time	tcr tcr	_	_	8	ns	(tcr + tcr)
Internal operation	CPU system	fср		0.625 *3	25	MHz	
clock frequency	Peripheral system	f CPP		0.625 *3	25	MHz	
Internal operation	CPU system	tcp		40	1600 *3	ns	
clock cycle time	Peripheral system	t lcpp		40	1600 *3	ns	


^{*1 :} Although PLL allows selection among x1 and x2 multiplication modes, the selection is limited by oscillation frequency as follows:


Specifying "x2 multiplication" is not allowed if oscillation frequency exceeds 12.5 MHz.

*2: Frequency regulation indicates a maximum fluctuation from a specified center frequency under locked frequency multiplication.

*3 : This is a value in the case where 10 MHz signal, a minimum value of clock frequency, is input to X0 and where 1/2-division in oscillation circuit and 1/8-gear are used.

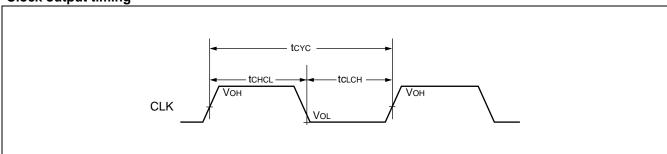
(2) Clock Output Timing

 $(Vcc = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ AVss} = \text{Vss} = 0 \text{ V}, \text{ T}_{A} = -30 \,^{\circ}\text{C to } +70 \,^{\circ}\text{C})$

Parameter Symbol		Symbol Pin name 0		Va	Unit	Remarks	
Farameter	Syllibol	Fill Hallie	Condition	Min	Max	Oilit	Remarks
Cycle time	t cyc	CLK		t cp	_	ns	*1
CLK↑ →CLK↓	t chcL	CLK	_	1 / 2 × tcyc - 10	1 / 2 × tcyc + 10	ns	*2
CLK↓→CLK↑	t clch	CLK		1 / 2 × tcyc - 10	1 / 2 × tcyc + 10	ns	*3

- *1 : teye is a frequency of 1 clock cycle indicating gear cycle.
- *2 : The values indicate specifications where x1 gear cycle is used.

If gear cycle of 1/2, 1/4, or 1/8 is specified, calculate in the formula below by substituting 1/2, 1/4, or 1/8 into n.

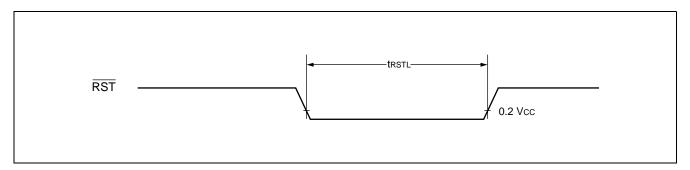

$$\begin{array}{ll} Min: \; (1-n\,/\,2) \; \times t \text{cyc} \; -10 \\ Max: \; (1-n\,/\,2) \; \times t \text{cyc} + 10 \end{array}$$

*3 : The values indicate specifications where x1 gear cycle is used.

If gear cycle of 1/2, 1/4, or 1/8 is specified, calculate in the formula below by substituting 1/2, 1/4, or 1/8 into n.

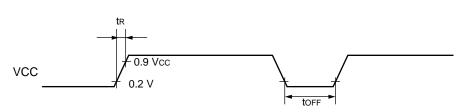
Min:
$$n / 2 \times teyc - 10$$

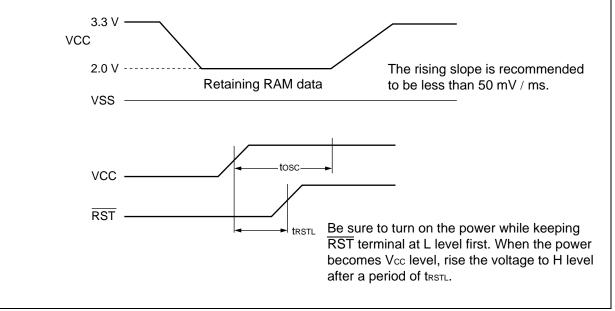
Max: $n / 2 \times teyc + 10$


Clock output timing

(3) Reset Input Ratings

$$(Vcc = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ AVss} = \text{Vss} = 0 \text{ V}, \text{ T}_{A} = -30 \text{ °C to } +70 \text{ °C})$$


Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Parameter	Symbol Fill han	1 III IIaiiie	Condition	Min	Max	Onic	Kemarks
Reset input time	t RSTL	RST		$t_{\text{CP}} \times 5$	—	ns	

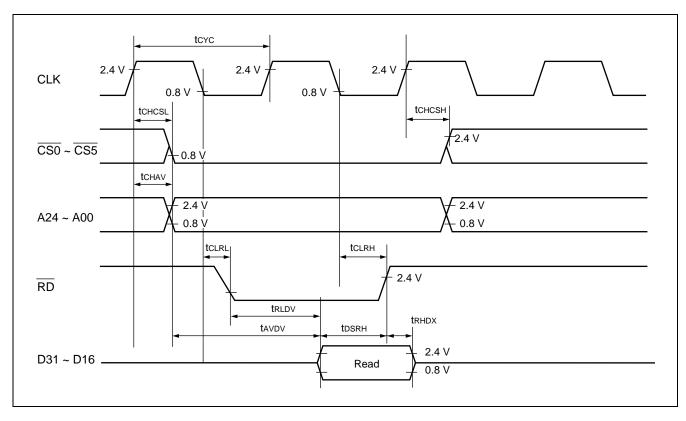

(4) Power-on Reset

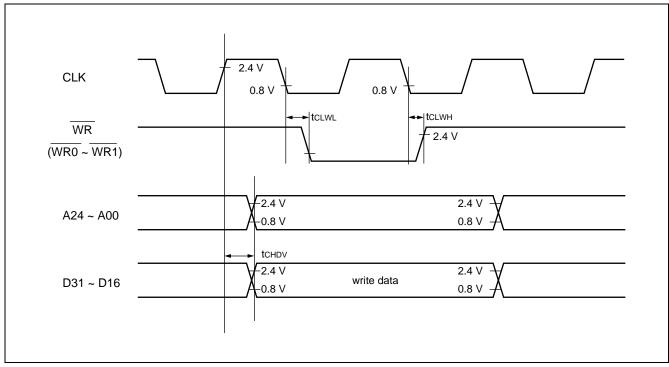
 $(Vcc = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ Vss} = 0 \text{ V}, \text{ T}_A = -30 \text{ }^{\circ}\text{C to } +70 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Pin	Condition	Val	lue	Unit	Remarks	
Farameter	Symbol	name		Min	Max	Oilit	Remarks	
Power supply rise time	t R	VCC	Vcc = 3.3 V	_	20	ms	Vcc < 0.2 V before turning on power	
Power supply shut off time	toff	VCC	_	2	_	ms		
Oscillation stabilizing wait time	tosc	_	_	$2 \times tc \times 2^{21} + 100 \ \mu s$	_	ns		

A sudden change of supply voltage may activate the power-on reset function. It is recommended that power voltage should be changed smoothly with less fluctuation of voltages.

