(Continued)

16-bit Proprietary Microcontroller

CMOS

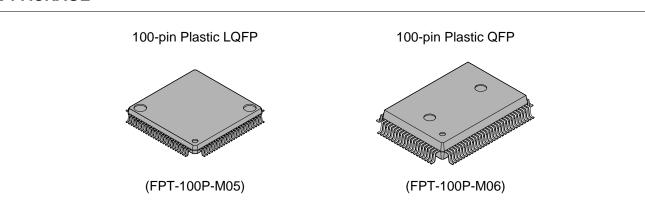
F²MC-16L MB90630A Series

MB90632A/634A/P634A

DESCRIPTION

The MB90630A series are 16-bit microcontrollers designed for high speed real-time processing in consumer product applications such as controlling video cameras, VCRs, or copiers. The series uses the F²MC*-16L CPU. The chips incorporate an eight channels 10-bit A/D converter, two channels 8-bit D/A converter, UART two channels, two channels serial interface, 8/16-bit up/down counter, 16-bit I/O timer (two channels input capture, four channels output compare, and one channel 16-bit free-run timer).

*: F²MC stands for FUJITSU Flexible Microcontroller.


■ FEATURES

F²MC-16L CPU

- Minimum execution time: 62.5 ns/4 MHz oscillation (Uses PLL clock multiplication), maximum multiplier = 4
- Instruction set optimized for controller applications
 Object code compatibility with F²MC-16(H)

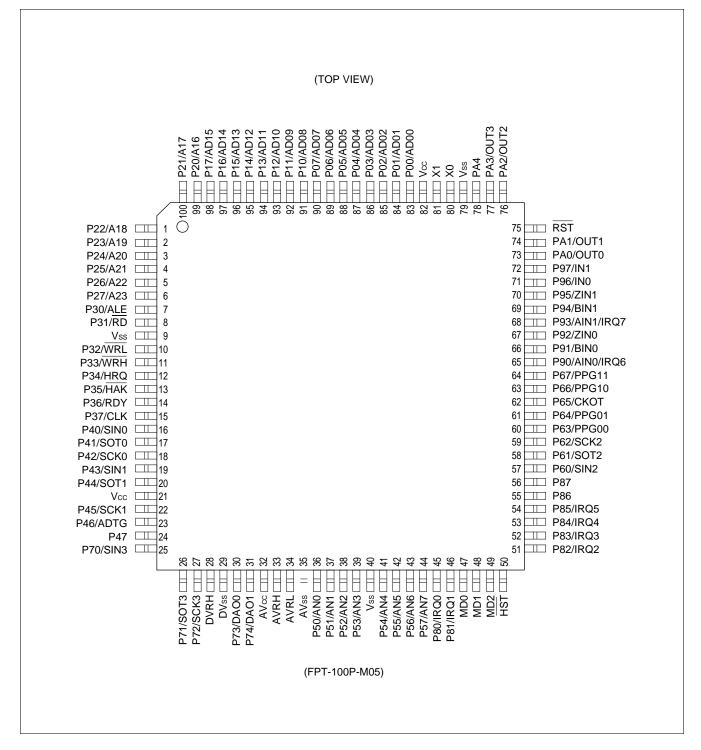
Wide range of data types (bit, byte, word, and long word) Improved instruction cycles provide increased speed Additional addressing modes: 23 modes High code efficiency Access mothods (bank access, linear pointer)

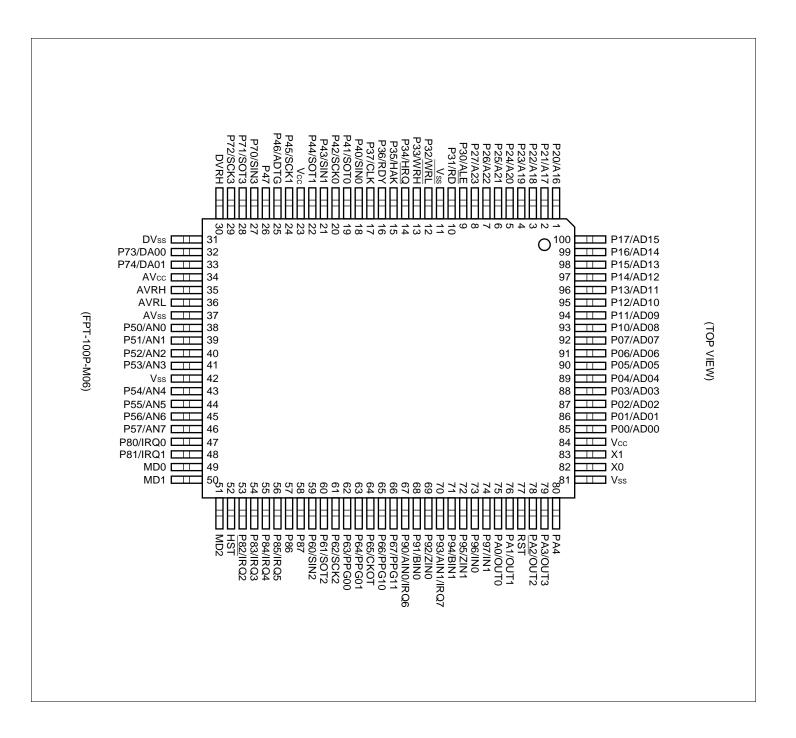
PACKAGE

(Continued)

High precision operations are enhanced by use of a 32-bit accumulator Extended intelligent I/O service (access area extended to 64 KB) Maximum memory space: 16 MB

- Enhanced high level language (C) and multitasking support insturctions Use of a system stack pointer Enhanced pointer indirect instructions Barrel shift instructions
- Improved execution speed: Four byte instruction queue
- Powerful interrupt function
- · Automatic data transfer function that does not use insturction (IIOS)
- Internal peripherals
- ROM: 32 Kbytes (MB90632A) 64 Kbytes (MB90634A)


One-time PROM: 64 Kbytes (MB90P634A)


- RAM: 1 Kbytes (MB90632A)
 - 2 Kbytes (MB90634A)
 - 3 Kbytes (MB90P634A)
- General-purpose ports: 82 ports max.
- 10-bit A/D converter (RC successive approximation): eight channels (10-bit resolution, conversion time = $5.2 \,\mu$ s at 4 MHz with a \times 4 multiplier)
- 8-bit D/A converter two channels (8-bit resolution)
- UART (can also be used as a serial port) two channels
- I/O expansion serial interface two channels
- 8/16-bit PPG (can be set to either 8-bit × two channels or 16-bit × one channel) one channel
- 16-bit I/O timer one channel
 - (two channels input capture, four channels output compare, and one channel free-run timer)
- Clock output generator
- Timebase counter/watchdog timer (18-bit)
- Low-power consumption modes
- The device types are classified by the initial value of the oscillation stabilization delay time.
 Oscillation stabilization delay time initial value = 2.05 ms: MB90630A series (MB90632A/634A/P634A)
- Package: LQFP-100 (QFP-100 planned)
- CMOS technology

■ PRODUCT LINEUP

Part number	MB90P634A	MB90632A	MB90634A			
Parameter						
Classification	OTPROM		ROM			
ROM size	64 Kbyte	32 Kbyte	64 Kbyte			
RAM size	3 Kbyte	1 Kbyte	2 Kbyte			
CPU functions	Number of instruction Instruction bit length Instruction length Data bit length Minimum execution t Interrupt processing	: 8/16 bits : 1/7 bytes : 1/4/8/16/32 bits time : 62.5 ns/4 MHz time : 1000 ns/16 MH	(PLL multiplier = 4)			
Ports	I/O ports (CMOS/TTI Input pull-up resistor Can be set as open-	L) : 82 ports s available : 24 ports drain outputs : 8 ports				
Package		FPT-100P-M05 FPT-100P-M06				
A/D converter		2 μs conversion time (at 4 MHz approximation, 8 channels (mu				
D/A converter	8-bit resolution R-2R type, 2 channels (independent)					
UART	Full-duplex, double-buffered (8-bit), internal baud rate correction circuit that uses the operating clock NRZ-type transfer, supports MIDI frequencies, 2 channels					
Serial interface	8-bit data register. LSB-first or MSB-first operation can be selected. The transfer shift clock can be input externally. The internal shift clock includes a built-in operating clock correction circuit. 1 channel					
8/16-bit PPG	Can operate as two independent channels in 8-bit mode. Can also be used as a single-channel 16-bit PPG. 1 channel					
8/16-bit up/down counter	6 event inputs. Can operate as two independent 8-bit up/down counter channels. Can also be used as a single-channel 16-bit counter. Includes reload and compare functions. 1 channel					
16-bit I/O timer	Consists of $2 \times$ input capture, $4 \times$ output compare, and $1 \times$ free-run timer. 1 channel					
Timer functions	Timebase timer/watchdog timer (18-bit)					
Low-power consumption modes	Includes sleep, stop, and hardware standby functions					
Oscillation stabilization delay time	The initial value of the oscillation stabilization delay time is 64 ms. The oscillation stabilization delay time can also be set to 0 ms, 2.05 ms, 8.19 ms, or 64 ms (for an crystal oscillator). The MB90630A series are for FAR oscillators.					
External interrupt	8 inputs External interrupt mode (Interrupts can be generated from four different types of request signal)					
PLL function	(Set a multiplier that doe	Selectable multiplier: 1/2/3/4 es not exceed the assured ope	ration frequency range.)			
Other	V _{PP} is shared with the MD2 pin (for EPROM programming)					

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin no.		- .	Circuit		
LQFP*1	QFP*2	Pin name	type	Function	
80	82	X0	А	Oscillator pin	
81	83	X1	А	Oscillator pin	
50	52	HST	С	Hardware standby input pin	
75	77	RST	В	Reset input pin	
83 to 90	85 to 92	P00 to P07	D (STBC)	General-purpose I/O ports Pull-up resistors can be set (RD07 to RD00 = "1") using the pull-up resistor setting register (RDR0). The setting does not apply for ports set as outputs (D07 to D00 = "1": invalid at the output setting).	
		AD00 to AD07		In external bus mode, the pins function as the lower data I/O or lower address outputs (AD00 to AD07).	
91 to 98	93 to 100	P10 to P17	D (STBC)	General-purpose I/O ports Pull-up resistors can be set (RD17 to RD10 = "1") using the pull-up resistor setting register (RDR1). The setting does not apply for ports set as outputs (D17 to D10 = "1": invalid at the output setting).	
		AD08 to AD15		In 16-bit external bus mode, the pins function as the upper data I/O or middle address outputs (AD08 to AD15).	
99, 100, 1 to 6	1 to 8	P20 to P27 H (STBC		General-purpose I/O ports In external bus mode, pins for which the corresponding bit in the HACR register is "0" function as the P20 to P27 pins.	
		A16 to A23		In external bus mode, pins for which the corresponding bit in the HACR register is "1" function as the upper address output pins (A16 to A23).	
7	9	P30	H (STBC)	General-purpose I/O port Functions as the ALE pin in external bus mode.	
		ALE		Functions as the address latch enable signal.	
8	10	P31	H (STBC)	General-purpose I/O port Functions as the RD pin in external bus mode.	
		RD		Functions as the read strobe output (\overline{RD}) .	
10	12	P32	H (STBC)	General-purpose I/O port Functions as the WR pin in external bus mode if the WRE bit in the EPCR register is "1".	
		WRL		Functions as the lower data write strobe output (\overline{WRL}).	
11	13	P33	H (STBC)	General-purpose I/O port Functions as the WRH pin in 16-bit external bus mode if the WRE bit in the EPCR register is "1".	
		WRH		Functions as the upper data write strobe output (\overline{WRH}).	

STBC: Incorporates standby control

*1: LQFP (FPT-100P-M05)

*2: QFP (FPT-100P-M06)

Pin	no.	Din u on o	Circuit	E. w. o the m
LQFP*1	QFP*2	Pin name	type	Function
12	14	P34	H (STBC)	General-purpose I/O port Functions as the HRQ pin in external bus mode if the HDE bit in the EPCR register is "1".
		HRQ		Functions as the hold request input pin (HRQ).
13	15	P35	H (STBC)	General-purpose I/O port Functions as the HAK pin in external bus mode if the HDE bit in the EPCR register is "1".
		HAK		Functions as the hold acknowledge output (HAK) pin.
14	16	P36	H (STBC)	General-purpose I/O port Functions as the RDY pin in external bus mode if the RYE bit in the EPCR register is "1".
		RDY		Functions as the external ready input (RDY) pin.
15	17	P37	H (STBC)	General-purpose I/O port Functions as the CLK pin in external bus mode if the CKE bit in the EPCR register is "1".
		CLK		Functions as the machine cycle clock output (CLK) pin.
16	18	P40 (ST		General-purpose I/O port When UART0 is operating, the data at the pin is used as the serial input (SIN0). Can be set as an open-drain output port (OD40 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D40 = "0": invalid at the input setting).
		SIN0	_	Functions as the UART0 serial input (SIN0).
17	19	P41	F (STBC)	General-purpose I/O port Functions as the SOT0 pin if the SOE bit in the UMC register is "1". Can be set as an open-drain output port (OD41 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D41 = "0": invalid at the input setting).
		SOT0		Functions as the UART0 serial data output pin (SOT0).
18	20	P42	G (STBC)	General-purpose I/O port When UART0 is operating in external shift clock mode, the data at the pin is used as the clock input (SCK0). Also, functions as the SCK0 pin if the SOE bit in the UMC register is "1". Can be set as an open-drain output port (OD42 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D42 = "0": invalid at the input setting).
		SCK0		Functions as the UART0 serial clock I/O pin (SCK0).
			1	(Continued)

STBC: Incorporates standby control *1: LQFP (FPT-100P-M05) *2: QFP (FPT-100P-M06)

Pin no.		Pin name Circuit	Function	
LQFP*1	QFP*2	Pin name	type	Function
19	21	P43	G (STBC)	General-purpose I/O port When I/O expansion serial is operating, the data at the pin is used as the serial input (SIN1). Can be set as an open-drain output port (OD43 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D43 = "0": invalid at the input setting).
		SIN1		Functions as the serial input for I/O expansion serial data.
20	22	P44	F (STBC)	General-purpose I/O port Functions as the SOT1 pin if the SOE bit in the UMC register is "1". Can be set as an open-drain output port (OD44 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D44 = "0": invalid at the input setting).
		SOT1		Functions as the output pin (SOT1) for I/O expansion serial data.
22	24	P45	G (STBC)	General-purpose I/O port When I/O expansion serial is operating in external shift clock mode, the data at the pin is used as the clock input (SCK1). Also, functions as the SCK1 pin if the SOE bit in the UMC register is "1". Can be set as an open-drain output port (OD45 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D45 = "0": invalid at the input setting).
		SCK1		Functions as the I/O expansion serial clock I/O pin (SCK1).
23	25	P46	F (STBC)	General-purpose I/O port Can be set as an open-drain output port (OD46 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D46 = "0": invalid at the input setting).
		ADTG		Functions as the external trigger input pin for the A/D converter.
24	26	P47	F (STBC)	General-purpose I/O port Can be set as an open-drain output port (OD47 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D47 = "0": invalid at the input setting).
36 to 39,	38 to 41,	P50 to P57	K	General-purpose I/O ports
41 to 44	43 to 46	AN0 to AN7	(STBC)	The pins are used as analog inputs (AN0 to AN7) when the A/D converter is operating.
25	27	P70		General-purpose I/O port
		SIN3	(STBC)	Functions as the UART1 serial input (SIN3).
26	28	P71	H	General-purpose I/O port
		SOT3	(STBC)	Functions as the UART1 serial data output pin (SOT3).
27	29	P72		General-purpose I/O port
		SCK3	(STBC)	Functions as the UART1 serial clock I/O pin (SCK0).

STBC: Incorporates standby control *1: LQFP (FPT-100P-M05)

*2: QFP (FPT-100P-M06)

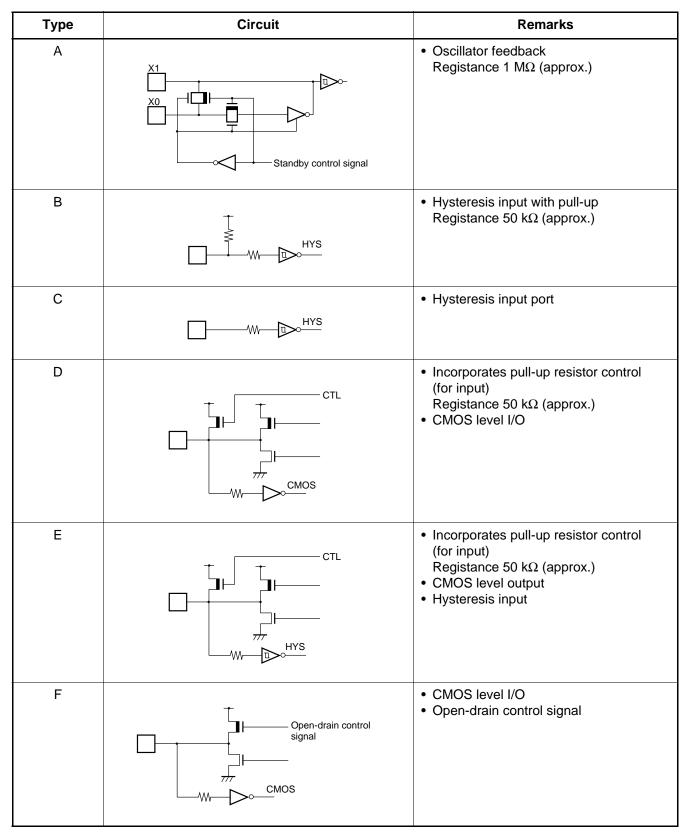
Pin	no.	Din nome	Circuit	Function
LQFP*1	QFP*2	Pin name	type	Function
30	32	P73	L (STBC)	General-purpose I/O port Functions as a D/A output pin when DAE0 = "1" in the D/A control register (DACR).
		DAO0		Functions as D/A output 0 when the D/A converter is operating.
31	33	P74	L (STBC)	General-purpose I/O port Functions as a D/A output pin when DAE1 = "1" in the D/A control register (DACR).
		DAO1		Functions as D/A output 1 when the D/A converter is operating.
45	47	P80	- 1	General-purpose I/O port
		IRQ0		Functions as external interrupt request I/O 0.
46	48	P81	I	General-purpose I/O port
		IRQ1		Functions as external interrupt request I/O 1.
51	53	P82	I	General-purpose I/O port
		IRQ2		Functions as external interrupt request I/O 2.
52	54	P83	I	General-purpose I/O port
		IRQ3		Functions as external interrupt request I/O 3.
53	55	P84	I	General-purpose I/O port
		IRQ4		Functions as external interrupt request I/O 4.
54	56	P85	I	General-purpose I/O port
		IRQ5		Functions as external interrupt request I/O 5.
55	57	P86	H (STBC)	General-purpose I/O port This applies in all cases.
56	58	P87	H (STBC)	General-purpose I/O port This applies in all cases.
57	59	P60	E (STBC)	General-purpose I/O port A pull-up resistor can be set (RD60 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D60 = "1": invalid at the output setting).
		SIN2		Functions as a data input pin (SIN2) for I/O expansion serial.
58	60	P61	D (STBC)	General-purpose I/O port Functions as the SOT2 pin if the SOE bit in the UMC register is "1". A pull-up resistor can be set (RD61 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D61 = "1": invalid at the output setting).
		SOT2	_	Functions as an output pin (SOT2) for I/O expansion serial data.

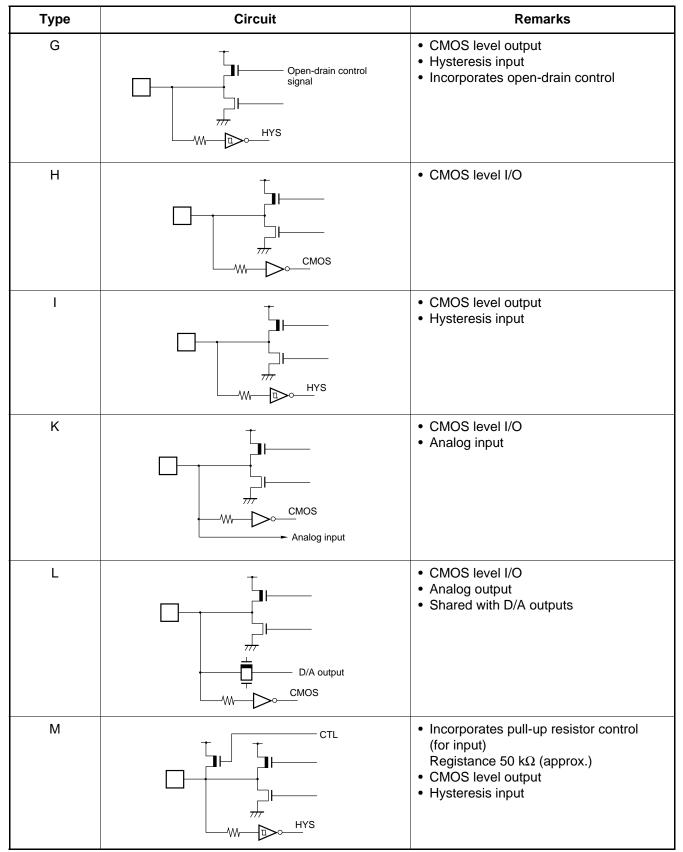
STBC: Incorporates standby control *1: LQFP (FPT-100P-M05) *2: QFP (FPT-100P-M06)

Pin no.		Din nome	Pin name Circuit	Function
LQFP*1	QFP*2	Pin name	type	Function
59	61	P62	E (STBC)	General-purpose I/O port When I/O expansion serial is operating in external shift clock mode, the data at the pin is used as the clock input (SCK2). Also, functions as the SCK2 pin if the SOE bit in the UMC register is "1". A pull-up resistor can be set (RD62 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D62 = "1": invalid at the output setting).
		SCK2		Functions as the I/O expansion serial clock I/O pin (SCK2).
60	62	P63	D (STBC)	General-purpose I/O port A pull-up resistor can be set (RD63 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D63 = "1": invalid at the output setting).
		PPG00		Functions as the PPG00 output when PPG output is enabled.
61	63	3 P64 D (STE		General-purpose I/O port A pull-up resistor can be set (RD64 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D64 = "1": invalid at the output setting).
		PPG01		Functions as the PPG01 output when PPG output is enabled.
62	62 64 P65		D (STBC)	General-purpose I/O port A pull-up resistor can be set (RD65 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D65 = "1": invalid at the output setting).
		СКОТ	-	Functions as the CKOT output when CKOT is operating.
63	65	P66	D (STBC)	General-purpose I/O port A pull-up resistor can be set (RD66 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D66 = "1": invalid at the output setting).
		PPG10		Functions as the PPG10 output when PPG output is enabled.
64	66	P67	D (STBC)	General-purpose I/O port A pull-up resistor can be set (RD67 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D67 = "1": invalid at the output setting).
		PPG11		Functions as the PPG11 output when PPG output is enabled.
65	67	P90	I	General-purpose I/O port
		AIN0		Input to channel 0 of the 8/16-bit up/down timer.
		IRQ6		Functions as an interrupt request input.
66	68	P91		General-purpose I/O port
		BIN0	(STBC)	Input to channel 0 of the 8/16-bit up/down timer.

STBC: Incorporates standby control

*1: LQFP (FPT-100P-M05)


*2: QFP (FPT-100P-M06)


(Continued)

Pin no.		D :	Circuit	Function	
LQFP*1	QFP*2	Pin name	type	Function	
67	69	P92	I	General-purpose I/O port	
		ZIN0	(STBC)	Input to channel 0 of the 8/16-bit up/down timer.	
68	70	P93	I	General-purpose I/O port	
		AIN1		Input to channel 1 of the 8/16-bit up/down timer.	
		IRQ7		Functions as an interrupt request input.	
69	71	P94	I	General-purpose I/O port	
		BIN1	(STBC)	Input to channel 1 of the 8/16-bit up/down timer.	
70	72	P95	I	General-purpose I/O port	
		ZIN1	(STBC)	Input to channel 1 of the 8/16-bit up/down timer.	
71	73	P96		General-purpose I/O port	
		IN0	(STBC)	Trigger input for channel 0 of the input capture.	
72	74	P97	I	General-purpose I/O port	
		IN1	(STBC)	Trigger input for channel 1 of the input capture.	
73	75	PA0	Н	General-purpose I/O port	
		OUT0	(STBC)	Event output for channel 0 of the output compare.	
74	76	PA1	Н	General-purpose I/O port	
		OUT1	(STBC)	Event output for channel 1 of the output compare.	
76	78	PA2	Н	General-purpose I/O port	
		OUT2	(STBC)	Event output for channel 2 of the output compare.	
77	79	PA3	Н	General-purpose I/O port	
		OUT3	(STBC)	Event output for channel 3 of the output compare.	
78	80	PA4	H (STBC)	General-purpose I/O port	
32	34	AVcc	_	A/D converter power supply pin	
35	37	AVss	_	A/D converter power supply pin	
33	35	AVRH	_	A/D converter external reference power supply pin	
34	36	AVRL	_	A/D converter external reference power supply pin	
28	30	DVRH	_	D/A converter external reference power supply pin	
29	31	DVss	_	D/A converter power supply pin	
47 to 49	49 to 51	MD0 to MD2	С	Operating mode selection pins. Connect directly to Vcc or Vss.	
21, 82	23, 84	Vcc	—	Power supply (5.0 V) input pin	
9, 40, 79	11, 42, 81	Vss	_	Power supply (0.0 V) input pin	

STBC: Incorporates standby control *1: LQFP (FPT-100P-M05) *2: QFP (FPT-100P-M06)

■ I/O CIRCUIT TYPE

■ HANDLING DEVICES

1. Preventing Latch-up

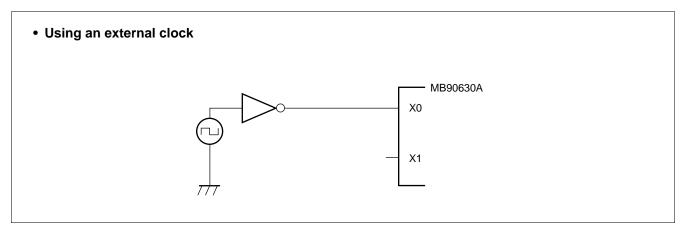
Latch-up occurs in a CMOS IC if a voltage greater than V_{cc} or less than V_{ss} is applied to an input or output pin or if the voltage applied between V_{cc} and V_{ss} exceeds the rating. If latch-up occurs, the power supply current increases rapidly resulting in thermal damage to circuit elements. Therefore, ensure that maximum ratings are not exceeded in circuit operation.

