## 32-Bit RISC Microcontroller

CMOS

## FR Family MB91110 Series

# MB91110/MB91V110

#### DESCRIPTION

The MB91110 series is a standard single-chip micro controller featuring various I/O resources and bus control mechanisms to incorporate the control with required for high performance high-speed CPU processes, having a 32-bit RISC CPU (FR30 series) in its core. Although external bus access is the basis for supporting a large address space accessible by a 32-bit CPU, a 1-KB instruction cache memory has been built-in to increase the instruction/ execution speed of the CPU.

This unit features the optimal specifications for incorporating applications that require high performance CPU processing power such as navigation systems, high performance facsimile systems, printer control, etc.

#### FEATURES

#### FR30CPU

- 32-bit RISC, load / store architecture, 5-level pipeline
- Operating frequency : external 25 MHz, internal 50 MHz
- Multi-purpose register : 32 bits × 16
- 16-bit fixed length instructions (basic instruction), 1 instruction per cycle
- Instructions for barrel shift, bit processing and inter memory transfers : Instructions suited to loading purposes



#### (Continued)

- Function entry / exit instruction, multi load / store instruction of register details : Instruction capable of handling High level language instruction.
- Register Interlock function : Simplification of assembler description
- · Branch instruction with delay slot : Reduction in overheads in case of branching
- Multiplier is built-in / Supported at instruction level Signed 32-bit multiplication : 5 cycles
   Signed 16-bit multiplication : 3 cycles
- Interruption (saving PC and PS) : 6 cycles, 16 priority levels

#### **Bus Interface**

- 24-bit address bus (16 MB space)
- Operating frequency : 25 MHz
- 16- / 8-bit data bus
- Basic external bus cycle : 2 clock cycles
- · Chip select output that can be set to a minimum 64-Kbyte units
- Interface support for various memories DRAM interface (areas 4, 5)
- Automatic waiting cycle : Can be randomly set from 0 to 7 cycles per area
- Unused data and address pins can be used as input/output ports.
- Supports "little endian" mode (One area is selected from areas 1 to 5)

#### **DRAM Interface**

- 2-bank individual control (area 4, 5)
- Normal mode / high speed page mode
- Basic bus cycles : normally 5 cycles, 1 cycle access is possible in high-speed page mode.
- Programmable waveform : 1 cycle waiting can be inserted automatically in RAS and CAS.
- DRAM refresh

CBR refresh (Interval is randomly set using the 6-bit timer.)

Self refresh mode

- Supports addresses for 8, 9, 10 and 12 columns
- 2CAS/1WE or 2WE/1CAS can be selected.

#### **Cache Memory**

- 1 KB instruction cache
- 2 way set associative
- 32 blocks / way, 4 entries (4 words) / block
- Lock function : Residing in the specified program codes at cache

#### DMA Controller (DMAC)

- 5 channels
- External  $\rightarrow$  external 2.5 access cycles / transfer (if 2 clock cycles are defined as 1 access cycle)
- Internal  $\rightarrow$  external 1.5 access cycles / transfer (if 2 clock cycles are defined as 1 access cycle)
- Address register (inc, dec, or reload are possible) : 32 bits  $\times$  5 channels
- Transfer count register (reload possible) : 16 bits × 5 channels
- Transfer factors : external pin / built-in resources interruption request / software
- Transfer sequence
  - Step transfer / block transfer
  - Burst / consecutive transfer
- Transfer data length : 8-bit, 16-bit or 32-bit can be selected
- Suspension is possible using NMI / interruption request

#### UART

- Fully duplicated double buffer
- Data length : 7 to 9 bits (without parity) , 6 to 8 bits (with parity)
- Asynchronous (start-stop synchronization) or CLK synchronized communication can be selected.
- Multiprocessor mode
- Dedicated baud rate generator is built-in.
- External clock can be used as the transfer clock
- · Baud rate clock can be output
- Error detection : parity, frame, overrun

#### **PPG Timer**

- 16 bits, 6 channels (frequency setting register / duty setting register)
- PWM function or one-shot function can be selected
- Initiation : Software or external trigger can be selected

#### A/D Converter (sequential conversion type)

- 10-bit resolution, 8 channels
- Sequential comparison conversion : 5.6  $\mu s$  in the case of 25 MHz
- Sample & hold circuit is built-in.
- Conversion mode : Single, scan or repeat conversion can be selected.
- Initiation : Software, external trigger or built-in timer can be selected.

#### **Reloading Timer**

- 16-bit timer : 2 channels
- Internal clock : 2 clock cycle resolutions, 2, 8 or 32 cycles can be selected.
- Pin input : event counter input / gate function
- · Rectangular wave output

#### **Other Interval Timer**

• Watchdog timer : 1 channel

#### **Bit Search Module**

• Searches the first "1" / "0" change bit positions within 1 cycle from MSB in 1 word.

#### Interruption Controller

- External interruption input : Mask impossible interruption ( $\overline{NMI}$ ), normal interruption × 8 (INT0 to INT7)
- Internal interruption factors : UART, DMAC, A/D, reloading timer, PPG timer, delay interruption
- Priority levels are programmable except for mask impossible interruption (16 levels)

#### **Reset Factors**

· Power-on reset / hardware standby / watchdog timer / software reset / external reset

#### Low Power Consumption Mode

Sleep / stop mode

#### **Clock Control**

• Gear functions : Operating clock frequencies peripheral to the CPU can be set randomly and independently. Gear locks can be selected from 1/1, 1/2, 1/4 or 1/8 (or 1/2, 1/4, 1/8, or 1/16).

#### Others

- Package : LQFP-144
- CMOS technology : 0.35 μm
- Power : 5.0 V  $\pm$  10%, 3.3 V  $\pm$  5%

### ■ PRODUCT LINEUP

|                             | MB91V110<br>(For evaluation) | MB91110<br>(I-RAM mounted version) |
|-----------------------------|------------------------------|------------------------------------|
| I-RAM                       | 16 Kbyte                     | 16 Kbyte                           |
| RAM                         | 5 Kbyte                      | 5 Kbyte                            |
| ROM                         |                              |                                    |
| I-\$                        | 1 Kbyte                      | 1 Kbyte                            |
| DSU3<br>evaluation function | Mounted                      |                                    |

#### ■ PIN ASSIGNMENT



#### ■ PIN DESCRIPTIONS

| Pin no.                                      | Pin name                                                                             | I/O* | Circuit type | Function                                                                                                                                                |
|----------------------------------------------|--------------------------------------------------------------------------------------|------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8         | D16/P20<br>D17/P21<br>D18/P22<br>D19/P23<br>D20/P24<br>D21/P25<br>D22/P26<br>D23/P27 | I/O  | С            | These pins use bits 16 to 23 of the external data bus.<br>They can be used as a port (P20 to P27) if the external bus<br>width is 8 bits.               |
| 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17 | D24<br>D25<br>D26<br>D27<br>D28<br>D29<br>D30<br>D31                                 | I/O  | С            | These pins use bits 24 to 31 of the external data bus.                                                                                                  |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27 | A00<br>A01<br>A02<br>A03<br>A04<br>A05<br>A06<br>A07                                 | I/O  | С            | These pins use bits 00 to 07 of the external address bus.                                                                                               |
| 29<br>30<br>31<br>32<br>33<br>34<br>35<br>36 | A08<br>A09<br>A10<br>A11<br>A12<br>A13<br>A14<br>A15                                 | I/O  | С            | These pins use bits 08 to 15 of the external address bus.                                                                                               |
| 38<br>39<br>40<br>41<br>42<br>43<br>44<br>45 | A16/P60<br>A17/P61<br>A18/P62<br>A19/P63<br>A20/P64<br>A21/P65<br>A22/P66<br>A23/P67 | I/O  | С            | These pins use bits 16 to 23 of the external address bus.                                                                                               |
| 48                                           | RDY/P80                                                                              | I/O  | С            | This is for external ready input. "0" is input if the bus cycle be-<br>ing executed is incomplete. It can be used as a port when not<br>otherwise used. |
| 49                                           | BGRNT/P81                                                                            | I/O  | Н            | This is the external bus open reception output. "L" is output if<br>the external bus is opened. It can be used as a port when not<br>otherwise used.    |

| Pin no.                                      | Pin name                                                                                   | I/O*  | Circuit type |                                                                                                                                                                                                                                                                                                                                  | Functio                                                                                                                                          | n                  |  |
|----------------------------------------------|--------------------------------------------------------------------------------------------|-------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|
| 50                                           | BRQ/P82                                                                                    | I/O   | С            | This is the ext<br>external bus is<br>not otherwise                                                                                                                                                                                                                                                                              | This is the external bus open request input. "1" is input if the external bus is to be opened. It can be used as a port when not otherwise used. |                    |  |
| 51                                           | RD                                                                                         | 0     | G            | This is the ext                                                                                                                                                                                                                                                                                                                  | ernal bus read strok                                                                                                                             | pe.                |  |
| 52                                           | WR0                                                                                        | 0     | G            | This is the ext                                                                                                                                                                                                                                                                                                                  | ernal bus write strol                                                                                                                            | be.                |  |
|                                              |                                                                                            |       |              |                                                                                                                                                                                                                                                                                                                                  | 16-bit bus width                                                                                                                                 | 8-bit bus width    |  |
| 53                                           | WR1/P85                                                                                    | I/O   | н            | D31-24                                                                                                                                                                                                                                                                                                                           | WR0                                                                                                                                              | WR0                |  |
|                                              |                                                                                            |       |              | D23-16                                                                                                                                                                                                                                                                                                                           | WR1                                                                                                                                              | (Port is possible) |  |
| 55                                           | CS0                                                                                        | 0     | G            | Chip select 0                                                                                                                                                                                                                                                                                                                    | output (Low active)                                                                                                                              |                    |  |
| 56<br>57<br>58<br>59<br>60                   | CS1/PA1<br>CS2/PA2<br>CS3/PA3<br>CS4/PA4<br>CS5/PA5                                        | I/O   | н            | Chip select 1 output (Low active)<br>Chip select 2 output (Low active)<br>Chip select 3 output (Low active)<br>Chip select 4 output (Low active)<br>Chip select 5 output (Low active)<br>They can be used as ports when not otherwise used.                                                                                      |                                                                                                                                                  |                    |  |
| 61                                           | CLK/PA6                                                                                    | I/O   | н            | This is the system clock output. The same clock as the stan-<br>dard clock is output. This can be used as a port when not oth-<br>erwise used.                                                                                                                                                                                   |                                                                                                                                                  |                    |  |
| 62<br>63<br>64<br>65<br>68<br>69<br>70<br>71 | RAS0/PB0<br>CS0L/PB1<br>CS0H/PB2<br>DW0/PB3<br>RAS1/PB4<br>CS1L/PB5<br>CS1H/PB6<br>DW1/PB7 | I/O   | н            | RAS output with DRAM bank 0.<br>CASL output with DRAM bank 0.<br>CASH output with DRAM bank 0.<br>WE output with DRAM bank 0. (Low active)<br>RAS output with DRAM bank 1.<br>CASL output with DRAM bank 1.<br>CASH output with DRAM bank 1.<br>WE output with DRAM bank 1.<br>They can be used as ports when not otherwise used |                                                                                                                                                  |                    |  |
| 72                                           | NMI                                                                                        |       | E            | Non Maskable                                                                                                                                                                                                                                                                                                                     | e Interrupt (NMI) inp                                                                                                                            | ut. (Low active)   |  |
| 73<br>74<br>75                               | MD0<br>MD1<br>MD2                                                                          | I     | I            | These are mode pins from 0 to 2.<br>Basic MCU operation modes are set using these pins.<br>They should be connected directly to Vcc or Vss for use.                                                                                                                                                                              |                                                                                                                                                  |                    |  |
| 77<br>78                                     | X0<br>X1                                                                                   | <br>0 | A            | Clock (oscillation) input.<br>Clock (oscillation) output.                                                                                                                                                                                                                                                                        |                                                                                                                                                  |                    |  |
| 80                                           | RST                                                                                        | I     | В            | This is the ext                                                                                                                                                                                                                                                                                                                  | ernal reset input. (L                                                                                                                            | .ow active)        |  |
| 81                                           | HST                                                                                        | I     | E            | This is the ha                                                                                                                                                                                                                                                                                                                   | dware standby inpu                                                                                                                               | it. (Low active)   |  |
| 83                                           | (OPEN)                                                                                     |       |              | Set this to OP                                                                                                                                                                                                                                                                                                                   | EN.                                                                                                                                              |                    |  |
| 84<br>85<br>86                               | (OPEN)<br>(OPEN)<br>(OPEN)                                                                 |       |              | Set this to OP                                                                                                                                                                                                                                                                                                                   | EN.                                                                                                                                              |                    |  |

| Pin no.                                          | Pin name                                                 | I/O* | Circuit type | Function                                                                                                                                                                                                                                            |  |
|--------------------------------------------------|----------------------------------------------------------|------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 87<br>88<br>89<br>90                             | (OPEN)<br>(OPEN)<br>(OPEN)<br>(OPEN)                     | _    |              | Set this to OPEN.                                                                                                                                                                                                                                   |  |
| 91                                               | (OPEN)                                                   | _    |              | Set this to OPEN.                                                                                                                                                                                                                                   |  |
| 92                                               | AVcc                                                     | _    | —            | Vcc power supply for the A/D converter.                                                                                                                                                                                                             |  |
| 93                                               | AVRH                                                     |      |              | A/D converter reference voltage (high potential side). Be sure to turn on/off this pin with potential higher than AVRH applied to $V_{\rm CC}$ .                                                                                                    |  |
| 94                                               | AVRL                                                     |      | —            | A/D converter reference voltage (low potential side).                                                                                                                                                                                               |  |
| 95                                               | AVss                                                     | _    | —            | Vss power supply for the A/D converter.                                                                                                                                                                                                             |  |
| 96<br>97<br>98<br>99<br>100<br>101<br>102<br>103 | AN0<br>AN1<br>AN2<br>AN3<br>AN4<br>AN5<br>AN6<br>AN7     | I    | D            | [AN0 to 7] A/D converter analog input.                                                                                                                                                                                                              |  |
| 106                                              | ATG/PE0                                                  | I/O  | н            | [ATG] This is the external trigger input for the A/D converter.<br>This function is always used if selected as the initiation factor<br>for A/D, so output by other functions should be stopped ex-<br>cept when it is carried out intentionally.   |  |
|                                                  |                                                          |      |              | [PE0] This is a general-purpose input/output port.                                                                                                                                                                                                  |  |
| 107                                              | TRG0, 3/PE1                                              |      |              | [TRG0 to 5] These are external trigger input pins of the PPG.                                                                                                                                                                                       |  |
| 108<br>109                                       | TRG1, 4/PE2<br>TRG2, 5/PE3                               | I/O  | H            | [PE1 to 3] These are general-purpose input/output ports.                                                                                                                                                                                            |  |
| 110<br>111<br>112<br>113<br>114                  | INT0/PF0<br>INT1/PF1<br>INT2/PF2<br>INT3/PF3<br>INT4/PF4 | I/O  | F            | [INT0 to 7] These are external interruption request inputs.<br>This input is always used while the corresponding external<br>interruption is permitted, so output using other functions<br>should be stopped except when carried out intentionally. |  |
| 115<br>116<br>117                                | INT5/PF5<br>INT6/PF6<br>INT7/PF7                         |      |              | [PF0 to 7] These are general-purpose input/output ports.                                                                                                                                                                                            |  |
| 119                                              | DREQ0/PG0                                                | I/O  | н            | [DREQ0] This is the DMA external transfer request input (ch<br>0) . This input is always used if selected as the transfer factor<br>for DMAC, so outputs from other functions should be<br>stopped except when carried out intentionally.           |  |
|                                                  |                                                          |      |              | [PG0] This is a multi-purpose input/output port.                                                                                                                                                                                                    |  |

| Pin no. | Pin name          | I/O* | Circuit type | Function                                                                                                                                                                                                                                 |
|---------|-------------------|------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 120     |                   |      | C            | [DACK0] This is the DMAC external transfer request recep-<br>tion output (ch 0) . This function is effective if the transfer re-<br>quest reception output specification of DMAC is permitted.                                           |
| 120     | DACK0/FG1         | 1/0  | C            | [PG1] This is a multi-purpose input/output port. This function<br>is effective if the transfer request reception output specifica-<br>tion of DMAC is prohibited.                                                                        |
| 101     |                   | 1/0  | C            | [DEOP0] This is the DMA transfer end signal output (ch 0) .<br>This function is effective if the transfer end signal output<br>specification of DMAC is permitted.                                                                       |
| 121     | DEOF0/FG2         | 1/0  | C            | [PG2] This is a multi-purpose input/output port. This function<br>is effective if the transfer end signal output specification of<br>DMAC is prohibited.                                                                                 |
| 122     | DREQ1/PG3         | I/O  | н            | [DREQ1] This is the DMA external transfer request input (ch<br>1). This input is always used if selected as the transfer factor<br>of DMAC, so output using other functions should be stopped<br>except when carried out intentionally.  |
|         |                   |      |              | [PG3] This is a multi-purpose input/output port.                                                                                                                                                                                         |
| 100     |                   | 1/0  |              | [DACK1] This is the DMAC external transfer request recep-<br>tion output (ch 1) . This function is effective if the transfer re-<br>quest reception output specification of DMAC is permitted.                                           |
| 123     | 123 DACK1/PG4 1/0 |      | C            | [PG4] This is a multi-purpose input/output port. This function<br>is effective if the transfer request reception output specifica-<br>tion of DMAC is prohibited.                                                                        |
| 104     |                   |      | 0            | [DEOP1] This is the DMA transfer end signal output (ch 1) .<br>This function is effective if the transfer end signal output<br>specification of DMAC is permitted.                                                                       |
| 124     | DEOP 1/PG5        | 1/0  | C            | [PG5] This is a multi-purpose input/output port. This function<br>is effective if the transfer end signal output specification of<br>DMAC is prohibited.                                                                                 |
| 127     | DREQ2/PH0         | I/O  | н            | [DREQ2] This is the DMA external transfer request input (ch<br>2) . This input is always used if selected as the transfer factor<br>of DMAC, so output using other functions should be stopped<br>except when carried out intentionally. |
|         |                   |      |              | [PH0] This is a multi-purpose input/output port.                                                                                                                                                                                         |
| 128     | DACK2/PH1         |      | C            | [DACK2] This is the DMAC external transfer request recep-<br>tion output (ch 2) . This function is effective if the transfer re-<br>quest reception output specification of DMAC is permitted.                                           |
| .20     | 5,012,1111        |      |              | [PH1] This is a multi-purpose input/output port. This function<br>is effective if the transfer request reception output specifica-<br>tion of DMAC is prohibited.                                                                        |