(5) Normal Bus Access Read/Write Operation

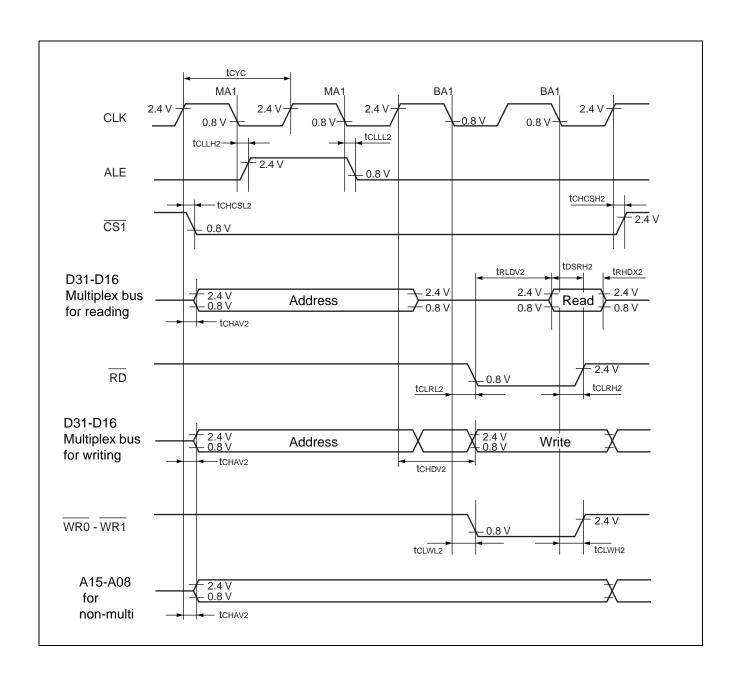

(Vcc = 3.3 V \pm 0.3 V, Vss = 0 V, T_A = -30 °C to +70 °C)


Parameter	Symbol	Pin name	Condition	Value		l lm:4	Dama da
				Min	Max	Unit	Remarks
CS0 to CS5 delay time	t chcsL	CLK CS0 to CS5 CLK A24 to A00 CLK D31 to D16		_	15	ns	
CS0 to CS5 delay time	tснсsн			_	15	ns	
Address delay time	tchav			_	15	ns	
Data delay time	tchdv			_	15	ns	
RD delay time	t clrl	CLK RD		_	15	ns	
RD delay time	t clrh			_	15	ns	
WR0, 1 delay time	t CLWL	CLK WR0, 1		_	15	ns	
WR0, 1 delay time	t cLWH			_	15	ns	
Valid address→ Valid data input time	tavdv	A24 to A00 D31 to D16		_	3 / 2 × tcyc – 25	ns	*1 *2
RD↓→ Valid data input time	trldv	RD D31 to D16		_	tcyc – 25	ns	*1
Data setup →RD↑ Time	t dsrh			25	_	ns	
RD↑→ Data hold time	t RHDX			0	_	ns	

^{*1 :} If the bus is expanded by automatic wait insertion or RDY input, add time (tcyc × the number of expanded cycles) to the rated value.

Formula: $(2 - n / 2) \times t$ cyc - 25

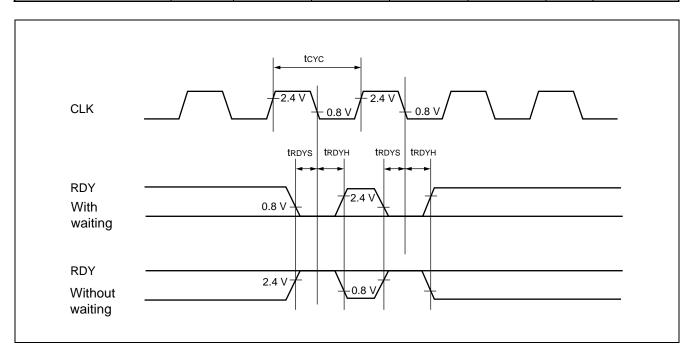
^{*2 :} The ratings are based on conditions with "gear cycle \times 1". If gear cycle of 1/2, 1/4, or 1/8 is specified, calculate in the formula below by substituting 1/2, 1/4, or 1/8 into n.



(6) Timeshared Bus Access Read/Write Operations

(Vcc = 3.3 V \pm 0.3 V, Vss = 0 V, T_A = -30 °C to +70 °C)

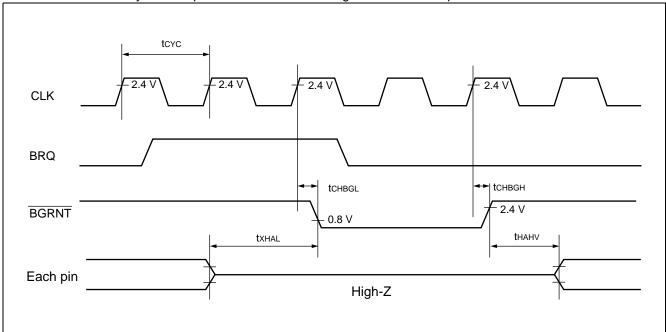
	Symbol	Pin name	Condition	Value			
Parameter				Min	Max	Unit	Remarks
ALE delay time	tcllh2	CLK ALE	_		10	_	
ALE delay time	tclll2			_	10		
CS1 delay time	tchcsl2	CLK CS1		_	15		
CS1 delay time	tchcsh2			_	15	ns	
Address delay time	t CHAV2	CLK D31 to D16		_	15	ns	
Data delay time	t CHDV2			_	15	ns	
RD delay time	tclrl2	CLK RD		_	10	ns	
RD delay time	tclrh2			_	10	ns	
WR0, 1 delay time	tcLWL2	CLK WR0 WR1		_	10	ns	
WR0, 1 pulse width	tcLWH2			_	10	ns	
RD↓→ Valid data input time	t RLDV2	RD D31 to D16		_	tcyc - 25	_	*
Data setup →RD↑time	t _{DSRH2}			25	_	ns	
RD↑→ Data hold time	trhdx2			0		ns	