For the same reason, also ensure that the analog supply voltage does not exceed the digital supply voltage.

2. Treatment of Unused Pins

Leaving unused input pins unconnected can cause misoperation. Always pull-up or pull-down unused pins.

3. External Reset Input


To reliably reset the controller by inputting an "L" level to the RST pin, ensure that the "L" level is applied for at least five machine cycles. Take particular note when using an external clock input.

4. Vcc and Vss Pins

Ensure that all Vcc pins are at the same voltage. The same applies for the Vss pins.

5. Precautions when Using an External Clock

Drive the X0 pin only when using an external clock.

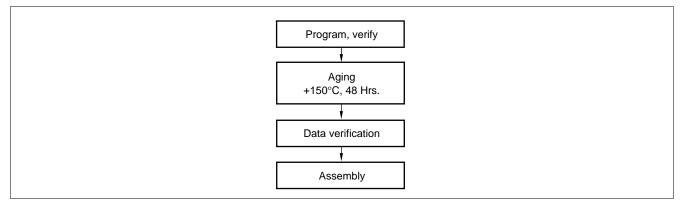
6. A/D Converter Power Supply and the Turn-on Sequence for Analog Inputs

Always turn off the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) before turning off the digital power supply (Vcc).

When turning the power on or off, ensure that AVRH does not exceed AVcc.

Also, when using the analog input pins as input ports, ensure that the input voltage does not exceed AVcc.

7. Program Mode


All bits (64 K \times 16 bits) in the MB90P634A are "1" on delivery from Fujitsu or after erasing. To write data, selectively program the desired bits to "0". The value "1" cannot be written electrically.

8. Recommended Screening Conditions

High temperature aging is recommended as the pre-assembly screening procedure.

9. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

10. Power Supply Voltage Fluctuations

Although V_{CC} power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that V_{CC} ripple fluctuations (P-P value) will be less than 10% of the standard V_{CC} value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of 2 momentary fluctuation such as when power is switched.

■ PROGRAMMING THE EPROM IN THE MB90P634A

In EPROM mode, the MB90P634A function as MBM27C1000 equivalents. By using a dedicated adapter socket, the devices can be programmed using a standard EPROM programmer.

1. Pin Assignment in EPROM Mode

• Pins compatible with the MBM27C1000

MBM27	C1000	MB90F	P634A
Pin number	Pin name	Pin number	Pin name
1	Vpp	49	MD2 (Vpp)
2	OE	10	P32
3	A15	98	P17
4	A12	95	P14
5	A07	6	P27
6	A06	5	P26
7	A05	4	P25
8	A04	3	P24
9	A03	2	P23
10	A02	1	P22
11	A01	100	P21
12	A00	99	P20
13	D00	83	P00
14	D01	84	P01
15	D02	85	P02
16	GND	—	—
32	Vcc	—	—
31	PGM	11	P33
30	NC	—	—
29	A14	97	P16
28	A13	96	P15
27	A08	91	P10
26	A09	92	P11
25	A11	94	P13
24	A16	7	P30
23	A10	93	P12
22	CE	8	P31
21	D07	90	P07

(Continued)

MBM2	7C1000	MB90P634A	
Pin number	Pin name	Pin number	Pin name
20	D06	89	P06
19	D05	88	P05
18	D04	87	P04
17	D03	86	P03

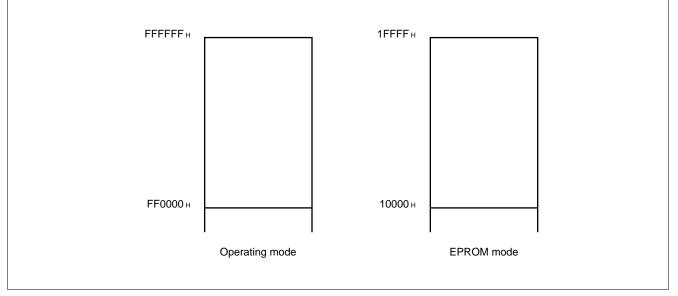
• Power supply and GND connection pins

Туре	Pin number	Pin name
Power supply (Vcc)	28	DVRH
	50	HST
	21, 82	Vcc
GND	9	Vss
	34	AVRL
	35	AVss
	40	Vss
	29	
	75	DVss RST
	79	Vss
	12	P34
	13	P35
	14	P36

Pin number	Pin name	Treatment
47 48 80	MD0 MD1 X0	Pull-up (4.7 kΩ)
81	X1	OPEN
$\begin{array}{c} 15\\ 16 \text{ to } 20\\ 22 \text{ to } 24\\ 25 \text{ to } 27\\ 30\\ 31\\ 36 \text{ to } 39\\ 41 \text{ to } 44\\ 45\\ 46\\ 51 \text{ to } 56\\ 57 \text{ to } 64\\ 65 \text{ to } 72\\ 73\\ 74\\ 76\\ 77\\ 78\end{array}$	P37 P40 to P44 P45 to P47 P70 to P72 P73 P74 P50 to P53 P54 to P57 P80 P81 P82 to P87 P60 to P67 P90 to P97 PA0 PA1 PA2 PA3 PA4	Connect pull-up resistors of approximately 1 MΩ to each pin

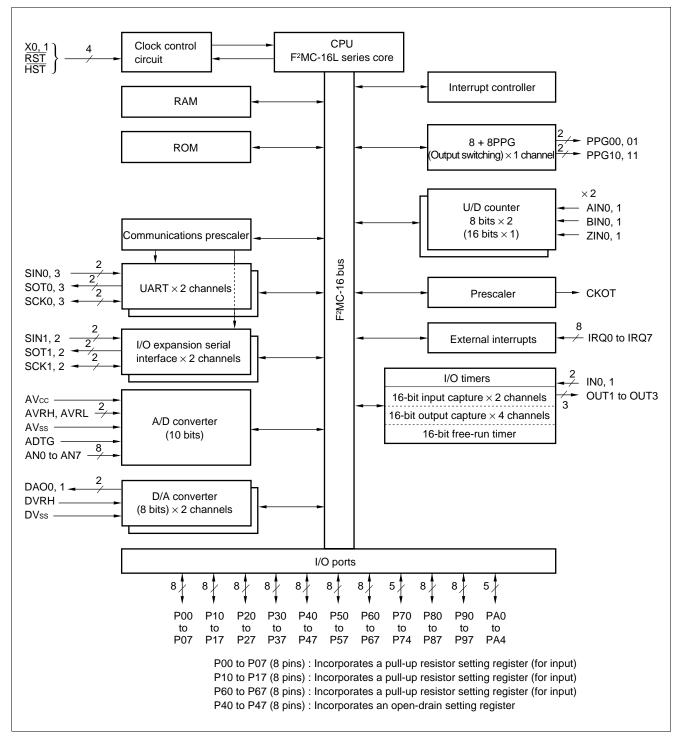
• Pins other than MBM27C1000-compatible pins

2. EPROM Programmer Socket Adapter

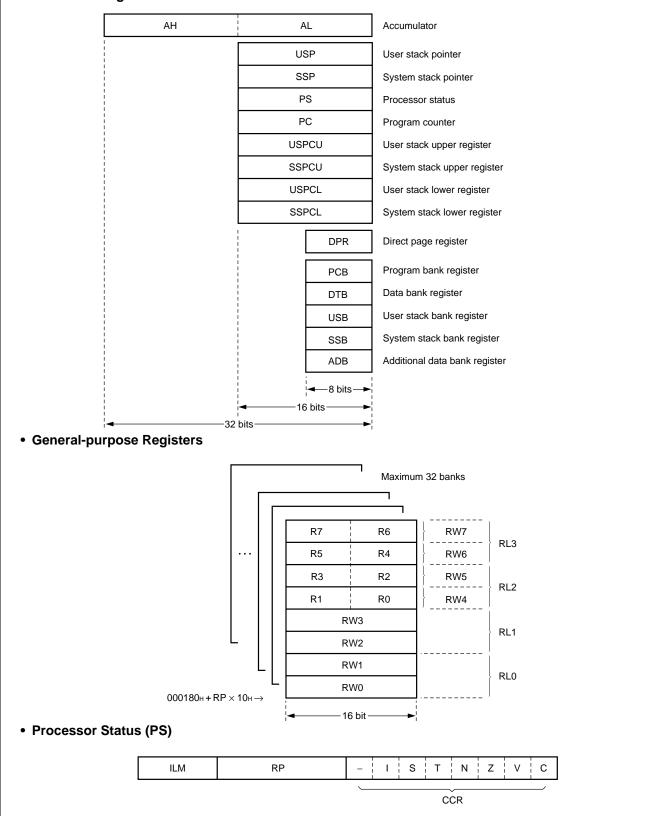

Part no.	Package	Compatible socket adapter Sun Hayato Co., Ltd.
MB90P634APFV	SQFP-100	ROM-100SQF-32DP-16L

Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403 FAX: (81)-3-5396-9106

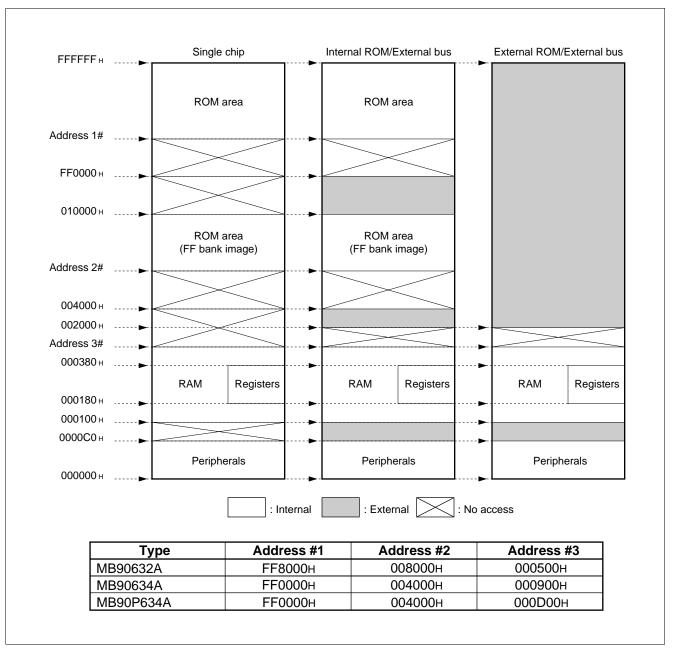
3. Programming Procedure


- (1) Set the EPROM programmer for a MBM27C1000.
- (2) Load the program data between 10000_H and 1FFFF_H in the EPROM programmer.

In the MB90P634A, ROM addresses FFFFF_H to FF0000_H in operating mode correspond to addresses $1FFF_H$ to 10000_H in EPROM mode.


- (3) Set the MB90P634A, in the adapter socket and connect the adapter socket to the EPROM programmer. Take care to correctly align the device with the adapter.
- (4) Perform programming.
- (5) If programming cannot be performed successfully, connect a 0.1 μF or similar capacitor between Vcc and GND and between VPP and GND.
- Note: As mask ROM products (MB90632A, 634A) do not support EPROM mode, data cannot be read using an EPROM programmer. Performing a blank check for other than the above addresses results in either non-EPROM addresses being read or the blank check being unable to be performed.

BLOCK DIAGRAM



■ F²MC-16L CPU PROGRAMMING MODEL

• Dedicated Registers

■ MEMORY MAP

■ I/O MAP

Address	Register	Register name	Access	Resource	Initial value
00н	Port 0 data register	PDR0	R/W	Port 0	XXXXXXXX
01н	Port 1 data register	PDR1	R/W	Port 1	XXXXXXXX
02н	Port 2 data register	PDR2	R/W	Port 2	XXXXXXXX
03н	Port 3 data register	PDR3	R/W	Port 3	XXXXXXXX
04н	Port 4 data register	PDR4	R/W	Port 4	XXXXXXXX
05н	Port 5 data register	PDR5	R/W	Port 5	XXXXXXXX
06н	Port 6 data register	PDR6	R/W	Port 6	XXXXXXXX
07н	Port 7 data register	PDR7	R/W	Port 7	XXXXX
08н	Port 8 data register	PDR8	R/W	Port 8	XXXXXXXX
09н	Port 9 data register	PDR9	R/W	Port 9	XXXXXXXX
0Ан	Port A data register	PDRA	R/W	Port A	XXXXX
0B to 0FH		Rese	erved area		
10н	Port 0 direction register	DDR0	R/W	Port 0	00000000
11 н	Port 1 direction register	DDR1	R/W	Port 1	00000000
12 н	Port 2 direction register	DDR2	R/W	Port 2	00000000
13 ⊦	Port 3 direction register	DDR3	R/W	Port 3	00000000
14 н	Port 4 direction register	DDR4	R/W	Port 4	00000000
15 ⊦	Port 5 direction register	DDR5	R/W	Port 5	00000000
16 н	Port 6 direction register	DDR6	R/W	Port 6	00000000
17 н	Port 7 direction register	DDR7	R/W	Port 7	00000
18 н	Port 8 direction register	DDR8	R/W	Port 8	00000000
19 н	Port 9 direction register	DDR9	R/W	Port 9	00000000
1Ан	Port A direction register	DDRA	R/W	Port A	00000
1Bн	Port 4 pin register	ODR4	R/W	Port 4	00000000
1Cн	Port 0 resistance register	RDR0	R/W	Port 0	00000000
1Dн	Port 1 resistance register	RDR1	R/W	Port 1	00000000
1Eн	Port 6 resistance register	RDR6	R/W	Port 6	00000000
1Fн	Analog input enable register	ADER	R/W	Port 5, A/D	11111111
20н	Serial mode register 0	SMR0	R/W		00000000
21н	Serial control register 0	SCR0	R/W	UART0	00000100
22н	Serial input register/ Serial output register 0	SIDR/ SODR0	R/W	0/11/10	xxxxxxx

Address	Register Register Access		Resource	Initial value	
23н	Serial status register 0	SSR0	R/W	UART0	00001-00
24н	Serial mode control status register 0	SMCS0	R/W		0000
25н	Serial mode control status register 0	SMCS0	R/W	I/O expansion serial interface 0	00000010
26н	Serial data register 0	SDR0	R/W		XXXXXXXX
27н	Clock division control register	CDCR	R/W	Communications prescaler	01111
28н	Serial mode control status register 1	SMCS1	R/W		0000
29н	Serial mode control status register 1	SMCS1	R/W	I/O expansion serial interface 1	00000010
2Ан	Serial data register 1	SDR1	R/W		XXXXXXXX
2B to 2FH		Rese	erved area		
30н	Interrupt/DTP enable register	ENIR	R/W		00000000
31н	Interrupt/DTP source register	EIRR	R/W		XXXXXXXX
32н		=	544	DTP/External interrupts	00000000
33н	Request level setting register	ELVR	R/W		00000000
34 to 35н		Rese	erved area	 	
36н		ADCS1			00000000
37н	Control status register	ADCS2	R/W		00000000
38н		ADCR1	_	A/D converter	XXXXXXXX
39н	Data register	ADCR2	R		XXXXXXXX
ЗАн	D/A converter data register 0	DAT0	R/W		XXXXXXXX
3В н	D/A converter data register 1	DAT1	R/W	D / 1	XXXXXXXX
3Сн	D/A control register 0	DACR0	R/W	D/A converter	0
3Dн	D/A control register 1	DACR1	R/W		0
3Ен	Clock control register	CLKR	R/W	CKOT output	000
3Fн		Rese	erved area		
40н	Reload register L (channel 0)	PRLL0	R/W		XXXXXXXX
41н	Reload register H (channel 0)	PRLH0	R/W		XXXXXXXX
42н	Reload register L (channel 1)	PRLL1	R/W		XXXXXXXX
43н	Reload register H (channel 1)	PRLH1	R/W	8/16 bit PPG	XXXXXXXX
44 _H	PPG0 operation mode control register	PPGC0	R/W		0X000XX1
45 H	PPG1 operation mode control register	PPGC1	R/W		0X000001
46 H	PPG0, 1 output control register	PPGOE	R/W		00000000
47 to 4F н	· · · ·	Rese	erved area	l	
50н	Lower compare register channel 0	OCCP0	R/W	16-bit I/O timer output compare (channel 0 to 3)	XXXXXXXX
45н 46н 47 to 4Fн	PPG1 operation mode control register PPG0, 1 output control register	PPGC1 PPGOE Rese	R/W R/W erved area	16-bit I/O timer output	0

Address	Register	Register name	Access	Resource	Initial value		
51н	Upper compare register channel 0	OCCP0	R/W		XXXXXXXX		
52н	Lower compare register channel 1	000004			XXXXXXXX		
53н	Upper compare register channel 1	OCCP1	R/W		XXXXXXXX		
54н	Lower compare register channel 2	00000			XXXXXXXX		
55н	Upper compare register channel 2	OCCP2	R/W	16-bit I/O timer	XXXXXXXX		
56н	Lower compare register channel 3	00000		XXXXXXXX			
57н	Upper compare register channel 3	OCCP3 R/W (channel 0 to					
58 H	Compare control status register channel 0	OCS0	R/W		00000		
59н	Compare control status register channel 1	OCS1	R/W		000000		
5Ан	Compare control status register channel 2	OCS2	R/W		00000		
5Bн	Compare control status register channel 3	OCS3	R/W		000000		
5C to 5FH		Rese	erved area				
60н	Lower input capture register channel 0		R		XXXXXXXX		
61н	Upper input capture register channel 0	IPCP0	R		XXXXXXXX		
62н	Lower input capture register channel 1	IPCP1	R	16-bit I/O timer	XXXXXXXX		
63н	Upper input capture register channel 1	IPCPT	R	Input capture (channel 0, 1)	XXXXXXXX		
64н	Input capture control status register	ICS	R/W		0000000		
65н	Reserved area		—				
66н	Lower timer data register	TCDTL	R/W	16-bit I/O timer	0000000		
67н	Upper timer data register	TCDTH	R/W	Free-run timer	0000000		
68н	Timer control status register	TCCS	R/W	(channel 0, 1)	0000000		
69 to 6Fн		Rese	erved area				
70н	Up/down count register channel 0	UDCR0	Р		0000000		
71н	Up/down count register channel 1	UDCR1	R		0000000		
72н	Reload compare register channel 0	RCR0	14/		0000000		
73н	Reload compare register channel 1	RCR1	W		0000000		
74 _H	Counter status register channel 0	CSR0	R/W		0000000		
75н	Reserved area		—	8/16-bit up/down timer/counter			
76 н		CCRL0			-0000000		
77н	Counter control register channel 0	CCRH0	R/W		00000000		
78 H	Counter status register channel 1	CSR1	R/W		00000000		
7 9н	Reserved area						
7Ан	Counter control register channel 1	CCRL1	R/W		-0000000		

Address	Register	Register name	Access	Resource	Initial value
7Вн	Counter control register channel 1	CCRH1	R/W	8/16-bit up/down timer/counter	-0000000
7C to 87н		Res	served area	l	I
88 H	Serial mode register 1	SMR1	R/W		00000000
89н	Serial control register 1	SCR1	R/W		00000100
8Ан	Serial input register 1/serial output register 1	SIDR1/ SODR1	R/W	UART1	xxxxxxxx
8Вн	Serial status register 1	SSR1	R/W		00001-00
8C to 9EH	Reserved	area (Acces	ssing 90H to	9EH is prohibited.)	I
9Fн	Delayed interrupt generation/ clear register	DIRR	R/W	Delayed interrupt generation module	0
А0н	Low-power consumption mode register	LPMCR	R/W	Low-power consumption	00011000
А1н	Clock selection register	CKSCR	R/W	Low-power consumption	11001100
A2 to A4 ${\rm H}$		Res	served area	l	I
А5н	Auto-ready function selection register	ARSR	W	External pins	001100
А6н	External address output control register	HACR	W	External pins	0000
А7н	Bus control signal selection register	ECSR	W	External pins	0000*00-
А8н	Watchdog timer control register	WDTC	R/W	Watchdog timer	XXXXX111
А9н	Timebase timer control register	TBTC	R/W	Timebase timer	100100
AA to AF_{H}		Res	served area	l	L
В0н	Interrupt control register 00	ICR00	R/W		00000111
В1н	Interrupt control register 01	ICR01	R/W		00000111
В2н	Interrupt control register 02	ICR02	R/W		00000111
ВЗн	Interrupt control register 03	ICR03	R/W		00000111
В4н	Interrupt control register 04	ICR04	R/W		00000111
В5н	Interrupt control register 05	ICR05	R/W		00000111
В6н	Interrupt control register 06	ICR06	R/W	Interrupt controller	00000111
В7 н	Interrupt control register 07	ICR07	R/W		00000111
В8н	Interrupt control register 08	ICR08	R/W		00000111
В9н	Interrupt control register 09	ICR09	R/W		00000111
ВАн	Interrupt control register 10	ICR10	R/W		00000111
ВВн	Interrupt control register 11	ICR11	R/W		00000111
ВСн	Interrupt control register 12	ICR12	R/W		00000111
BDн	Interrupt control register 13	ICR13	R/W		00000111

(Continued)

Address	Register	Register name	Access	Resource	Initial value
ВЕн	Interrupt control register 14	ICR14	R/W	Interrupt controller	00000111
BFн	Interrupt control register 15	ICR15	R/W	Interrupt controller	00000111
C0 to FFH	Reserved area	—	—	_	

Initial values

0: The initial value of this bit is "0".

1: The initial value of this bit is "1".

* : The initial value of this bit is "0" or "1".

X: The initial value of this bit is undefined.

-: This bit is not used. The initial value is undefined.

Note: Areas below address 0000FF_H not listed in the table are reserved areas. These addresses are accessed by internal access. No access signals are output on the external bus.

■ INTERRUPT VECTOR AND INTERRUPT CONTROL REGISTER ASSIGNMENTS TO INTERRUPT SOURCES

	I ² OS	Interru	ot vector	Interrupt co	ontrol register	
Interrupt source	support	Number	Address	ICR	Address	
Reset	×	#08	FFFFDC _H		_	
INT 9 instruction	×	#09	FFFFD8H	—	—	
Exception	×	#10	FFFFD4H	—	—	
A/D converter	0	#11	FFFFD0H	ICR00	0000В0н	
DTP 0 (External interrupt 0)	0	#13	FFFFC8H	ICR01	0000B1н	
16-bit free-run timer (I/O timer) overflow	0	#14	FFFFC4H	ICKUI	UUUUB IH	
I/O expansion serial 1	0	#15	FFFFC0H	ICR02	0000B2н	
DTP 1 (External interrupt 1)	0	#16	FFFFBC H		0000628	
I/O expansion serial 2	0	#17	FFFFB8H	ICR03	0000ВЗн	
DTP 2 (External interrupt 2)	0	#18	FFFFB4H	- ICRU3	UUUUDSH	
DTP 3 (External interrupt 3)	0	#19	FFFFB0H	ICR04	0000B4н	
8/16-bit PPG 0 counter borrow	0	#20	FFFFAC _H		0000B4H	
8/16-bit U/D counter 0 compare	0	#21	FFFFA8H			
8/16-bit U/D counter 0 underflow/ overflow, up/down invert	0	#22	FFFFA4H	ICR05	0000 B 5н	
8/16-bit PPG 1 counter borrow	0	#23	FFFFA0H	ICDOC	0000000	
DTP 4/5 (External interrupt 4/5)	0	#24	FFFF9CH	ICR06	0000В6н	
Output compare (channel 2) match (I/O timer)	0	#25	FFFF98H	ICR07	0000 B7 н	
Output compare (channel 3) match (I/O timer)	0	#26	FFFF94H		0000071	
DTP 6 (External interrupt 6)	0	#28	FFFF8CH	ICR08	0000В8н	
8/16-bit U/D counter 1 compare	0	#29	FFFF88H			
8/16-bit U/D counter 1 underflow/ overflow, up/down invert	0	#30	FFFF84 _H	ICR09	0000В9н	
Input capture (channel 0) read (I/O timer)	0	#31	FFFF80H	ICR10	0000ВАн	
Input capture (channel 1) read (I/O timer)	0	#32	FFFF7CH		UUUUBAH	
Output compare (channel 0) match (I/O timer)	0	#33	FFFF78H	ICR11	0000BBн	
Output compare (channel 1) match (I/O timer)	0	#34	FFFF74 _H		UUUUDDH	
DTP 7 (External interrupt 7)	0	#36	FFFF6CH	ICR12	0000BCн	
UART0 receive complete	0	#37	FFFF68H	ICR13	0000BDн	
UART1 receive complete	0	#38	FFFF64H			
UART0 transmit complete	0	#39	FFFF60H	ICR14	0000ВЕн	
UART1 transmit complete	0	#40	FFFF5CH		UUUUBLH	
Reserved	×	#41	FFFF58H	ICR15	0000BFн	
Delayed interrupt	×	#42	FFFF54H		UUUUDEH	

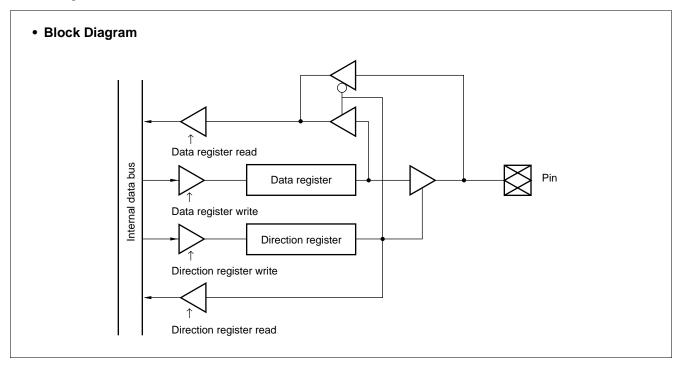
: Indicates that the interrupt request flag is cleared by the I²OS interrupt clear signal (no stop request).