| Pin no. | Pin name   | I/O* | Circuit type | Function                                                                                                                                                                                     |
|---------|------------|------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 120     |            | 1/0  | C            | [DEOP2] This is the DMA transfer end signal output (ch 2) .<br>This function is effective if the transfer end signal output<br>specification of DMAC is permitted.                           |
| 129     | DEOF2/FII2 | 1/0  | C            | [PH2] This is a multi-purpose input/output port. This function<br>is effective if the transfer end signal output specification of<br>DMAC is prohibited.                                     |
| 130     | SI/PH3     | I/O  | н            | [SI] This is UART data input. This input is always used while UART inputs, so outputs from other functions should be stopped except when carried out intentionally.                          |
|         |            |      |              | [PH3] This is a general-purpose input/output port.                                                                                                                                           |
|         |            |      |              | [SO] This is UART data output. This function is effective when UART data output specification is permitted.                                                                                  |
| 131     | SO/PH4     | I/O  | С            | [PH4] This is a general-purpose input/output port. This func-<br>tion is effective when UART data output specification is pro-<br>hibited.                                                   |
|         |            |      |              | [SCK] This is UART clock input/output. Clock output is effec-<br>tive when UART clock output specification is permitted.                                                                     |
| 132     | SCK/PH5    | I/O  | Н            | [PH5] This is a general-purpose input/output port. This func-<br>tion is effective when UART clock output specification is pro-<br>hibited.                                                  |
| 133     | TI0/PH6    | I/O  | н            | [TI0] This is reload timer 0 input. It is always used when re-<br>load timer input is permitted, so outputs from other functions<br>should be stopped except when carried out intentionally. |
|         |            |      |              | [PH6] This is a general-purpose input/output port.                                                                                                                                           |
| 124     |            | 1/0  | C            | [TO0] This is reload timer 0 Output. This function is effective when reload timer specification is permitted.                                                                                |
| 134     | 100/11/    | 1/0  |              | [PH7] This is a general-purpose input/output port. This func-<br>tion is effective when reload timer specification is prohibited.                                                            |
| 136     | TI1/PI0    | I/O  | н            | [TI1] This is reload timer 1 input. It is always used when re-<br>load timer input is permitted, so outputs from other functions<br>should be stopped except when carried out intentionally. |
|         |            |      |              | [PI0] This is a general-purpose input/output port.                                                                                                                                           |
|         |            |      |              | [T01] This is the reload timer 1 output. This function is effec-<br>tive if the output specification of the reload timer is permitted.                                                       |
| 137     | TO1/PI1    | I/O  | C            | [PI1] This is a multi-purpose input/output port. This function<br>is effective if the output specification of the reload timer is<br>prohibited.                                             |

| Pin no.                                                           | Pin name                         | I/O* | Circuit type | Function                                                                                                                                             |
|-------------------------------------------------------------------|----------------------------------|------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 138<br>139<br>140                                                 | PPG0/PI2<br>PPG1/PI3<br>PPG2/PI4 | 1/0  | C            | [PPG0 to 5] This is the PPG timer 1 output. This function is effective if the output specification of the PPG timer is permitted.                    |
| 141<br>142<br>143                                                 | PPG3/PI5<br>PPG4/PI6<br>PPG5/PI7 | 1/0  | C            | [PI2 to 7] This is a multi-purpose input/output port. This func-<br>tion is effective if the output specification of the PPG timer is<br>prohibited. |
| 18<br>46<br>66<br>76<br>104<br>125                                | Vcc5                             |      |              | This provides power for the 5 V digital circuit system.                                                                                              |
| 47<br>82<br>126                                                   | Vcc3                             | _    |              | This provides power for the 3 V digital circuit system.                                                                                              |
| 9<br>19<br>28<br>37<br>54<br>67<br>79<br>105<br>118<br>135<br>144 | Vss                              |      |              | This is the earth level for digital circuits.                                                                                                        |

\*: I/O shown above indicates input/output classification.

(Continued)

Note : The I/O port and resource input/outputs for most of the above pins are multiplexed, i.e. Pxx/xxxx. In the event of both the port and resource outputs were to use the same pins, the resource is given priority.

#### ■ I/O CIRCUIT TYPE



| Туре | Circuit types                                                                             | Remarks                                                                                                |
|------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| E    | Digital input                                                                             | CMOS level hysteresis input<br>Without standby control                                                 |
| F    | Digital output                                                                            | <ul> <li>CMOS level output</li> <li>CMOS level hysteresis input<br/>Without standby control</li> </ul> |
| G    | Digital output                                                                            | CMOS level output                                                                                      |
| Н    | Digital output<br>Digital output<br>Digital output<br>Digital input<br>STANDBY<br>CONTROL | <ul> <li>CMOS level output</li> <li>CMOS level hysteresis input<br/>With standby control</li> </ul>    |
| I    | Digital input                                                                             | CMOS level input     Without standby control                                                           |

#### ■ HANDLING DEVICES

#### • Preventing Latch-up

The "Latch-up" phenomenon may be generated if a voltage in excess of V<sub>cc</sub> or lower than V<sub>ss</sub> is applied to the input/output pins, or if the voltage exceeds the rating between V<sub>cc</sub> and V<sub>ss</sub>. If latch-up is generated, the electrical current increases significantly and may destroy certain components due to the excessive heat, so great care must be taken to ensure that the maximum rating is not exceeded during use.

#### • Handling Unused Input Pins

Input pins that are not used should be pulled up or down as they may cause erroneous operations if they are left open.

#### • External Reset Input

"L" level should be input to the  $\overline{RST}$  pin, which is required for at least five machine cycles to ensure the internal status is reset.

#### • Using External Clocks

If external clock is used, X0 pin should be provided, and X1 pin should be provided with reverse phase to X0 pin input. If the STOP mode (oscillation stop mode) is used simultaneously, the X1 pin is stopped with the "H" output. So, when STOP mode is specified, approximately 1 k $\Omega$  of resistance should be added externally. An example of the external clock usage methods is shown in the following circuit.



Note : Resistance must be added to the X1 pin if the STOP mode (oscillation stop mode) is used.

#### • Power Supply Pins

In products with multiple Vcc or Vss pins, the pins of the same potential are internally connected in the device to avoid abnormal operations including latch-up. However you must connect the pins to an external power and a ground line to lower the electro-magnetic emission level to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating.

Make sure to connect Vcc and Vss pins via the lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1 F between Vcc and Vss pins near the device.

#### • Crystal Oscillator Circuits

Noise around the X0 or X1 pins may cause erroneous operation. Make sure to provide bypass capacitors via shortest distances from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure that lines of oscillation circuits not cross the lines of other circuit.

A printed circuit board artwork surrounding the X0 and X1 pins with ground area for stabilizing the operation is highly recommended .

#### • N.C. Pins

N.C. pins must be opened for use.

#### • Mode Pins (MD0 to MD2)

Those pins must be directly connected to Vcc or Vss for use.

Pattern length between  $V_{cc}$  or  $V_{ss}$  and each mode pin on the printed-circuit board should be arranged to be as short as possible to prevent the test mode being erroneously turned on due to noise, they should also be connected with low impedance.

#### • In the Event that Power Is Turned on

The  $\overline{RST}$  pin must be started from "L" level when the power is turned on, and when the power is adjusted to the V<sub>cc</sub> level it should be changed to the "H" level after being left for at least five cycles of the internal operation clock.

#### • Original Oscillation Input in the Event that Power Is Turned on

The clock must be input until the waiting status for oscillation stability is reset in the event that power is turned on.

#### · Hardware Standby in the Event that Power Is Turned on

Standby is not set in the event that power is turned on while the HST pin is set at "L" level. The HST pin becomes effective after being reset, but it must first be returned to "H" level.

#### Power on Reset

When power is turned on, "Power on reset" must be executed. If the power voltage falls below the guaranteed operating voltage, "Power on reset" must be executed by turning on power supply again.

#### • Restrictions for Standby

Programs to be set for stop and sleep must be placed address area of the external memory. If placed in the RAM address area on the I-bus, operation can not be guaranteed after returning.

#### • Execution of Programs in I-RAM Areas

In the event that programs in the I-RAM areas are executed, enter the I-RAM areas in accordance with the JMP system instruction. Conversely, when changing from programs in the I-RAM area to those in other areas, exit in accordance with the JMP system instructions.

#### • Caution on Operation during PLL Clock Mode

If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

#### BLOCK DIAGRAM



#### MEMORY SPACE

The FR30 series has 4 Gbytes (2<sup>32</sup> addresses) of logic address space which the CPU accesses linearly.

#### 1. Memory Map



Note : MB91110 series only supports external ROM external bus mode.

#### • Direct addressing area

The following areas of the address space are used for I/O. This area is called the "direct addressing area" and the address of the operand can be specified directly during instruction. The direct area differs depending on data size to be accessed.

- Byte data access : 0-0FFH
- Half-word data access : 0-1FFH
- Word data access : 0-3FF<sub>H</sub>

#### 2. Registers

There are two types of multi-purpose registers in the FR family. One is a dedicated purpose register that exists within the CPU and the other is a multi-purpose register that exists in the memory.

| <ul> <li>Dedicated Registers</li> </ul>                   |                                                                                                                   |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Program Counter (PC)                                      | : 32-bit length; indicates instruction storage position.                                                          |
| Program Status (PS)                                       | : 32-bit length; stores register pointers and condition codes.                                                    |
| Table Base Register (TBR)                                 | : Holds the starting address of the vector table to be used for Exception, In-<br>terruption and Trapping (EIT) . |
| Return Pointer (RP)                                       | : Holds the address to which you will return to from the sub-routine.                                             |
| System Stuck Pointer (SSP)                                | : Indicates the systems stuck position.                                                                           |
| User Stuck Pointer (USP)                                  | : Indicates the user's stuck position.                                                                            |
| Multiplication and Division<br>Results Resister (MDH/MDL) | : 32-bit length; These are the registers for multiplication and division.                                         |



#### • Program Status (PS)

PS is the register that holds the program status and is classified into three categories, namely, Condition Code Register (CCR), System Condition Code Register (SCR) and Interruption Level Master Register (ILM).



#### • Condition Code Register (CCR)

S flag : Specifies the stuck pointer to be used as R15.

- I flag : Controls permission and prohibition of user interruption requests.
- N flag : Indicates codes when the computation results are defined as integers that are expressed in complements of 2.
- Z flag : Indicates if arithmetic results were "0."
- V flag : Indicates when operands are used for computation and defined as integers expressed in complements of 2, and indicates whether or not an overflow is generated as a result of the computation.
- C flag : Indicates whether carrying or borrowing is generated from the highest bit as a result of the computation.

#### • System Condition Code Register (SCR)

T flag : Specifies whether or not the step- trace- trap will be valid.

#### • Interruption Level Mask Register (ILM)

ILM4 to ILM0 : Holds the interruption level mask values, and those values that are held by the ILM are used for the level mask. Interruption requests can only be accepted when the interruption levels handled within the interruption requests to be input into the CPU are stronger than the levels shown by the ILM.

| ILM4 | ILM3 | ILM2 | ILM1 | ILM0 | Interruption level | Strength |
|------|------|------|------|------|--------------------|----------|
| 0    | 0    | 0    | 0    | 0    | 0                  | Strong   |
|      |      |      | Ť    |      |                    |          |
| 0    | 1    | 0    | 0    | 0    | 15                 |          |
|      |      |      | Ļ    |      |                    |          |
| 1    | 1    | 1    | 1    | 1    | 31                 | Weak     |

#### MULTI-PURPOSE REGISTERS

The multi-purpose registers are CPU registers (R0 to R15) which are used as accumulators for various computations and memory access pointers (field that indicates the address) .



Special purposes are assumed for the following three registers out of the 16 registers. Thus, some instructions are emphasized.

R13 : Virtual accumulator (AC)

R14 : Frame Pointer (FP)

R15 : Stack Pointer (SP)

Initial values for R0 to R14 on resetting are unspecified. The initial value of R15 will be 0000 0000H (SSP value).

#### ■ MODE SETTING

#### 1. Pins

Mode pins and set mode

| N   | lode pir | IS  | Mode name                 | Mode name Reset vector Ex |                 | Bus modes             |  |
|-----|----------|-----|---------------------------|---------------------------|-----------------|-----------------------|--|
| MD2 | MD1      | MD0 | wode name                 | access areas              | width           | Bus modes             |  |
| 0   | 0        | 0   | External vector<br>mode 0 | External                  | 8-bit           | External ROM external |  |
| 0   | 0        | 1   | External vector<br>mode 1 | External                  | 16-bit          | bus mode              |  |
| 0   | 1        | 0   | —                         |                           |                 | Setting is prohibited |  |
| 0   | 1        | 1   | Internal vector<br>mode   | Internal                  | (Mode register) | Single chip mode*     |  |
| 1   |          |     |                           |                           |                 | Usage is prohibited   |  |

\*: MB91110 series is not supported single chip mode.

#### 2. Register

#### • Mode register (MODR) and set mode



#### • Bus mode set bit and its functions

| M1 | MO | Functions                      | Remarks               |
|----|----|--------------------------------|-----------------------|
| 0  | 0  | Single chip mode               | Not supported         |
| 0  | 1  | Internal ROM external bus mode | Not supported         |
| 1  | 0  | External ROM external bus mode |                       |
| 1  | 1  |                                | Setting is prohibited |

#### ■ I/O MAP

| Addross             |            | Internal recourse |            |            |                                 |  |
|---------------------|------------|-------------------|------------|------------|---------------------------------|--|
| Address             | +0         | +1                | +2         | +3         | internal resource               |  |
| 00000н              |            | PDR2 (R/W)        | _          |            |                                 |  |
|                     |            | XXXXXXXX          |            |            |                                 |  |
| 000004н             |            | PDR6 (R/W)        | —          | —          |                                 |  |
|                     | PDRB (R/W) | PDRA (R/W)        |            | PDR8 (R/W) |                                 |  |
| 000008н             | XXXXXXXX   | - XXXXXX -        | _          | XXXX       | Port data register              |  |
| 00000Сн             |            | _                 | _          |            |                                 |  |
| 0000104             |            |                   | PDRE (R/W) | PDRF (R/W) | -                               |  |
|                     |            |                   | XXXX       | XXXXXXXX   |                                 |  |
| 000014 <sub>H</sub> | PDRG (R/W) | PDRH (R/W)        | PDRI (R/W) |            |                                 |  |
|                     | XXXXXX     | XXXXXXXX          | XXXXXXXX   |            |                                 |  |
| 000018н             |            | Reserved          |            |            |                                 |  |
| 00001Cн             |            | Reserved          |            |            |                                 |  |
| 0000200             | SSR (R/W)  | SIDR/SODR (R/W)   | SCR (R/W)  | SMR (R/W)  |                                 |  |
| 000020H             | 00001-00   | XXXXXXXX          | 00000100   | 0000-00    |                                 |  |
| 000024              | CDCR (R/W) |                   | _          |            |                                 |  |
| 00002-11            |            | 0 1 1 1 1 1       |            |            |                                 |  |
| 000028н             | TMRLR      | (W)               | TMR        | (R)        |                                 |  |
|                     | XXXXXXXX   | XXXXXXXX          | XXXXXXXX   | XXXXXXXX   | Reload timer 0                  |  |
| 00002Сн             | _          |                   | TMCSR      | (R/W)      |                                 |  |
|                     |            |                   | 0000       | 0000000    |                                 |  |
| 000030н             | TMRLR      | (VV)              | TMR        | (R)        |                                 |  |
|                     | *****      | ****              |            |            | Reload timer 1                  |  |
| 000034н             | _          |                   | IMCSR      | (K/W)      |                                 |  |
|                     |            | (P)               |            | (PAM)      | A/D converter                   |  |
| 000038н             | XX         | XXXXXXXX          | 00000000   | 00000000   | (Sequential<br>comparison type) |  |
| 00003Сн             |            | _                 | _          |            | Reserved                        |  |