^{*:} If the bus is expanded by automatic wait insertion or RDY input, add time (tcyc x the number of expanded cycles) to the rated value.

(7) Ready Input Timing

(Vcc = 3.3 V \pm 0.3 V, AVss = Vss = 0 V, T_A = -30 °C to +70 °C)

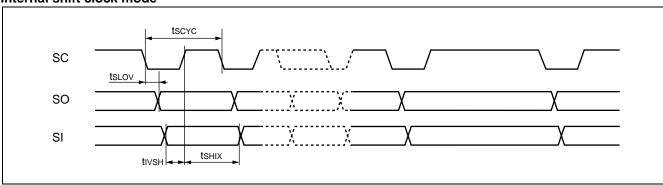
Parameter	Symbol Pin nan	Din name	Condition	Val	lue	Unit	Remarks
Farailletei		riii iiaiiie		Min	Max		
RDY setup time RCLK↓	t RDYS	RDY CLK		15	_	ns	
CLK↓→ RDY hold time	t RDYH	CLK RDY	_	0	_	ns	



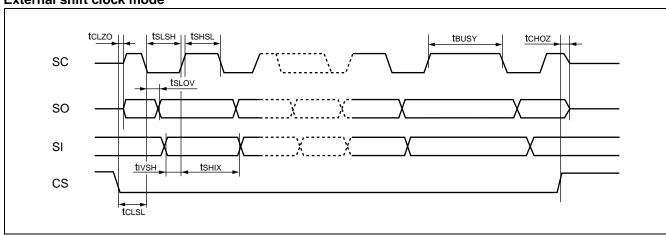
(8) Hold Timing

(Vcc = 3.0 V \pm 0.3 V, AVss = Vss = 0 V, T_A = -30 °C to +70 °C)

Parameter	Symbol	Pin name	Condition	٧	alue	Unit	Remarks
rarameter	Symbol			Min	Max		
BGRNT delay time	t CHBGL	CLK		_	10	ns	
BGRNT delay time	t снвGн	BGRNT		_	10	ns	
Terminal floating →BGRNT↓ time	txhal	BGRNT	_	tcyc - 10	toyc + 10	ns	
BGRNT↑ →Terminal valid time	t hahv	DGKINI		tcyc - 10	tcyc + 10	ns	


(9) UART Timing

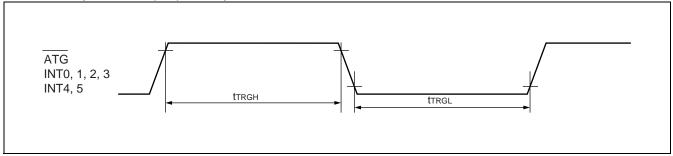
(Vcc = 3.3 V
$$\pm$$
 0.3 V, Vss = 0 V, TA = -30 °C to +70 °C)