©: Indicates that the interrupt request flag is cleared by the I²OS interrupt clear signal (stop request present).

×: Indicates that the interrupt request flag is not cleared by the I²OS interrupt clear signal.

Note: For resources in which two interrupt sources share the same interrupt number, the I²OS interrupt clear signal clears both interrupt request flags.

PERIPHERAL RESOURCES


1. Parallel Ports

(1) I/O Ports

Each port pin can be specified as either an input or output by its corresponding direction register when the pin is not set for use by a peripheral. When a port is set as an input, reading the data register always reads the value corresponding to the pin level. When a port is set as an output, reading the data register reads the data register latch value. The same applies when reading using a read-modify-write instruction.

When used as control outputs, reading the data register reads the control output value, irrespective of the direction register value.

Note that if a read-modify-write instruction (set bit or similar instruction) is used to set output data in the data register before switching a pin from input to output, the instruction reads the input level at the pin and not the data register latch value.

(2) Register Configuration

k

Address: 00000H Address: 000002H Address: 000002H Address: 000003H Address: 000005H Address: 000005H Address: 000006H Address: 000007H Address: 000008H Address: 000009H Address: 00000AH

bit	15/7	14/6	13/5	12/4	11/3	10/2	9/1	8/0
00н	P07	P06	P05	P04	P03	P02	P01	P00
01н	P17	P16	P15	P14	P13	P12	P11	P10
)2н	P27	P26	P25	P24	P23	P22	P21	P20
)Зн	P37	P36	P35	P34	P33	P32	P31	P30
)4н	P47	P46	P45	P44	P43	P42	P41	P40
)5н	P57	P56	P55	P54	P53	P52	P51	P50
06н	P67	P66	P65	P64	P63	P62	P61	P60
07н	—			P74	P73	P72	P71	P70
)8н	P87	P86	P85	P84	P83	P82	P81	P80
)9н	P97	P96	P95	P94	P93	P92	P91	P90
ОАн	—			PA4	PA3	PA2	PA1	PA0

Port 0 data register (PDR0) Port 1 data register (PDR1) Port 2 data register (PDR2) Port 3 data register (PDR3) Port 4 data register (PDR4) Port 5 data register (PDR5) Port 6 data register (PDR7) Port 8 data register (PDR8) Port 9 data register (PDR9) Port A data register (PDRA)

Address: 000010H Address: 000012H Address: 000012H Address: 000013H Address: 000015H Address: 000015H Address: 000017H Address: 000017H Address: 000019H Address: 00001AH

bit	15/7	14/6	13/5	12/4	11/3	10/2	9/1	8/0
010н	D07	D06	D05	D04	D03	D02	D01	D00
011н	D17	D16	D15	D14	D13	D12	D11	D10
012н	D27	D26	D25	D24	D23	D22	D21	D20
013н	D37	D36	D35	D34	D33	D32	D31	D30
014н	D47	D46	D45	D44	D43	D42	D41	D40
015н	D57	D56	D55	D54	D53	D52	D51	D50
016н	D67	D66	D65	D64	D63	D62	D61	D60
017н	_	—	_	D74	D73	D72	D71	D70
018н	D87	D86	D85	D84	D83	D82	D81	D80
019н	D97	D96	D95	D94	D93	D92	D91	D90
01Ан		—	_	DA4	DA3	DA2	DA1	DA0

Port 0 direction register (DDR0) Port 1 direction register (DDR1) Port 2 direction register (DDR2) Port 3 direction register (DDR3) Port 4 direction register (DDR4) Port 5 direction register (DDR5) Port 6 direction register (DDR6) Port 7 direction register (DDR7) Port 8 direction register (DDR8) Port 9 direction register (DDR9) Port A direction register (DDRA)

bit	15	14	13	12	11	10	9	8	
Address: 00001BH	OD47	OD46	OD45	OD44	OD43	OD42	OD41	OD40	Port 4 pin register (ODR4)
bit	15/7	14/6	13/5	12/4	11/3	10/2	9/1	8/0	
Address: 00001CH	RD07	RD06	RD05	RD04	RD03	RD02	RD01	RD00	Port 0 resistor register (RDR0)
Address: 00001DH	RD17	RD16	RD15	RD14	RD13	RD12	RD11	RD10	Port 1 resistor register (RDR1)
Address: 00001EH	RD67	RD66	RD65	RD64	RD63	RD62	RD61	RD60	Port 6 resistor register (RDR6)
bit	15	14	13	12	11	10	9	8	
Address: 00001FH	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0	Port 5 analog input enable register
									(ADER)

(3) Register Details

• Port Data Registers

PDR0 Address: 000000+ P07 P06 P05 P04 P03 P02 P01 P00 Undefined R/W* bit 15 14 13 12 11 10 9 8 PDR1 Address: 000001+ P17 P16 P15 P14 P13 P12 P11 P10 Undefined R/W* bit 7 6 5 4 3 2 1 0 P R/W* bit 7 6 5 4 3 2 1 0 P R/W* Address: 000002+ P27 P26 P25 P24 P23 P22 P21 P20 Undefined R/W* bit 15 14 13 12 11 10 9 8 P P P P P P P P P P P P P P P P P P P <td< th=""><th>bit</th><th>7</th><th>6</th><th>5</th><th>4</th><th>3</th><th>2</th><th>1</th><th>0</th><th>Initial value</th><th>Access</th></td<>	bit	7	6	5	4	3	2	1	0	Initial value	Access
bit 15 14 13 12 11 10 9 8 R/W* Address: 00001H P17 P16 P15 P14 P13 P12 P11 P10 Undefined R/W* bit 7 6 5 4 3 2 1 0 0 R/W* Address: 00002H P27 P26 P25 P24 P23 P22 P21 P20 Undefined R/W* bit 15 14 13 12 11 10 9 8 R/W* bit 15 14 13 12 11 10 9 8 R/W* bit 7 6 5 4 3 2 1 0 9 8 R/W* R/W* bit 7 6 5 4 3 2 1 0 R/W* R/W* bit 15 14 13 12 11 10 9 8 R/W* bit 7 6		P07	P06	P05	P04	P03	P02	P01	P00		
PDR1 Address: 000001H P17 P16 P15 P14 P13 P12 P11 P10 Undefined R/W* bit 7 6 5 4 3 2 1 0 R/W* PDR2 Address: 000002H P27 P26 P25 P24 P23 P22 P21 P20 Undefined R/W* bit P15 14 13 12 11 10 9 8 R/W* bit 15 14 13 12 11 10 9 8 R/W* bit 7 6 5 4 3 2 1 0 P37 P36 P35 P34 P33 P32 P31 P30 Undefined R/W* bit 7 6 5 4 3 2 1 0 P37 P36 P57 P56 P55 P54 P53 P52 P51 P50 Undefined R/W* bit 7 6 5 4 3 2 1											
Address: 000001+1 P17 P18 P13 P14 P13 P12 P11 P10 Undefined R/W* PDR2 Address: 000002+1 P27 P26 P25 P24 P23 P22 P21 P20 Undefined R/W* bit 15 14 13 12 11 10 9 8 R/W* Address: 00003+1 P37 P36 P35 P34 P33 P32 P31 P30 Undefined R/W* bit 7 6 5 4 3 2 1 0 P 8 PDR3 Address: 000003+1 P47 P46 P45 P44 P43 P42 P41 P40 Undefined R/W* bit 15 14 13 12 11 10 9 8 R/W* bit 7 6 5 4 3 2 1 0 R/W* bit 7 6 5 4 3 2 <		15	14	13	12	11	10	9		1	
PDR2 Address: 000002н P27 P26 P25 P24 P23 P22 P21 P20 Undefined R/W* bit 15 14 13 12 11 10 9 8 R/W* Address: 000003н P37 P36 P35 P34 P33 P32 P31 P30 Undefined R/W* bit P37 P36 P35 P34 P33 P32 P31 P30 Undefined R/W* bit 7 6 5 4 3 2 1 0 P47 P46 P45 P44 P43 P42 P41 P40 Undefined R/W* bit 15 14 13 12 11 10 9 8 R/W* bit 7 6 5 4 3 2 1 0 R/W* bit 7 6 5 4 3 2 1 0 R/W* bit 7 6 5 4 3 2 <t< td=""><td></td><td>P17</td><td>P16</td><td>P15</td><td>P14</td><td>P13</td><td>P12</td><td>P11</td><td>P10</td><td>Undefined</td><td>R/W*</td></t<>		P17	P16	P15	P14	P13	P12	P11	P10	Undefined	R/W*
Address: 000002H P27 P20 P23 P24 P23 P22 P21 P20 Othermole R/W* bit 15 14 13 12 11 10 9 8 R/W* bit P37 P36 P35 P34 P33 P32 P31 P30 Undefined R/W* bit 7 6 5 4 3 2 1 0 9 8 R/W* bit 7 6 5 4 3 2 1 0 R/W* bit 7 6 5 4 3 2 1 0 R/W* bit 15 14 13 12 11 10 9 8 R/W* bit 15 14 13 12 11 10 9 8 R/W* bit 7 6 5 4 3 2 1 0 R/W* bit 7 6 5 4 3 2 1	bit	7	6	5	4	3	2	1	0		
bit 15 14 13 12 11 10 9 8 R/W* PDR3 Address: 00003H P37 P36 P35 P34 P33 P32 P31 P30 Undefined R/W* bit 7 6 5 4 3 2 1 0 9 8 R/W* bit 7 6 5 4 3 2 1 0 9 8 R/W* bit 7 6 5 4 3 2 1 0 9 8 R/W* bit 15 14 13 12 11 10 9 8 R/W* bit 7 6 5 4 3 2 1 0 9 8 R/W* bit 7 6 5 4 3 2 1 0 9 8 R/W* bit 7 6 5 4 3 2 1 0 9 8 R/W* <td></td> <td>P27</td> <td>P26</td> <td>P25</td> <td>P24</td> <td>P23</td> <td>P22</td> <td>P21</td> <td>P20</td> <td>Undefined</td> <td>R/W*</td>		P27	P26	P25	P24	P23	P22	P21	P20	Undefined	R/W*
PDR3 Address: 000003H P37 P36 P35 P34 P33 P32 P31 P30 Undefined R/W* bit 7 6 5 4 3 2 1 0 P37 P36 P35 P34 P33 P32 P31 P30 Undefined R/W* bit 7 6 5 4 3 2 1 0 P47 P46 P45 P44 P43 P42 P41 P40 Undefined R/W* bit 15 14 13 12 11 10 9 8 P0R6 Address: 000005H P57 P56 P55 P54 P53 P52 P51 P50 Undefined R/W* bit 7 6 5 4 3 2 1 0 9 8 PW* bit 15 14 13 12 11 10 9 8 PW* bit 15 14 13 12 11 10 9 8 PW*	Address: 000002H										
Address: 000003H P37 P36 P33 P34 P33 P32 P31 P30 Undefined R/W* bit 7 6 5 4 3 2 1 0 <	bit	15	14	13	12	11	10	9	8		
bit 7 6 5 4 3 2 1 0 PDR4 Address: 000004H P47 P46 P45 P44 P43 P42 P41 P40 Undefined R/W* bit 15 14 13 12 11 10 9 8 R/W* DR5 PDR5 P57 P56 P55 P54 P53 P52 P51 P50 Undefined R/W* bit 7 6 5 4 3 2 1 0 9 8 R/W* bit 7 6 5 4 3 2 1 0 R/W* bit 7 66 5 P64 P63 P62 P61 P60 Undefined R/W* bit 15 14 13 12 11 10 9 8 R/W* bit 7 6 5 4 3 2 1 0 P0 8 P1 P1 P1 P1	-	P37	P36	P35	P34	P33	P32	P31	P30	Undefined	R/W*
PDR4 Address: 000004н P47 P46 P45 P44 P43 P42 P41 P40 Undefined R/W* bit 15 14 13 12 11 10 9 8 PDR5 Address: 000005H P57 P56 P55 P54 P53 P52 P51 P50 Undefined R/W* bit 7 6 5 4 3 2 1 0 9 8 PW* bit 7 6 5 4 3 2 1 0 PDR6 Address: 000006H P67 P66 P65 P64 P63 P62 P61 P60 Undefined R/W* bit 15 14 13 12 11 10 9 8 PDR7 Address: 000007H Indefined R/W* bit 7 6 5 4 3 2 1 0 R/W* bit 7 6 5 4 3 2 1 0 PDR3 P0000007H P0000000000	Address. 000005h										
Address: 000004H P47 P40 P43 P43 P43 P42 P41 P40 Olderhied R/W* bit 15 14 13 12 11 10 9 8 R/W* PDR5 Address: 000005H P57 P56 P55 P54 P53 P52 P51 P50 Undefined R/W* bit 7 6 5 4 3 2 1 0 9 8 PW* bit 7 6 5 4 3 2 1 0 PG* P60 Undefined R/W* bit 15 14 13 12 11 10 9 8 PD* PD* PT* PT* <td></td> <td>7</td> <td>6</td> <td>5</td> <td>4</td> <td>3</td> <td></td> <td>1</td> <td></td> <td>I</td> <td></td>		7	6	5	4	3		1		I	
PDR5 Address: 000005н P57 P56 P55 P54 P53 P52 P51 P50 Undefined R/W* bit 7 6 5 4 3 2 1 0		P47	P46	P45	P44	P43	P42	P41	P40	Undefined	R/W*
PDR5 Address: 000005н P57 P56 P55 P54 P53 P52 P51 P50 Undefined R/W* bit 7 6 5 4 3 2 1 0	bit	15	14	13	12	11	10	9	8		
Address: 000005H 7 6 5 4 3 2 1 0 PDR6 Address: 000006H P67 P66 P65 P64 P63 P62 P61 P60 Undefined R/W* bit 15 14 13 12 11 10 9 8 PDR7 Address: 000007H — — — P74 P73 P72 P71 P70 Undefined R/W* bit 7 6 5 4 3 2 1 0 P3 PDR7 — — — P74 P73 P72 P71 P70 Undefined R/W* bit 7 6 5 4 3 2 1 0 PDR8 P87 P86 P85 P84 P83 P82 P81 P80 Undefined R/W*										Undefined	R/\\/*
PDR6 Address: 000006H P67 P66 P65 P64 P63 P62 P61 P60 Undefined R/W* bit 15 14 13 12 11 10 9 8	Address: 000005H						=			ondonnou	10/00
Address: 000006н P67 P66 P63 P63 P62 P61 P60 Undefined R/W* bit 15 14 13 12 11 10 9 8 PDR7 — — — P74 P73 P72 P71 P70 Undefined R/W* bit 7 6 5 4 3 2 1 0 PDR8 Address: 000008H P87 P86 P85 P84 P83 P82 P81 P80 Undefined R/W*	bit	7	6	5	4	3	2	1	0		
bit 15 14 13 12 11 10 9 8 PDR7 Address: 000007н – – – Р74 Р73 Р72 Р71 Р70 Undefined R/W* bit 7 6 5 4 3 2 1 0 PDR8 Address: 000008н Р87 Р86 Р85 Р84 Р83 Р82 Р81 Р80 Undefined R/W*		P67	P66	P65	P64	P63	P62	P61	P60	Undefined	R/W*
PDR7 P74 P73 P72 P71 P70 Undefined R/W* bit 7 6 5 4 3 2 1 0 PDR8 P87 P86 P85 P84 P83 P82 P81 P80 Undefined R/W*											
Address: 000007H Image: Constrained for the second sec		15	14	13				9		I	
PDR8 Address: 000008H P87 P86 P85 P84 P83 P82 P81 P80 Undefined R/W*		_	—	_	P74	P73	P72	P71	P70	Undefined	R/W*
PDR8 Address: 000008H P87 P86 P85 P84 P83 P82 P81 P80 Undefined R/W*	bit	7	6	5	4	3	2	1	0		
Address: 000008 _H	PDR8		-							Undefined	R/W*
bit 15 14 13 12 11 10 9 8	Address: 000008н				-		_	-			
	bit	15	14	13	12	11	10	9	8		
PDR9 Address: 000009H P97 P96 P95 P94 P93 P92 P91 P90 Undefined R/W*		P97	P96	P95	P94	P93	P92	P91	P90	Undefined	R/W*
	AUDIESS: UUUUU9H			-				-	-	•	
bit 7 6 5 4 3 2 1 0		7	6	5	4	3	2	1	0	-	
PDRA Address: 00000AH PA4 PA3 PA2 PA1 PA0 Undefined R/W*		—	_	—	PA4	PA3	PA2	PA1	PA0	Undefined	R/W*

* : The operation of reading or writing to I/O ports is slightly different from reading or writing to memory, as follows.

• Input mode

Read: Reads the corresponding pin level.

Write: Writes to the output latch.

• Output mode

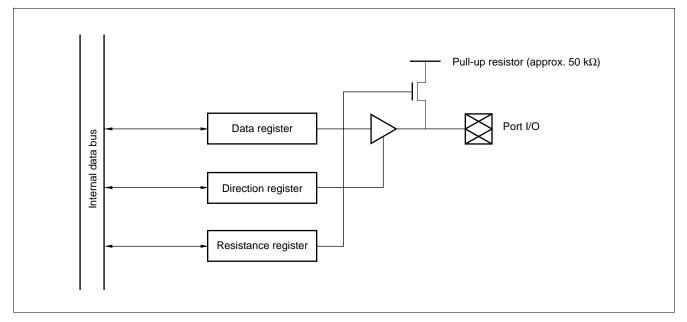
Read: Reads the value of the data register latch.

Write: The value is output from the corresponding pin.

• Port Direction Registers

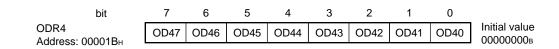
bit	7	6	5	4	3	2	1	0	Initial value	Access
DDR0 Address: 000010⊦	D07	D06	D05	D04	D03	D02	D01	D00	00000000в	R/W
Address. 000010H										
bit	15	14	13	12	11	10	9	8		
DDR1 Address: 000011н	D17	D16	D15	D14	D13	D12	D11	D10	0000000в	R/W
bit	7	0	-		0	0	4	0		
DDR2		6	5	4	3	2	1	0		
Address: 000012H	D27	D26	D25	D24	D23	D22	D21	D20	0000000в	R/W
bit	15	14	13	12	11	10	9	8		
DDR3	D37	D36	D35	D34	D33	D32	D31	D30	0000000в	R/W
Address: 000013H	201	200	200	DOA	200	DOL	DOT	000	00000008	10/00
bit	7	6	5	4	3	2	1	0		
DDR4	D47	D46	D45	D44	D43	D42	D41	D40	0000000в	R/W
Address: 000014н										
bit	15	14	13	12	11	10	9	8		
DDR5 Address: 000015н	D57	D56	D55	D54	D53	D52	D51	D50	0000000в	R/W
Address. 000010H										
bit	7	6	5	4	3	2	1	0		
DDR6 Address: 000016⊦	D67	D66	D65	D64	D63	D62	D61	D60	0000000в	R/W
bit DDR7	15	14	13	12	11	10	9	8	I	
Address: 000017 _H	_	—	_	D74	D73	D72	D71	D70	000в	R/W
1.11	-	•	-		0	•		•		
bit DDR8	7	6	5	4	3	2	1	0		-
Address: 000018H	D87	D86	D85	D84	D83	D82	D81	D80	0000000в	R/W
bit	15	14	13	12	11	10	9	8		
DDR9	D97	D96	D95	D94	D93	D92	D91	D90	0000000в	R/W
Address: 000019н				_		-	-			
bit	7	6	5	4	3	2	1	0		
	_	_	_	DA4	DA3	DA2	DA1	DA0	00000в	R/W
Address: 00001AH		1	•				1			

When pins are used as ports, the register bits control the corresponding pins as follows.

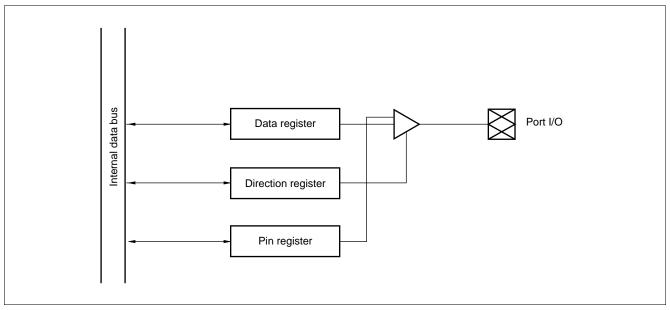

0: Input mode

1: Output mode Bits are set to "0" by a reset.

• Port Resistance Registers


bit	7	6	5	4	3	2	1	0	
RDR0 Address: 00001C⊦	RD07	RD06	RD05	RD04	RD03	RD02	RD01	RD00	Initial value 0000000₀
Address: 0000 TCH		1		1			1		00000008
bit	15	14	13	12	11	10	9	8	
RDR1 Address: 00001DH	RD17	RD16	RD15	RD14	RD13	RD12	RD11	RD10	0000000в
Address. 0000 TDH									
bit	7	6	5	4	3	2	1	0	
RDR6 Address: 00001E⊦	RD67	RD66	RD65	RD64	RD63	RD62	RD61	RD60	0000000в
Address. 0000 TEH									

• Block Diagram



- Notes: Input resistance register R/W
 - Controls the pull-up resistor in input mode.
 - 0: Pull-up resistor disconnected in input mode.
 - 1: Pull-up resistor connected in input mode.
 - The setting has no meaning in output mode (pull-up resistor disconnected).
 - The direction register (DDR) sets input or output mode.
 - The pull-up resistor is disconnected in hardware standby or stop mode (SPL = 1) (high impedance).
 - This function is disabled when using an external bus. In this case, do not write to this register.

• Port Pin Register

• Block Diagram

Notes: • Pin register R/W

- Performs open-drain control in output mode.
 - 0: Operate as a standard output port in output mode.
 - 1: Operate as an open-drain output port in output mode.
- The setting has no meaning in input mode (output Hi-z).
- The direction register (DDR) sets input or output mode
- The pull-up resistor is disconnected in hardware standby or stop mode (SPL = 1) (high impedance).
- This function is disabled when using an external bus. In this case, do not write to this register.
- Analog Input Enable Register

bit	15	14	13	12	11	10	9	8	
ADER Address: 00001F⊦	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0	Initial value
	(R/W)								

Controls each port 5 pin as follows.

0: Port input mode

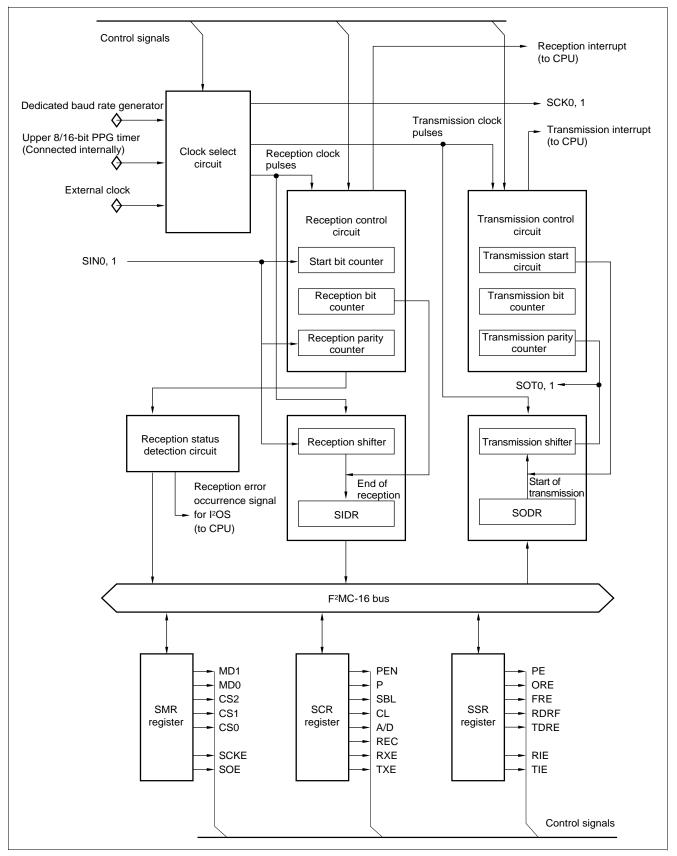
1: Analog input mode

Set to "1" by a reset.