| Addroso | Register                     |                        |                              |                   |  |
|---------|------------------------------|------------------------|------------------------------|-------------------|--|
| Address | +0 +1                        | +2                     | +3                           | Internal resource |  |
| 000040н |                              |                        |                              | Reserved          |  |
| 000044н | Access is prohibited         | PCSR<br>XXXXXXXX       | (W)<br>XXXXXXXX              | DDCO              |  |
| 000048н | PDUT (W)<br>XXXXXXXX XXXXXXX | PCNH (R/W)<br>0000000- | PCNL (R/W)<br>00000000       |                   |  |
| 00004Сн | Access is prohibited         | PCSR<br>XXXXXXXX       | (W)<br>XXXXXXXX              |                   |  |
| 000050H | PDUT (W)<br>XXXXXXXX XXXXXXX | PCNH (R/W)<br>0000000- | PCNL (R/W)<br>00000000       |                   |  |
| 000054н | Access is prohibited         | PCSR<br>XXXXXXXX       | (W)<br>XXXXXXXX              | PPG2              |  |
| 000058н | PDUT (W)<br>XXXXXXXX XXXXXXX | PCNH (R/W)<br>0000000- | PCNL (R/W)<br>00000000       | rr Gz             |  |
| 00005Сн | Access is prohibited         | PCSR<br>XXXXXXXX       | PCSR (W)<br>XXXXXXXX XXXXXXX |                   |  |
| 000060н | PDUT (W)<br>XXXXXXXX XXXXXXX | PCNH (R/W)<br>0000000- | PCNL (R/W)<br>00000000       |                   |  |
| 000064н | Access is prohibited         | PCSR<br>XXXXXXXX       | (W)<br>XXXXXXXX              |                   |  |
| 000068н | PDUT (W)<br>XXXXXXXX XXXXXXX | PCNH (R/W)<br>0000000- | PCNL (R/W)<br>00000000       | - 2264            |  |
| 00006Сн | Access is prohibited         | PCSR<br>XXXXXXXX       | (W)<br>XXXXXXXX              | DDOG              |  |
| 000070н | PDUT (W)<br>XXXXXXXX XXXXXXX | PCNH (R/W)<br>0000000- | PCNL (R/W)<br>00000000       |                   |  |
| 000074н | -                            | ·<br>                  |                              |                   |  |
| 000078н | -                            |                        |                              | Beconved          |  |
| 00007Сн | -                            |                        |                              | Keserved          |  |
| 000080H | -                            |                        |                              |                   |  |

| Addross             | Register               |                        |    |    |                        |
|---------------------|------------------------|------------------------|----|----|------------------------|
| Address             | +0                     | +1                     | +2 | +3 | Internal resource      |
| 000084н             |                        |                        | _  |    |                        |
| 000088H             |                        |                        | _  |    | Reserved               |
| 00008Cн             |                        |                        | _  |    |                        |
| 000090н             |                        |                        | _  |    |                        |
| 000094 <sub>H</sub> | EIRR (R/W)<br>00000000 | ENIR (R/W)<br>00000000 |    | _  | External interruption/ |
| 000098н             | ELVR<br>00000000       | (R/W)<br>00000000      | _  | _  | NMI                    |
| 00009Сн             |                        |                        | _  |    |                        |
| 0000А0н             | _                      |                        |    |    |                        |
| 0000A4н             | _                      |                        |    |    |                        |
| 0000А8н             |                        |                        | _  |    |                        |
| 0000ACн             |                        |                        | _  |    |                        |
| 0000В0н             |                        |                        | _  |    | Reserved               |
| 0000В4н             | —                      |                        |    |    |                        |
| 0000В8н             | _                      |                        |    |    |                        |
| 0000BCH             |                        |                        |    |    |                        |
| 0000С0н             |                        |                        |    |    |                        |
| 0000C4н             |                        | _                      |    |    |                        |

| Addross                  |                    | Internal resource    |                      |                      |                             |
|--------------------------|--------------------|----------------------|----------------------|----------------------|-----------------------------|
| Address                  | +0                 | +1                   | +2                   | +3                   |                             |
| 0000C8H                  |                    | -                    | _                    |                      | Reserved                    |
| 0000ССн                  |                    | -                    | _                    |                      |                             |
| 0000D0н                  |                    | _                    | DDRE (W)<br>0000     | DDRF (W)<br>00000000 | Data direction              |
| 0000D4н                  | DDRG (W)<br>000000 | DDRH (W)<br>00000000 | DDRI (W)<br>00000000 |                      | register                    |
| 0000D8н<br>to<br>0000FCн |                    | Reserved             |                      |                      |                             |
| 000100н<br>to<br>0001FCн |                    | Reserved             |                      |                      |                             |
| 000200н                  | DMACS0<br>0-00-0   |                      |                      |                      |                             |
| <b>000204</b> н          | DMACC0<br>XX       | xx xxxx - xxx        | xxxxxx xx            | (R/W)<br>XXXXXX      | DMA controller<br>channel 0 |
| 000208н                  | DMASA0<br>XXXXXX   | xx xxxxxxxx          | xxxxxx xx            | (R/W)<br>XXXXXX      |                             |
| 00020Cн                  | DMADA0<br>XXXXXX   | xx xxxxxxxx          | xxxxxx xx            | (R/W)<br>XXXXXX      |                             |
| <b>000210</b> н          | DMACS1<br>0-00-0   |                      |                      |                      |                             |
| <b>000214</b> н          | DMACC1<br>XX       | xx xxxx-xxx          | xxxxxxx              | (R/W)<br>XXXXX       | DMA controller              |
| 000218н                  | DMASA1<br>XXXXXX   | xx xxxxxxx           | xxxxxxx xx           | (R/W)<br>XXXXXX      | channel 1                   |
| 00021Cн                  | DMADA1<br>XXXXXX   | xx xxxxxxx           | xxxxxxx xx           | (R/W)<br>XXXXXX      |                             |

| Addross          |             | Internal resource |              |          |                   |
|------------------|-------------|-------------------|--------------|----------|-------------------|
| Audress          | +0          | +1                | +2           | +3       | internal resource |
| 000220           | DMACS2      |                   |              | (R/W)    |                   |
| 0002208          | 0 - 0 0 - 0 | 000 000000        | XX-00000     | - XX - X |                   |
| 000224           | DMACC2      |                   |              | (R/W)    |                   |
| 00022 <b>4</b> H | XX>         | XXXXX-XXX         | XXXXXXXX XXX | XXXXXX   | DMA controller    |
| 000228           | DMASA2      |                   |              | (R/W)    | channel 2         |
| 000220H          | XXXXXX      | xx xxxxxxxx       | XXXXXXXX XX  | XXXXXX   |                   |
| 000220           | DMADA2      |                   |              | (R/W)    |                   |
| 0002208          | XXXXXX      | xx xxxxxxxx       | XXXXXXXX XX  | XXXXXX   |                   |
| 0002304          | DMACS3      |                   |              | (R/W)    |                   |
| 0002308          | 0 - 0 0 - 0 | 00 00 00 00       | XX-00000     | - XX - X |                   |
| 000224           | DMACC3      |                   |              | (R/W)    |                   |
| 000234H          | XX>         | XXXX-XXX          | XXXXXXXX XXX | XXXXXX   | DMA controller    |
| 000238           | DMASA3      |                   |              | (R/W)    | channel 3         |
| 000230H          | XXXXXX      | xx xxxxxxxx       | XXXXXXXX XX  | XXXXXX   |                   |
| 000230           | DMADA3      |                   |              | (R/W)    |                   |
| 00023CH          | XXXXXX      | xx xxxxxxxx       | XXXXXXXX XX  | XXXXXX   |                   |
| 000240           | DMACS4      |                   |              | (R/W)    |                   |
| 0002408          | 0-00-0      | 00 000000         | XX-00000     | XX - X   |                   |
| 000244           | DMACC4      |                   |              | (R/W)    |                   |
| 0002448          | XX>         | XXXX-XXX          | XXXXXXXX XXX | XXXXX    | DMA controller    |
| 000248           | DMASA4      |                   |              | (R/W)    | channel 4         |
| 0002408          | XXXXXX      | xx xxxxxxxx       | XXXXXXXX XX  | XXXXXX   |                   |
| 00024Cu          | DMADA4      |                   |              | (R/W)    |                   |
| 0002408          | XXXXXX      | xx xxxxxxxx       | XXXXXXXX XX  | XXXXXX   |                   |
| 0002500          | DMACR       |                   |              | (R/W)    | Overall DMA       |
| 0002308          |             |                   | 0 0          | 0        | controller        |
| 000254           |             |                   |              |          |                   |
| 0002348          |             | _                 | _            |          |                   |
| 000258           |             |                   |              |          |                   |
| 000230H          |             | _                 | _            |          | Reserved          |
| 000250           |             |                   |              |          |                   |
| 00023CH          |             |                   |              |          |                   |
| 000260           |             |                   |              |          |                   |
| 000200H          |             | -                 |              |          |                   |

| Addross       | Register       |              |             |               |                         |
|---------------|----------------|--------------|-------------|---------------|-------------------------|
| Address       | +0             | +1           | +2          | +3            | Internal resource       |
| 000264н       |                | -            | -<br>       |               |                         |
| 000268н       |                | _            | _           |               | -                       |
| 00026Cн       |                | -            |             |               |                         |
| 000270н       |                | _            | _           |               | Reserved                |
| 000274н       |                | _            | _           |               |                         |
| 000278н       |                |              |             |               |                         |
| to<br>0002FCн |                | -            | _           |               |                         |
| 000300н       |                |              |             |               | -                       |
| to            |                |              |             |               |                         |
| 0003E0H       |                |              |             |               |                         |
| 0003E4н       |                | _            |             | 000000        | Instruction cache       |
| 0003E8н       |                | -            | _           |               | Reserved                |
| 0003ECн       |                | _            |             | IRMC (R/W)    | I-RAM control           |
| 0003F0н       | BSD0<br>XXXXXX | xx xxxxxxxx  | xxxxxxx xx  | (W)<br>XXXXXX |                         |
| 000054        | BSD1           |              |             | (R/W)         | -                       |
| 0003F4H       | XXXXXX         | xx xxxxxxxx  | xxxxxxx xx  | XXXXXX        | Dit aaarah madula       |
| 000259        | BSDC           |              |             | (W)           | Bit search module       |
| 0003500       | XXXXXX         | XXX XXXXXXXX | XXXXXXXX XX | XXXXXX        |                         |
| 0003ECu       | BSRR           |              |             | (R)           |                         |
| 00001 04      | XXXXXX         | XX XXXXXXXX  | XXXXXXXX XX | XXXXXX        |                         |
| 000400        | ICR00 (R/W)    | ICR01 (R/W)  | ICR02 (R/W) | ICR03 (R/W)   |                         |
|               | 11111          | 11111        | 11111       | 11111         | Interruption controller |
| 000404        | ICR04 (R/W)    | ICR05 (R/W)  | ICR06 (R/W) | ICR07 (R/W)   |                         |
|               | 11111          | 11111        | 11111       | 11111         |                         |

| Addross         |                 | Internal resource |             |             |                         |
|-----------------|-----------------|-------------------|-------------|-------------|-------------------------|
| Audress         | +0              | +1                | +2          | +3          | internariesource        |
| 000408          | ICR08 (R/W)     | ICR09 (R/W)       | ICR10 (R/W) | ICR11 (R/W) |                         |
| 0004008         | 11111           | 11111             | 11111       | 11111       |                         |
| 000400          | ICR12 (R/W)     | ICR13 (R/W)       | ICR14 (R/W) | ICR15 (R/W) |                         |
| 0004004         | 11111           | 11111             | 11111       | 11111       |                         |
| 000410          | ICR16 (R/W)     | ICR17 (R/W)       | ICR18 (R/W) | ICR19 (R/W) |                         |
| 0004108         | 11111           | 11111             | 11111       | 11111       |                         |
| 000414          | ICR20 (R/W)     | ICR21 (R/W)       | ICR22 (R/W) | ICR23 (R/W) |                         |
| 0004148         | 11111           | 11111             | 11111       | 11111       |                         |
| 000/18.         | ICR24 (R/W)     | ICR25 (R/W)       | ICR26 (R/W) | ICR27 (R/W) |                         |
| 0004108         | 11111           | 11111             | 11111       | 11111       | Interruption controller |
| 000410          | ICR28 (R/W)     | ICR29 (R/W)       | ICR30 (R/W) | ICR31 (R/W) |                         |
| 0004104         | 11111           | 11111             | 11111       | 11111       |                         |
| 000420          | ICR32 (R/W)     | ICR33 (R/W)       | ICR34 (R/W) | ICR35 (R/W) |                         |
| 000420H         | 11111           | 11111             | 11111       | 11111       |                         |
| 000424          | ICR36 (R/W)     | ICR37 (R/W)       | ICR38 (R/W) | ICR39 (R/W) |                         |
| 0004248         | 11111           | 11111             | 11111       | 11111       |                         |
| 000428.         | ICR40 (R/W)     | ICR41 (R/W)       | ICR42 (R/W) | ICR43 (R/W) |                         |
| 0004208         | 11111           | 11111             | 11111       | 11111       |                         |
| 000420          | ICR44 (R/W)     | ICR45 (R/W)       | ICR46 (R/W) | ICR47 (R/W) |                         |
| 0004208         | 11111           | 11111             | 11111       | 11111       |                         |
| 000430          | DICR (R/W)      | HRCL (R/W)        |             |             | Delay interruption      |
| 0004308         | 0               | 11111             |             |             | Delay Interruption      |
| 000434н         |                 |                   |             |             |                         |
| to<br>00047C⊦   |                 | _                 | _           |             | Reserved                |
|                 | RSRR/WTCR (R/W) | STCR (R/W)        | PDRR (R/W)  | CTBR (W)    |                         |
| 000480н         | 1 XXXX-0 0      | 000111            | 0000        | xxxxxxx     |                         |
|                 | GCR (R/W)       | WPR (W)           |             |             | Clock control area      |
| <b>000484</b> н | 110011-1        | xxxxxxxx          | _           | _           |                         |
|                 | PCTR (R/W)      |                   |             |             |                         |
| <b>000488</b> н | 000             |                   |             |             | PLL control register    |
| 00048Cн         |                 | 1                 |             |             |                         |
| to              |                 | _                 | _           |             | Reserved                |
| UUUUTUH         |                 |                   |             |             |                         |

(Continued)

| Addroop   |            | Internal recourse |             |            |                          |
|-----------|------------|-------------------|-------------|------------|--------------------------|
| Address   | +0         | +1                | +2          | +3         | Internal resource        |
| 000000    |            | DDR2 (W)          |             |            |                          |
| 0006000   |            | 00000000          |             |            |                          |
| 000604    |            | DDR6 (W)          |             |            | Data direction           |
| 000004H   |            | 00000000          |             |            | register                 |
| 000608    | DDRB (W)   | DDRA (W)          |             | DDR8 (W)   |                          |
| 000000    | 00000000   | -00000-           |             | 0000       |                          |
| 000600    | ASR1       | (W)               | AMR1        | (W)        |                          |
| 00000CH   | 00000000   | 0000001           | 00000000    | 00000000   |                          |
| 000610    | ASR2       | (W)               | AMR2        | (W)        |                          |
| 000010H   | 00000000   | 0000010           | 00000000    | 00000000   |                          |
| 000614    | ASR3       | (W)               | AMR3        | (VV)       |                          |
| 0000148   | 00000000   | 0000011           | 00000000    | 00000000   |                          |
| 000618    | ASR4       | (VV)              | AMR4        | (VV)       |                          |
| 0000108   | 00000000   | 00000100          | 00000000    | 00000000   |                          |
| 00061Cu   | ASR5       | (VV)              | AMR5        | (VV)       | External bus             |
| 0000101   | 00000000   | 00000101          | 00000000    | 00000000   | interface                |
| 0006204   | AMD0 (R/W) | AMD1 (R/W)        | AMD32 (R/W) | AMD4 (R/W) |                          |
| 00002011  | 00111      | 000000            | 00000000    | 000000     |                          |
| 000624    | AMD5 (R/W) | DSCR (W)          | RFCR        | (R/W)      |                          |
| 00002 111 | 000000     | 00000000          | XXXXXX      | 00000      |                          |
| 000628    | EPCR0      | (W)               | EPCR1       | (W)        |                          |
|           | 1100       | -1111111          |             | 11111111   |                          |
| 00062CH   | DMCR4      | (R/W)             | DMCR5       | (R/W)      |                          |
| 00002011  | 00000000   | 000000-           | 00000000    | 000000-    |                          |
| 000630н   |            |                   |             |            | Beeenved                 |
| 0007F8н   |            | _                 |             |            | Reserved                 |
| 0007ECH   |            |                   | LER (W)     | MODR (W)   | "Little endian" register |
|           |            |                   | 000         | XXXXXXXX   | Mode register            |

Note : Do not execute RMW instructions to registers with write-only bits. RMW instruction (RMW : Read / Modify / Write)

| A          | ND       | Rj, @Ri       | OR     | Rj, @Ri      | EOR   | Rj, @Ri  |
|------------|----------|---------------|--------|--------------|-------|----------|
| A          | NDH      | Rj, @Ri       | ORH    | Rj, @Ri      | EORH  | Rj, @Ri  |
| A          | NDB      | Rj, @Ri       | ORB    | Rj, @Ri      | EORB  | Rj, @Ri  |
| В          | BANDL    | #u4, @Ri      | BORL   | #u4, @Ri     | BEORL | #u4, @Ri |
| В          | BANDH    | #u4, @Ri      | BORH   | #u4, @Ri     | BEORH | #u4, @Ri |
| Data in ar | ooo with | " " or rocort | d onoo | ia undopidad |       |          |

Data in areas with "—" or reserved ones is undecided.