					· · · · · ·		
Parameter	Symbol	Pin name	Condition	Val	ue	Unit	Remarks
i di dilictoi	Symbol	i iii iiaiiie	Condition	Min	Max	Oilit	
Serial clock cycle time	tscyc	_		8 tcycp*	_	ns	
$SC\!\!\downarrow \to SO$ delay time	t sLov	_	Internal shift	-10	+50	ns	
Valid SI → SC \uparrow	tıvsн	_	clock mode	50	_	ns	
$SC\!\!\uparrow \to Valid\;SI\;hold\;time$	t shix	_		50	_	ns	
Serial clock "H" pulse width	t shsl	_		4 tcycp* - 10	_	ns	
Serial clock "L" pulse width	t slsh	_		4 tcycp* - 10	_	ns	
$SC\!\!\downarrow \to SO$ delay time	t sLov	_		0	50	ns	
Valid SI → SC \uparrow	t ıvsh	_	External shift	50	_	ns	
$SC\!\!\uparrow \to Valid\;SI\;hold\;time$	t shix	_	clock mode	50	_	ns	
Serial busy time	t BUSY	_		_	6 tcycp*	ns	
$CS\!\!\downarrow \to SC,SO$ delay time	t clzo	_		_	50	ns]
$CS\!\!\downarrow o SC$ input mask time	tclsl	_		_	3 tcycp*	ns]
$SC\uparrow \rightarrow SC$, SO Hi-z time	t cHOZ	_		50	_	ns	

^{*:} tcycp is a cycle time of peripheral system clock.

Internal shift clock mode

External shift clock mode

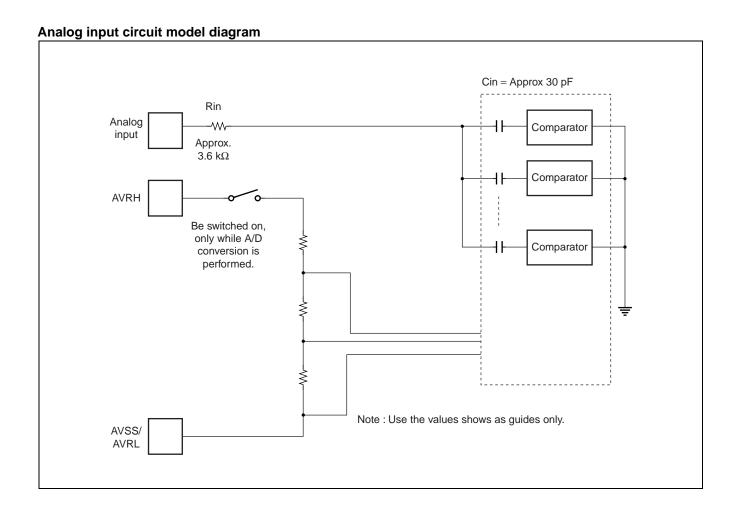


(10) Trigger Input Timing

(Vcc = 3.3 V \pm 0.3 V, Vss = 0 V, T_A = -30 °C to +70 °C)

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Farameter				Min	Max		
Input pulse width	ttrgh ttrgl	ATG, INT0, 1, 2, 3 INT4, 5	_	5 tcycp*	_	ns	

*: tcycp is a cycle time of peripheral system clock.


(11) A/D Converter Block Electrical Characteristics

(Vcc = 3.3 V \pm 0.3 V, AVss = Vss = 0 V, TA = -30 °C to +70 °C)

Doromotor	Symbol	Din nome		Unit	Remarks		
Parameter	Symbol	Pin name	Min	Тур	Max	Onit	Nemarks
Resolution	_	_	_	10	10	BIT	
Total error	_	_		_	±4.0	LSB	
Linearity error	_	_		_	±3.5	LSB	
Differential linearity error	_	_	_	_	±2.0	LSB	
Zero transition voltage	Vot	AN0 to AN7	AVSS - 1.5 LSB	AVSS + 0.5 LSB	AVSS + 2.5 LSB	mV	
Full-scale transition voltage	V _{FST}	AN0 to AN7	AVRH – 5.5 LSB	AVRH – 1.5 LSB	AVRH + 0.5 LSB	mV	
Conversion time	_	_	5.3	_	_	μs	
Analog input current	Iain	AN0 to AN7		0.1	10	μΑ	
Analog input voltage	Vain	AN0 to AN7	AVss	_	AVRH	V	
Reference voltage	_	AVRH	AVss	_	AVcc	V	
Power supply current	lΑ	AVCC		3.0	5.0	mA	
	Іан	AVCC		_	5.0	μΑ	
Reference voltage supply	IR	AVRH	_	100	150	μΑ	
current	lпн	AVKII	_	_	10	μΑ	
Variation among channels	_	AN0 to AN7	_	_	4	LSB	

Notes: • Relatively, the errors increase as |AVRH| value becomes smaller.