2. UART

The UART is a serial I/O port that can be used for CLK asynchronous (start-stop synchronization) or CLK synchronous communications. The UART has the following features.

- Full duplex, double buffered
- Supports asynchronous (start-stop synchronization) and CLK synchronous data transfer
- Supports multi-processor mode
- Built-in dedicated baud rate generator


Asynchronous: 9615, 31250, 4808, 2404, 1202 bps CLK synchronous: 1 Mbps, 500 Kbps, 250 Kbps, 125 Kbps, and 62.5 For a 6, 8, 10, 12, or 16 MHz clock.

- Supports flexible baud rate setting using an external clock
- Error detect function (parity, framing, and overrun)
- NRZ type transmission signal
- Intelligent I/O service support

(1) Register Configuration

1	5			8	7			0	
	CDCR				_				(R/W)
	SCR				SMR				(R/W)
	SSR				SIDR (R)/SODR (W)				(R/W)
					. , . , ,				(10,00)
	8 bits			■ 8 bits ■					
bit	7	6	5	4	3	2	1	0	Serial mode register 0, 1
Address: 000020н 000088н	MD1	MD0	CS2	CS1	CS0	Reserved	SCKE	SOE	(SMR0, 1)
bit	15	14	13	12	11	10	9	8	Serial control register 0, 1
Address: 000021н 000089н	PEN	Р	SBL	CL	A/D	REC	RXE	TXE	(SCR0, 1)
bit	7	6	5	4	3	2	1	0	Serial input register/
Address: 000022н 00008Ан	D7	D6	D5	D4	D3	D2	D1	D0	Serial output register 0, 1
bit	15	14	13	12	11	10	9	8	(SIDR/SODR0, 1) Serial status register 0, 1
Address: 000023н 00008Вн	PE	ORE	FRE	RDRF	TDRE	_	RIE	TIE	(SSR0, 1)
bit	15	14	13	12	11	10	9	8	Clock division control register
Address: 000027H	MD	_	_		DIV3	DIV2	DIV1	DIV0	(CDCR)

(2) Block Diagram

3. I/O Expansion Serial Interface

This block consists of an 8-bit serial I/O interface that can perform clock synchronous data transfer. Either LSB-first or MSB-first data transfer can be selected.

The following two serial I/O operation modes are available.

- Internal shift clock mode: Data transfer is synchronized with the internal clock.
- External shift clock mode: Data transfer is synchronized with the clock input from the external pin (SCK). By manipulating the general-purpose port that shares the external pin (SCK), this mode also enables the data transfer operation to be driven by CPU instructions.

(1) Register Configuration

bit	15	14	13	12	11	10	9	8	
Address: 000025н 000029н	SMD2	SMD1	SMD0	SIE	SIR	BUSY	STOP	STRT	
bit	7	6	5	4	3	2	1	0	Serial mode control status
Address: 000024н 000028н	_	—	—	_	MODE	BDS	SOE	SCOE	registers 0, 1 (SMCS0, 1)
bit	7	6	5	4	3	2	1	0	Serial data registers 0, 1
Address: 000026н 00002Ан	D7	D6	D5	D4	D3	D2	D1	D0	(SDR0, 1)

(2) Register Details

• Serial Mode Control Status Register (SMCS)

bit		15	14	13	12	11	10	9	8	
SMCS Address: 00002	25н	SMD2	SMD1	SMD0	SIE	SIR	BUSY	STOP	STRT	Initial value 00000010 _B
00002	29н	(R/W)	(R/W)	(R/W)	(R/W)	(R/W*1)	(R)	(R/W)	(R/W*2)	
bit		7	6	5	4	3	2	1	0	
SMCS Address: 00002	24н	_	_			MODE	BDS	SOE	SCOE	Initial value 0000в
00002	28н					(R/W)	(R/W)	(R/W)	(R/W)	

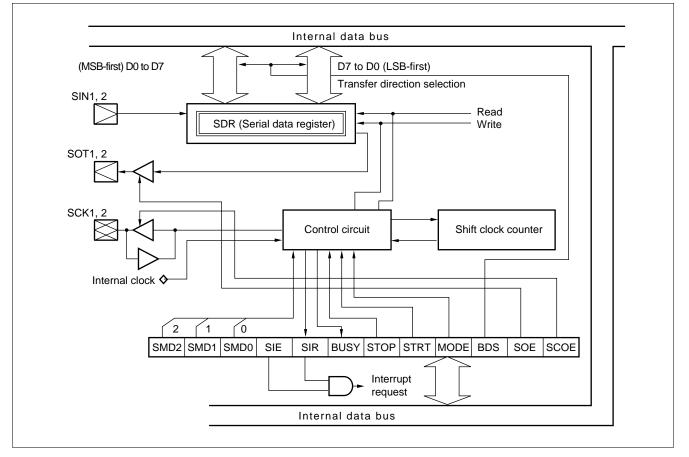
*1: Only "0" can be written.

*2: Only "1" can be written. Reading always returns "0".

This register controls the transfer operation mode of the serial I/O. The following describes the function of each bit.

(a) [bit 3] Serial mode selection bit (MODE)

This bit selects the conditions for starting operation from the halted state. Changing the mode during operation is prohibited.


MODE	Operation
0	Start when STRT is set to "1". [Initial value]
1	Start on reading from or writing to the serial data register.

The bit is initialized to "0" by a reset. The bit is readable and writable. Set to "1" when using the intelligent I/O service.

(b) [bit 2] Transfer direction selection bit (BDS: Bit Direction Select) Selects as follows at the time of serial data input and output whether the data are to be transferred in the order from LSB to MSB or vice versa.

MODE	Operation
0	LSB-first [Initial value]
1	MSB-first

(3) Block Diagram

4. A/D Converter

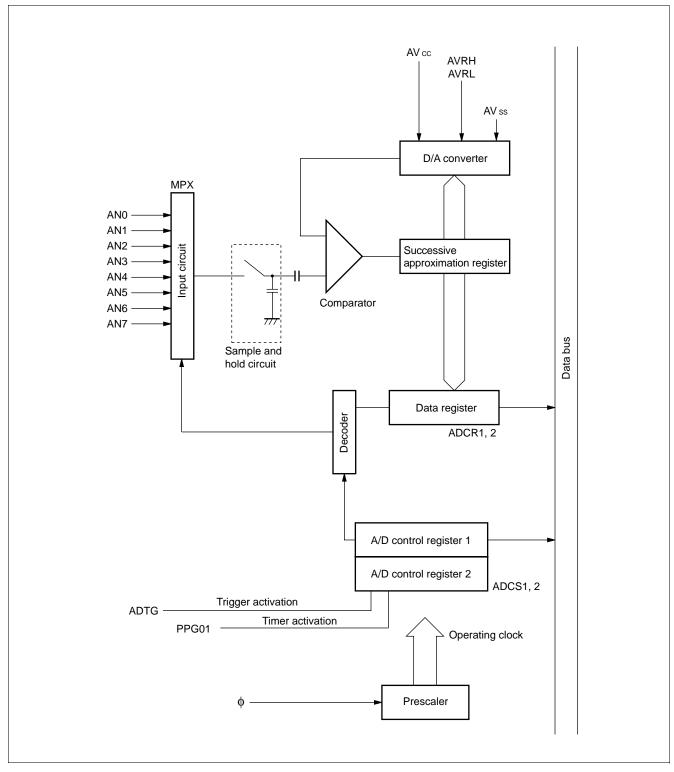
The A/D converter converts analog input voltages to digital values. The A/D converter has the following features.

- Conversion time: Minimum of 5.2 μ s per channel (for a 16 MHz machine clock)
- Uses RC-type successive approximation conversion with a sample and hold circuit.
- 10-bit resolution
- Eight program-selectable analog input channels

Single conversion mode	: Selectively convert a one channel.
Scan conversion mode	: Continuously convert multiple channels. Maximum of 8 program- selectable channels.
Continuous conversion mode	: Repeatedly convert specified channels.
Stop conversion mode	: Convert one channel then halt until the next activation. (Enables synchronization of the conversion start timing.)

- An A/D conversion completion interrupt request to the CPU can be generated on the completion of A/D conversion. This interrupt can activate I²OS to transfer the result of A/D conversion to memory and is suitable for continuous operation.
- Activation by software, external trigger (falling edge), or timer (rising edge) can be selected.

(1) Register Configuration

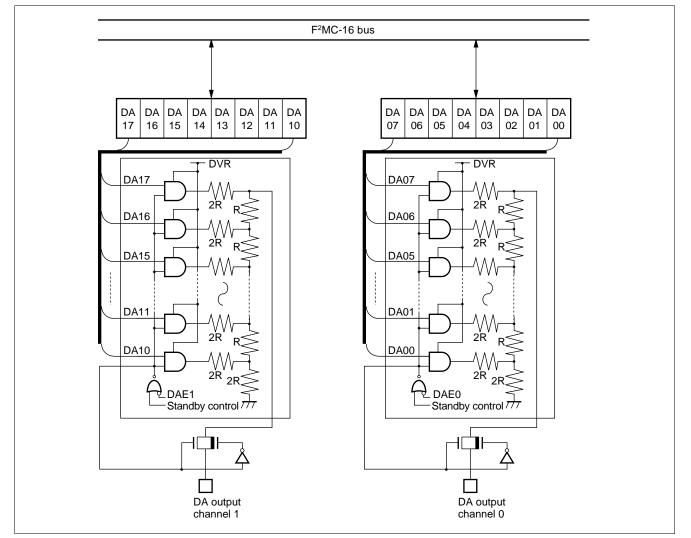

The A/D converter has the following registers.

1	5 8	7	0
	ADCS2		ADCS1
	ADCR2		ADCR1
	8 bits	►	8 bits

bit	7	6	5	4	3	2	1	0	
Address: 000036н	MD1	MD0	ANS2	ANS1	ANS0	ANE2	ANE1	ANE0	
bit	15	14	13	12	11	10	9	8	Control status register (ADCS1, ADCS2)
Address: 000037H	BUSY	INT	INTE	PAUS	STS1	STS0	STRT	DA	
bit	7	6	5	4	3	2	1	0	
Address: 000038н	7	6	5	4	3	2	1	0	
bit	15	14	13	12	11	10	9	8	Data register (ADCR1, ADCR2)
Address: 000039н	_	_	_	_		_	9	8	

MB90630A Series

(2) Block Diagram


5. D/A Converter

This block is an R-2R type D/A converter with 8-bit resolution. The device contains two D/A converters. The D/A control register controls the output of the two D/A converters independently.

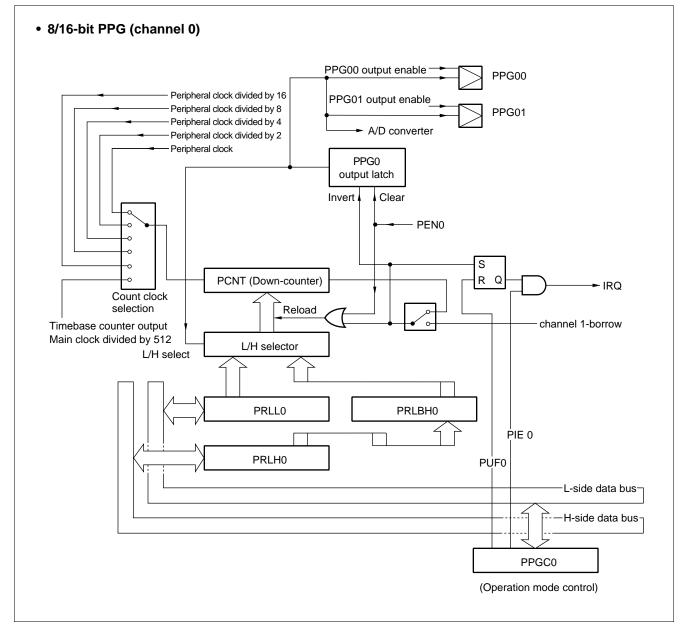
(1) Register Configuration

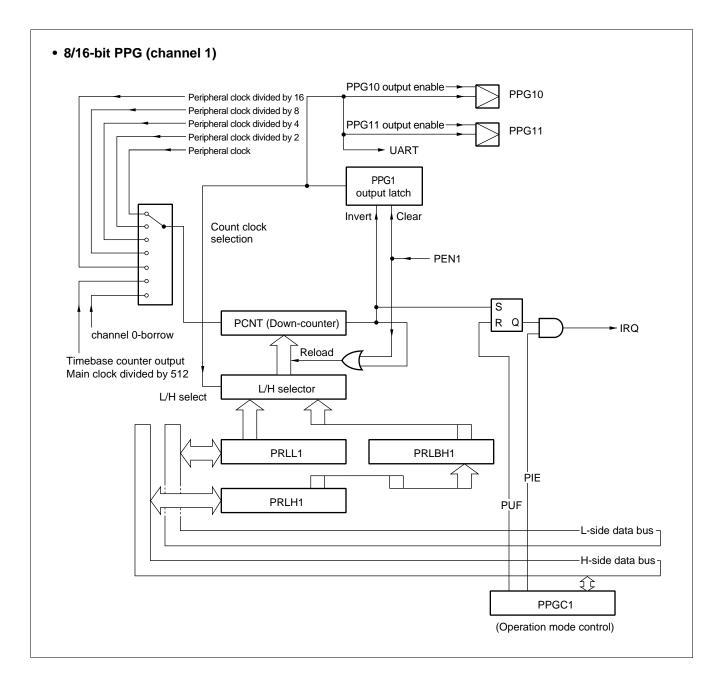
bit	7	6	5	4	3	2	1	0	D/A converter data register 0	
Address: 00003AH	DA07	DA06	DA05	DA04	DA03	DA02	DA01	DA00	(DAT0)	
bit	15	14	13	12	11	10	9	8	D/A converter data register 0	
Address: 00003BH	DA17	DA16	DA15	DA14	DA13	DA12	DA11	DA10	(DAT1)	
bit	7	6	5	4	3	2	1	0	D/A control register 0	
Address: 00003CH	—	—	—	—	—	—	—	DAE0	(DACR0)	
bit	15	14	13	12	11	10	9	8	D/A control register 1	
Address: 00003DH	_	—	—	_	_	—	—	DAE1	(DACR1)	

(2) Block Diagram

6. 8/16-bit PPG

This block is an 8-bit reload timer module. The block performs PPG output in which the pulse output is controlled by the operation of the timer.


The hardware consists of two 8-bit down-counters, four 8-bit reload registers, one 16-bit control register, two external pulse output pins, and two interrupt outputs. The PPG has the following functions.


- 8-bit PPG output in two channels independent operation mode:
 - Two independent PPG output channels are available.
- 16-bit PPG output operation mode
- : One 16-bit PPG output channel is available.
- 8+8-bit PPG output operation mode
- : Variable-period 8-bit PPG output operation is available by using the output of channel 0 as the clock input to channel 1.
- PPG output operation
- : Outputs pulse waveforms with variable period and duty ratio. Can be used as a D/A converter in conjunction with an external circuit.

(1) Register Configuration

PPG0 operation mode control	7	6	5	4	3	2	1	0	
Address: channel 0 000044H	PEN0	_	PE00	PIE0	PUF0	_	_	Reserved	PPGC0
Read/write \rightarrow Initial value \rightarrow	(R/W) (0)	(—) (X)	(R/W) (0)	(R/W) (0)	(R/W) (0)	(—) (X)	(—) (X)	(—) (1)	
PPG1 operation mode control	15	14	13	12	11	10	9	8	
Address: channel 1 000045н	PEN1	_	PE10	PIE1	PUF1	MD1	MD0	Reserved	PPGC1
Read/write \rightarrow Initial value \rightarrow	(R/W) (0)	(—) (X)	(R/W) (0)	(R/W) (0)	(R/W) (0)	(R/W) (0)	(R/W) (0)	(—) (1)	-
PPG0, 1 output control register	7	6	5	4	3	2	1	0	
Address: channel 0,1 000046H	PCS2	PCS1	PCS0	PCM2	PCM1	PCM0	PE11	PE01	PPGOE
Read/write → Initial value →	(R/W) (0)	(R/W) (0)	(R/W) (0)	(R/W) (0)	(R/W) (0)	(R/W) (0)	(R/W) (0)	(R/W) (0)	
Reload register H Address: channel 0 000041н channel 1 000043н Read/write →	15	5 14	13	12	2 11	10	9	8 (R/W)	PRLH0, 1
Initial value → Reload register L Address: channel 0 000040H channel 1 000042H Read/write → Initial value →	(X) (X) (R/W) (X)	(1317) (X) 6 (R/W) (X)	(X) 5	(X) (X) (R/W) (X)	`(X)´ 3	`(X) [′] 2	(X) (X) (R/W) (X)	(X) 0 (R/W) (X)	PRLL0, 1

(2) Block Diagram

7. 8/16-bit Up/Down Counter/Timer

This block is an up/down counter/timer and consists of six event input pins, two 8-bit up/down counters, two 8-bit reload/compare registers, and their control circuits.

(1) Main Functions

- The 8-bit count register can count in the range 0 to 256D (or 0 to 65535D in 1×16 -bit operation mode).
- The count clock selection can select between four different count modes.
 Count modes ______ Timer mode

— Up/down counter mode

- Phase difference count mode ($\times 2$)
- Phase difference count mode (\times 8)

Two different internal count clocks are available in timer mode.

Count clock (at 16 MHz aparation)	
Count clock (at 16 MHz operation)	

125 ns (8 MHz: Divide by 2) 1.0 μs (1 MHz: Divide by 8)

• In up/down count mode, you can select which edge to detect on the external pin input signal.

Detected edge -

- Detect falling edges
- Detect rising edges
- Detect both rising and falling edges
- Edge detection disabled
- Phase difference count mode is suitable for motor encoder counting. By inputting the A, B, and Z phase outputs from the encoder, a high-precision rotational angle, speed, or similar count can be implemented simply.
- Two different functions can be selected for the ZIN pin.
 ZIN pin
 Gate function
 Gate function
- Compare and reload functions are available and can be used either independently or together. A variablewidth up/down count can be performed by activating both functions.
- Compare/reload function Compare function (Output an interrupt when a compare occurs.) Compare function (Output an interrupt and clear the counter when a compare occurs.) Reload function (Output an interrupt and reload when an underflow occurs.) Compare/reload function (Output an interrupt and clear the counter when a compare occurs.) Compare/reload function (Output an interrupt and clear the counter when a compare occurs. Output an interrupt and reload when an underflow occurs.)
 - Compare/reload disabled
- Whether or not to generate an interrupt when a compare, reload (underflow), or overflow occurs can be set independently.
- The previous count direction can be determined from the count direction flag.
- An interrupt can be generated when the count direction changes.

(2) Register Configuration

The 8/16-bit up/down counter/timer has the following registers.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		15			8	7			0	
Reversed area CSR0 CCRH0 CCRL0 Reversed area CSR1 CCRH1 CCRL1 CCRH2 8 bits Bit 15 12 11 0 Address: 000070H D17 D17 D16 D15 D14 D13 D12 D17 D16 D05 D04 D03 D02 D07 D06 D05 D04 D03 D02 CORT D07 D06 D05 D04 D03 D02 D07 D06 D05 D04		UDCR1					UDO	CR0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			RC	R1			RC	R0		
Reversed area CSR1 CCRH1 CCRL1 Composition Bits Composition D07 D06 D05 D04 D02 D01 D00 bit 15 14 13 12 11 10 9 8 Address: 000071H D17 D16 D15 D14 D13 D12 D11 D10 bit 7 6 5 4 3 2 1 0 Address: 000073H D17 D16 D15 D14 D13 D12 D11 D10 Keload compare register channel 0 0 Reload compare register channel 0,			Revers	ed area			CS	R0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			CCI	RH0			CC	RL0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Revers	ed area			CS	R1		
bit 7 6 5 4 3 2 1 0 Up/down count register channel 0 Address: 000070H D07 D06 D05 D04 D03 D02 D01 D00 (UDCR0) bit 15 14 13 12 11 10 9 8 Up/down count register channel 1 Address: 000071H D17 D16 D15 D14 D13 D12 D11 D10 Up/down count register channel 1 bit 7 6 5 4 3 2 1 0 Reload compare register channel 0 bit 7 6 5 4 3 2 1 0 Reload compare register channel 0 bit 15 14 13 12 11 10 9 8 Reload compare register channel 0 (CRCR1) bit 7 6 5 4 3 2 1 0 Counter status register channel 0, 1 (CSR0, 1) Counter status register channel 0, 1 (CSR0, 1) Counter status register channel 0, 1 <t< td=""><td></td><td></td><td>CC</td><td>RH1</td><td></td><td></td><td>CC</td><td>RL1</td><td></td><td></td></t<>			CC	RH1			CC	RL1		
bit 7 6 5 4 3 2 1 0 Up/down count register channel 0 Address: 000070H D07 D06 D05 D04 D03 D02 D01 D00 (UDCR0) bit 15 14 13 12 11 10 9 8 Up/down count register channel 1 Address: 000071H D17 D16 D15 D14 D13 D12 D11 D10 Up/down count register channel 1 bit 7 6 5 4 3 2 1 0 Reload compare register channel 0 bit 7 6 5 4 3 2 1 0 Reload compare register channel 0 bit 15 14 13 12 11 10 9 8 Reload compare register channel 0 (CRCR1) bit 7 6 5 4 3 2 1 0 Counter status register channel 0, 1 (CSR0, 1) Counter status register channel 0, 1 (CSR0, 1) Counter status register channel 0, 1 <t< td=""><td></td><td>L</td><td> 81</td><td>oits —</td><td></td><td>-</td><td> 8 k</td><td>oits —</td><td></td><td></td></t<>		L	81	oits —		-	8 k	oits —		
Address: 00070H D07 D06 D05 D04 D03 D02 D01 D00 Up/down count register channel 0 (UDCR0) bit 15 14 13 12 11 10 9 8 Up/down count register channel 1 (UDCR0) bit 7 6 5 4 3 2 1 0 Reload compare register channel 0 (UDCR1) bit 7 6 5 4 3 2 1 0 Reload compare register channel 0 (UDCR1) bit 7 6 5 4 3 2 1 0 Reload compare register channel 0 (RCR1) bit 15 14 13 12 11 10 9 8 Address: 000073H D17 D16 D15 D14 D13 D12 D11 D10 (RCR1) Address: 000074H CSTR CITE UDIE CMPF OVFF UDF1 UDF0 Counter status register channel 0, 1 Address: 000076H 7 6 5 4 3 2 </td <td></td> <td>I</td> <td></td> <td></td> <td></td> <td>I</td> <td></td> <td></td> <td>I</td> <td></td>		I				I			I	
Address: 00070H D07 D06 D05 D04 D03 D02 D01 D00 Up/down count register channel 0 (UDCR0) bit 15 14 13 12 11 10 9 8 Up/down count register channel 1 (UDCR0) bit 7 6 5 4 3 2 1 0 Reload compare register channel 0 (UDCR1) bit 7 6 5 4 3 2 1 0 Reload compare register channel 0 (UDCR1) bit 7 6 5 4 3 2 1 0 Reload compare register channel 0 (RCR1) bit 15 14 13 12 11 10 9 8 Address: 000073H D17 D16 D15 D14 D13 D12 D11 D10 (RCR1) Address: 000074H CSTR CITE UDIE CMPF OVFF UDF1 UDF0 Counter status register channel 0, 1 Address: 000076H 7 6 5 4 3 2 </td <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td>		_		_			•			
bit 15 14 13 12 11 10 9 8 Up/down count register channel 1 Address: 000071 _H D17 D16 D15 D14 D13 D12 D11 D10 (UDCR1) bit 7 6 5 4 3 2 1 0 Reload compare register channel 0 Address: 000072 _H D07 D06 D05 D04 D03 D02 D01 D00 (RCR1) bit 15 14 13 12 11 10 9 8 Reload compare register channel 0 (RCR1) bit 15 14 13 12 11 10 9 8 Reload compare register channel 0 (CCR1) bit 7 6 5 4 3 2 1 0 Counter status register channel 0, 1 (CSR0, 1) bit 7 6 5 4 3 2 1 0 Counter status register channel 0, 1 (CCR10, 1) bit 7 6 5 4 </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>		-							1	
Address: 000071_{H} D17 D16 D15 D14 D13 D12 D11 D10 Up/down count register channel 1 (UDCR1) bit 7 6 5 4 3 2 1 0 Reload compare register channel 0 (RCR1) bit 15 14 13 12 11 10 9 8 Reload compare register channel 0 (RCR1) bit 15 14 13 12 11 10 9 8 Reload compare register channel 1 (RCR1) bit 7 6 5 4 3 2 1 0 00 Reload compare register channel 0 (RCR1) bit 7 6 5 4 3 2 1 0 0 Counter status register channel 0, 1 (CSR0, 1) 0 Address: 000076H 7 6 5 4 3 2 1 0 Counter status register channel 0, 1 (CSR0, 1) 0 Address: 000076H 7 6 5 4 3 2 1 0 Counter status register channel 0, 1 (CCRL0, 1) 0 Counter control	Address: 000070H	D07	D06	D05	D04	D03	D02	DUT	D00	(UDCRU)
bit 7 6 5 4 3 2 1 0 Reload compare register channel 0 Address: 00072H D07 D06 D05 D04 D03 D02 D01 D00 (RCR1) bit 15 14 13 12 11 10 9 8 Reload compare register channel 1 Address: 000073H D17 D16 D15 D14 D13 D12 D11 D10 (RCR1) bit 7 6 5 4 3 2 1 0 Counter status register channel 0, 1 Address: 000078H CSTR CITE UDIE CMPF OVFF UDF1 UDF0 Counter status register channel 0, 1 Address: 000076H 7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0 Counter status register channel 0, 1 bit 7 6 5 4 3 2 1 0 Counter status r	bit	15	14	13	12	11	10	9	8	Up/down count register channel 1
Address: 000072HD07D06D05D04D03D02D01D00Reload compare register channel 0 (RCR1)bit15141312111098Reload compare register channel 1 (RCR1)Address: 000073HD17D16D15D14D13D12D11D10Reload compare register channel 1 (RCR1)bit76543210Counter status register channel 0, 1 (CSR0, 1)bit76543210bit76543210bit76543210bit76543210bit15141312111098Address: 000076H00077H15141312111098Address: 000077H15141312111098Counter control register channel 0, 1 (CCRL0, 1)bit15141312111098Counter control register channel 0 (CCRL0, 1)bit76543210bit76543210	Address: 000071H	D17	D16	D15	D14	D13	D12	D11	D10	(UDCR1)
Address: 000072H D07 D06 D05 D04 D03 D02 D01 D00 (RCR1) bit 15 14 13 12 11 10 9 8 Reload compare register channel 1 Address: 000073H D17 D16 D15 D14 D13 D12 D11 D10 Reload compare register channel 1 Address: 000074H 7 6 5 4 3 2 1 0 9 8 Reload compare register channel 1 Reload compare register channel 1 Address: 000074H 0 CSTR CITE UDIE CMPF OVFF UDF1 UDF0 Counter status register channel 0, 1 Address: 000076H 7 6 5 4 3 2 1 0 Counter status register channel 0, 1 Mite 7 6 5 4 3 2 1 0 Counter status register channel 0, 1 bit 15 14 13 12 11 10 9 8 Counter control register channel 0 (CCRL0, 1) bit <td>bit</td> <td>7</td> <td>6</td> <td>5</td> <td>4</td> <td>3</td> <td>2</td> <td>1</td> <td>0</td> <td>Peload compare register channel 0</td>	bit	7	6	5	4	3	2	1	0	Peload compare register channel 0
Address: 000073_{H} D17D16D15D14D13D12D11D10Reload compare register channel 1 (RCR1)bit Address: 000074_{H} 000078_{H} 76543210Counter status register channel 0, 1 (CSR0, 1)bit Address: 000076_{H} $00007A_{H}$ 76543210Counter status register channel 0, 1 	Address: 000072H	D07	D06	D05	D04	D03	D02	D01	D00	
Address: $000073H$ D17D16D15D14D13D12D11D10(RCR1)bit76543210Counter status register channel 0, 1Address: $000074H$ CSTRCITEUDIECMPFOVFFUDFFUDF1UDF0Counter status register channel 0, 1bit76543210Counter status register channel 0, 1bit76543210Counter status register channel 0, 1bit76543210Counter status register channel 0, 1bit15141312111098Counter status register channel 0bit15141312111098Counter control register channel 0Address: $000077H$ M16ECDCFCFIECLKSCMS1CMS0CES1CES0bit76543210	bit	15	14	13	12	11	10	9	8	Delected as a second
Address: 000074_{H} 000078_{H} CSTRCITEUDIECMPFOVFFUDFFUDF1UDF0Counter status register channel 0, 1 (CSR0, 1)bit Address: 000076_{H} $00007A_{H}$ 76543210Counter status register channel 0, 1 (CSR0, 1)bit $00007A_{H}$ 76543210Counter status register channel 0, 1 (CCRL0, 1)bit bit Address: 000077_{H} 15141312111098Counter control register channel 0 (CCRL0, 1)bit bit15141312111098Counter control register channel 0 (CCRH0)bit bit765432100	Address: 000073н	D17	D16	D15	D14	D13	D12	D11	D10	
Address: 000074_{H} 000078_{H} CSTRCITEUDIECMPFOVFFUDFFUDF1UDF0Counter status register channel 0, 1 (CSR0, 1)bit Address: 000076_{H} $00007A_{H}$ 76543210Counter status register channel 0, 1 (CSR0, 1)bit 00007A_{H}76543210Counter status register channel 0, 1 (CCRL0, 1)bit bit Address: 000077_{H} 15141312111098Counter control register channel 0 (CCRL0, 1)bit bit15141312111098Counter control register channel 0 (CCRH0)bit bit76543210	bit	7	6	5	4	3	2	1	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		CSTR	CITE	UDIE	CMPF	OVFF	UDFF	UDF1	UDF0	
Address: 000076H 00007AH CTUT UCRE RLDE UDCC CGSC CGE1 CGE0 Counter status register channel 0, 1 (CCRL0, 1) bit 15 14 13 12 11 10 9 8 Counter control register channel 0 Address: 000077H M16E CDCF CFIE CLKS CMS1 CMS0 CES1 CES0 Counter control register channel 0 bit 7 6 5 4 3 2 1 0		7	6	5	4	3	2	1	0	
Address: 000077H M16E CDCF CFIE CLKS CMS1 CMS0 CES1 CES0 (CCRH0)			1		1		CGSC	CGE1		
Address: 000077H M16E CDCF CFIE CLKS CMS1 CMS0 CES1 CES0 (CCRH0)	bit	15	14	13	12	11	10	9	8	Counter control register channel 0
bit 7 6 5 4 3 2 1 0	Address: 000077H	M16E	CDCF	CFIE	CLKS	CMS1	CMS0	CES1	CES0	
Counter control register channel 1	bit	7	6	5	4	3	2	1	0	Counter control register channel 1