### ■ INTERRUPTION VECTOR

Interruption factor and allocation of interruption vectors / interruption control registers are described in the interruption vector table.

|                                      | Interruption number |                  | Interruption               |              | Interruption vector             |
|--------------------------------------|---------------------|------------------|----------------------------|--------------|---------------------------------|
| Interruption source                  | Decimal             | Hexadeci-<br>mal | level *1                   | Offset       | address to TBR of<br>default *2 |
| Reset                                | 0                   | 00               | —                          | 3FCн         | 000FFFFCн                       |
| System reservation                   | 1                   | 01               | —                          | 3F8⊦         | 000FFFF8н                       |
| System reservation                   | 2                   | 02               | —                          | 3F4⊦         | 000FFFF4н                       |
| System reservation                   | 3                   | 03               |                            | 3F0н         | 000FFFF0н                       |
| System reservation                   | 4                   | 04               | —                          | ЗЕСн         | 000FFFECH                       |
| System reservation                   | 5                   | 05               |                            | 3E8н         | 000FFFE8н                       |
| System reservation                   | 6                   | 06               |                            | 3E4н         | 000FFFE4H                       |
| Coprocessor absence trap             | 7                   | 07               |                            | 3E0н         | 000FFFE0н                       |
| Coprocessor error trap               | 8                   | 08               | —                          | 3DCн         | 000FFFDCн                       |
| INTE instruction                     | 9                   | 09               | 4 fixed                    | 3D8н         | 000FFFD8н                       |
| System reservation                   | 10                  | 0A               |                            | 3D4н         | 000FFFD4н                       |
| System reservation                   | 11                  | 0B               |                            | 3D0н         | 000FFFD0н                       |
| Step trace trap                      | 12                  | 0C               | 4 fixed                    | 3ССн         | 000FFFCCн                       |
| System reservation                   | 13                  | 0D               | —                          | 3С8н         | 000FFFC8н                       |
| Exceptions to undefined instructions | 14                  | 0E               |                            | 3C4н         | 000FFFC4н                       |
| NMI request                          | 15                  | 0F               | 15 (F <sub>H</sub> ) fixed | 3С0н         | 000FFFC0н                       |
| System reservation                   | 16                  | 10               | ICR00                      | 3ВСн         | 000FFFBCн                       |
| System reservation                   | 17                  | 11               | ICR01                      | 3В8н         | 000FFFB8H                       |
| External interruption 0              | 18                  | 12               | ICR02                      | 3B4н         | 000FFFB4н                       |
| External interruption 1              | 19                  | 13               | ICR03                      | 3В0н         | 000FFFB0н                       |
| External interruption 2              | 20                  | 14               | ICR04                      | ЗАСн         | 000FFFACн                       |
| External interruption 3              | 21                  | 15               | ICR05                      | 3А8н         | 000FFFA8H                       |
| External interruption 4              | 22                  | 16               | ICR06                      | 3А4н         | 000FFFA4н                       |
| External interruption 5              | 23                  | 17               | ICR07                      | 3А0н         | 000FFFA0н                       |
| External interruption 6              | 24                  | 18               | ICR08                      | 39Сн         | 000FFF9Cн                       |
| External interruption 7              | 25                  | 19               | ICR09                      | 398н         | 000FFF98⊦                       |
| System reservation                   | 26                  | 1A               | ICR10                      | 394н         | 000FFF94н                       |
| UART reception completion            | 27                  | 1B               | ICR11                      | 390н         | 000FFF90⊦                       |
| System reservation                   | 28                  | 1C               | ICR12                      | <b>38С</b> н | 000FFF8Cн                       |
| System reservation                   | 29                  | 1D               | ICR13                      | 388н         | 000FFF88н                       |
| UART transmission completion         | 30                  | 1E               | ICR14                      | 384н         | 000FFF84H                       |
| System reservation                   | 31                  | 1F               | ICR15                      | 380н         | 000FFF80н                       |

|                                              | Interruption number |                  | Interruption |                  | Interruption vector             |
|----------------------------------------------|---------------------|------------------|--------------|------------------|---------------------------------|
| Interruption source                          | Decimal             | Hexadeci-<br>mal | level *1     | Offset           | address to TBR of<br>default *2 |
| System reservation                           | 32                  | 20               | ICR16        | <b>37С</b> н     | 000FFF7Cн                       |
| DMAC0 (end, error)                           | 33                  | 21               | ICR17        | 378н             | 000FFF78⊦                       |
| DMAC1 (end, error)                           | 34                  | 22               | ICR18        | 374н             | 000FFF74н                       |
| DMAC2 (end, error)                           | 35                  | 23               | ICR19        | 370н             | 000FFF70н                       |
| DMAC3 (end, error)                           | 36                  | 24               | ICR20        | <b>36С</b> н     | 000FFF6Cн                       |
| DMAC4 (end, error)                           | 37                  | 25               | ICR21        | <b>368</b> н     | 000FFF68⊦                       |
| System reservation                           | 38                  | 26               | ICR22        | 364н             | 000FFF64н                       |
| System reservation                           | 39                  | 27               | ICR23        | 360н             | 000FFF60н                       |
| System reservation                           | 40                  | 28               | ICR24        | <b>35С</b> н     | 000FFF5Cн                       |
| A/D sequential conversion type               | 41                  | 29               | ICR25        | 358н             | 000FFF58⊦                       |
| Reload timer 0                               | 42                  | 2A               | ICR26        | 354н             | 000FFF54н                       |
| Reload timer 1                               | 43                  | 2B               | ICR27        | 350н             | 000FFF50н                       |
| 16-bit PPG timer 0                           | 44                  | 2C               | ICR28        | <b>34С</b> н     | 000FFF4Cн                       |
| 16-bit PPG timer 1                           | 45                  | 2D               | ICR29        | <b>348</b> н     | 000FFF48н                       |
| 16-bit PPG timer 2                           | 46                  | 2E               | ICR30        | 344 <sub>H</sub> | 000FFF44н                       |
| 16-bit PPG timer 3                           | 47                  | 2F               | ICR31        | 340н             | 000FFF40н                       |
| 16-bit PPG timer 4                           | 48                  | 30               | ICR32        | 33Сн             | 000FFF3Cн                       |
| 16-bit PPG timer 5                           | 49                  | 31               | ICR33        | 338н             | 000FFF38н                       |
| System reservation                           | 50                  | 32               | ICR34        | 334н             | 000FFF34н                       |
| System reservation                           | 51                  | 33               | ICR35        | 330н             | 000FFF30н                       |
| System reservation                           | 52                  | 34               | ICR36        | <b>32С</b> н     | 000FFF2Cн                       |
| System reservation                           | 53                  | 35               | ICR37        | 328н             | 000FFF28н                       |
| System reservation                           | 54                  | 36               | ICR38        | 324н             | 000FFF24н                       |
| System reservation                           | 55                  | 37               | ICR39        | 320н             | 000FFF20н                       |
| System reservation                           | 56                  | 38               | ICR40        | <b>31С</b> н     | 000FFF1Cн                       |
| System reservation                           | 57                  | 39               | ICR41        | 318 <sub>H</sub> | 000FFF18⊦                       |
| System reservation                           | 58                  | ЗA               | ICR42        | 314н             | 000FFF14                        |
| System reservation                           | 59                  | 3B               | ICR43        | 310н             | 000FFF10н                       |
| System reservation                           | 60                  | 3C               | ICR44        | <b>30С</b> н     | 000FFF0Cн                       |
| System reservation                           | 61                  | 3D               | ICR45        | 308н             | 000FFF08н                       |
| System reservation                           | 62                  | 3E               | ICR46        | 304н             | 000FFF04н                       |
| Delay interruption factor bit                | 63                  | 3F               | ICR47        | 300н             | 000FFF00н                       |
| System reservation<br>(used under REALOS) *3 | 64                  | 40               |              | 2FCн             | 000FFEFCH                       |

(Continued)

|                                           | Interruption number |                  | Interruption |                    | Interruption vector             |
|-------------------------------------------|---------------------|------------------|--------------|--------------------|---------------------------------|
| Interruption source                       | Decimal             | Hexadeci-<br>mal | level *1     | Offset             | address to TBR of<br>default *2 |
| System reservation (used under REALOS) *3 | 65                  | 41               |              | 2F8н               | 000FFEF8⊦                       |
| Used under INT instruction                | 66<br>to<br>255     | 42<br>to<br>FF   | _            | 2F4н<br>to<br>000н | 000FFEF4н<br>to<br>000FFD00н    |

\*1 : ICR sets the interruption level for each interruption request using the register built into the interruption controller. ICR is prepared in accordance with each interruption request.

- \*2 : TBR is the register that indicates the starting address of the vector table for EIT. Addresses with added offset values that are specified per TBR and EIT factor will be the vector addresses.
- \*3: REALOS OS/FR uses 0X40, 0X41 interruptions for system codes.

#### **Reference :**

The vector area for EIT is 1 KB in accordance with the address shown by TBR.

The size per vector is 4 bytes, and the relationship between the vector numbers and their addresses is shown as follows.

- vctadr = TBR + vctofs
  - = TBR + (3FC<sub>H</sub> 4 × vct)
    - vctadr : vector address vctofs : vector offset vct : vector number

#### PERIPHERAL RESOURCES

#### 1. I/O Port

MB91110 series can be used as the I/O port when settings for resources that handle each pin do not to use the pins for input/output.

#### Block diagram



#### • I/O Port Registers

I/O port is composed of the Port Data Register (PDR) and Data Direction Register (DDR) .

• In cases where the input mode is DDR = "0"

For PDR reading : Level of external pins to be handled is read out.

For PDR writing : Set value is written in PDR.

• In cases where the output mode is DDR = "1"

For PDR reading : PDR value is read out.

For PDR writing : Set value is written in PDR and the PDR value is simultaneously output to the externally handled pin.

#### 2. Port Data Register (PDR)

Port Data Register (PDR2-I) is the input/output data register for the I/O port. Input/output control is carried out by the handled data direction register (DDR2-I).

#### PDR2 Initial value Access 2 0 6 5 4 3 1 7 Address : 000001H XXXXXXXX<sub>B</sub> R/W P27 P24 P23 P22 P21 P20 P26 P25 PDR6 Initial value Access 7 6 5 4 3 2 1 0 Address : 000005H XXXXXXXX<sub>B</sub> R/W P67 P66 P65 P64 P63 P62 P61 P60 PDR8 Initial value Access 7 5 2 1 0 6 4 3 Address : 00000BH R/W - - X- - XXXв P81 P85 P82 P80 \_\_\_ \_\_\_\_ \_\_\_\_ \_\_\_\_ PDRA Initial value Access 4 3 2 0 7 6 5 1 Address : 000009н R/W - ХХХХХ- в PA6 PA5 PA4 PA3 PA2 PA1 PDRB Initial value Access 7 6 5 4 3 2 1 0 Address : 000008H XXXXXXXX<sub>B</sub> R/W PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0 PDRE Initial value Access 2 0 7 5 4 3 1 6 Address : 000012H R/W ---- XXXX<sub>в</sub> PE3 PE2 PE1 PE0 PDRF Initial value Access 7 6 5 4 3 2 1 0 Address : 000013H R/W XXXXXXXX<sub>B</sub> PF7 PF6 PF5 PF4 PF3 PF2 PF1 PF0 PDRG Initial value Access 5 4 3 2 0 7 6 1 Address : 000014H - - XXXXXXв R/W PG5 PG4 PG3 PG2 PG1 PG0 \_\_\_\_ \_\_\_\_ PDRH Initial value Access 6 5 4 3 2 0 7 1 Address : 000015H XXXXXXXX<sub>B</sub> R/W PH7 PH6 PH5 PH4 PH3 PH2 PH1 PH0 PDRI Initial value Access 4 3 2 0 7 6 5 1 Address : 000016H XXXXXXXXB R/W PI7 PI6 PI5 PI4 PI3 PI2 PI1 PI0

#### Port Data Register (PDR)

#### 3. Data Direction Register (DDR)

The Data Direction Register (DDR2-I) controls the input/output direction of the I/O port per bit. 0 is used for input and 1 is used to execute output control.

#### • Data Direction Register (DDR)

| DDR2              | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   | Initial value Access   |
|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|------------------------|
| Address : 000601H | P27 | P26 | P25 | P24 | P23 | P22 | P21 | P20 | 0000000в W             |
| DDR6              | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   | Initial value Access   |
| Address : 000605н | P67 | P66 | P65 | P64 | P63 | P62 | P61 | P60 | 0000000 <sub>в</sub> W |
| DDR8              | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   | Initial value Access   |
| Address : 00060BH | _   | _   | P85 | _   | _   | P82 | P81 | P80 | 0-000в W               |
| DDRA              | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   | Initial value Access   |
| Address : 000609н | _   | PA6 | PA5 | PA4 | PA3 | PA2 | PA1 | —   | - 000000 -в W          |
| DDRB              | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   | Initial value Access   |
| Address : 000608н | PB7 | PB6 | PB5 | PB4 | PB3 | PB2 | PB1 | PB0 | 0000000 <sub>B</sub> W |
| DDRE              | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   | Initial value Access   |
| Address : 0000D2H | _   |     | —   | _   | PE3 | PE2 | PE1 | PE0 | W                      |
| DDRF              | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   | Initial value Access   |
| Address : 0000D3н | PF7 | PF6 | PF5 | PF4 | PF3 | PF2 | PF1 | PF0 | 0000000 <sub>B</sub> W |
| DDRG              | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   | Initial value Access   |
| Address : 0000D4H | _   |     | PG5 | PG4 | PG3 | PG2 | PG1 | PG0 | 000000в W              |
| DDRH              | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   | Initial value Access   |
| Address : 0000D5H | PH7 | PH6 | PH5 | PH4 | PH3 | PH2 | PH1 | PH0 | 0000000 <sub>B</sub> W |
| DDRI              | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   | Initial value Access   |
| Address : 0000D6н | PI7 | PI6 | PI5 | PI4 | PI3 | Pl2 | PI1 | PI0 | 0000000 <sub>в</sub> W |
|                   |     |     |     |     |     |     |     |     |                        |

#### 4. Instruction Cache

The instruction cache is a temporary storage memory. In the event that the instruction codes are accessed from a low speed external memory, it holds the accessed codes internally, and is used to increase the access speed for all subsequent accesses.

Direct read or write access can not be done by instruction cache or instruction cache tag using software.

#### • Cacheable area of the instruction cache

Instruction cache allows all space to become a cacheable area.

- Even though details of the external memory are updated by DMA transfer, it is not coherent with the cache details. In this case, coherency should be established by flushing the cache.
- Instruction cache configuration
- Basic instruction length of FR series : 2 bytes
- Block layout : 2-way set associative type
- Block
  - 1 way is configured of 32 blocks.
  - 1 block is 16 bytes ( = 4 sub blocks)
  - 1 sub block is 4 bytes ( = 1 bus access unit)

#### The instruction cache configuration is shown in the following figure.


### 5. Instruction Cache Control Register (ICHCR)

The Instruction Cache Control Register (ICHCR) controls the operation of the instruction cache. Writing to ICHCR may effect the cache operation of instructions to be retrieved within the next three cycles.

#### • Instruction Cache Control Register (ICHCR)

Instruction Cache Control Register (ICHCR) is shared for use by ways 1 and 2.



#### 6. Clock Generator (Low power consumption mechanism)

The clock generation area is a module with the following functions.

- CPU clock generation (including gear function)
- Peripheral clock generation (including gear function)
- Reset generation and holding factors
- Standby function (including hardware standby)
- Restraining DMA request
- PLL (Phase Locked Loop) is built in
- Register list

| )480н<br>)481н | RSR | R/W | TCR |    |    |  | ST | CR |  |  |  | 1XXXX- 00в<br>000111 в                          | R/W<br>R/W |
|----------------|-----|-----|-----|----|----|--|----|----|--|--|--|-------------------------------------------------|------------|
| )482н<br>)483н |     |     |     | PD | RR |  | СТ | BR |  |  |  | 0000в<br>XXXXXXXXB                              | R/W<br>W   |
| 0484н<br>0485н | GCR | R   |     |    |    |  | W  | PR |  |  |  | 110011- 1 <sub>в</sub><br>XXXXXXXX <sub>в</sub> | R/W<br>W   |
| 0488н          | PCT | R   |     |    |    |  |    |    |  |  |  | 00 0 в                                          | R/W        |

# Block diagram



# 7. Bus Interface Outline

The bus interface controls the interface with external memory and external I/O.

#### • Bus Interface Characteristics

- 24-bit (16 MB) address output
- 6 individual banks using chip selection function Random positional setting is possible on the logical address space at minimum 64-KB units. Total 16 MB  $\times$  6 areas can be set using the address pin and chip selection pin.
- 16/8-bit bus width can be set per chip selection area.
- Insertion of programmable "automatic memory wait" (maximum of 7 cycles)
- Supports DRAM interface

3 types of DRAM interface Double CAS DRAM (Normal DRAM I/F) Single CAS DRAM Hyper DRAM
2-bank individual control (control signal i.e. RAS and CAS) DRAM can be selected from 2CAS/1WE or 1CAS/2WE.
Supports high-speed page mode
Supports CBR / self refresh
Programmable corrugation

- Unused addresses / data pins can be used as I/O ports.
- Supports "little endian" mode
- Using clock doubler : Internal 50 MHz, external bus 25 MHz operation

#### Chip Selection Area

A total of six types of chip selection areas are prepared for the bus interface. The position of each area can be randomly arranged per 64 KB at least using area selection registers (ASR1 to 5) and area mask registers (AMR1 to 5) in an area of 4 GB. In the event that access to an external bus is attempted in areas that are specified by those registers, the supported chip selection signals ( $\overline{CS0}$  to  $\overline{CS5}$ ) become activated to "L". Such pins other than  $\overline{CS0}$  are deactivated to "H" when reset.