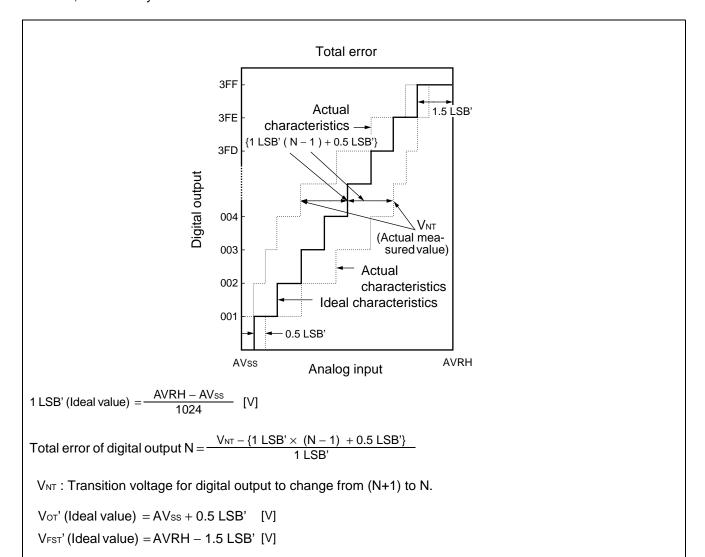
[•] Define an output impedance of external circuit analog input under the following conditions : Output impedance of external circuit ≤ 2 (k Ω) If an output impedance of external circuit is exceedingly high, sampling time for analog voltage may run short.

5. A/D Converter Block Electrical Characteristics

Resolution

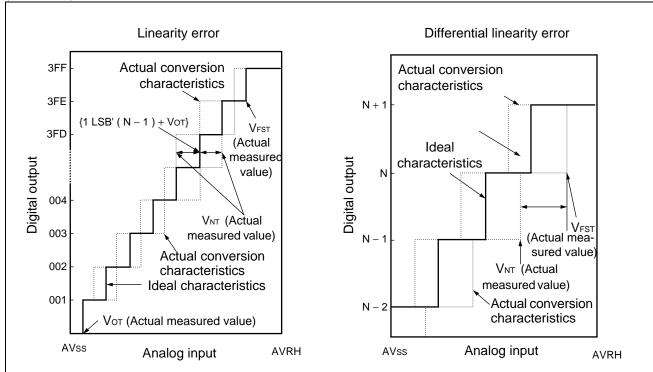
Analog variations recognized by an A/D converter.

Linearity error


Deviation of actual conversion characteristics from an ideal line, which is across zero-transition point ("00 0000 0000" \longleftrightarrow "00 0000 0001") and full-scale transition point ("11 1111 1110" \longleftrightarrow "11 1111 1111")

• Differential linearity error

Deviation from ideal value of input voltage, which is required for changing output code by 1 LSB.


Total error

Difference between actual value and ideal value. The error includes zero-transition error, full-scale transition error, and linearity error.

(Continued)

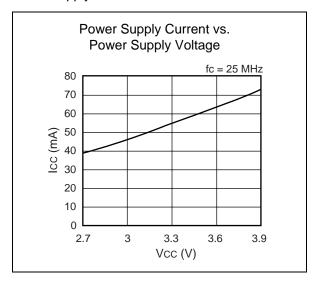
(Continued)

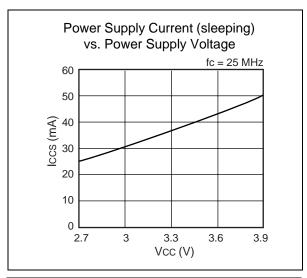
Linearity error of digital output N =
$$\frac{V_{NT} - \{1 \text{ LSB'} \times (N-1) + V_{OT}\}}{1 \text{ LSB'}} \text{ [LSB]}$$

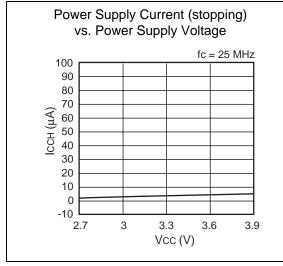
Differential linearity error of digital output $N = \frac{V(N+1) T - V_{NT}}{1 LSB'} -1$ [LSB]