Address: 00007BH

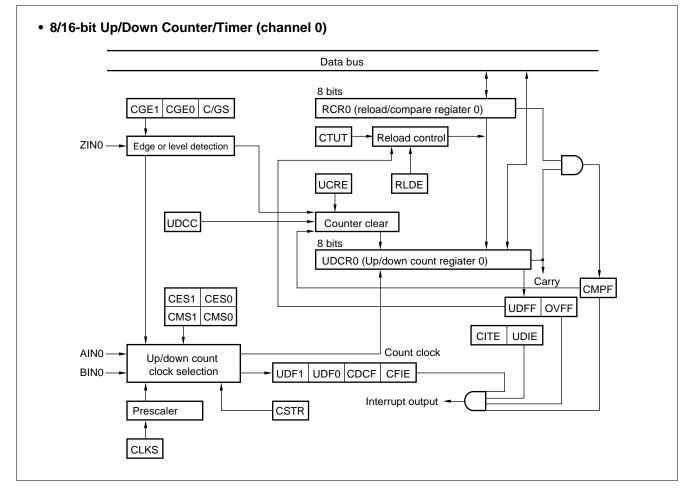
CDCF

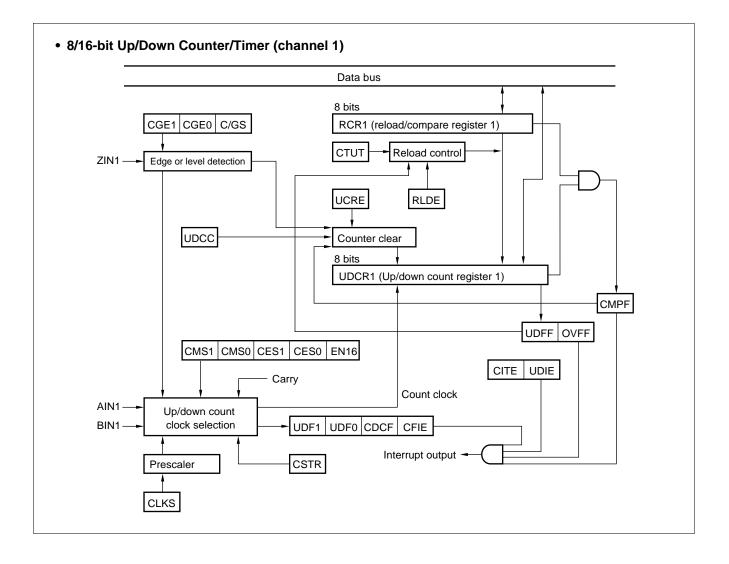
_

CFIE

CLKS

CMS1

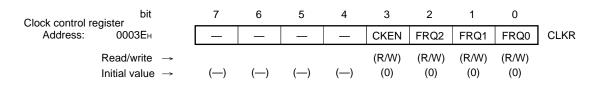

CMS0


CES1

CES0

Counter control register channel 1 (CCRH1)

(3) Block Diagram



8. Clock Output Control Register

The clock output outputs the divided machine clock.

(1) Register Configuration

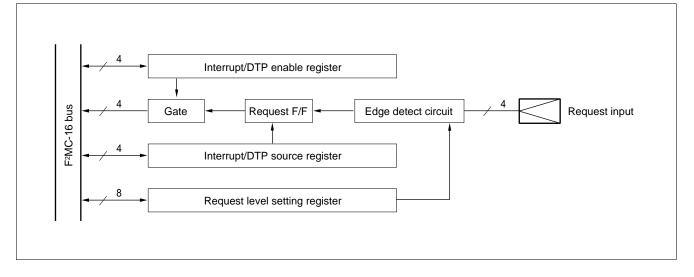
(a) [bit 3] CKEN

CKOT output enable bit

MODE	Operation					
0	Operate as a standard port.					
1	Operate as the CKOT output.					

(b) [bits 2, 1, 0] FRQ2, FRQ1, FRQ0 These bits select the output frequency of the clock.

FRQ2	FRQ1	FRQ0	Output clock	φ = 16 MHz	φ = 8 MHz	φ = 4 MHz
0	0	0	φ/2 ¹	125 ns	250 ns	500 ns
0	0	1	φ/ 2 ²	250 ns	500 ns	1 μs
0	1	0	ф/2 ³	500 ns	1 µs	2 µs
0	1	1	ф/2 ⁴	1 μs	2 µs	4 μs
1	0	0	ф/2 ⁵	2 μs	4 μs	8 µs
1	0	1	ф/2 ⁶	4 μs	8 µs	16 μs
1	1	0	ф/2 ⁷	8 µs	16 μs	32 µs
1	1	1	ф/2 ⁸	16 μs	32 µs	64 μs


9. DTP/External Interrupts

The DTP (Data Transfer Peripheral) is a peripheral block that interfaces external peripherals to the F²MC-16L CPU. The DTP receives DMA and interrupt processing requests from external peripherals and passes the requests to the F²MC-16L CPU to activate the intelligent I/O service or interrupt processing. Two request levels ("H" and "L") are provided for the intelligent I/O service. For external interrupt requests, generation of interrupts on a rising or falling edge as well as on "H" and "L" levels can be selected, giving a total of four types.

(1) Register Configuration

bit	7	6	5	4	3	2	1	0	Interrupt/DTP enable register
Address: 000030H	EN7	EN6	EN5	EN4	EN3	EN2	EN1	EN0	(ENIR)
bit	15	14	13	12	11	10	9	8	Interrupt/DTP source register
Address: 000031H	ER7	ER6	ER5	ER4	ER3	ER2	ER1	ER0	(EIRR)
bit	7	6	5	4	3	2	1	0	Request level setting register
Address: 000032H	LB3	LA3	LB2	LA2	LB1	LA1	LB0	LA0	(ELVR)
bit	15	14	13	12	11	10	9	8	Request level setting register
Address: 000033 _H	LB7	LA7	LB6	LA6	LB5	LA5	LB4	LA4	(ELVR)

(2) Block Diagram

10. 16-bit I/O Timer

The 16-bit I/O timer consists of one 16-bit free-run timer, four output compare, and two input capture modules. Based on the 16-bit free-run timer, these functions can be used to generate two independent waveform outputs and to measure input pulse widths and external clock periods.

(1) A Summary of Each Function

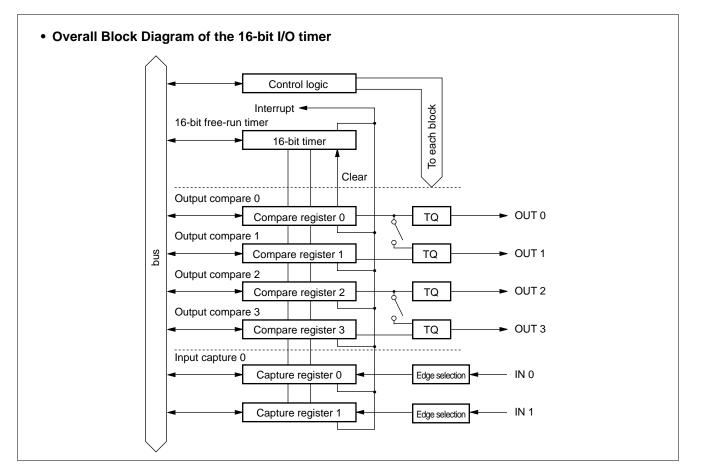
• 16-bit free-run timer (× 1)

The 16-bit free-run timer consists of a 16-bit up-counter, a control register, and a prescaler. The output of the timer/counter is used as the base time for the input capture and output compare.

- (a) The operating clock for the counter can be selected from four different clocks.
 - Four internal clocks (\phi/4, \phi/16, \phi/32, \phi/64)
- (b) Interrupts can be generated when a counter value overflow or compare match with compare register 0 occurs (the appropriate mode must be set for a compare match).
- (c) The counter can be initialized to 0000_H by a reset, software clear, or compare match with compare register 0.
- Output compare (× 4)

The output compare consists of two 16-bit compare registers, compare output latches, and control registers. The modules can invert the output level and generate an interrupt when the 16-bit free-run timer value matches the compare register value.

- (a) The four compare registers can be operated independently. Each compare register has a corresponding output pin and interrupt flag.
- (b) The four compare registers can be paired to control the output pins. Invert the output pins using the four compare registers.
- (c) Initial values can be set for the output pins.
- (d) An interrupt can be generated when a compare match occurs.
- Input capture (× 2)

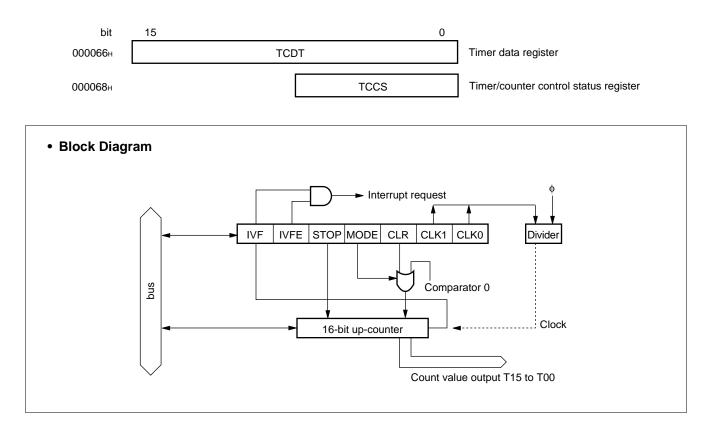

The input capture consists of two independent external input pins, their corresponding capture registers, and a control register. The value of the 16-bit free-run timer can be stored in the capture register and an interrupt generated when the specified edge is detected on the signal from the external input pin.

- (a) The edge to detect on the external input signal is selectable. Detection of rising edges, falling edges, or either edge can be specified.
- (b) The two input capture channels can operate independently.

(c) An interrupt can be generated on detection of the specified edge on the external input signal. The input capture interrupt can activate the intelligent I/O service.

(2) Register Configuration for the Entire 16-bit I/O Timer

bit 15 0 TCDT Timer data register 000066н 000068н TCCS Timer control status register • 16-bit output compare bit 15 0 000050, 52, 54, 56н OCCP0 to 3 Compare register channel 0 to 3 Compare control status register 000058, 5Ан OCS1/3 OCS0/2 channel 0, 2 • 16-bit input capture bit 15 0 Input capture register channel 0, 2 000060, 62н IPCP0 to 1 000064н ICS Input capture control status register



(3) 16-bit Free-run Timer

The 16-bit free-run timer consists of a 16-bit up-counter and a control status register. The count value of the timer is used as the base time for the input capture and output compare.

- (a) The count clock can be selected from four different clocks.
- (b) Interrupts can be generated when a counter value overflow occurs.
- (c) Depending on the mode setting, the counter can be initialized when a match occurs with compare register 0 of the output compare.

• Register Configuration

• Register Details

Data Register

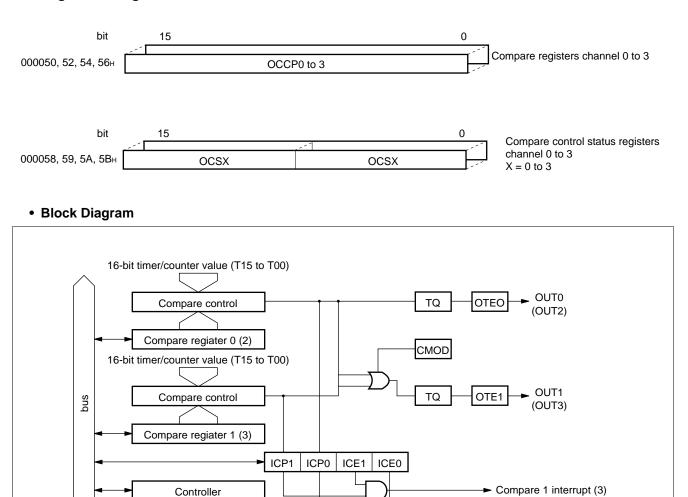
bit	15	14	13	12	11	10	9	8
Address: 000067H	T15	T14	T13	T12	T11	T10	T09	T08
Read/write \rightarrow Initial value \rightarrow	(R/W) (0)							
bit	7	6	5	4	3	2	1	0
Address: 000066н	T07	T06	T05	T04	T03	T02	T01	T00
Read/write \rightarrow Initial value \rightarrow	(R/W) (0)							

The count value of the 16-bit free-run timer can be read from this register. The count is cleared to " 0000_{H} " by a reset. Writing to this register sets the timer value. However, only write to the register when the timer is halted (STOP = "1"). Always use word access.

The 16-bit free-run timer is initialized by the following.

- (a) Reset
- (b) The clear bit (CLR) of the control status register
- (c) A match between the timer/counter value and compare register 0 of the output compare (if the appropriate mode is set)

Compare 0 interrupt (2)

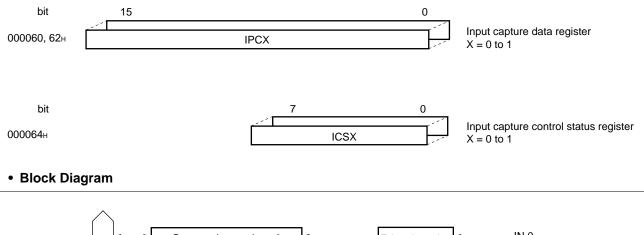

(4) Output Compare

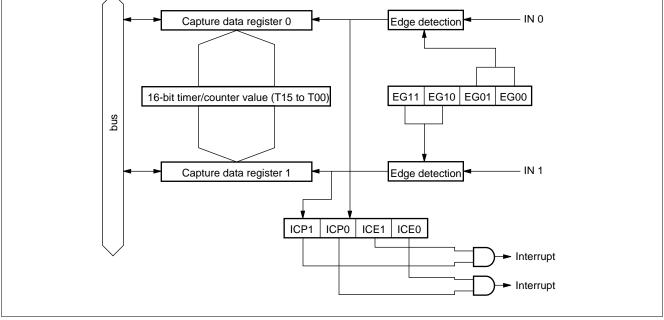
The output compare consists of 16-bit compare registers, compare output pins, and a control register. The module can invert the output level and generate an interrupt when the 16-bit free-run timer value matches a compare register value.

- (a) The two compare registers can be operated independently. The output compare can also be set to control pin output using two compare registers.
- (b) The initial value of the output pins can be set.
- (c) An interrupt can be generated when a compare match occurs.

Control blocks

Register Configuration




(5) Input Capture

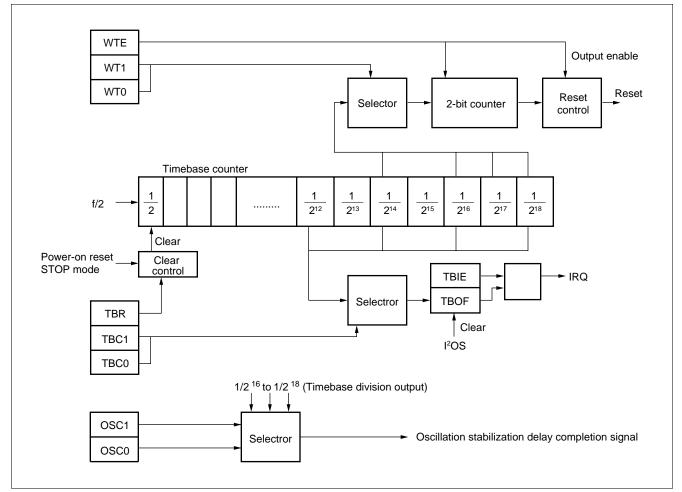
The function of this module is to store the value of the 16-bit free-run timer in a register when the specified edge (rising, falling, or either edge) is detected on the external input signal. The module can also generate an interrupt on detection of the edge. The input capture contains input capture data registers and a control register. Each input capture has a corresponding external input pin.

- (a) Three different types of edge detection can be selected. Rising edges (\uparrow), falling edges (\downarrow), or either edge ($\uparrow \downarrow$).
- (b) An interrupt can be generated on detection of the specified edge on the external input.

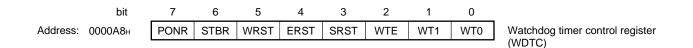
• Register Configuration (for the entire input capture)

• Register Details

Input capture data register


bit	15	14	13	12	11	10	9	8
000060, 62н	CP15	CP14	CP13	CP12	CP11	CP10	CP09	CP08
Read/write →	(R)							
Initial value \rightarrow	(X)							
bit	7	6	5	4	3	2	1	0
	CP07	CP06	CP05	CP04	CP03	CP02	CP01	CP00
Read/write →	(R)							
Initial value \rightarrow	(X)							

The 16-bit free-run timer value is stored in these registers when the specified edge is detected on the input waveform from the corresponding external pin. (Always use word access. Writing is prohibited.)

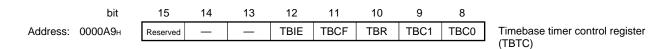

11. Watchdog Timer

The watchdog timer consists of a 2-bit watchdog counter that uses the carry signal from the 18-bit timebase counter as its clock source, a control register, and a watchdog reset controller. The following block diagram shows the structure of both the watchdog timer and timebase timer (see "12. Timebase Timer").

(1) Block Diagram

(2) Register Configuration

12. Timebase Timer


The timebase timer consists of an 18-bit timebase counter (which divides the system clock) and a control register. The carry signal of the timebase counter can generate a fixed period interrupt.

All bits of the timebase counter are cleared to zero at power-on, when stop mode is set, or by software (by writing "0" to the TBR bit). The timebase counter continuously increments while an oscillation is input. The timebase counter is also used as the clock source for the watchdog timer and as a timer for the oscillation stabilization delay time.

(1) Block Diagram

See "(1) Block diagram" in "11. Watchdog Timer" for the block diagram of the timebase timer.

(2) Register Configuration

(3) Register Details

• TBTC (Timebase timer control register)

	bit	15	14	13	12	11	10	9	8	Initial value
Address: 0	000A9н	Reserved	—	—	TBIE	TBCF	TBR	TBC1	TBC0	Х00000в
		(W)			(R/W)	(R/W)	(W)	(R/W)	(R/W)	

(a) [bit 15] Reserved

A reserved bit. Always set to "1" when writing data to the register.

(b) [bit 12] TBIE

Interval interrupt enable bit for the timebase timer. The interrupt is enabled when TBIE is "1" and disabled when TBIE is "0". Initialized to "0" by a reset. The bit is readable and writable.

(c) [bit 11] TBOF

Interrupt request flag for the timebase timer. An interrupt request is generated if TBCF goes to "1" when TBIE is "1". The bit is set to "1" at fixed intervals set by the TBC1 and 0 bits. Clear by writing "0", transition to stop or hardware standby mode, or a reset. Writing "1" has no meaning. Read as "1" by read-modify-write instructions.

(d) [bit 10] TBR

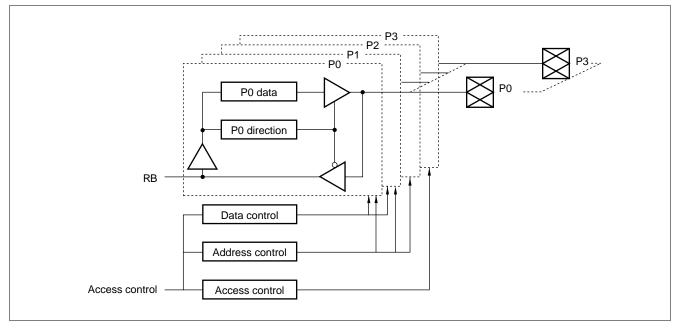
Clears all bits of the timebase counter to "0". Writing "0" to the TBR bit clears the timebase counter. Writing "1" to the TBR bit is meaningless. Reading from the TBR bit results in "1".

(e) [bit 9, 8] TBC1, 0

Set a timebase timer interval. The bits are initialized to "00" by resetting. These bits are readable and writable.

TBC1	TBC0	Interval time when base frequency is 4 MHz
0	0	1.024 ms
0	1	4.096 ms
1	0	16.384 ms
1	1	131.072 ms

Setting	of	timebase	timer	interval
---------	----	----------	-------	----------


13. External Bus Pin Control Circuit

The external bus pin control circuit controls the external bus pins required to extend the CPU's address/data bus outside the device.