Note : The area 0 is allocated to space outside the area specified by ASR1 to ASR5. External areas other than 0001 0000H to 0005 FFFFH are deemed area 0 on resetting.

#### • Interface

The bus interface has the following interface types.

- Normal bus interface
- DRAM interface

These interfaces can only be used in predetermined areas. The following table shows each chip selection area and the usable interface functions. Which interface is to be used is selected in the Area Mode Register (AMD). If no selection is made, it defaults to the normal bus interface.

Chip Selection Area and Selectable Bus Interfaces

| Aroos | 5          | Selectable bus interfac | e    | Remarks      |  |  |
|-------|------------|-------------------------|------|--------------|--|--|
| Aleas | Normal bus | Time division           | DRAM | Remarks      |  |  |
| 0     | 0          | —                       | —    | On resetting |  |  |
| 1     | 0          | —                       | _    |              |  |  |
| 2     | 0          | _                       | _    |              |  |  |
| 3     | 0          | —                       | _    |              |  |  |
| 4     | 0          | —                       | 0    |              |  |  |
| 5     | 0          |                         | 0    |              |  |  |



# Register List

| Эн<br>Ен | ASR1 (Area S         | Select Reg. 1)    | AMR1 (Area    | a Mode Reg. 1)     | 00000000             | 00000001 в<br>00000000 в  | W          |
|----------|----------------------|-------------------|---------------|--------------------|----------------------|---------------------------|------------|
| 0н<br>2н | ASR2 (Area S         | Select Reg. 2)    | AMR2 (Area    | a Mode Reg. 2)     | 00000000<br>00000000 | 00000010 в<br>00000000 в  | W<br>W     |
| 4н<br>6н | ASR3 (Area S         | Select Reg. 3)    | AMR3 (Area    | a Mode Reg. 3)     | 00000000<br>00000000 | 00000011 в<br>00000000 в  | W<br>W     |
| 8н<br>Ан | ASR4 (Area S         | Select Reg. 4)    | AMR4 (Area    | a Mode Reg. 4)     | 00000000<br>00000000 | 00000100 в<br>00000000 в  | W<br>W     |
| Сн<br>Ен | ASR5 (Area S         | Select Reg. 5)    | AMR5 (Area    | a Mode Reg. 5)     | 00000000<br>00000000 | 00000101 в<br>00000000 в  | W<br>W     |
| 0н<br>2н | AMD0 *1              | AMD1 *1           | AMD32 *1      | AMD4 *1            | 00111<br>00000000    | 0 00000 в<br>0 00000 в    | R/W<br>R/W |
| 4н<br>6н | AMD5 *1              | DSCR *2           | RFCR (Refresh | Control Register)  | 0 00000<br>XXXXXX    | 00000000 в<br>00000 в     | R/W<br>R/W |
| 8н<br>Ан | EPCR0 (Externa       | al Pin Control 0) | EPCR1 (Exter  | nal Pin Control 1) | 1100                 | - 0000000 в<br>11111111 в | W<br>W     |
| Сн<br>Ен | DMCR4 (DRAM          | Control Reg. 4)   | DMCR5 (DRA    | M Control Reg. 5)  | 00000000<br>00000000 | 000000- в<br>000000- в    | R/W<br>R/W |
|          |                      |                   |               |                    | _                    |                           |            |
| Сн       |                      |                   | LER *3        | MODR *4            | 00                   | XXXXXXXX в                | W          |
| *1       | : AMD (Area MoDe reg | uister)           |               |                    |                      |                           |            |

#### 8. 16-bit Reload Timer

The 16-bit timer is composed of a 16-bit down counter, 16-bit reload register, a pre-scalar for internal count clock preparation and a control register. Selection of the input clock can be made from three types of internal clock (machine clocks with 2, 8 and 32 cycles) and an external clock are selectable for input clock.

#### · Characteristics of the 16-bit reload timer

The Pin Output (TO) outputs a toggle waveform whenever underflow is generated in reload mode, and outputs rectangular waves indicating that it is counting in the case of one shot mode.

Pin Input (TI) can be used for event input in the case of external event count mode, trigger input or gate input for internal clock mode.

If the external event count function is used as the reload mode, it can be used as the cycle device for the external clock.

In this type, a 2-channel timer is built-in.

Channel 0 of the reload timer can start up DMA transfer using the interruption request signal.

The DMA controller clears the interruption flag of the reload timer at the same time as receiving the transfer request.

The TO output from channel 0 for the reload timer is connected to the A/D converter inside the LSI. Thus, A/D conversion can be started on a cycle set at the reload register.

• Block Diagram



# Register List

| Control sta                                                                                                          | atus regi | ster (TN | ICSR)     |      |      |      |      |      |                                                                         | A                     |
|----------------------------------------------------------------------------------------------------------------------|-----------|----------|-----------|------|------|------|------|------|-------------------------------------------------------------------------|-----------------------|
| Address                                                                                                              | 15        | 14       | 13        | 12   | 11   | 10   | 9    | 8    | Initial value                                                           | Access                |
| 000036н                                                                                                              |           | —        | _         | _    | CSL1 | CSL0 | MOD2 | MOD1 | 0000в                                                                   | R/W                   |
|                                                                                                                      | 7         | 6        | 5         | 4    | 3    | 2    | 1    | 0    |                                                                         |                       |
| 000037н                                                                                                              | MOD0      | OUTE     | OUTL      | RELD | INTE | UF   | CNTE | TRG  | 0000000в                                                                | R/W                   |
| <ul> <li>16-bit time<br/>Address</li> <li>00002AH</li> <li>000032H</li> <li>16-bit reloa</li> <li>Address</li> </ul> | r registe | er (TMR) | )<br>RLR) |      |      |      |      | 0    | Initial value<br>xxxxxxxx xxxxxxs<br>xxxxxxxx xxxxxxxx<br>Initial value | Access<br>W<br>Access |
| 000028н<br>000030н                                                                                                   | 15        |          |           |      |      |      |      | 0    | XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                  | W                     |

### 9. PPG Timer

The PPG timer can output pulses that are synchronized with soft triggers or externally. Also, the cycle and duty of the output pulses can be changed randomly by replacing the two 16-bit register values. In this type, there are 6 built-in channels with this function.

#### • PPG timer function

The PPG timer has two functions as follows.

• PWM function

This can be synchronized to the trigger and is programmable to output pulses while rewriting the above register values. It can also be used as a D/A converter by using an additional circuit.

• One-shot function

This detects the edge of the trigger input and outputs a single pulse.

#### • Block Diagram



Register List

| • Cycle setti<br>Address<br>000046н<br>00004Ен<br>000056н<br>00005Ен<br>000066н<br>00006Ен            | bit         | egister (PCSR)                 | 8          | 7 | 0 | Initial<br>XXXXXXXX | value<br>XXXXXXXB             | Access<br>W   |
|-------------------------------------------------------------------------------------------------------|-------------|--------------------------------|------------|---|---|---------------------|-------------------------------|---------------|
| • Duty settir<br>Address<br>000048н<br>000050н<br>000058н<br>000060н<br>000068н<br>000068н<br>000070н | ng re       | gister (PDUT)<br><sup>15</sup> | 8          | 7 | 0 | Initia<br>XXXXXXXX  | value<br>XXXXXXX <sub>B</sub> | Access<br>W   |
| • Control/sta<br>Address<br>00004Ан<br>000052н<br>00005Ан<br>000062н<br>00006Ан<br>000072н            | atus<br>bit | register (PCNH/<br>15          | PCNL)<br>8 | 7 | 0 | Initia<br>0000000 - | l value<br>00000000₀          | Access<br>R/W |

#### 10. External Interruption/NMI Control Area

The external interruption / NMI control area controls the external interruption requests to be input to the  $\overline{\text{NMI}}$  and INT0 to INT7. "H" or "L" and "rising edge" or "falling edge" can be selected as the requested detection level (except for NMI). Also, four requests from INT0 to INT3 can be used as the DMA request.

#### • Block diagram



#### Register list

| External interval                     | errupti  | on perm  | nission r | egister  | (ENIR) |     |     |     |     | Initial value | A      |
|---------------------------------------|----------|----------|-----------|----------|--------|-----|-----|-----|-----|---------------|--------|
| Address                               | DIL      | 7        | 6         | 5        | 4      | 3   | 2   | 1   | 0   | Initial value | Access |
| 000095н                               |          | EN7      | EN6       | EN5      | EN4    | EN3 | EN2 | EN1 | EN0 | 0000000в      | R/W    |
| <ul> <li>External internal</li> </ul> | errupti  | on facto | ors regis | ter (EIR | R)     |     |     |     |     |               |        |
| Address                               | bit      | 15       | 14        | 13       | 12     | 11  | 10  | 9   | 8   |               |        |
| 000094н                               |          | ER7      | ER6       | ER5      | ER4    | ER3 | ER2 | ER1 | ER0 | 0000000в      | R/W    |
| Request lev                           | vel sett | ing regi | ster (EL  | .VR)     |        |     |     |     |     |               |        |
| Address                               | bit      | 15       | 14        | 13       | 12     | 11  | 10  | 9   | 8   |               |        |
| 000098н                               |          | LB7      | LA7       | LB6      | LA6    | LB5 | LA5 | LB4 | LA4 | 0000000в      | R/W    |
|                                       | bit      | 7        | 6         | 5        | 4      | 3   | 2   | 1   | 0   |               |        |
| 000099н                               |          | LB3      | LA3       | LB2      | LA2    | LB1 | LA1 | LB0 | LA0 | 0000000в      | R/W    |
|                                       |          |          |           |          |        |     |     |     |     |               |        |

# **11. Delay Interruption Modules**

This is a module to generate interruptions to switch tasks. This module can be used with software to generate/ cancel interruption requests to the CPU.

### Block diagram



| Address | bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0    | Initial value Access |
|---------|-----|---|---|---|---|---|---|---|------|----------------------|
| 000430н |     |   | _ | _ | _ | _ | _ | _ | DLYI | 0в R/W               |
|         | •   |   |   | • |   |   | • |   |      |                      |
|         |     |   |   |   |   |   |   |   |      |                      |
|         |     |   |   |   |   |   |   |   |      |                      |

### 12. Interruption Controller

The interruption controller carries out interruption reception and arbitration.

#### · Hardware configuration of the interruption controller

This module is configured for the following items.

- ICR register
- Interruption priority judgement circuit
- Interruption level, interruption number (vector) generation area
- Cancellation request generation area for HOLD request

#### • Major interruption controller functions

This module has the following functions.

- Detection of NMI request / interruption request
- Priority grade judgement (depending on the level and number)
- Transferring interruption level of factors for the judgement results (to CPU)
- Transferring interruption number of factors for the judgement results (to CPU)
- Recovery instruction from stop mode by generating NMI / interruption
- Cancellation of HOLD request to the bus master

• Block Diagram



\*3 : HLDCAN is the bus vacation request signal to bus masters other than the CPU.

# Register list

| Address             | bit 7 | 6        | 5 | 4    | 3    | 2    | 1    | 0    |       | Initial value | Acces |
|---------------------|-------|----------|---|------|------|------|------|------|-------|---------------|-------|
| 000400н             | —     | —        |   | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR00 | 11111         | R/W   |
| 000401н             | _     | _        | _ | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR01 | 11111         | R/W   |
| 000402н             | _     | _        | _ | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR02 | 11111         | R/W   |
| 000403н             | _     |          |   | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR03 | 11111         | R/W   |
| 000404н             | _     |          | _ | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR04 | 11111         | R/W   |
| 000405н             | _     | _        | _ | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR05 | 11111         | R/W   |
| 000406н             | _     | _        | _ | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR06 | 11111         | R/W   |
| 000407н             | _     | _        | _ | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR07 | 11111         | R/W   |
| <b>000408</b> н     | _     | _        | _ | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR08 | 11111         | R/W   |
| 000409н             |       |          | _ | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR09 | 11111         | R/W   |
| 00040Ан             | _     | _        | _ | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR10 | 11111         | R/W   |
| 00040Bн             | _     | _        | _ | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR11 | 11111         | R/W   |
| 00040CH             | _     | _        | _ | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR12 | 11111         | R/W   |
| 00040DH             |       | _        | _ | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR13 | 11111         | R/W   |
| 00040EH             |       | _        | _ | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR14 | 11111         | R/W   |
| 00040FH             | _     |          | _ | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR15 | 11111         | R/W   |
| 000410 <sub>H</sub> |       | <u> </u> | _ | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR16 | 11111         | R/W   |
| 000411 <sub>H</sub> |       |          |   | ICR4 | ICR3 | ICR2 | ICR1 | ICRO | ICR17 | 11111         | R/W   |
| 000412              |       |          |   | ICR4 | ICR3 | ICR2 | ICR1 | ICRO | ICR18 | 11111         | R/W   |
| 000413              |       |          |   |      | ICP3 | ICR2 |      |      |       | 11111         | P/M   |
| 000413              |       |          |   |      |      |      |      |      |       |               |       |
| 0004148             |       |          |   |      |      |      |      |      |       |               |       |
| 0004158             |       |          | _ |      | ICR3 |      |      |      |       |               |       |
| 000410H             |       |          |   |      | ICR3 |      |      |      |       |               |       |
| 0004178             |       |          | _ |      | ICR3 |      |      |      |       |               |       |
| 000416H             |       |          | _ | ICR4 | ICR3 | ICR2 | ICRI | ICRU | ICR24 | 11111         | R/W   |
| 000419H             |       |          |   | ICR4 | ICR3 | ICR2 | ICR1 | ICRU | ICR25 | 11111         | R/W   |
| 00041AH             |       |          |   | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR26 | 11111         | R/W   |
| 00041BH             |       |          |   | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR27 | 11111         | R/W   |
| 00041CH             |       |          |   | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR28 | 11111         | R/W   |
| 00041DH             |       |          | — | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR29 | 11111         | R/W   |
| 00041Eн             |       |          | — | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR30 | 11111         | R/W   |
| 00041Fн             | _     | —        | — | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR31 | 11111         | R/W   |
| 000420н             | _     | _        | — | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR32 | 11111         | R/W   |
| 000421н             |       |          | — | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR33 | 11111         | R/W   |
| 000422н             |       | —        | — | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR34 | 11111         | R/W   |
| 000423н             |       |          | — | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR35 | 11111         | R/W   |
| 000424н             | _     | —        | — | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR36 | 11111         | R/W   |
| 000425н             | —     | —        | — | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR37 | 11111         | R/W   |
| 000426н             |       | —        | _ | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR38 | 11111         | R/W   |
| 000427н             | —     | —        | — | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR39 | 11111         | R/W   |
| 000428н             | _     | —        | — | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR40 | 11111         | R/W   |
| 000429н             |       | —        |   | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR41 | 11111         | R/W   |
| 00042Ан             |       | _        |   | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR42 | 11111         | R/W   |
| 00042Bн             |       | —        | _ | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR43 | 11111         | R/W   |
| 00042Сн             | —     | _        | _ | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR44 | 11111         | R/W   |
| 00042DH             | —     | _        | _ | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR45 | 11111         | R/W   |
| 00042Eн             | —     | —        |   | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR46 | 11111         | R/W   |
| 00042Fн             | —     | —        |   | ICR4 | ICR3 | ICR2 | ICR1 | ICR0 | ICR47 | 11111         | R/W   |
|                     |       | •        | • | R    | R/W  | R/W  | R/W  | R/W  |       |               |       |
| 000431н             | _     |          | _ | LVL4 | LVL3 | LVL2 | LVL1 | LVL0 | HRCL  | 11111         | R/W   |
|                     | ·     | -        |   | R    | R/W  | R/W  | R/W  | R/W  |       |               |       |

# 13. Interruption Control Register (ICR)

This function is set up per interruption input and sets the interruption level of interruption requests to be handled.

#### Register list



#### [bit 4 to 0] ICR4 to 0

The interruption level of the interruption requests that are handled is specified by the interruption level setting bit. In cases where the interruption level that is set in this register is the same as or more than the level mask value that is set (has been set) in the ILM register of the CPU, the interruption request is masked at the CPU side. It is initialized to  $11111_B$  on resetting. The settable interruption level setting bit and interruption level are shown in following Table.

| ICR4 | ICR3 | ICR2 | ICR1 | ICR0 |    | Interruption level         |
|------|------|------|------|------|----|----------------------------|
| 0    | 0    | 0    | 0    | 0    | 0  | A System reconvetion       |
| 0    | 1    | 1    | 1    | 0    | 14 | ▼ System reservation       |
| 0    | 1    | 1    | 1    | 1    | 15 | NMI                        |
| 1    | 0    | 0    | 0    | 0    | 16 | Maximum settable level     |
| 1    | 0    | 0    | 0    | 1    | 17 | ♦ (High)                   |
| 1    | 0    | 0    | 1    | 0    | 18 |                            |
| 1    | 0    | 0    | 1    | 1    | 19 |                            |
| 1    | 0    | 1    | 0    | 0    | 20 |                            |
| 1    | 0    | 1    | 0    | 1    | 21 |                            |
| 1    | 0    | 1    | 1    | 0    | 22 |                            |
| 1    | 0    | 1    | 1    | 1    | 23 |                            |
| 1    | 1    | 0    | 0    | 0    | 24 |                            |
| 1    | 1    | 0    | 0    | 1    | 25 |                            |
| 1    | 1    | 0    | 1    | 0    | 26 |                            |
| 1    | 1    | 0    | 1    | 1    | 27 |                            |
| 1    | 1    | 1    | 0    | 0    | 28 |                            |
| 1    | 1    | 1    | 0    | 1    | 29 |                            |
| 1    | 1    | 1    | 1    | 0    | 30 | (Low)                      |
| 1    | 1    | 1    | 1    | 1    | 31 | Interruption is prohibited |

#### Interruption Level Setting Bit and Interruption Level

Note: ICR 4 is fixed as "1" and can not be written as "0".