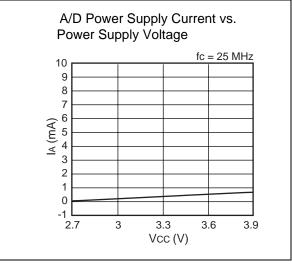
$$1 LSB = \frac{V_{FST} - V_{OT}}{1022} [V]$$

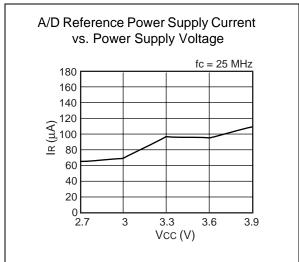
Vот : Transition voltage for digital output to change from (000)н to (001)н.

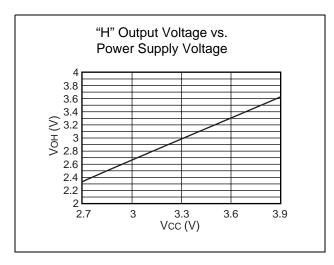

V_{FST}: Transition voltage for digital output to change from (3FE)_H to (3FF)_H.

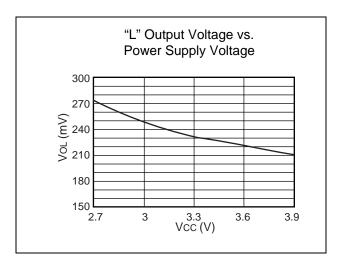

■ FLASH MEMORY WRITE/ERASE CHARACTERISTICS

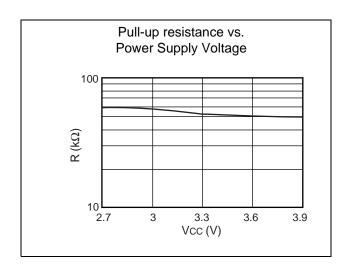

Parameter	Condition	Value			Unit	Remarks	
Farameter		Min	Тур	Max	Ollic	Kemarks	
Sector erase time		_	1	15	s	Not including time for internal writing before deletion.	
Chip erase time	$T_A = +25 ^{\circ}C,$ $V_{CC} = 3.3 V$	_	4	_	s	Not including time for internal writing before deletion.	
Half byte (16 bit width) writing time		_	16	3600	μs	Not including system-level overhead time.	
Write/erase cycle	_	_	10,000	_	cycle		
Data holding time	_	_	100,000	_	h		


■ EXAMPLE CHARACTERISTICS

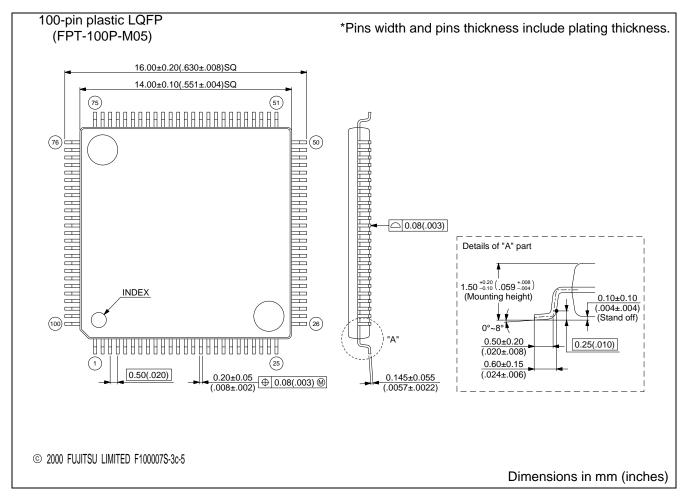

Power Supply Current







• Output Voltage



■ ORDERING INFORMATION

Part number	Package	Remarks
MB91F127PFV	100-pin plastic LQFP (FPT-100P-M05)	
MB91F128PFV	100-pin plastic LQFP (FPT-100P-M05)	

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0201

© FUJITSU LIMITED Printed in Japan