(1) Register Configuration

Auto roady function cal	bit	15	14	13	12	11	10	9	8	
Auto-ready function sel Address:	ection register 0000А5н	ICR1	ICR0	HMR1	HMR0	_	_	LMR1	LMR0	ARSR
	Read/write \rightarrow Initial value \rightarrow	(W) (0)	(W) (0)	(W) (1)	(W) (1)	(—) (—)	(—) (—)	(W) (0)	(W) (0)	
External address output		7	6	5	4	3	2	1	0	
Address:	0000А6н	E23	E22	E21	E20	E19	E18	E17	E16	HACR
	Read/write \rightarrow Initial value \rightarrow	(W) (0)	(W) (0)	(W) (0)	(W) (0)	(W) (0)	(W) (0)	(W) (0)	(W) (0)	
Bus control signal selec	bit ction register	15	14	13	12	11	10	9	8	
Address:	0000А7н	CKE	RYE	HDE	ICBS	HMBS	WRE	LMBS	—	EPCR
	Read/write \rightarrow Initial value \rightarrow	(W) (0)	(W) (0)	(W) (0)	(W) (0)	(W) (1/0)	(W) (0)	(W) (0)	(—) (—)	

(2) Block Diagram

4. Low-Power Control Circuits (CPU Intermittent Operation Function, Oscillation Stabilization Delay Time, and Clock Multiplier Function)

The following operation modes are available: PLL clock mode, PLL sleep mode, timer mode, main clock mode, main sleep mode, stop mode, and hardware standby mode. Operation modes other than PLL clock mode are classified as low power consumption modes.

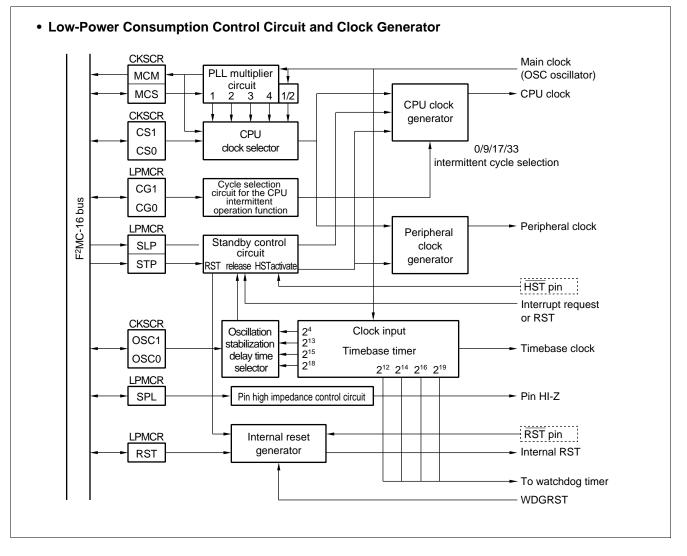
In main clock mode and main sleep mode, the device operates on the main clock only (OSC oscillator clock). The PLL clock (VCO oscillator clock) is stopped in these modes and the main clock divided by 2 is used as the operating clock.

In PLL sleep mode and main sleep mode, the CPU's operating clock only is stopped and other elements continue to operate.

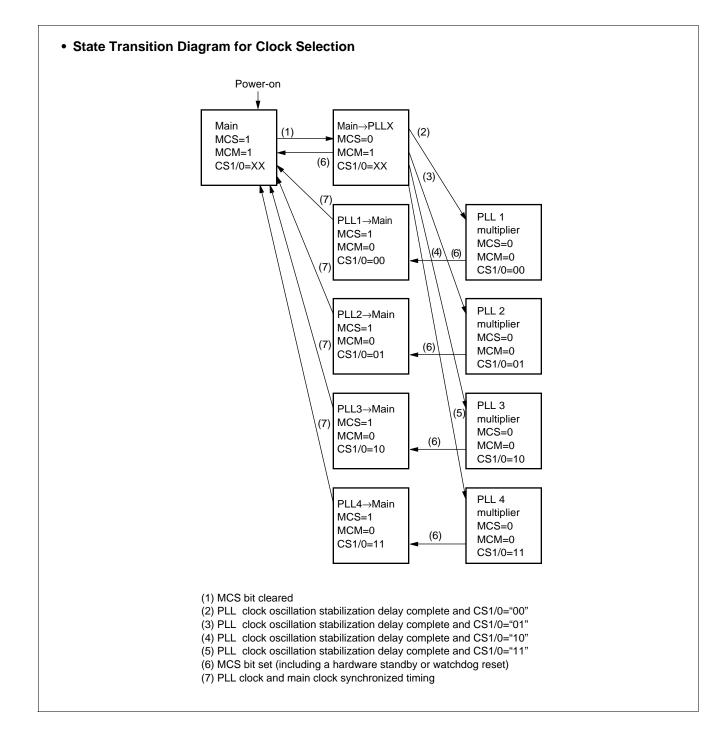
In timer mode, only the timebase timer operates.

Stop mode and hardware standby mode stop the oscillator. These modes maintain existing data with minimum power consumption.

The CPU intermittent operation function provides an intermittent clock to the CPU when register, internal memory, internal resource, or external bus access is performed. This function reduces power consumption by lowering the CPU execution speed while still providing a high-speed clock to internal resources.

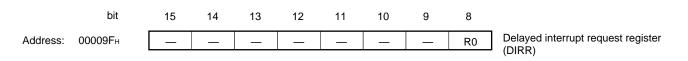

The PLL clock multiplier ratio can be set to 1, 2, 3, or 4 by the CS1, 0 bits.

The WS1, 0 bits set the delay time to wait for the main clock oscillation to stabilize when recovering from stop mode or hardware standby mode.

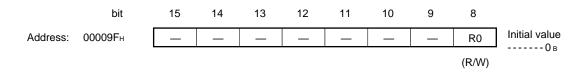

(1) Register Configuration

bit Low-power consumption mode register		7	6	5	4	3	2	1	0	
Address:	0000A0н	STP	SLP	SPL	RST	Reserved	CG1	CG0	Reserved	LPMCR
	Read/write →	(W)	(W)	(R/W)	(W)	(—)	(R/W)	(R/W)	(—)	
	Initial value \rightarrow	(0)	(0)	(0)	(1)	(1)	(0)	(0)	(0)	
Clock select register	bit	15	14	13	12	11	10	9	8	
Address:	0000A1н	Reserved	MCM	WS1	WS0	Reserved	MCS	CS1	CS0	CKSCR
	Read/write → Initial value →	(—) (1)	(R) (1)	(R/W) (1)	(R/W) (1)	(—) (1)	(R/W) (1)	(R/W) (0)	(R/W) (0)	

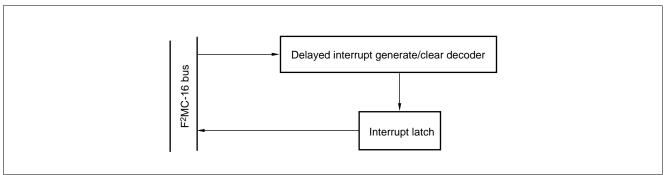
(2) Block Diagram


MB90630A Series

5. Delayed Interrupt Generation Module


The delayed interrupt generation module is used to generate the task switching interrupt. Interrupt requests to the F²MC-16L CPU can be generated and cleared by software using this module.

(1) Register Configuration


(2) Register Details

Delayed interrupt request register (DIRR)

The DIRR register controls generation and clearing of delayed interrupt requests. Writing "1" to the register generates a delayed interrupt request. Writing "0" to the register clears the delayed interrupt request. The register is set to the interrupt cleared state by a reset. Either "0" or "1" can be written to the reserved bits. However, considering possible future extensions, it is recommended that the set bit and clear bit instructions are used for register access.

(3) Block Diagram

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

				(Vss = /	AVss = 0.0 V
Parameter	Symbol	Va	lue	- Unit	Remarks
Farameter	Symbol	Min.	Max.	Unit	Remains
	Vcc	Vss - 0.3	Vss + 7.0	V	
Power supply voltage	AVcc*1	Vss - 0.3	Vss + 7.0	V	
	AVRH, AVRL*1	Vss - 0.3	Vss + 7.0	V	
Program voltage	Vpp	Vss - 0.3	_	V	
Input voltage*2	Vı	Vss - 0.3	Vcc + 0.3	V	
Output voltage*2	Vo	Vss - 0.3	Vcc + 0.3	V	
"L" level (maximum) output current*3	lol	—	15	mA	
"L" level (average) output current*4	Iolav	—	50	mA	
"L" level total (maximum) output current	ΣΙΟL	—	100	mA	
"L" level total (average) output current*5	ΣΙΟLAV		50	mA	
"H" level (maximum) output current*3	Іон		-15	mA	
"H" level (average) output current*4	Іонач		-50	mA	
"H" level total (maximum) output current	ΣІон		-100	mA	
"H" level total (average) output current*5	ΣΙοήαν	—	-50	mA	
Power consumption	Pd	—	+400	mW	
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	-55	+150	°C	

*1: AVcc, AVRH, and AVRL must not exceed Vcc. Similarly, it must not exceed AVRH and AVRL.

*2: V_I and V₀ must not exceed V_{cc} + 0.3 V.

*3: The maximum output current must not be exceeded at any individual pin.

*4: The average output current is the rating for the current from an individual pin averaged over 100 ms.

*5: The average total output current is the rating for the current from all pins averaged over 100 ms.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(Vss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks		
Farameter	Symbol	Min.	Max.	Onit			
Power supply veltage	Vcc	2.7	5.5	V	For normal operation		
Power supply voltage	VCC	2.7	5.5	V	To maintain statuses in stop mode		
	Vін	0.7 Vcc	Vcc + 0.3	V	Other than VIHS		
"H" level input voltage	Vihs	0.8 Vcc	Vcc + 0.3	V	Hysteresis inputs		
	VIHM	Vcc - 0.3	Vcc + 0.3	V			
	VIL	Vss – 0.3	0.3 Vcc	V	Other than VILS		
"L" level input voltage	VILS	Vss – 0.3	0.2 Vcc	V	Hysteresis inputs		
	VILM	Vss – 0.3	Vss + 0.3	V			
Operating temperature	TA	-40	+85	°C			

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

3. DC Characteristics

Parameter	Symbol	Pin	Condition		Value)		
Farameter	Symbol	name	Condition	Min.	Тур.	Max.	Unit	Relliars
	Vih		Vcc = +5.0	0.7 Vcc	_	Vcc + 0.3	V	
"H" level input voltage	VIHS		V±10%	0.8 Vcc		Vcc + 0.3	V	*1
	VIHM	-		Vcc - 0.3	_	Vcc + 0.3	V	
"L" level input voltage	VIL		Vcc = +5.0	0.7 Vcc	_	Vcc + 0.3	V	
	Vils		V±10%	0.8 Vcc		Vcc + 0.3	V	*1
	Vilm	-		Vss - 0.3		Vss + 0.3	V	*1
"H" level output voltage	Vон		Vcc = +4.5 V±10% Іон = -4.0 mA	Vcc - 0.5	_	_	V	
			Vcc = +2.7 V Іон = –1.6 mA	Vcc - 0.3	—	_	V	
"L" level output voltage	Vol		Vcc = +4.5 V±10% Іон = -4.0 mA	_	_	0.4	V	
			Vcc = +2.7 V Іон = -2.0 mA	_	_	0.4	V	
Pull-up resistor	Rpull	RST	—	22	_	110	kΩ	
	Icc		Vcc = +5.0		60	80	mA	
	Iccs	Vcc	V±10% Fc = 16 MHz	_	20	35	mA	
Power supply current*2	Icc		Vcc = +3.0		15	40	mA	
	Iccs	Vcc	V±10% Fc = 10 MHz	_	10	15	mA	
	Іссн		Vcc = +5.0 V±10%	_	—	20	μA	
Input pin capacitance	CIN	Other than Vcc and Vss	_	_	10	_	pF	
Input leak current	lı∟	P73, 74 P86, 87	Vcc = 5.5 V Vss < Vı < Vcc	-10	_	10	μA	
Leak current for open-drain outputs	lleak	P50 to P57	_	_	0.1	10	μA	

(Vcc = +2.7 V to +5.5 V, Vss = 0.0 V, $T_A = -40^{\circ}C$ to +85°C)

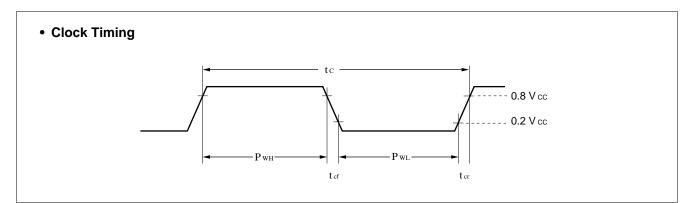
*1: Hysteresis input pins: \overline{RST} , \overline{HST}

*2: Current values are provisional and are subject to change without notice to allow for improvements to the characteristics and similar.

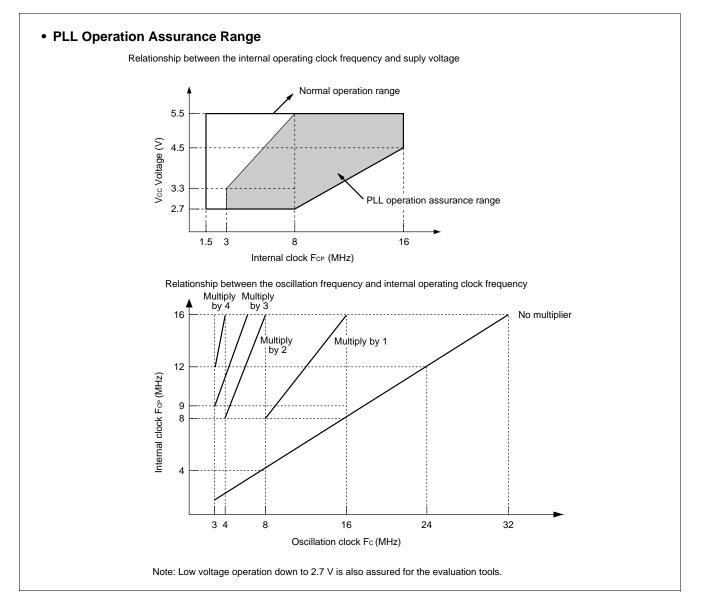
4. AC Characteristics

(1) Clock Timing

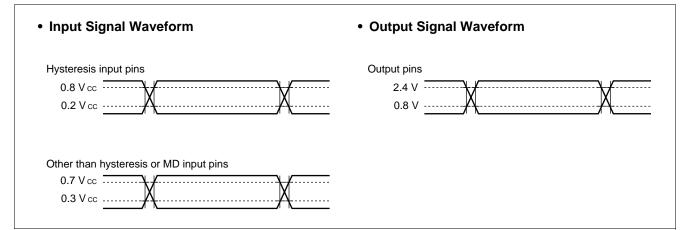
• When Vcc = 5.0 V \pm 10%


Parameter	Symbol	Pin	Condition	Va	lue	Unit	Remarks	
	Symbol	name	Condition	Min.	Max.	Unit	Neilidi KS	
Clock frequency	Fc	X0, X1	_	3	16	MHz		
Clock cycle time	tc	X0, X1	—	62.5	333	ns		
Input clock pulse width	Pwh, Pwl	X0		10		ns	The duty ratio should be in the range 30 to 70%	
Input clock rise time and fall time	tcr, tcf	X0	_	—	5	ns		
Internal operating clock frequency	fср	—	_	1.5	16	MHz		
Internal operating clock cycle time	t _{CP}	_	_	62.5	333	ns		

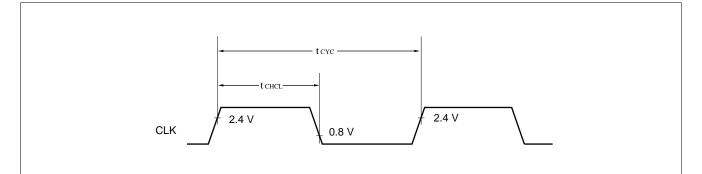
$(V_{CC} = 4.5 \text{ V to } +5.0 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$


• When Vcc = 2.7 V (min.)

$(V_{CC} = 4.5 \text{ V to } +5.0 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

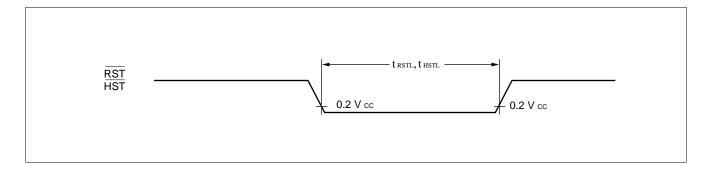

Parameter	Cumhal	Pin	Condition	Value		Unit	Dementer	
	Symbol	name	Condition	Min.	Max.	Unit	Remarks	
Clock frequency	Fc	X0, X1		3	10	MHz		
Clock cycle time	tc	X0, X1		100	333	ns		
Input clock pulse width	Pwh, Pwl	X0		20		ns	The duty ratio should be in the range 30 to 70%	
Input clock rise time and fall time	tcr, tcf	X0	_	_	5	ns		
Internal operating clock frequency	fср	_	_	1.5	8	MHz		
Internal operating clock cycle time	t CP	—		100	333	ns		

MB90630A Series


The AC characteristics are for the following measurement reference voltages.

MB90630A Series

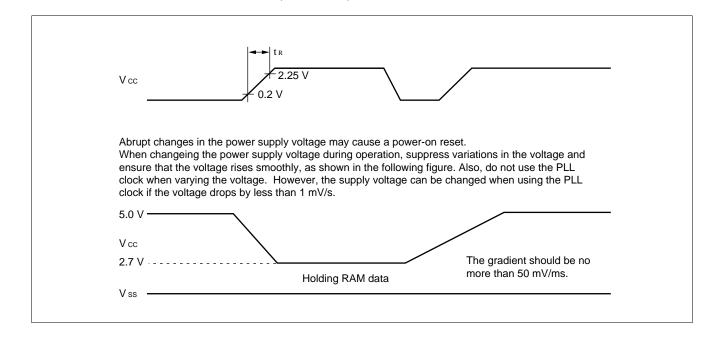
(2) Clock Output Timing


			(Vcc = +2.7 V	to +5.5 V,	$Vss = 0.0 V_{s}$, T _A = −40°	°C to +85°C)	
Parameter	Symbol	Pin	Pin name Condition	Value		Unit	Remarks	
	Symbol	name		Min.	Max.	Onic	Kemarka	
Cycle time	t cyc	CLK	- CLK Vcc = 5.0 V±10%	Vcc = 5.0	62.5	—	ns	
$CLK \uparrow \to CLK \downarrow$	t CHCL			20		ns		

(3) Reset and Hardware Standby Inputs

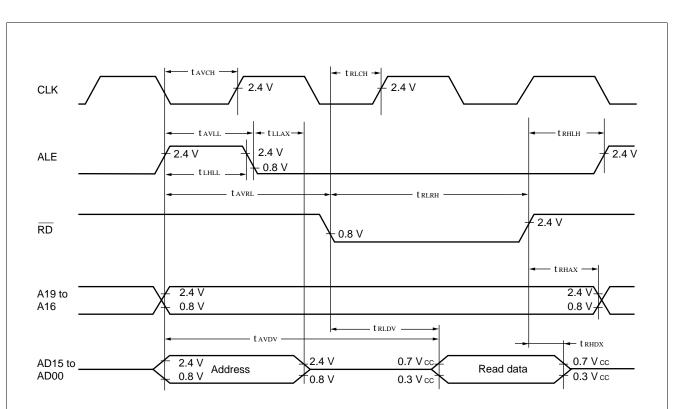
 $(V_{CC} = +2.7 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin	Condition	Va	lue	Unit Machine cycle Machine	Remarks
	Symbol	name	Condition	Min.	Max.		Remarks
Reset input time	t rstl	RST		4	_		
Hardware standby input time	t HSTL	HST		4	_	Machine cycle	



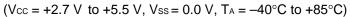
.

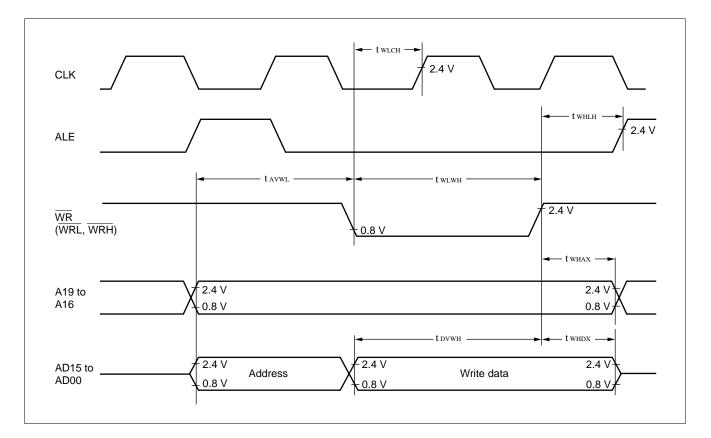
(4) Power-on Reset


$(V_{CC} = +2.7 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +$								
Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks	
	Symbol	Fininanie	Condition	Min.	Max.	Unit	itemaiks	
Power supply rising time	tR	Vcc		—	30	ms		
Power supply cut-off time	toff	Vcc		1		ms		

Note: The above values are the values required for a power-on reset.

(5) Bus Timing (Read)

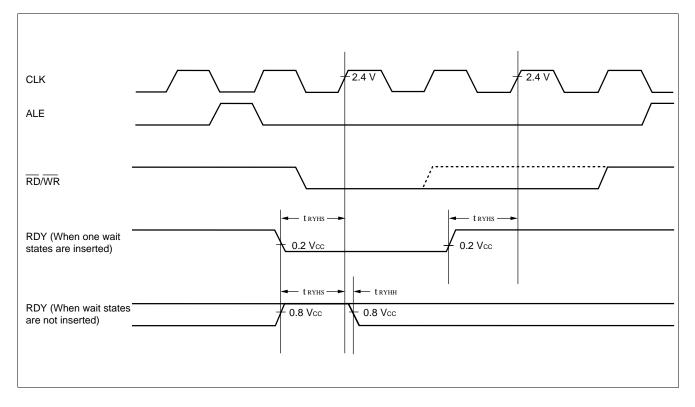

r		(VCC = +2.7 V		ss = 0.0 V, Ta	= -40	$C [0 + 65^{\circ}C)$
Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
i didinetei	Cymbol	T III Hame	Contaition	Min.	Max.	Onic	itema ka
ALE pulse width	t lhll	ALE		tср/2 –20	_		
Valid address \rightarrow ALE \downarrow time	t avll	Multiplexed address		tcp/2 –25	—	ns	
ALE $\downarrow \rightarrow$ address valid time	t llax	Multiplexed address		tcp/2 –15	—	ns	
Valid address $\rightarrow \overline{RD} \downarrow$ time	t avrl	Multiplexed address		tc₽ –15		115	
Valid address \rightarrow valid data input	t avdv	Multiplexed address			5 tcp/2 -60	ns	
RD pulse width	t rlrh	RD		3 t _{CP} /2 -20	_	ns	
$\overline{RD} \downarrow \rightarrow valid data input$	t rldv]	_	3 tcp/2 –60	ns	
$\overline{RD} \uparrow \rightarrow data hold time$	t RHDX	D15 to D00		0	—	ns	
Valid address \rightarrow valid data input	t avdv	† 		0		ns	
$\overline{RD} \uparrow \rightarrow ALE \uparrow time$	t RHLH	RD, ALE]	tcp/2 –15	—	ns	
$\overline{RD} \uparrow \rightarrow address valid time$	t RHAX	Address, RD]	tcp/2 –10	—	ns	
Valid address \rightarrow CLK \uparrow time	t avch	Address, CLK	1	tcp/2 -20	—	ns	
$\overline{RD} \downarrow \to CLK \uparrow time$	t RLCH	RD, CLK	1	tcp/2 –20		ns	



$(V_{CC} = +2.7 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

(6) Bus Timing (Write)

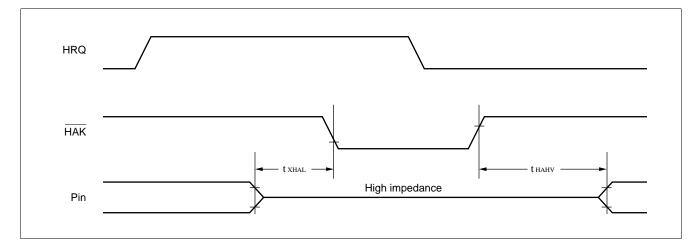
Parameter	Symbol	Pin name	Condition	Val	ue	Unit	Remarks
Farameter	Symbol	Fin name	Condition	Min.	Max.	Unit	Remarks
Valid address $\rightarrow \overline{WR} \downarrow$ time	t avwl	A19 to A00		tcp-15	—	ns	
Valid address $\rightarrow \overline{RD} \downarrow time$	tavrl	A23 to A00		tcp/2 -15		ns	
WR pulse width	t wlwh	WR		3 tcp/2 -20		ns	
RD pulse width	t RLRH	RD		3 tcp/2 -20		ns	
Valid data output $\rightarrow \overline{\text{WR}} \uparrow$ time	tovwн	D15 to D00		3 tcp/2 -20	—	ns	
$\overline{WR} \uparrow \rightarrow data hold time$	t whdx	D15 to D00		20		ns	
$\overline{WR} \uparrow \rightarrow address valid time$	t whax	A19 to A00		tcp/2 -10	_	ns	
$\overline{WR} \uparrow \rightarrow ALE \uparrow time$	twhlh	WR, ALE]	tcp/2 –15	_	ns	
$\overline{WR} \downarrow \rightarrow CLK \uparrow time$	t wlch	WRL, WRH, CLK		tcp/2 –20	—	ns	



(7) Ready Input Timing

	$(V_{CC} = +2.7 V \text{ to } +5.5 V, V_{SS} = 0.0 V, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$							
Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks	
Farameter	Symbol		Condition	Min.	Max.	Unit		
		Vcc = 5.0 V ±10%	45	—	ns			
RDY setup time	t ryhs	RDY	Vcc = 3.0 V ±10%	70		ns		
RDY hold time	t ryhh			0		ns		

 ΛI 271/t5 5 V V 10°C t/ ±82°C)

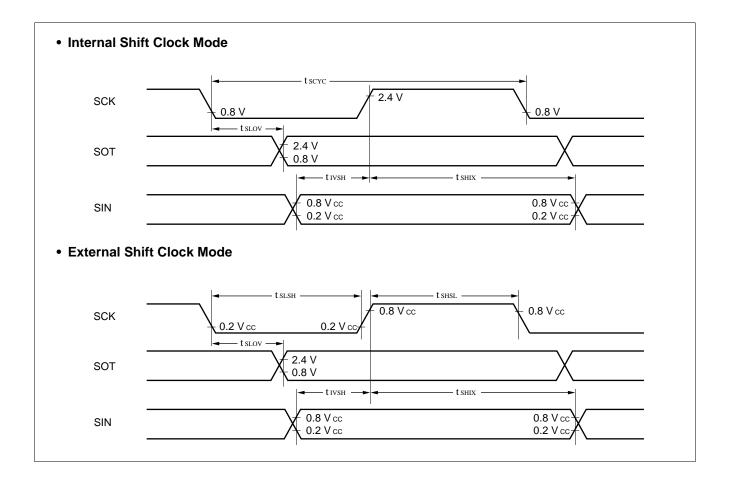

Note: Use the auto-ready function if the RDY setup time is too short.