### 14. 10-bit A/D Converter

The A/D converter is the module that converts analog input voltages to a digital value.

#### • Characteristics of A/D Converter

- Minimum converting time : 5.6 µs/channel
- Sample & hold circuit is built-in.
- Resolution : 10 bits
- Selection can be made for analog input from 8 channels.

| Single conversion mode       | : 1 channel is selected for conversion                                                                                                 |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Scan conversion mode         | : Converts multiple number of consecutive channels.<br>Maximum 8 channels are programmable.                                            |
| Consecutive conversion mode  | : Repeatedly converts the specified channel.                                                                                           |
| Suspension / conversion mode | : Suspends after converting 1 channel and waits until the next one is started up (synchronization for starting conversion is possible) |

- Initiation of DMA transfer by interruption is possible.
- Initiation factor can be selected from software, external trigger (falling edge) or reload timer (rising edge).

#### • Block Diagram



# Register List

| <ul> <li>Control Status<br/>Address</li> </ul> | s Regi<br><sub>bit</sub> | ster (AD      | OCS) |      |      |      |      |      |      | Initial value Access          |
|------------------------------------------------|--------------------------|---------------|------|------|------|------|------|------|------|-------------------------------|
|                                                |                          | 15            | 14   | 13   | 12   | 11   | 10   | 9    | 8    |                               |
| 00003Ан                                        |                          | BUSY          | INT  | INTE | PAUS | STS1 | STS0 | STRT | —    | 0000000 <sub>в</sub> R/W      |
|                                                | bit                      | 7             | 6    | 5    | 4    | 3    | 2    | 1    | 0    |                               |
| 00003Вн                                        |                          | MD1           | MD0  | ANS2 | ANS1 | ANS0 | ANE2 | ANE1 | ANE0 | 0000000 <sub>в</sub> R/W      |
| • Data Register<br>Address<br>000038⊦          | · (ADC<br>bit            | 2R)<br>15<br> | 14   | 13   | 12   | 11   | 10   | 9    | 8    | Initial value Access<br>XX₅ R |
| 000039н                                        | bit                      | 7             | 6    | 5    | 4    | 3    | 2    | 1    | 0    | XXXXXXXXB R                   |
|                                                |                          |               |      |      |      |      |      |      |      |                               |

### 15. UART

UART is the serial I/O port for carrying out asynchronous (start-stop synchronization) or CLK synchronous communication.

- Characteristics of UART
- FDX double buffer
- Asynchronous (start-stop synchronization) and CLK synchronous communication are possible.
- Supports multi processor mode
- Dedicated baud rate generator is built-in.
- Free baud rate can be set using an external clock.
- Error detection function (parity, framing, overrun)
- Transfer signal is NRZ code
- Initiation of DMA transfer is possible by interruption.

• Block Diagram



# Register List

| Address     | bit      | 7         | 6         | 5        | 4        | 3         | 2      | 1    | 0    | Initial value | Access |
|-------------|----------|-----------|-----------|----------|----------|-----------|--------|------|------|---------------|--------|
| 000023н     |          | MD1       | MD0       | CS2      | CS1      | CS0       |        | SCKE | SOE  | 00000 - 00в   | R/W    |
| Serial Con  | trol Re  | gister (  | SCR)      |          |          |           |        |      |      |               |        |
|             | bit      | 15        | 14        | 13       | 12       | 11        | 10     | 9    | 8    | Initial value | Access |
| 000022н     |          | PEN       | Р         | SBL      | CL       | A/D       | REC    | RXE  | TXE  | 00000100в     | R/W    |
| Serial Inpu | it Data  | Registe   | er/Serial | Output   | Data Re  | egister ( | SIDR/S | ODR) |      |               |        |
|             | bit      | 7         | 6         | 5        | 4        | 3         | 2      | 1    | 0    | Initial value | Access |
| 000021н     |          | D7        | D6        | D5       | D4       | D3        | D2     | D1   | D0   | XXXXXXXXB     | R/W    |
| Serial Stat | us Reg   | gister (S | SR)       |          |          |           |        |      |      |               |        |
|             | bit      | 15        | 14        | 13       | 12       | 11        | 10     | 9    | 8    | Initial value | Access |
| 000020н     |          | PE        | ORE       | FRE      | RDRF     | TDRE      | _      | RIE  | TIE  | 00001 - 00в   | R/W    |
| Communio    | cation F | Pre-scal  | ar Cont   | rol Regi | ster (CD | OCR)      |        |      |      |               |        |
|             | bit      | 7         | 6         | 5        | 4        | 3         | 2      | 1    | 0    | Initial value | Access |
| 000025н     |          | MD        |           | _        | DIV4     | DIV3      | DIV2   | DIV1 | DIV0 | 0 11111в      | R/W    |
|             |          |           |           |          |          |           |        |      |      |               |        |
|             |          |           |           |          |          |           |        |      |      |               |        |
|             |          |           |           |          |          |           |        |      |      |               |        |

### 16. DMA Controller (DMAC)

The DMA controller is the module to realize Direct Memory Access (DMA) transfers with FR 30 series devices. DMA transfers controlled by this module enable quick and direct transfer of all data without using the CPU and thus system performance is increased.

#### • Hardware Configuration of DMA Controller

This module is mainly configured of the following items.

- Internal I/O access control circuit
- 32-bit address counters (possible reload specification : 10)
- 16-bit transfer number counters (possible reload specification : 5)
- External transfer request input pin : DREQ0, DREQ1, DREQ2
- External transfer request reception output pin : DACK0, DACK1, DACK2 (external bus synchronization)
- External transfer termination output pin : DEOP0, DEOP1, DEOP2 (external bus synchronization)

#### • Major Function of DMA Controller

There are the following functions for data transfer using this module.

- Independent data transfer of a number of channels is possible (5 ch)
- Priority ranking amongst channels
   Fixed ranking (ch.0 > ch.1 > ch.2 > ch.3 > ch.4)
   Ranking between channel 0 and 1 can be reversed.
- Transfer request

Dedicated external pin input (Edge detection / level detection selection are possible for channels 0 to 2 only.) Built-in peripheral request (interruption requests are shared. External interruption is included.) Software request (register writing)

- Transfer sequence Consecutive / burst transfer
   Step transfer / block transfer (Maximum 16 words are settable.)
- Addressing mode : 32-bit full address specification (increase / decrease / fix)
- Data types : Byte, half word, word length
- Single shot or reload can be selected.



# Register List

| Address bit         | 31                                         | 0      | Initial value                                            | Access |
|---------------------|--------------------------------------------|--------|----------------------------------------------------------|--------|
| 000200н             | ch.0 Control/status register               | DMACS0 | 0-00-000000000 <sub>B</sub><br>XX-00000XX-Х <sub>в</sub> | R/W    |
| 000204н             | ch.0 Addressing/transfer counting register | DMACC0 | XXXX XXXX-XXXB<br>XXXXXXXX XXXXXXXB                      | R/W    |
| <b>000208</b> H     | ch.0 Transfer originator address register  | DMASA0 | XXXXXXXXX XXXXXXXX<br>XXXXXXXX XXXXXXXXX                 | R/W    |
| 00020Cн             | ch.0 Destination address register          | DMADA0 | XXXXXXXXX XXXXXXXX<br>XXXXXXXX XXXXXXXXXX                | R/W    |
| <b>000210</b> н     | ch.1 Control/status register               | DMACS1 | 0-00-000000000<br>XX-00000XX-Хв                          | R/W    |
| 000214 <sub>H</sub> | ch.1 Addressing/transfer counting register | DMACC1 | XXXX XXXX-XXXB<br>XXXXXXXX XXXXXXXB                      | R/W    |
| 000218 <sub>H</sub> | ch.1 Transfer originator address register  | DMASA1 | XXXXXXXXX XXXXXXXXB<br>XXXXXXXXX XXXXXXXXB               | R/W    |
| 00021Cн             | ch.1 Destination address register          | DMADA1 | XXXXXXXXX XXXXXXXXB<br>XXXXXXXXX XXXXXXXXB               | R/W    |
| 000220н             | ch.2 Control/status register               | DMACS2 | 0-00-000000000<br>XX-00000XX-Хв                          | R/W    |
| 000224 <sub>H</sub> | ch.2 Addressing/transfer counting register | DMACC2 | XXXX XXXX-XXXB<br>XXXXXXXX XXXXXXXAB                     | R/W    |
| 000228н             | ch.2 Transfer originator address register  | DMASA2 | XXXXXXXXX XXXXXXXXB<br>XXXXXXXXX XXXXXXXXB               | R/W    |
| 00022Cн             | ch.2 Destination address register          | DMADA2 | XXXXXXXXX XXXXXXXXB<br>XXXXXXXXX XXXXXXXXB               | R/W    |
| 000230н             | ch.3 Control/status register               | DMACS3 | 0-00-000000000<br>XX-00000XX-Х <sub>в</sub>              | R/W    |
| 000234н             | ch.3 Addressing/transfer counting register | DMACC3 | XXXX XXXX-XXXB<br>XXXXXXXXX XXXXXXXB                     | R/W    |
| 000238н             | ch.3 Transfer originator address register  | DMASA3 | XXXXXXXXX XXXXXXXXB<br>XXXXXXXXX XXXXXXXXB               | R/W    |
| 00023Cн             | ch.3 Destination address register          | DMADA3 | XXXXXXXXX XXXXXXXXB<br>XXXXXXXXX XXXXXXXXB               | R/W    |
| 000240н             | ch.4 Control/status register               | DMACS4 | 0-00-000000000<br>XX-00000XX-Хв                          | R/W    |
| 000244 <sub>H</sub> | ch.4 Addressing/transfer counting register | DMACC4 | XXXX XXXX-XXXB<br>XXXXXXXX XXXXXXXB                      | R/W    |
| 000248 <sub>H</sub> | ch.4 Transfer originator address register  | DMASA4 | XXXXXXXXX XXXXXXXXB<br>XXXXXXXXX XXXXXXXAB               | R/W    |
| 00024Cн             | ch.4 Destination address register          | DMADA4 | XXXXXXXXX XXXXXXXX<br>XXXXXXXX XXXXXXXXXX                | R/W    |
| 000250н             | Overall control register                   | DMACR  | о 0в<br>О 0Ов                                            | R/W    |

\*: Shaded areas indicate where nothing exists.

### 17. Bit Search Module

Bit search module searches for 0, 1 or change points on data that has been written in the input register, and returns the detected bit position.

# Block Diagram



#### • Registers List

| Address | 31 0                                           | Initial value                                                                | Access |
|---------|------------------------------------------------|------------------------------------------------------------------------------|--------|
| 0003F0н | Data register for 0 detection(BSD0)            | $\begin{array}{c} XXXXXXXXX XXXXXXX_{B} \\ XXXXXXXX XXXXXXX_{B} \end{array}$ | W      |
| 0003F4н | Data register for 1 detection(BSD1)            | XXXXXXXXX XXXXXXXB<br>XXXXXXXXX XXXXXXXB                                     | R/W    |
| 0003F8н | Data Register for Change Point Detection(BSDC) | XXXXXXXXX XXXXXXXB<br>XXXXXXXXX XXXXXXXB                                     | W      |
| 0003FCн | Detection Results Register(BSRR)               | XXXXXXXXX XXXXXXXB<br>XXXXXXXXX XXXXXXXB                                     | R      |

#### 18. I-RAM

This type has 16 KB of built-in I-RAM. Efficient processing becomes possible by pre-arranging interruption processing programs and such like in this area. Writing on I-RAM is possible via the data bus and is available as RAM for data.

#### Register List

| IRMC              | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0    | Initial value Access |
|-------------------|---|---|---|---|---|---|---|------|----------------------|
| Address : 0003EFH | _ | — |   | _ | _ | — | — | IRMD | 0 R/W                |
|                   |   |   |   |   |   |   |   |      |                      |

# ELECTRICAL CHARACTERISTICS

# 1. Absolute Maximum Ratings

(Vss = AVss = AVRL = 0 V)

| Paramotor                              | Symbol Rating |           | ing        | Unit | Pomarke |  |
|----------------------------------------|---------------|-----------|------------|------|---------|--|
| Farameter                              | Symbol        | Min       | Мах        | Unit |         |  |
| Power veltage                          | Vcc5          | Vcc3-0.3  | Vss + 6.0  | V    | *1      |  |
| Fower voltage                          | Vcc3          | Vss - 0.3 | Vss + 3.6  | V    | *1      |  |
| Analog power voltage                   | AVcc          | Vss - 0.3 | Vss + 3.6  | V    | *2      |  |
| Standard analog voltage                | AVRH, AVRL    | Vss - 0.3 | Vss + 3.6  | V    | *2      |  |
| Input voltage                          | Vı            | Vss - 0.3 | Vcc5 + 0.3 | V    |         |  |
| Analog pin input voltage               | VIA           | Vss - 0.3 | AVcc + 0.3 | V    |         |  |
| Output voltage                         | Vo            | Vss - 0.3 | Vcc5 + 0.3 | V    |         |  |
| Maximum "L" level output current       | lol           |           | 10         | mA   | *3      |  |
| Average "L" level output current       | OLAV          |           | 4          | mA   | *4      |  |
| Maximum total "L" level output current | ΣΙοι          |           | 100        | mA   |         |  |
| Average "L" level total output current | ΣΙοιαν        |           | 50         | mA   | *5      |  |
| Maximum "H" level output current       | Іон           |           | -10        | mA   | *3      |  |
| Average "H" level output current       | Іонач         |           | -4         | mA   | *4      |  |
| Maximum total "H" level output current | ΣІон          |           | -50        | mA   |         |  |
| Average "H" level total output current | ΣΙοήαν        |           | -20        | mA   | *5      |  |
| Electricity consumption                | PD            |           | 650        | mW   |         |  |
| Operating temperature                  | TA            | 0         | +70        | °C   |         |  |
| Storage temperature                    | Tstg          | -55       | +150       | °C   |         |  |

\*1 : Vcc3/Vcc5 must not be lower than Vss – 0.3 V.

\*2 : Care must be taken that AVcc, AVRH and AVRL do not exceed Vcc + 0.3 V when the power is turned on. Also care must be taken that AVRH and AVRL do not exceed AVcc, and keep AVRH  $\geq$  AVRL.

\*3 : Peak value of the pin concerned is regulated as the maximum output current.

\*4 : Average current within 100 ms flowing in the pin concerned is regulated as the average output current.

\*5 : Average current within 100 ms flowing in all pins concerned is regulated as the average total output current.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

(Vss = AVss = AVRL = 0 V)

| Paramatar               | Symbol | Value     |             | Unit | Pomorko                                 |
|-------------------------|--------|-----------|-------------|------|-----------------------------------------|
| Farameter               | Symbol | Min       | Max         | Unit | Rellidiks                               |
|                         | Vcc5   | 4.5       | 5.5         | .,   | Keeping RAM status in the               |
| Power voltage           | Vcc3   | 3.135     | 3.465       | V    | case of normal operations /<br>stopping |
| Analog power voltage    | AVcc   | Vss - 3.0 | Vss + 3.465 | V    |                                         |
| Standard analog voltage | AVRH   | AVss      | AVcc        | V    |                                         |
| Operating temperature   | TA     | 0         | +70         | °C   |                                         |

# 2. Recommended Operating Conditions

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

### 3. DC Characteristics

| $(V_{CC}5 = 5 V \pm 10\%, V_{CC}3 = 3.3 V \pm 5\%, V_{SS} = AV_{SS} = AV_{RL} = 0 V, T_A = 0 °C to +70 °C)$ |       |                                          |                                          |                       |       |                |      |                             |  |  |
|-------------------------------------------------------------------------------------------------------------|-------|------------------------------------------|------------------------------------------|-----------------------|-------|----------------|------|-----------------------------|--|--|
| Parameter                                                                                                   | Sym   | Bin nama                                 | Conditions                               |                       | Value |                | Unit | Bomarka                     |  |  |
| Falameter                                                                                                   | bol   | Pin name                                 | Conditions                               | Min                   | Тур   | Max            | Unit | Remarks                     |  |  |
| "H" level                                                                                                   | Vін   | Input excluding following                |                                          | 0.65 ×<br>Vcc3        |       | Vcc5 + 0.3     | V    |                             |  |  |
| input voltage                                                                                               | VIHS  | Refer to *                               |                                          | 0.8 ×<br>Vcc3         |       | Vcc5 + 0.3     | V    | Hysteresis input            |  |  |
| "L" level                                                                                                   | Vı∟   | Input excluding following                |                                          | $V_{\text{SS}} - 0.3$ |       | 0.25 ×<br>Vcc3 | V    |                             |  |  |
| input voltage                                                                                               | Vils  | Refer to *                               |                                          | Vss - 0.3             |       | 0.2 ×<br>Vcc3  | V    | Hysteresis input            |  |  |
| "H" level<br>output voltage                                                                                 | Vон   | _                                        | Vcc5 = 4.5 V<br>Іон = -4.0 mA            | Vcc5 –<br>0.5         |       |                | V    |                             |  |  |
| "L" level<br>output voltage                                                                                 | Vol   |                                          | Vcc5 = 4.5 V<br>lo <sub>L</sub> = 4.0 mA | —                     |       | 0.4            | V    |                             |  |  |
| Input leak<br>current (Hi-Z<br>output leak<br>current)                                                      | Ιu    |                                          | Vcc5 = 5.5 V<br>0.45 V<br>< Vi < Vcc5    | -5                    | _     | +5             | μΑ   |                             |  |  |
| Pull-up<br>resistance<br>value                                                                              | Rpull | RST                                      | $V_{CC}5 = 5.5 V$<br>$V_{I} = 0.45 V$    | 25                    | 50    | 200            | kΩ   |                             |  |  |
|                                                                                                             |       | Vcc5                                     | fc = 12.5 MHz                            |                       | 50    | 70             | mA   | (4 times) in                |  |  |
|                                                                                                             | Icc   | Vcc3                                     | Vcc5 = 5.5 V<br>Vcc3 = 3.465 V           |                       | 100   | 150            | mA   | case of 50 MHz<br>operation |  |  |
| <b>.</b> .                                                                                                  |       | Vcc5                                     | fc = 12.5 MHz                            |                       | 20    | 30             | mA   | In case of                  |  |  |
| Power current                                                                                               | Iccs  | Vcc3                                     | Vcc5 = 5.5 V<br>Vcc3 = 3.465 V           |                       | 50    | 70             | mA   | sleeping                    |  |  |
|                                                                                                             |       | Vcc5                                     | T <sub>A</sub> = 25 °C                   | —                     | 10    | 20             | μA   | In case of                  |  |  |
|                                                                                                             | Іссн  | Vcc3                                     | Vcc5 = 5.5 V<br>Vcc3 = 3.465 V           |                       | 200   | 900            | μΑ   | stopping                    |  |  |
| Input capacity                                                                                              | CIN   | Other than Vcc,<br>Avcc, Avss and<br>Vss |                                          | —                     | 10    | _              | pF   |                             |  |  |

\* : Hysteresis input pins : RST, HST, NMI, PE0/ATG, PE1/TRG0, 3, PE2/TRG1, 4, PE3/TRG2, 5, PF0/INT0 to PF7/INT7, PG0/DREQ0, PG3/DREQ1, PH0/DREQ2, PH3/SI, PH5/SCK, PH6/TI0, PI0/TI1, BGRNT/P81, WR1/P85, CS1/PA0 to CLK/PA6, RAS0/PB0 to DW1/PB7

### 4. AC Characteristics

### **Measurement Conditions**

The following conditions are applied to items without particular specifications.