(8) Hold Timing

		($V_{cc} = +2.7 V tc$	o +5.5 V, V	ss = 0.0 V,	$T_A = -4$	0°C to +85°C)
Parameter	Symbol	Pin name Condition		Va	lue	Unit	Remarks
Farameter	Symbol		Condition	Min.	Max.	Unit	itemat K5
Pin floating $\rightarrow \overline{HAK} \downarrow time$	t xhal	HAK	—	30	t CP	ns	
$\overline{\mathrm{HAK}} \uparrow \rightarrow \mathrm{pin}$ valid time	t hah∨	HAK		t CP	2 t cp	ns	

Note: After reading HRQ, more than one cycle is required before changing \overline{HAK} .

(9) UART Timing


			(100 - 12.7 10			0 v, 1/	$x = -40^{\circ}$ C to +85°C)	
Parameter	Symbol	Pin	Condition	va	lue	Unit	Remarks	
	,	name		Min.	Max.			
Serial clock cycle time	tscyc		_	8 tcp	_	ns		
			Vcc = +5.0 V ±10%	-80	80	ns		
SCK $\downarrow \rightarrow$ SOT delay time	t slov		Vcc = +3.0 V ±10%	-120	120	ns		
			Vcc = +5.0 V ±10%	100		ns	C∟ = 80 pF+1TTL for the internal	
Valid SIN → SCK ↑	tıvsн		Vcc = +3.0 V ±10%	200		ns	shift clock mode output pin	
SCK $\uparrow \rightarrow$ valid SIN hold time	tsнıx		Vcc = +5.0 V ±10%	60	_	ns		
			Vcc = +3.0 V ±10%	120		ns		
Serial clock "H" pulse width	t shsl	_		4 tcp	_	ns		
Serial clock "L" pulse width	t s∟sн			4 tcp	_	ns		
	4		Vcc = +5.0 V ±10%	_	150	ns		
SCK $\downarrow \rightarrow$ SOT delay time	t slov		Vcc = +3.0 V ±10%	—	200	ns	C∟ = 80 pF+1TTL for the external	
Valid SIN → SCK ↑	t u	-	Vcc = +5.0 V ±10%	60	_	ns	shift clock mode output pin	
	tıvsн		Vcc = +3.0 V ±10%	120	_	ns		
	tsнıx	1	Vcc = +5.0 V ±10%	60	_	ns		
SCK $\uparrow \rightarrow$ valid SIN hold time			Vcc = +3.0 V ±10%	120	_	ns		

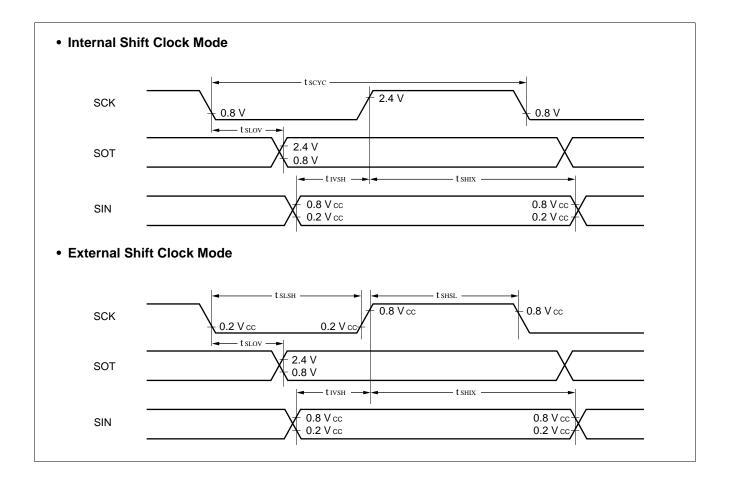
$(V_{CC} = +2.7 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Notes: • These are the AC characteristics for CLK synchronous mode.

• C_L is the load capacitance connected to the pin at testing.

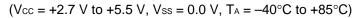
• tcP is the machine cycle period (unit: ns).

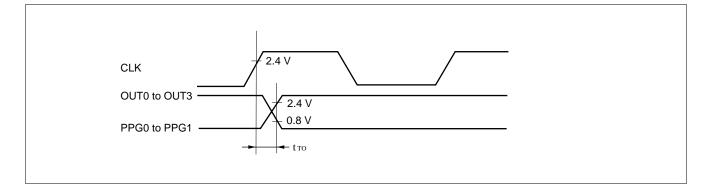
(10) I/O Extended Serial Timing


	$(V_{CC} = +2.7 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$							
Parameter	Symbol	Pin	Condition	Va	lue	Unit	Remarks	
Farameter	Symbol	name	Condition	Min.	Max.	Unit	Remarks	
Serial clock cycle time	tscyc	_		8 tcp		ns		
SCK $\downarrow \rightarrow$ SOT delay time	tslov		Vcc = +5.0 V ±10%	_	80	ns	C∟ = 80 pF+1TTL	
	ISLOV		Vcc = +3.0 V ±10%	_	160	ns	for the internal	
Valid SIN \rightarrow SCK \uparrow	tıvsн			t CP	—	ns	shift clock mode output pin	
$\begin{array}{l} SCK \uparrow \to valid \; SIN \; hold \\ time \end{array}$	tsнıx	_	_	tср		ns		
Serial clock "H" pulse	4		Vcc = +5.0 V ±10%	230		ns		
width	t s∺s∟	_	Vcc = +3.0 V ±10%	460	—	ns		
Serial clock "L" pulse	ts∟sн		Vcc = +5.0 V ±10%	230	—	ns	C∟ = 80 pF+1TTL	
width	ISLSH	_	Vcc = +3.0 V ±10%	460	—	ns	for the external shift clock mode	
$SCK \downarrow \to SOT$ delay time	t slov	_	—	2 tcp	—	ns	output pin	
Valid SIN →SCK ↑	tıvsн —		—	t CP	—	ns	Max. 2 MHz	
$\begin{array}{l} \text{SCK} \uparrow \rightarrow \text{valid SIN hold} \\ \text{time} \end{array}$	tsнıx	—	_	2 tcp	_	ns		

Notes: • These are the AC characteristics for CLK synchronous mode.

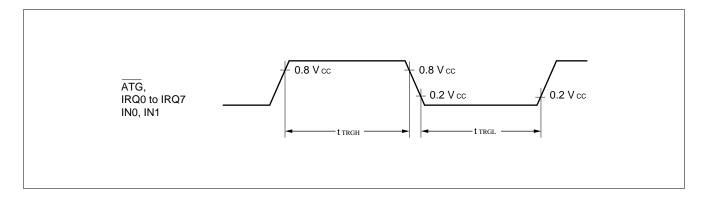
• CL is the load capacitance connected to the pin at testing.


 \bullet tcp is the machine cycle period (unit: ns).


• The values in the table are target values.

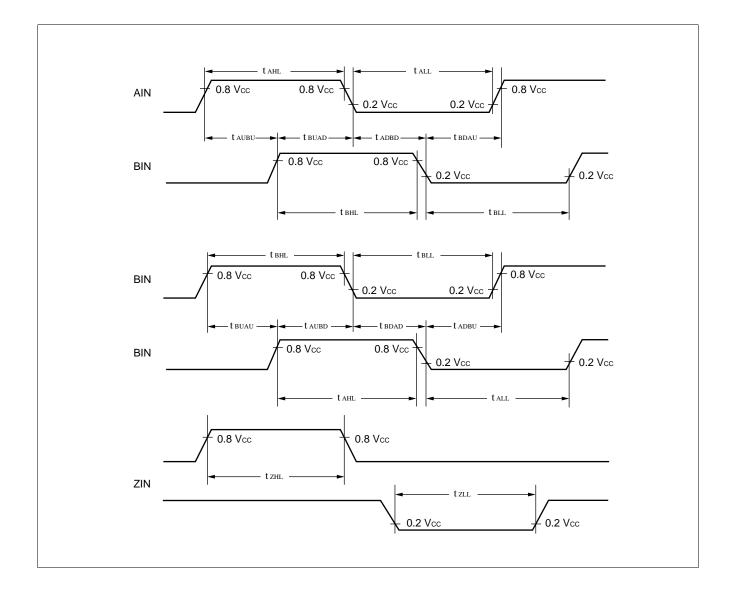
(11) Timer Output Timing

			(Vcc = +2.7 V to +5.5)	V, Vss =	0.0 V, IA	4 = -40	$^{\circ}C$ to +85 $^{\circ}C$)
Parameter	Svmbol	Pin name	Condition	Va	lue	Unit	Remarks
Farameter	Symbol	Fiii liailie	Condition	Min.	Max.		
SCK $\uparrow \rightarrow T_{OUT}$ change	tтo	OUT0 to OUT3	Vcc = +5.0 V ±10%	30	_	ns	
time	tio	PPG00 to PPG11	Vcc = +3.0 V ±10%	80		ns	



(12) Trigger Input Timing

 $(V_{CC} = +2.7 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$


Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Parameter Symbol		Fin hame Condition		Min.	Max.	Unit	Neillai K5
Input pulse width	ttrgh ttrgl	ATG, IRQ0 to IRQ7 IN0, IN1	_	5 tcp	_	ns	

(13) Up/down Counter

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Parameter	Symbol	i ili name	Condition	Min.	Max.	Unit	itema ka
AIN input "1" pulse width	tahl			8 tcyL	_	ns	
AIN input "0" pulse width	tall			8 tcyL	_	ns	
BIN input "1" pulse width	tвн∟			8 tcyL	_	ns	
BIN input "0" pulse width	tвLL			8 tcyL	_	ns	
$AIN \uparrow \to BIN \uparrow time$	t aubu	AIN0, AIN1 BIN0, BIN1		4 t _{CYL}		ns	
$BIN \uparrow \to AIN \downarrow time$	t buad			4 tcyL	—	ns	
$AIN \downarrow \to BIN \downarrow time$	t adbd			4 tcyL	—	ns	
$BIN \downarrow \to AIN \uparrow time$	t BDAU			4 tcyL	—	ns	
$BIN \uparrow \to AIN \uparrow time$	t BUAU			4 tcyL	—	ns	
$AIN \uparrow \to BIN \downarrow time$	t aubd			4 tcyL	—	ns	
$BIN \downarrow \to AIN \downarrow time$	t BDAD			4 tcyL	—	ns	
$AIN \downarrow \to BIN \uparrow time$	t adbu			4 tcyL	_	ns	
ZIN input "1" pulse width	tzhl			4 tcy∟	_	ns	
ZIN input "0" pulse width	tzu	ZINO, ZIN1		4 tcy∟	_	ns	

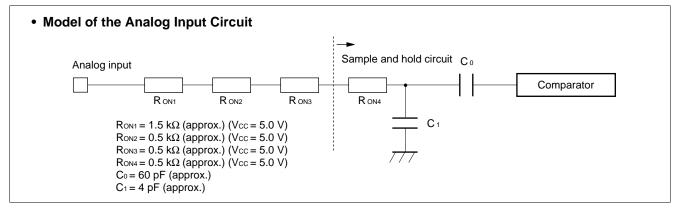
(Vcc = +2.7 V to +5.5 V, Vss = 0.0 V, $T_A = -40^{\circ}C$ to +85°C)

5. A/D Converter Electrical Characteristics

Demonster	Ourseland	Din manua		Value		11	
Parameter	Symbol	Pin name	Min.	Тур.	Max.	Unit	
Resolution		_		10	10	bit	
Total error	_	_	_	_	±3.0	LSB	
Linearity error		_			±2.0	LSB	
Differential linearity error		_			±1.5	LSB	
Zero transition error	Vот	AN0 to AN7	-1.5	+0.5	+2.5	LSB	
Full scale transition error	VFST	AN0 to AN7	AVRH –3.5	AVRL –1.5	AVRH +0.5	LSB	
0			5.12* ¹		_	μs	
Conversion time	_		8.12* ²		_	μs	
Analog port input current	Iain	AN0 to AN7			10	μA	
Analog input voltage	VAIN	AN0 to AN7	AVRL	_	AVRH	V	
Deference voltage	_	AVRH	AVRL + 2.7	_	AVcc	V	
Reference voltage		AVRL	0		AVRH – 2.7	V	
Dower ownah / ownant	la	AVcc		5	—	mA	
Power supply current	Іан	AVcc			5* ³	μA	
Reference voltage supply	IR	AVRH	—	200	—	μΑ	
current	IRH	AVRH	_	—	5* ³	μΑ	
Variation between channels	—	AN0 to AN7	_		4	LSB	

*1: For Vcc = +5.0 V \pm 10% and a 16 MHz machine clock

*2: For Vcc = +3.0 V \pm 10% and an 8 MHz machine clock


*3: The current when the A/D converter is not operating or the CPU is in stop mode (for $V_{CC} = AV_{CC} = AV_{RH} = +5.0 V$).

Notes: • The error increases proportionally as |AVRH - AVRL| decreases.

• The output impedance of the external circuits connected to the analog inputs should be in the following range.

Output impedance of external circuit < approx. 10 k Ω

• If the output impedance of the external circuit is too high, the sampling time for the analog voltage may be too short. (Sampling time = 3.8 μs (corresponds to 16 MHz internal operation if the multiplier is 4.))

Note: The above values are for reference only.

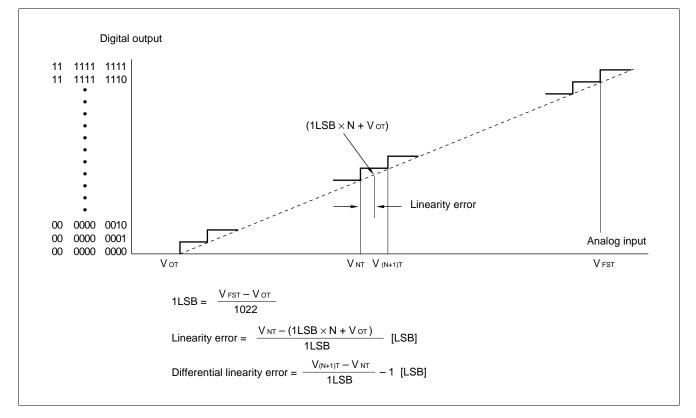
6. A/D Converter Glossary

• Resolution

The change in analog voltage that can be recognized by the A/D converter.

If the resolution is 10 bits, the analog voltage can be resolved into $2^{10} = 1024$ steps.

Total error

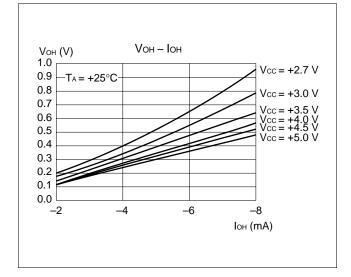

The deviation between the actual and logic value attributable to offset error, gain error, non-linearity error, and noise.

• Linearity error

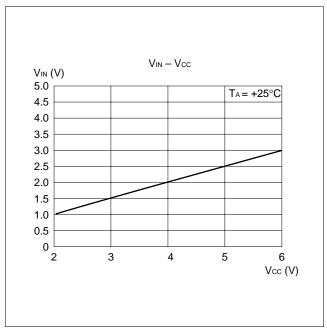
The deviation between the actual conversion characteristic of the device and the line linking the zero transition point (00 0000 0000 \leftrightarrow 00 0000 0001) and the full scale transition point (11 1111 1110 \leftrightarrow 11 1111 1111).

Differential linearity error

The variation from the ideal input voltage required to change the output code by 1 LSB.

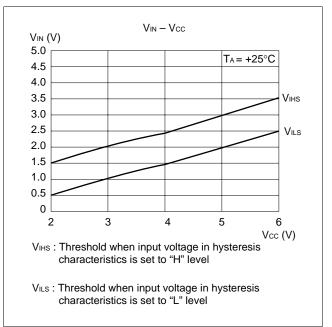

7. 8-bit D/A Converter Electrical Characteristics

$(V_{CC} = 2.7 \text{ to } 5.5 \text{ V}, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C} \text{ to } +70^{\circ}\text{C}$							
Parameter	Symbol	Pin name		Value		Unit	Remarks
Parameter	Symbol	Fill fidilite	Min.	Тур.	Max.	Unit	Reindiks
Resolution				8	8	bit	
Differential linearity error	_		-0.9		0.9	LSB	
Absolute accuracy	_	_		_	1.2	%	
Conversion time	_	_		10	20	μS	The load capacitance = 20 pF
Analog reference power supply voltage	_	DVRH	Vss + 1.7	_	Vcc	V	DVss = Vss = 0.0 V
Reference power supply current (when operating)	D	DVRH	_	1.0	1.5	mA	Current consumption at conversion
Reference power supply current (when stopped)	Ідн	DVRH	_		10	μΑ	Current consumption when stopped
Analog output impedance		DA0		28	—	kΩ	

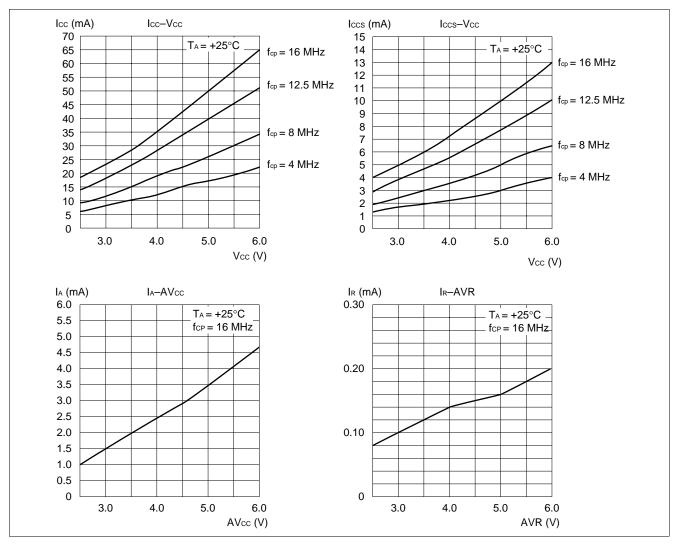

Note: DVss must be connected at Vss = 0.0 V.

■ EXAMPLE CHARACTERISTICS

(1) "H" Level Output Voltage

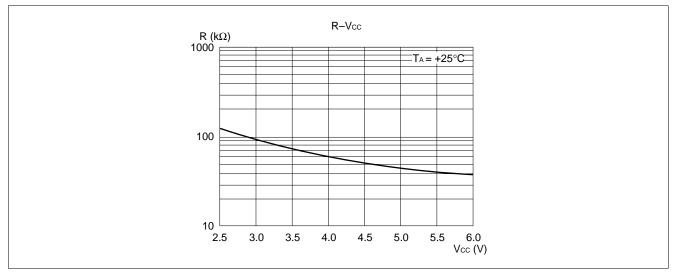


(3) "H" Level Input Voltage/"L" Level Input Voltage (CMOS Input)



Vol – Iol Vo∟(V) 1.0 Vcc = +2.7 V 0.9 -T_A = +25°C 0.8 Vcc = +3.0 V0.7 Vcc = +3.5 V Vcc = +4.0 V Vcc = +4.5 V Vcc = +5.0 V 0.6 0.5 0.4 0.3 0.2 0.1 0.0 2 4 6 8 lo∟ (mA)

(4) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)



(2) "L" Level Output Voltage

(5) Power Supply Current (fcp = Internal Operating Clock Frequency)

(5) Pull-up Resistance

■ INSTRUCTIONS (340 INSTRUCTIONS)

Table 1 Explanation of Items in Tables of Instructions

Item	Meaning
Mnemonic	Upper-case letters and symbols: Represented as they appear in assembler. Lower-case letters: Replaced when described in assembler. Numbers after lower-case letters: Indicate the bit width within the instruction.
#	Indicates the number of bytes.
~	Indicates the number of cycles. m: When branching n : When not branching See Table 4 for details about meanings of other letters in items.
RG	Indicates the number of accesses to the register during execution of the instruction. It is used calculate a correction value for intermittent operation of CPU.
В	Indicates the correction value for calculating the number of actual cycles during execution of the instruction. (Table 5) The number of actual cycles during execution of the instruction is the correction value summed with the value in the "~" column.
Operation	Indicates the operation of instruction.
LH	Indicates special operations involving the upper 8 bits of the lower 16 bits of the accumulator. Z : Transfers "0". X : Extends with a sign before transferring. - : Transfers nothing.
АН	Indicates special operations involving the upper 16 bits in the accumulator. * : Transfers from AL to AH. - : No transfer. Z : Transfers 00 _H to AH. X : Transfers 00 _H or FF _H to AH by signing and extending AL.
I	Indicates the status of each of the following flags: I (interrupt enable), S (stack), T (sticky bit),
S	N (negative), Z (zero), V (overflow), and C (carry). * : Changes due to execution of instruction.
Т	- : No change.
N	S : Set by execution of instruction. R : Reset by execution of instruction.
Z	
V	
С	
RMW	 Indicates whether the instruction is a read-modify-write instruction. (a single instruction that reads data from memory, etc., processes the data, and then writes the result to memory.) * : Instruction is a read-modify-write instruction. - : Instruction is not a read-modify-write instruction. Note: A read-modify-write instruction cannot be used on addresses that have different meanings depending on whether they are read or written.

Symbol	Meaning
A	32-bit accumulator The bit length varies according to the instruction. Byte : Lower 8 bits of AL Word : 16 bits of AL Long : 32 bits of AL:AH
AH AL	Upper 16 bits of A Lower 16 bits of A
SP	Stack pointer (USP or SSP)
PC	Program counter
PCB	Program bank register
DTB	Data bank register
ADB	Additional data bank register
SSB	System stack bank register
USB	User stack bank register
SPB	Current stack bank register (SSB or USB)
DPR	Direct page register
brg1	DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2	DTB, ADB, SSB, USB, DPR, SPB
Ri	R0, R1, R2, R3, R4, R5, R6, R7
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj	RW0, RW1, RW2, RW3
RLi	RL0, RL1, RL2, RL3
dir	Compact direct addressing
addr16 addr24 ad24 0 to 15 ad24 16 to 23	Direct addressing Physical direct addressing Bit 0 to bit 15 of addr24 Bit 16 to bit 23 of addr24
io	I/O area (000000н to 0000FFн)
imm4 imm8 imm16 imm32 ext (imm8)	4-bit immediate data 8-bit immediate data 16-bit immediate data 32-bit immediate data 16-bit data signed and extended from 8-bit immediate data
disp8 disp16	8-bit displacement 16-bit displacement
bp	Bit offset
vct4 vct8	Vector number (0 to 15) Vector number (0 to 255)
()b	Bit address

 Table 2
 Explanation of Symbols in Tables of Instructions

(Continued)

(Continued)

Symbol	Meaning
rel	Branch specification relative to PC
ear eam	Effective addressing (codes 00 to 07) Effective addressing (codes 08 to 1F)
rlst	Register list

Code		Notation)	Address format	Number of bytes in address extension *
00 01 02 03 04 05 06 07	R0 R1 R2 R3 R4 R5 R6 R7	RW0 RW1 RW2 RW3 RW4 RW5 RW6 RW7	RL0 (RL0) RL1 (RL1) RL2 (RL2) RL3 (RL3)	Register direct "ea" corresponds to byte, word, and long-word types, starting from the left	
08 09 0A 0B	@R @R @R	W1 W2		Register indirect	0
0C 0D 0E 0F	@R @R	W0 + W1 + W2 + W3 +		Register indirect with post-increment	0
10 11 12 13 14 15 16 17	@R @R @R @R @R	W0 + dis W1 + dis W2 + dis W3 + dis W4 + dis W5 + dis W6 + dis W7 + dis	p8 p8 p8 p8 p8 p8 p8 p8	Register indirect with 8-bit displacement	1
18 19 1A 1B	@R @R	W0 + dis W1 + dis W2 + dis W3 + dis	p16 p16	Register indirect with 16-bit displacement	2
1C 1D 1E 1F	@R	W0 + RV W1 + RV C + disp ⁻ r16	V7	Register indirect with index Register indirect with index PC indirect with 16-bit displacement Direct address	0 0 2 2

Table 3 Effective Address Fields

Note: The number of bytes in the address extension is indicated by the "+" symbol in the "#" (number of bytes) column in the tables of instructions.