# (1) Clock Timing

| $(V_{cc}5 = 5 V \pm 10\%, V_{cc}3 = 3.3 V \pm 5\%, V_{ss} = AV_{ss} = AV_{RL} = 0 V, T_A = 0 °C to +70 °C)$ |                        |          |            |         |                    |      |                                                    |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|------------------------|----------|------------|---------|--------------------|------|----------------------------------------------------|--|--|--|--|
| Paramotor                                                                                                   | Sym-                   | Pin      | Conditions | Va      | lue                | Unit | Remarks                                            |  |  |  |  |
| Falailletei                                                                                                 | bol                    | Name     | Conditions | Min     | Max                | Unit |                                                    |  |  |  |  |
| Clock frequency (1)                                                                                         | fc                     | X0<br>X1 |            | 10.0    | 12.5               | MHz  | Self oscillation 12.5<br>MHz                       |  |  |  |  |
| Clock cycle time                                                                                            | tc                     | X0<br>X1 |            | 80      | 100                | ns   | Internal 50 MHz<br>operation (via PLL,<br>4 times) |  |  |  |  |
| Clock frequency (2)                                                                                         | fc                     | X0<br>X1 |            | 10      | 25                 | MHz  | Self oscillation<br>(1/2 cycle input)              |  |  |  |  |
| Clock frequency (3)                                                                                         | fc                     | X0<br>X1 |            | 10      | 25                 | MHz  | External clock<br>(1/2 cycle input)                |  |  |  |  |
| Clock cycle time                                                                                            | tc                     | X0<br>X1 |            | 40      | 100                | ns   |                                                    |  |  |  |  |
| Input clock pulse width                                                                                     | Р <sub>WH</sub><br>Pw∟ | X0<br>X1 |            | 10      |                    | ns   | Clock is input to X0/X1                            |  |  |  |  |
|                                                                                                             | Рѡн                    | X0       |            | 25      |                    | ns   | Clock is input to X0 only                          |  |  |  |  |
| Input clock<br>rising/falling time                                                                          | tcr<br>tcf             | X0<br>X1 |            |         | 8                  | ns   | (tcr + tcf)                                        |  |  |  |  |
|                                                                                                             | fср                    |          |            | 0.625*1 | 50                 |      | CPU system                                         |  |  |  |  |
| Internal operation                                                                                          | fсрв                   |          |            | 0.625*1 | 25* <sup>2</sup>   | MHz  | Bus system                                         |  |  |  |  |
| clock frequency                                                                                             | fсрр                   |          |            | 0.625*1 | 25                 |      | Peripheral system                                  |  |  |  |  |
| laternal en enstien                                                                                         | <b>t</b> CP            |          |            | 20      | <b>1600</b> *1     |      | CPU system                                         |  |  |  |  |
| Internal operation                                                                                          | tсрв                   |          |            | 40*2    | 1600* <sup>1</sup> | ns   | Bus system                                         |  |  |  |  |
|                                                                                                             | <b>t</b> CPP           |          |            | 40      | 1600* <sup>1</sup> |      | Peripheral system                                  |  |  |  |  |

\*1 : This is the value when 10 MHz, which is the minimum value of the clock frequency, is input to X0 and 1/2 cycle of the oscillation circuit and gearing of 1/8 are used.

\*2 : This is the value when doubler is used with a 50 MHz CPU.





#### (2) Clock Output Timing

| $(V_{CC}5 = 5 V \pm 10\%, V_{CC}3 = 3.3 V \pm 5\%, V_{SS} = AV_{SS} = AV_{RL} = 0 V, T_A = 0 °C to +70 °C_{C}$ |               |      |        |                           |                           |      |                          |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------|---------------|------|--------|---------------------------|---------------------------|------|--------------------------|--|--|--|--|--|
| Parameter                                                                                                      | Sym-          | Pin  | Condi- | Va                        | lue                       | Unit | Pomarks                  |  |  |  |  |  |
|                                                                                                                | bol           | Name | tions  | Min                       | Max                       | Unit | Remarks                  |  |  |  |  |  |
| Cycle time                                                                                                     |               |      | CLK    | tcp                       | —                         |      | *1                       |  |  |  |  |  |
|                                                                                                                | tcyc          | CLK  |        | 2 × tcp                   |                           | ns   | In case of using doubler |  |  |  |  |  |
| $CLK \uparrow \to CLK \downarrow$                                                                              | <b>t</b> cHc∟ | CLK  |        | $1/2 \times t_{CYC} - 10$ | $1/2 \times t_{CYC} + 10$ | ns   | *2                       |  |  |  |  |  |
| $CLK \downarrow \rightarrow CLK \uparrow$                                                                      | <b>t</b> CLCH | CLK  |        | $1/2 \times t$ cyc $-10$  | $1/2 \times t_{CYC} + 10$ | ns   | *3                       |  |  |  |  |  |



\*1 : torc is frequency of 1 clock cycle including the gear cycle.

\*2 : This standard value is in the case where the gear cycle is 1. If the gear cycle is set to 1/2, 1/4 or 1/8, calculation should be made using the following formula and replacing n with 1/2, 1/4 or 1/8.

- Minimum :  $(1 n / 2) \times t_{CYC} 10$
- Maximum : (1 n / 2) × tcyc + 10

Gear cycle of 1 should be taken when using a doubler.

- \*3 : This standard value is in the case where the gear cycle is 1. If the gear cycle is set to 1/2, 1/4 or 1/8, calculation should be made using the following formula and replacing n with 1/2, 1/4 or 1/8.
  - Minimum : n / 2 × tcyc 10
  - Maximum : n /  $2 \times t_{CYC} + 10$

Gear cycle of 1 should be taken when using a doubler.

The relationship between the CLK pin set using CHC/CCK1/CCK0 bit of the "Gear Control Register" (GCR) and original oscillation input is as follows. However, original oscillation input indicates "X0 input clock" in this figure.



# (3) Reset / Hardware Standby Input ( $V_{CC5} = 5 \text{ V} \pm 10\%$ . $V_{CC3} = 3.3 \text{ V} \pm 5\%$ , Vs

| $(V_{cc}5 = 5 V \pm 10\%, V_{cc}3 = 3.3 V \pm 5\%, V_{ss} = AV_{ss} = AV_{RL} = 0 V, T_{A} = 0 °C to +70 °C)$ |               |     |            |                         |     |       |          |      |         |  |  |
|---------------------------------------------------------------------------------------------------------------|---------------|-----|------------|-------------------------|-----|-------|----------|------|---------|--|--|
| Paramotor                                                                                                     | Sym-          | Pin | Conditions | Value                   |     | Value |          | Unit | Pomarke |  |  |
| Falameter                                                                                                     | bol Name      |     | Conditions | Min                     | Max | Onit  | itema ka |      |         |  |  |
| Reset input time                                                                                              | <b>t</b> rstl | RST |            | $t_{\text{CP}} 	imes 5$ | _   | ns    |          |      |         |  |  |
| Hardware standby input time                                                                                   | <b>t</b> HSTL | HST |            | $t_{\text{CP}} 	imes 5$ |     | ns    |          |      |         |  |  |



~ /

#### (4) Power On Reset

| $(V_{CCS} = 5 V \pm 10\%, V_{CCS} = 5.5 V \pm 5\%, V_{SS} = AV_{SS} = AV_{RL} = 0 V, T_{A} = 0 C (0 + 70 C)$ |      |      |              |     |     |      |                                        |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------|------|------|--------------|-----|-----|------|----------------------------------------|--|--|--|--|--|
| Paramotor                                                                                                    | Sym- | Pin  | Conditions   | Val | lue | Unit | Pomarks                                |  |  |  |  |  |
| Tarameter                                                                                                    | bol  | Name | me           | Min | Max | Unit | Renarks                                |  |  |  |  |  |
| Power startup time                                                                                           | tĸ   |      | Vcc5 = 5 V   |     | 30  | ms   | Vcc is less than                       |  |  |  |  |  |
|                                                                                                              |      | Vcc5 | Vcc3 = 3.3 V |     | 18  |      | 0.2 V before<br>power is turned<br>on. |  |  |  |  |  |
| Power cut time                                                                                               | toff | Vcc3 |              | 1   |     | ms   | Repeated operation                     |  |  |  |  |  |

A 0 A 1

A) (D)


#### (5) Normal Bus Access Read/Write Operation ( $Vcc5 = 5 V \pm 10\%$ , $Vcc3 = 3.3 V \pm 5\%$ , Vss = AVss = AVRL = 0 V, $T_A = 0 \circ C$ to +70 $\circ C$ )

|                                                                                                           | (***  | <u> </u>       | $\pm 10/0, 0000 -$       | $0.0 V \pm 0$ | $10, v_{33} - Av_{33}$ | = 7.01 $L = 0.0, 1$       | . – U C |          |
|-----------------------------------------------------------------------------------------------------------|-------|----------------|--------------------------|---------------|------------------------|---------------------------|---------|----------|
| Parameter                                                                                                 |       | Sym-           | Pin Name                 | Condi-        | Va                     | lue                       | Unit    | Romarks  |
| Farameter                                                                                                 |       | bol            |                          | tions         | Min                    | Max                       | Unit    |          |
| CS0 to CS5 delay time                                                                                     | ;     | <b>t</b> CHCSL | CLK                      |               | —                      | 15                        | ns      |          |
| CS0 to CS5 delay time                                                                                     | ;     | <b>t</b> chcsh | CS0 to CS5               |               |                        | 15                        | ns      |          |
| Address delay time                                                                                        |       | <b>t</b> CHAV  | CLK<br>A23 to A00        |               | _                      | 15                        | ns      |          |
| Data delay time (write)                                                                                   |       | <b>t</b> CHDV  | CLK<br>D31 to D16        |               | _                      | 15                        | ns      |          |
| RD delay time                                                                                             |       | <b>t</b> CLRL  | CLK                      |               |                        | 10                        | ns      |          |
| RD delay time                                                                                             |       | <b>t</b> CLRH  | RD                       |               | _                      | 10                        | ns      |          |
| WR0 to WR1 delay tim                                                                                      | ie    | <b>t</b> CLWL  | CLK                      |               | _                      | 10                        | ns      |          |
| WR0 to WR1 delay tim                                                                                      | ie    | <b>t</b> clwh  | WR0 to WR1               |               |                        | 10                        | ns      |          |
| Valid address $\rightarrow$ Valid data input time                                                         |       | <b>t</b> avdv  | A23 to A00<br>D31 to D16 |               |                        | $3/2 \times t_{CYC} - 40$ | ns      | *1<br>*2 |
| $\overline{RD} \downarrow \rightarrow$ Valid data input time                                              | Pood  | <b>t</b> rldv  |                          |               |                        | tcyc – <b>25</b>          | ns      | *1       |
| $\begin{array}{l} \text{Data setup} \rightarrow \\ \overline{\text{RD}} \uparrow \text{time} \end{array}$ | iteau | <b>t</b> dsrh  | RD<br>D31 to D16         |               | 25                     |                           | ns      |          |
| $\overline{RD} \uparrow \rightarrow$<br>Data holding time                                                 |       | <b>t</b> RHDX  |                          |               | 0                      |                           | ns      |          |

\*1 : Time (tcvc × number of cycles extended) needs to be added to this standard if the bus is extended by automatic waiting insertion and RDY input.

\*2 : Values of this standard are in case of gear cycle × 1.
 If the gear cycle is set to 1/2, 1/4 or 1/8, calculations should be made using the following formula and replacing n with 1/2, 1/4 or 1/8.

• Calculation formula :  $(2 - n / 2) \times t_{CYC} - 40$ 



### (6) Ready Input Timing

| (Vcc                                                                                | 5 = 5 V ±     | = 10%, Vcc3 = | $= 3.3 \text{ V} \pm 5\%$ , V | Vss = AVss = | = AVRL = 0 \ | /, T <sub>A</sub> = 0 | 0 °C to +70 °C |
|-------------------------------------------------------------------------------------|---------------|---------------|-------------------------------|--------------|--------------|-----------------------|----------------|
| Parameter                                                                           | Sym-          | Din Nama      | Conditions                    | Value        |              | Unit                  | Domorko        |
|                                                                                     | bol           |               | Conditions                    | Min          | Max          | Unit                  | Remarks        |
| $\begin{array}{l} RDY \text{ setup time} \\ \rightarrow CLK \downarrow \end{array}$ | <b>t</b> rdys | RDY<br>CLK    |                               | 20           | _            | ns                    |                |
| $CLK \downarrow \rightarrow$<br>RDY holding time                                    | <b>t</b> rdyh | RDY<br>CLK    |                               | 0            |              | ns                    |                |



### (7) Holding timing

|                                                                                                                  | (Vcc5 =        | $= 5 \text{ V} \pm 10\%, \text{ Vc}$ | $c3 = 3.3 V \pm$ | 5%, Vss = AV | ss = AVRL = ( | ) V, Ta | $= 0 \circ C$ to $+70 \circ C$ |
|------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------|------------------|--------------|---------------|---------|--------------------------------|
| Paramotor                                                                                                        | Sym-           | Din Nama                             | Condi-           | Val          | ue            | Unit    | Pomarks                        |
| Falameter                                                                                                        | bol            | Fininame                             | tions            | Min          | Max           | Unit    | Remarks                        |
| BGRNT delay time                                                                                                 | <b>t</b> CHBGL | CLK                                  |                  |              | 10            | ns      |                                |
| BGRNT delay time                                                                                                 | <b>t</b> снвдн | BGRNT                                |                  |              | 10            | ns      |                                |
| $\begin{array}{l} \text{Pin floating} \rightarrow \\ \overline{\text{BGRNT}} \downarrow \text{time} \end{array}$ | <b>t</b> xhal  | BGPNT                                | —                | tcyc - 10    | tcyc + 10     | ns      |                                |
| $\overline{BGRNT} \uparrow \rightarrow$<br>Pin valid time                                                        | <b>t</b> HAHV  | BGRINI                               |                  | tcyc – 10    | tcyc + 10     | ns      |                                |

Note : It takes at least one cycle from loading the BRQ to when  $\overline{\text{BGRNT}}$  is changed.



#### (8) Read/Write Cycle of the Normal DRAM Mode 5 X + 40 ~ X - 0 \_

| $(V_{cc}5 = 5 V \pm 10\%, V_{cc}3 = 3.3 V \pm 5\%, V_{ss} = AV_{ss} = AV_{RL} = 0 V, T_A = 0 °C to +70 °C)$ |                 |                   |          |     |                      |      |            |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|-----------------|-------------------|----------|-----|----------------------|------|------------|--|--|--|--|
| Paramotor                                                                                                   | Sym-            | Pin Name          | Condi-   | Va  | lue                  | Unit | Pomarke    |  |  |  |  |
| Farameter                                                                                                   | bol             |                   | tions    | Min | Max                  | Unit | Neillai K5 |  |  |  |  |
| RAS delay time                                                                                              | <b>t</b> clrah  | CLK               |          |     | 10                   | ns   |            |  |  |  |  |
| RAS delay time                                                                                              | <b>t</b> CHRAL  | RAS               |          |     | 10                   | ns   |            |  |  |  |  |
| CAS delay time                                                                                              | <b>t</b> CLCASL | CLK               |          |     | 10                   | ns   |            |  |  |  |  |
| CAS delay time                                                                                              | <b>t</b> CLCASH | CAS               |          |     | 10                   | ns   |            |  |  |  |  |
| ROW address delay time                                                                                      | <b>t</b> CHRAV  | CLK               |          |     | 15                   | ns   |            |  |  |  |  |
| COLUMN address delay time                                                                                   | <b>t</b> CHCAV  | A23 to A00        | 3 to A00 |     | 15                   | ns   |            |  |  |  |  |
| DW delay time                                                                                               | <b>t</b> CHDWL  | CLK               |          |     | 15                   | ns   |            |  |  |  |  |
| DW delay time                                                                                               | <b>t</b> CHDWH  | DW                |          |     | 15                   | ns   |            |  |  |  |  |
| Output data delay time                                                                                      | tchdv1          | CLK<br>D31 to D16 |          |     | 15                   | ns   |            |  |  |  |  |
| $RAS \downarrow \rightarrow valid  data input time$                                                         | <b>t</b> rldv   | RAS<br>D31 to D16 |          | _   | 5 / 2 ×<br>tcyc – 20 | ns   | *1<br>*2   |  |  |  |  |
| $CAS \downarrow \rightarrow valid data input time$                                                          | <b>t</b> CLDV   | CAS               |          |     | tcyc – 17            | ns   | *1         |  |  |  |  |
| $CAS \uparrow \rightarrow data holding time$                                                                | <b>t</b> CADH   | D31 to D16        |          | 0   |                      | ns   |            |  |  |  |  |

\*1 : If either the Q1 or A4 cycle is extended for one cycle, the toyc time needs to be added to this standard.

\*2 : Values of this standard are in case of gear cycle  $\times$  1.

If the gear cycle is set to 1/2, 1/4 or 1/8, calculation should be made using the following formula and replacing n with 1/2, 1/4 or 1/8.

• Calculation formula :  $(3 - n / 2) \times t_{CYC} - 20$ 



### (9) High Speed Page Read/Write Cycle of the Normal DRAM Mode

| $(V_{cc}5 = 5 V \pm 10\%, V_{cc}3 = 3.3 V \pm 5\%, V_{ss} = AV_{ss} = AV_{RL} = 0 V, T_{A} = 0 °C to +70 °C)$ |                 |                   |        |     |           |      |         |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------|-----------------|-------------------|--------|-----|-----------|------|---------|--|--|--|--|
| Paramotor                                                                                                     | Sym-            | Pin Name          | Condi- | Va  | lue       | Unit | Pomarke |  |  |  |  |
| Faranielei                                                                                                    | bol             |                   | tions  | Min | Max       | Unit | Remarks |  |  |  |  |
| RAS delay time                                                                                                | <b>t</b> clrah  | CLK, RAS          |        | —   | 10        | ns   |         |  |  |  |  |
| CAS delay time                                                                                                | <b>t</b> CLCASL | CLK               |        |     | 10        | ns   |         |  |  |  |  |
| CAS delay time                                                                                                | <b>t</b> CLCASH | CAS               |        |     | 10        | ns   |         |  |  |  |  |
| COLUMN address delay time                                                                                     | <b>t</b> CHCAV  | CLK<br>A23 to A00 |        |     | 15        | ns   |         |  |  |  |  |
| DW delay time                                                                                                 | <b>t</b> CHDWH  | CLK, DW           |        |     | 15        | ns   |         |  |  |  |  |
| Output data delay time                                                                                        | tchdv1          | CLK<br>D31 to D16 |        |     | 15        | ns   |         |  |  |  |  |
| $CAS \downarrow \rightarrow valid  data input time$                                                           | <b>t</b> CLDV   | CAS               |        |     | tcvc - 17 | ns   | *       |  |  |  |  |
| CAS $\uparrow \rightarrow$ data holding time                                                                  | <b>t</b> CADH   | D31 to D16        |        | 0   |           | ns   |         |  |  |  |  |

\*: When Q4 cycle is extended for 1 cycle, add toyc time to this rating.



### (10) Single DRAM Timing

| (***                                                  |          | - 10/0, 1000      |        | ,   | ,                          |      |              |
|-------------------------------------------------------|----------|-------------------|--------|-----|----------------------------|------|--------------|
| Paramotor                                             | Sym-     | Din Namo          | Condi- | Va  | lue                        | Unit | Remarks      |
| Faidilietei                                           | bol      |                   | tions  | Min | Max                        |      | IVEIII al KS |
| RAS delay time                                        | tclrah2  | CLK               |        | —   | 10                         | ns   |              |
| RAS delay time                                        | tCHRAL2  | RAS               |        | _   | 10                         | ns   |              |
| CAS delay time                                        | tchcasl2 | CLK               |        |     | n / 2 × tcyc<br>+ 8        | ns   |              |
| CAS delay time                                        | tchcash2 | CAS               |        | —   | 10                         | ns   |              |
| ROW address delay time                                | tCHRAV2  | CLK               |        | —   | 15                         | ns   |              |
| COLUMN address delay time                             | tchcav2  | A23 to A00        |        | —   | 15                         | ns   |              |
| DW delay time                                         | tCHDWL2  | CLK               |        | —   | 15                         | ns   |              |
| DW delay time                                         | tchdwh2  | DW                |        | —   | 15                         | ns   |              |
| Output data delay time                                | tchdv2   | CLK<br>D31 to D16 |        |     | 15                         | ns   |              |
| $CAS \downarrow \rightarrow valid  data  input  time$ | tCLDV2   | CAS               |        |     | (1 – n / 2) ×<br>tcyc – 17 | ns   |              |
| $CAS \uparrow \to data \text{ holding time}$          | tCADH2   | 0010010           |        | 0   |                            | ns   |              |



### (11) Hyper DRAM Timing

|                                                     |                  | · · · ·           |        | <u> </u> |                     |      |         |
|-----------------------------------------------------|------------------|-------------------|--------|----------|---------------------|------|---------|
| Parameter                                           | Sym-             | Pin Name          | Condi- | Va       | lue                 | Unit | Remarks |
| i di dillotto i                                     | bol              |                   | tions  | Min      | Max                 | 0    | Romanio |
| RAS delay time                                      | tclrah3          | CLK               |        | —        | 10                  | ns   |         |
| RAS delay time                                      | tchral3          | RAS               |        |          | 10                  | ns   |         |
| CAS delay time                                      | tchcasl3         | CLK               |        |          | n / 2 × tcyc<br>+ 8 | ns   |         |
| CAS delay time                                      | <b>t</b> снсаѕнз | 040               |        |          | 10                  | ns   |         |
| ROW address delay time                              | tchrav3          | CLK               |        |          | 15                  | ns   |         |
| COLUMN address delay time                           | <b>t</b> снсаvз  | A23 to A00        |        |          | 15                  | ns   |         |
| RD delay time                                       | tCHRL3           | <b>0</b>          |        |          | 15                  | ns   |         |
| RD delay time                                       | tснкнз           |                   |        |          | 15                  | ns   |         |
| RD delay time                                       | tclrl3           |                   |        |          | 15                  | ns   |         |
| DW delay time                                       | tchdwl3          | CLK               |        |          | 15                  | ns   |         |
| DW delay time                                       | tсноwнз          | DW                |        |          | 15                  | ns   |         |
| Output data delay time                              | tchdv3           | CLK<br>D31 to D16 |        | _        | 15                  | ns   |         |
| $CAS \downarrow \rightarrow valid  data input time$ | tcldv3           | CAS               |        |          | tcvc - 20           | ns   |         |
| $CAS \downarrow \rightarrow data holding time$      | tcadh3           | D31 to D16        |        | 0        |                     | ns   |         |



#### (12) CBR Refresh

| (V             | cc5 = 5 V       | $\pm$ 10%, Vcc3 | $= 3.3 \text{ V} \pm 59$ | %, Vss = AVss = | = AVRL $=$ 0 V, | $T_A = 0$ ° | °C to +70 °C) |
|----------------|-----------------|-----------------|--------------------------|-----------------|-----------------|-------------|---------------|
| Parameter      | Sym-<br>bol     | Pin Name        | Condi-<br>tions          | Va              | lue             | Unit        | Remarks       |
|                |                 |                 |                          | Min             | Мах             |             |               |
| RAS delay time | <b>t</b> clrah  | CLK             |                          |                 | 10              | ns          |               |
| RAS delay time | <b>t</b> CHRAL  | RAS             | -                        |                 | 10              | ns          |               |
| CAS delay time | <b>t</b> CLCASL | CLK             |                          |                 | 10              | ns          |               |
| CAS delay time | <b>t</b> clcash | CAS             | -                        |                 | 10              | ns          |               |



### (13) Self Refresh

| $(V_{cc}5 = 5 V \pm 10\%, V_{cc}3 = 3.3 V \pm 5\%, V_{ss} = AV_{ss} = AV_{RL} = 0 V, T_{A} = 0 °C to +70 °C)$ |                 |          |                 |     |     |      |         |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------|-----------------|----------|-----------------|-----|-----|------|---------|--|--|--|--|
| Parameter                                                                                                     | Sym-<br>bol     | Pin Name | Condi-<br>tions | Va  | lue | Unit | Remarks |  |  |  |  |
|                                                                                                               |                 |          |                 | Min | Max | Unit |         |  |  |  |  |
| RAS delay time                                                                                                | <b>t</b> clrah  | CLK      |                 |     | 10  | ns   |         |  |  |  |  |
| RAS delay time                                                                                                | <b>t</b> CHRAL  | RAS      |                 |     | 10  | ns   |         |  |  |  |  |
| CAS delay time                                                                                                | <b>t</b> CLCASL | CLK      |                 | —   | 10  | ns   |         |  |  |  |  |
| CAS delay time                                                                                                | <b>t</b> clcash | CAS      |                 |     | 10  | ns   |         |  |  |  |  |



### (14) UART Timing

| (V                                                    | /cc5 = 5 V =  | ± 10%, Vcc3 | $= 3.3 \text{ V} \pm 5\%$ , Vs | s = AVss = A' | VRL = 0 V, - | $T_A = 0^{\circ}$ | C to +70 °C) |
|-------------------------------------------------------|---------------|-------------|--------------------------------|---------------|--------------|-------------------|--------------|
| Paramotor                                             | Symbol        | Din Namo    | Conditions                     | Value         |              | Unit              | Pomarks      |
| Farameter                                             | Symbol        |             | Conditions                     | Min           | Max          | Onit              | Remarks      |
| Serial clock cycle time                               | <b>t</b> scyc | —           |                                | 8 tcycp       | —            | ns                |              |
| $SCLK \downarrow \to SOUT$<br>Delay time              | <b>t</b> slov | _           | Internal shift                 | -80           | 80           | ns                |              |
| $Valid\;SIN\toSCLK\;\uparrow$                         | tıvsн         | —           | clock mode                     | 100           | —            | ns                |              |
| $SCLK \uparrow \rightarrow Valid$<br>SIN holding lock | tsнıx         |             |                                | 60            |              | ns                |              |
| Serial clock "H" pulse width                          | ts∺s∟         | —           |                                | 4 tcycp       | —            | ns                |              |
| Serial clock "L" pulse width                          | <b>t</b> slsh | —           |                                | 4 tcycp       | —            | ns                |              |
| $SCLK \downarrow \to SOUT$<br>Delay time              | <b>t</b> slov |             | External shift clock mode      |               | 150          | ns                |              |
| $Valid\;SIN\toSCLK\;\uparrow$                         | tıvsн         | —           |                                | 60            | —            | ns                |              |
| SCLK                                                  | tsнıx         |             |                                | 60            |              | ns                |              |

Notes : • This is the AC standard in the case of CLK synchronous mode.

• tcycp is the cycle time of the peripheral system clock.



# (15) Trigger System Input Timing $(V_{CC}5 = 5 V + 10\%, V_{CC}3)$

| $(Vcc5 = 5 V \pm 10\%, Vcc3 = 3.3 V \pm 5\%, Vss = AVss = AVRL = 0 V, T_A = 0 °C to +70 °C)$ |              |                 |                 |         |      |         |          |  |  |  |  |
|----------------------------------------------------------------------------------------------|--------------|-----------------|-----------------|---------|------|---------|----------|--|--|--|--|
| Parameter                                                                                    | Sym-         | Pin Name        | Condi-<br>tions | Va      | Unit | Pomarke |          |  |  |  |  |
| Parameter                                                                                    | bol          |                 |                 | Min     | Max  | Unit    | itema ka |  |  |  |  |
| A/D initiation trigger input time                                                            |              | ATG             |                 |         |      | ns      |          |  |  |  |  |
| PPG initiation trigger input time                                                            | <b>t</b> trg | TRG0 to<br>TRG5 | —               | 5 tcycp | _    | ns      |          |  |  |  |  |

Note :  $t_{\mbox{\scriptsize CYCP}}$  is the cycle time of the peripheral system clock.



### (16) DMA Controller Timing

|                                     | (Vc                           | $c5 = 5 V \pm 10\%$ , Vcc | $3 = 3.3 \text{ V} \pm 5$ | 5%, Vss = AVss | = AVRL $=$ 0 V,        | $T_{\text{A}}=0$ | °C to +70 °C) |
|-------------------------------------|-------------------------------|---------------------------|---------------------------|----------------|------------------------|------------------|---------------|
| Paramotor                           | Sym-                          | Din Namo                  | Condi-                    | Va             | lue                    | Unit             | Pomarke       |
| Faianletei                          | bol                           | Fill Name                 | tions                     | Min            | Max                    | Unit             | Remarks       |
| DREQ input pulse<br>width           | <b>t</b> drwh                 | DREQ0 to DREQ2            |                           | 2 tcyc         |                        | ns               |               |
| DACK delay time                     | tCLDL                         | CLK                       |                           |                | 6                      | ns               |               |
| (Normal bus)<br>(Normal DRAM)       | <b>t</b> CLDH                 | DACK0 to DACK2            |                           |                | 6                      | ns               |               |
| EOP delay time                      | <b>t</b> CLEL                 | СГК                       |                           | _              | 6                      | ns               |               |
| (Normal bus)<br>(Normal DRAM)       | <b>t</b> cleh                 | DEOP0 to DEOP2            | —                         | _              | 6                      | ns               |               |
| DACK delay time                     | <b>t</b> CHDL                 | CLK                       |                           |                | $n / 2 \times t_{CYC}$ | ns               |               |
| (Single DRAM)<br>(Hyper DRAM)       | (Single DRAM)<br>(Hyper DRAM) | DACK0 to DACK2            |                           |                | 6                      | ns               |               |
| EOP delay time                      | <b>t</b> CHEL                 | CLK                       |                           |                | $n / 2 \times t_{CYC}$ | ns               |               |
| (Single DRAM)<br>(Hyper DRAM) tcнен |                               | DEOP0 to DEOP2            |                           |                | 6                      | ns               |               |



### 5. A/D Converter Electrical Characteristics

(Vcc5 = 5 V ± 10%, Vcc3 = AVcc = AVRH = 3.3 V ± 5%, Vss = AVss = AVRL = 0 V, T<sub>A</sub> = 0 °C to +70 °C) Value Sym-Unit Parameter Pin Name bol Тур Min Max 10 10 BIT Resolution LSB Conversion error \_\_\_\_ ±3.0 \_\_\_\_ \_\_\_\_ \_\_\_\_ Linearity error ±2.5 LSB Differential linearity error LSB ±1.9 Zero transition error Vот -1.5 +2.5 LSB AN0 to AN7 +0.5Full-scale transition error VFST AN0 to AN7 AVRH - 4.5 AVRH - 1.5 AVRH + 0.5 LSB 5.6<sup>\*1</sup> Conversion time \_\_\_\_ \_\_\_\_ μs Analog port input current AIN AN0 to AN7 \_\_\_\_ 0.1 10 μΑ VAIN AN0 to AN7 AVss AVRH V Analog input voltage \_\_\_\_ V Standard voltage AVRH AVss **AVcc** \_\_\_\_ A 4 \_\_\_\_ mΑ \_\_\_\_ Power supply current AVcc AH 5\*<sup>2</sup> μΑ \_\_\_\_ IR 110 μΑ Standard voltage current supplied AVRH **I**RH 5\*<sup>2</sup> μΑ Tolerance between channels AN0 to AN7 4 LSB \_\_\_\_ \_\_\_\_

\*1 : In case of Vcc3 = AVcc = 3.3 V  $\pm$  5%, machine clock 25 MHz

\*2 : This is the current in the case that the A/D converter is not activated and the CPU is stopped (in case of Vcc3 = Avcc = AVRH = 3.465 V)

Notes : • As the AVRH becomes smaller, the tolerance becomes relatively larger.

• Output impedance of external circuits other than analog input must be used under the following condition.

Output impedance of external circuits  $< 7 \text{ k}\Omega$ 

If the output impedance of the external circuits is too high, the sampling time for the analog voltage may be insufficient.



#### **Definition of A/D Converter Terms**

Resolution

Analog changes that can be identified by A/D converter

- Linearity error
  Difference between the straight line linking the zero transition point (00 0000 0000 ←→ 00 0000 0001) to the full-scale transition point (11 1111 1110 ←→ 11 1111 1111) and actual conversion characteristics.
- Differential linearity error
  Difference compared to the ideal input voltage value required to change the output code 1LSB



### • Total error

This indicates the difference between the actual and theoretical values and includes zero transition, full-scale transition and linearity error.



### EXAMPLE CHARACTERISTICS









CODE

### ORDERING INFORMATION

| Part number | Package                                | Remarks |
|-------------|----------------------------------------|---------|
| MB91110PMT2 | 144-pin plastic LQFP<br>(FPT-144P-M08) |         |
| MB91V110CR  | PGA-299C-A01                           |         |



# FUJITSU LIMITED

#### All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0204 © FUJITSU LIMITED Printed in Japan