		(a)	Number of register
Code	Operand	Number of execution cycles for each type of addressing	accesses for each type of addressing
00 to 07	Ri RWi RLi	Listed in tables of instructions	Listed in tables of instructions
08 to 0B	@RWj	2	1
0C to 0F	@RWj +	4	2
10 to 17	@RWi + disp8	2	1
18 to 1B	@RWj + disp16	2	1
1C 1D 1E 1F	@RW0 + RW7 @RW1 + RW7 @PC + disp16 addr16	4 4 2 1	2 2 0 0

Table 4 Number of Execution Cycles for Each Type of Addressing

Note: "(a)" is used in the "~" (number of states) column and column B (correction value) in the tables of instructions.

	(b) I	oyte	(c) v	vord	(d) l	ong
Operand	Number of cycles	Number of access	Number of cycles	Number of access	Number of cycles	Number of access
Internal register	+0	1	+0	1	+0	2
Internal memory even address Internal memory odd address	+0 +0	1 1	+0 +2	1 2	+0 +4	2 4
Even address on external data bus (16 bits) Odd address on external data bus (16 bits)	+1 +1	1 1	+1 +4	1 2	+2 +8	2 4
External data bus (8 bits)	+1	1	+4	2	+8	4

Notes: • "(b)", "(c)", and "(d)" are used in the "~" (number of states) column and column B (correction value) in the tables of instructions.

• When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

Table 6 Correction Values for Number of Cycles Used to Calculate Number of Program Fetch Cycles

Instruction	Byte boundary	Word boundary
Internal memory	_	+2
External data bus (16 bits)	—	+3
External data bus (8 bits)	+3	

Notes: • When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

• Because instruction execution is not slowed down by all program fetches in actuality, these correction values should be used for "worst case" calculations.

Μ	Inemonic	#	~	R G	В	Operation	L H	A H	I	s	Т	N	Z	V	С	RM W
MOV	A, dir	2	3	0	(b)	byte (A) \leftarrow (dir)	Ζ	*	_	—	—	*	*	_	—	-
MOV	A, addr16	3	4	0	(b)	byte (A) \leftarrow (addr16)	Z	*	—	—	_	*	*	_	—	_
MOV	A, Ri	1	2	1	0	byte (A) \leftarrow (Ri)	Z	*	—	—	_	*	*	—	—	—
MOV	A, ear	2	2	1	0	byte (A) \leftarrow (ear)	Z	*	—	—	_	*	*	—	—	—
MOV	A, eam	2+	3+ (a)	0	(b)	byte (A) \leftarrow (eam)	Z	*	_	—	_	*	*	_	_	-
MOV	A, io	2	3	0	(b)	byte $(A) \leftarrow (io)$	Z	*	—	—	_	*	*	_	—	_
MOV	A, #imm8	2	2	0	Û	byte $(A) \leftarrow imm8$	Z	*	—	—	_	*	*	_	—	_
MOV	A, @A	2	3	0	(b)	byte $(A) \leftarrow ((A))$	Z	_	—	—	_	*	*	_	_	_
MOV	A, @RLi+disp8	3	10	2	(b)	byte $(A) \leftarrow$	Z	*	—	—	_	*	*	_	_	_
MOVN	A, #imm4	1	1	0	О́	((RLi)+disp8) byte (A) \leftarrow imm4	Z	*	-	-	-	R	*	-	-	-
MOVX	A, dir	2	3	0	(b)		Х	*	_	_	_	*	*	_	_	_
	A, addr16	3	4	0	(b)	byte (A) \leftarrow (dir)	X	*	_	_	_	*	*	_	_	_
MOVX	A, Ri	2	2	1	0	byte (A) \leftarrow (addr16)	X	*	_	_	_	*	*	_	_	_
MOVX	A, ear	2	2	1	0 0	byte (A) \leftarrow (Ri)	X	*	_	_	_	*	*	_	_	_
MOVX	A, eam	2+	2+ (a)	0	(b)	byte (A) \leftarrow (ear)	X	*	_	_	_	*	*	_	_	_
MOVX	A, io	2	3 3	0	(b)	byte (A) \leftarrow (ean)	X	*	_	_	_	*	*	_		_
MOVX	A, #imm8	2	2	0	0	byte (A) \leftarrow (io)	X	*	_	_	_	*	*	_		
MOVX	A, @A	2	3	0	(b)	byte (A) \leftarrow imm8	X	_	_	_	_	*	*	_		_
	A, @RWi+disp8	2	5	1	(b) (b)	byte (A) \leftarrow ((A))	X	*			_	*	*	_		_
	A, @RLi+disp8	2	10	2	(b) (b)	byte (A) \leftarrow ((A))	x	*	_	-	_	*	*	-		_
	A, WRLI+dispo	3	10	Ζ	(0)	((RWi)+disp8)	^		-	_	-			-	-	_
MOV	dir, A	2	3	0	(b)	byte (A) ←	-	_	—	—	_	*	*	—	—	_
MOV	addr16, A	3	4	0	(b)	((RLi)+disp8)	-	—	—	—	—	*	*	—	—	—
MOV	Ri, A	1	2	1	0		-	_	—	—	_	*	*	—	—	—
MOV	ear, A	2	2	1	0	byte (dir) \leftarrow (A)	-	_	—	—	_	*	*	—	—	—
MOV	eam, A	2+	3+ (a)	0	(b)	byte (addr16) \leftarrow (A)	-	_	—	—	_	*	*	—	—	—
MOV	io, A	2	3	0	(b)	byte (Ri) \leftarrow (A)	_	_	—	—	_	*	*	_	—	_
MOV	@RLi+disp8, A	3	10	2	(b)	byte (ear) \leftarrow (Å)	_	_	—	—	_	*	*	_	_	_
MOV	Ri, ear	2	3	2) O	byte (eam) \leftarrow (Å)	_	_	—	—	_	*	*	_	_	_
MOV	Ri, eam	2+	4+ (a)	1	(b)	byte (io) \leftarrow (A)	_	_	—	—	_	*	*	_	_	_
MOV	ear, Ri	2	4	2	Û	byte ((RLi) +disp8) ←	_	_	—	—	_	*	*	_	_	_
MOV	eam, Ri	2+	5+ (a)	1	(b)	(Å)	_	_	—	—	_	*	*	_	_	_
MOV	Ri, #imm8	2	2	1) O	byte (Ri) \leftarrow (ear)	_	_	—	—	_	*	*	_	_	_
MOV	io, #imm8	3	5	0	(b)	byte $(Ri) \leftarrow (eam)$	_	_	_	_	_	_	_	_	_	_
MOV	dir, #imm8	3	5	0	(b)	byte (ear) ← (Ri)	_	_	_	_	_	_	_	_	_	_
MOV	ear, #imm8	3	2	1) Ó	byte (eam) ← (Ŕi)	_	_	_	_	_	*	*	_	_	_
MOV	eam, #imm8	3+	4+ (a)	0	(b)	byte (Ri) ← imm8	_	_	_	_	_	_	_	_	_	_
MOV	@AL, AH	2	3	Ō	(b)	byte (io) \leftarrow imm8	_	_	_	_	_	*	*	_	_	_
/MOV				-	(-)	byte (dir) ← imm8										
,	0/ 1, 1					byte (ear) \leftarrow imm8										
ХСН	A, ear	2	4	2	0	byte (eam) \leftarrow imm8	Ζ	_	_	_	_	_	_	_	_	_
XCH	A, eam	2+	5+ (a)	0	-	byte ((A)) \leftarrow (AH)	z	_	_	_	_	_	_	_	_	_
XCH	Ri, ear	2	7	4	0			_	_	_	_	_	_	_	_	_
XCH	Ri, eam	2+	, 9+ (a)	2	2× (b)		-	_	_	-	_	_	_	_	-	_
						byte (A) \leftrightarrow (ear)										
						byte (A) \leftrightarrow (eam)										
						byte (Ri) \leftrightarrow (ear)										
			1		1	byte (Ri) ↔ (eam)	1		i i	1		1			1	

 Table 7
 Transfer Instructions (Byte) [41 Instructions]

Mnemonic	#	~	R G	В	Operation	L H	A H	I	s	т	N	z	v	С	RM W
MOVW A, dir	2	3	0	(C)	word (A) \leftarrow (dir)	_	*	_	_	_	*	*	_	_	_
MOVW A, addr16	3	4	0	(C)	word (A) \leftarrow (addr16)	-	*	—	-	—	*	*	—	-	—
MOVW A, SP	1	1	0	0	word (A) \leftarrow (SP)	-	*	-	-	-	*	*	-	-	—
MOVW A, RWi	1	2	1	0	word (A) \leftarrow (RWi)	-	*	-	-	-	*	*	-	-	—
MOVW A, ear	2	2	1	0	word (A) \leftarrow (ear)	-	*	-	-	-	*	*	-	-	—
MOVW A, eam	2+	3+ (a)	0	(c)	word (A) \leftarrow (eam)	-	*	-	-	-	*	*	-	-	-
MOVW A, io	2	3	0	(c)	word (A) \leftarrow (io)	-	*	-	-	-	*	*	-	-	—
MOVW A, @A	2	3	0	(c)	word (A) \leftarrow ((A))	-	*	-	-	-	*	*	-	-	—
MOVW A, #imm16	3	2	0	0	word (A) \leftarrow imm16	-	*	-	-	-	*	*	-	-	-
MOVW A, @RWi+disp8	2	5	1	(c)	word (A) \leftarrow ((RWi)	-	*	-	-	-	*	*	-	-	-
MOVW A, @RLi+disp8	3	10	2	(c)	+disp8) word (A) ← ((RLi)	-	^	_	-	-	~	~	-	-	-
MOVW dir, A	2	3	0	(c)	+disp8)	_	_	_	—	-	*	*	—	_	-
MOVW addr16, A	3	4	0	(C)		-	—	-	-	-	*	*	-	—	—
MOVW SP, A	1	1	0	0	word (dir) \leftarrow (A)	—	—	-	—	-	*	*	-	—	—
MOVW RWi, A	1	2	1	0	word (addr16) \leftarrow (A)	-	—	-	-	—	*	*	-	—	—
MOVW ear, A	2	2	1	0	word (SP) \leftarrow (A)	—	—	-	—	-	*	*	-	—	—
MOVW eam, A	2+	3+ (a)	0	(c)	word (RWi) \leftarrow (A)	-	—	-	-	-	*	*	-	—	—
MOVW io, A	2	3	0	(c)	word (ear) \leftarrow (A)	-	—	-	-	-	*	*	-	-	-
MOVW @RWi+disp8, A	2	5	1	(c)	word (eam) \leftarrow (A)	-	—	-	-	-	*	*	-	-	-
MOVW @RLi+disp8, A	3	10	2	(c)	word (io) \leftarrow (A)	-	—	-	-	-	*	*	-	-	—
MOVW RWi, ear	2	3	2	(0)	word ((RWi) +disp8) \leftarrow	-	-	-	-	-	*	*	-	-	-
MOVW RWi, eam	2+	4+ (a)	1	(c)	(A)	-	-	-	-	-	*	*	-	-	—
MOVW ear, RWi	2	4	2	0	word ((RLi) +disp8) \leftarrow	-	-	-	-	-	*	*	-	-	—
MOVW eam, RWi	2+	5+ (a)	1	(c)	(A)	-	-	-	-	-	*	*	-	-	-
MOVW RWi, #imm16	3	2	1	$\begin{pmatrix} 0 \\ (n) \end{pmatrix}$	word (RWi) \leftarrow (ear)	-	-	-	-	-			-	-	-
MOVW io, #imm16 MOVW ear, #imm16	4 4	5 2	0 1	(c)	word (RWi) \leftarrow (eam)	_	_	_	_	_	*	*	_	_	-
MOVW ear, #imm16	4 4+		0	$\begin{pmatrix} 0 \\ (0) \end{pmatrix}$	word (ear) ← (RWi) word (eam) ← (RWi)	-		_		-		_	-	-	-
	4+	4+ (a)	0	(c)	word (RWi) \leftarrow imm16	-	_	_	-	-	_	_	-	_	-
MOVW AL, AH	2	3	0	(c)	word (io) \leftarrow imm16	_	_	_	_	_	*	*	_	_	_
/MOVW [´] @A, T				~ /	word (ear) \leftarrow imm16										
					word (eam) \leftarrow imm16										
XCHW A, ear	2	4	2	0		—	_	-	-	-	-	_	-	_	-
XCHW A, eam	2+	5+ (a)	0	2× (c)	word ((A)) \leftarrow (AH)	—	_	-	-	-	-	_	-	—	
XCHW RWi, ear	2	7	4	0		-	—	_	—	—	—	-	-	—	—
XCHW RWi, eam	2+	9+ (a)	2	2×(c)		—	—	—	-	—	—	—	—	—	-
					word (A) \leftrightarrow (ear)										
					word (A) \leftrightarrow (eam)										
					word (RWi) \leftrightarrow (ear)										
					word (RWi) \leftrightarrow (eam)										
MOVL A, ear	2	4	2	0	long (A) \leftarrow (ear)	_	_	_	_	_	*	*	_	_	_
MOVL A, eam	2+	5+ (a)	0	(d)	long $(A) \leftarrow (eam)$	—	-	-	-	-	*	*	-	—	-
MOVL A, #imm32	5	3	0	0	$long (A) \leftarrow imm32$	-	—	–	-	-	*	*	-	—	-
MOVL ear, A	2	4	2	0	long (ear) \leftarrow (A)	_	_	_	_	_	*	*	_	_	
MOVL eam, A	2+	5+ (a)	0	(d)	long (eam) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
	~ '	51 (u)	0	(4)											

Table 8 Transfer Instructions (Word/Long Word) [38 Instructions]

Mnemonic	#	~	R	В	Operation	L H	A H	I	s	т	Ν	z	v	С	RM
			G		•		Η	1	5	•	*	*	*	*	W
ADD A,#imm8 ADD A, dir ADD A, ear ADD A, ear ADD ear, A ADD ear, A ADD eam, A ADDC A ADDC A, ear ADDC A, ear ADDC A, ear SUB A, dir SUB A, ear SUB A, ear SUB Ear, A SUB Ear, A SUB Ear, A SUB Ear, A SUBC A, ear SUBC A, eam SUBC A, eam	2 2 2 2 + 2 + 1 2 + 1 2 2 + 1 2 2 + 2 +	$2 \\ 5 \\ 3 \\ 4+(a) \\ 2 \\ 3 \\ 4+(a) \\ 3 \\ 2 \\ 5 \\ 3 \\ 4+(a) \\ 3 \\ 5+(a) \\ 2 \\ 3 \\ 4+(a) \\ 3 \\ 4+(a) \\ 3 \\ 3 \\ 4+(a) \\ $	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 2 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0$	0 (b) 0 (b) 0 (b) 0 (b) 0 (b) 0 (b) 0 2×(b) 0 (b) 0 (b) 0 (b) 0	byte (A) \leftarrow (A) +imm8 byte (A) \leftarrow (A) +(dir) byte (A) \leftarrow (A) +(ear) byte (A) \leftarrow (A) +(ear) byte (ear) \leftarrow (ear) + (A) byte (ear) \leftarrow (ear) + (A) byte (eam) \leftarrow (eam) + (A) byte (A) \leftarrow (AH) + (AL) + (C) byte (A) \leftarrow (A) + (ear) + (C) byte (A) \leftarrow (A) + (ear) + (C) byte (A) \leftarrow (A) + (ear) + (C) (decimal) byte (A) \leftarrow (A) - (imm8 byte (A) \leftarrow (A) - (dir) byte (A) \leftarrow (A) - (ear) byte (A) \leftarrow (A) - (ear) byte (A) \leftarrow (A) - (ear) byte (A) \leftarrow (AH) - (AL) - (C) byte (A) \leftarrow (A) - (eam) - (C) byte (A) \leftarrow (AH) - (AL) - (C) (decimal)	Z Z Z Z – Z Z Z Z Z Z Z Z Z Z Z – – Z Z Z Z					* * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * *	
ADDW A ADDW A, ear ADDW A, eam ADDW A, eam ADDW ear, A ADDW ear, A ADDW ear, A ADDCW A, ear ADDCW A, ear SUBW A, ear SUBW A, eam SUBW A, eam SUBW A, ear SUBW ear, A SUBW ear, A SUBW ear, A SUBW ear, A SUBW ear, A	1 2 2+ 3 2 2+ 2 2+ 1 2 2+ 3 2 2+ 2 2+ 2	234+ (a)235+ (a)34+ (a)235+ (a)34+ (a)34+ (a)	0 1 0 2 0 1 0 0 1 0 0 2 0 1 0	$ \begin{array}{c} 0 \\ 0 \\ (c) \\ 0 \\ 2 \times (c) \\ 0 \\ (c) \\ 0 \\ (c) \\ 0 \\ 2 \times (c) \\ 0 \\ (c) \\ \end{array} $	word (A) \leftarrow (AH) + (AL) word (A) \leftarrow (A) +(ear) word (A) \leftarrow (A) +(ear) word (A) \leftarrow (A) +(ear) word (A) \leftarrow (A) +imm16 word (ear) \leftarrow (ear) + (A) word (ear) \leftarrow (ear) + (A) word (A) \leftarrow (A) + (ear) + (C) word (A) \leftarrow (A) + (ear) + (C) word (A) \leftarrow (A) + (ear) + (C) word (A) \leftarrow (A) - (ear) + (C) word (A) \leftarrow (A) - (ear) word (A) \leftarrow (A) - (ear) word (ear) \leftarrow (ear) - (A) word (A) \leftarrow (A) - (ear) - (C) word (A) \leftarrow (A) - (ear) - (C)						* * * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * *	
ADDL A, ear ADDL A, eam ADDL A, #imm32 SUBL A, ear SUBL A, eam SUBL A, eam SUBL A, eam	2 2+ 5 2 2+ 5	6 7+ (a) 4 6 7+ (a) 4	2 0 2 0 0	0 (d) 0 (d) 0	$\begin{array}{l} \text{long (A)} \leftarrow (\text{A}) + (\text{ear}) \\ \text{long (A)} \leftarrow (\text{A}) + (\text{eam}) \\ \text{long (A)} \leftarrow (\text{A}) + \text{imm32} \\ \text{long (A)} \leftarrow (\text{A}) - (\text{ear}) \\ \text{long (A)} \leftarrow (\text{A}) - (\text{eam}) \\ \text{long (A)} \leftarrow (\text{A}) - \text{imm32} \end{array}$					_ _ _ _	* * * * *	* * * * *	* * * * *	* * * * *	- - - -

Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]

Mr	nemonic	#	~	R G	В	Operation	L H	A H	I	s	т	N	z	v	С	RM W
INC INC	ear eam	2 2+	2 5+ (a)	2 0	0 2× (b)	byte (ear) \leftarrow (ear) +1 byte (eam) \leftarrow (eam) +1	-		-	-	-	*	*	*	-	*
DEC DEC	ear eam	2 2+	3 5+ (a)	2 0	0 2× (b)	byte (ear) ← (ear) −1 byte (eam) ← (eam) −1	-	-	_	-	_ _	*	*	*	-	*
INCW INCW	ear eam	2 2+	3 5+ (a)	2 0	0 2× (c)	word (ear) \leftarrow (ear) +1 word (eam) \leftarrow (eam) +1	_			_	_	*	*	* *		 *
DECW DECW		2 2+	3 5+ (a)	2 0	0 2× (c)	word (ear) \leftarrow (ear) –1 word (eam) \leftarrow (eam) –1	-	-		-	_	*	*	*	-	— *
INCL INCL	ear eam	2 2+	7 9+ (a)	4 0	0 2× (d)	long (ear) \leftarrow (ear) +1 long (eam) \leftarrow (eam) +1	_	-		_	_	*	*	*		— *
DECL DECL	ear eam	2 2+	7 9+ (a)	4 0	0 2× (d)	long (ear) ← (ear) −1 long (eam) ← (eam) −1	-	-	_	-	-	*	*	*	-	_ *

Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 11	Compare	Instructions	(Byte/Word/L	_ong Word)	[11] (Instructions]
----------	---------	--------------	--------------	------------	--------	---------------

Mn	emonic	#	~	R G	В	Operation	L H	A H	I	S	т	N	Z	v	С	RM W
CMP	А	1	1	0	0	byte (AH) – (AL)	-	-	_	-	-	*	*	*	*	_
CMP	A, ear	2	2	1	0	byte (A) \leftarrow (ear)	-	_	_	_	_	*	*	*	*	_
CMP	A, eam	2+	3+ (a)	0	(b)	byte $(A) \leftarrow (eam)$	-	_	_	_	_	*	*	*	*	_
CMP	A, #imm8	2	2	0	`Ó	byte (A) ← imm8	-	_	_	-	-	*	*	*	*	-
CMPW	А	1	1	0	0	word (AH) – (AL)	_	_	_	_	_	*	*	*	*	Ι
CMPW	A, ear	2	2	1	0	word $(A) \leftarrow (ear)$	-	_	_	_	_	*	*	*	*	_
CMPW	A, eam	2+	3+ (a)	0	(c)	word $(A) \leftarrow (eam)$	-	_	_	_	_	*	*	*	*	_
	A, #imm16	3	2	0	Ó	word (A) ← imm16	-	—	_	—	-	*	*	*	*	_
CMPL	A, ear	2	6	2	0	word (A) \leftarrow (ear)	_	_	_	_	_	*	*	*	*	-
CMPL	A, eam	2+	7+ (a)	0	(d)	word $(A) \leftarrow (eam)$	-	_	_	—	-	*	*	*	*	—
CMPL	A, #imm32	5	3	0	0	word $(A) \leftarrow imm32$	-	—	—	-	-	*	*	*	*	-

Mnemo	onic	#	~	R G	в	Operation	L H	A H	I	S	т	N	z	۷	С	RM W
DIVU	A	1	*1	0	0	word (AH) /byte (AL)	-	_	-	_	-	-	-	*	*	_
DIVU ear	A,	2	*2	1	0	Quotient \rightarrow byte (AL) Remainder \rightarrow byte (AH) word (A)/byte (ear)	-	_	-	_	-	-	-	*	*	_
	A,	2+	*3	0	*6	Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear)	-	-	_	-	-	-	-	*	*	_
eam	Λ,	2	*4	1	0	word (A)/byte (eam)	-	_	_	-	_	-	-	*	*	-
DIVUW ear	A,	2+	*5	0	*7	Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam) long (A)/word (ear)	-	-	_	_	_	_	_	*	*	_
DIVUW eam	A,	1 2 2+	*8 *9 *10	0 1 0	0 0 (b)	Quotient \rightarrow word (A) Remainder \rightarrow word (ear) long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (com)	- - -	- - -	- - -	- - -	_ _ _	- - -	- - -	_ _ _	- - -	_ _ _
MULU ear	А,	1 2 2+	*11 *12 *13	0 1 0	0 0 (c)	word (eam) byte (AH) *byte (AL) \rightarrow word (A) byte (A) *byte (ear) \rightarrow word (A) byte (A) *byte (eam) \rightarrow word (A) word (AH) *word (AL) \rightarrow long (A) word (A) *word (ear) \rightarrow long (A) word (A) *word (eam) \rightarrow long (A)										

Table 12 Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

*1: 3 when the result is zero, 7 when an overflow occurs, and 15 normally.

*2: 4 when the result is zero, 8 when an overflow occurs, and 16 normally.

*3: 6 + (a) when the result is zero, 9 + (a) when an overflow occurs, and 19 + (a) normally.

*4: 4 when the result is zero, 7 when an overflow occurs, and 22 normally.

*5: 6 + (a) when the result is zero, 8 + (a) when an overflow occurs, and 26 + (a) normally.

*6: (b) when the result is zero or when an overflow occurs, and 2 \times (b) normally.

*7: (c) when the result is zero or when an overflow occurs, and $2 \times$ (c) normally.

*8: 3 when byte (AH) is zero, and 7 when byte (AH) is not zero.

*9: 4 when byte (ear) is zero, and 8 when byte (ear) is not zero.

*10: 5 + (a) when byte (eam) is zero, and 9 + (a) when byte (eam) is not 0.

*11: 3 when word (AH) is zero, and 11 when word (AH) is not zero.

*12: 4 when word (ear) is zero, and 12 when word (ear) is not zero.

*13: 5 + (a) when word (eam) is zero, and 13 + (a) when word (eam) is not zero.

Mn	emonic	#	~	R G	В	Operation	L H	A H	I	S	т	Ν	z	v	С	RM W
AND AND AND AND AND	A, #imm8 A, ear A, eam ear, A eam, A	2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 (b) 0 2× (b)	byte (A) \leftarrow (A) and imm8 byte (A) \leftarrow (A) and (ear) byte (A) \leftarrow (A) and (eam) byte (ear) \leftarrow (ear) and (A) byte (eam) \leftarrow (eam) and (A)	 		 		 	* * * *	* * * *	R R R R R		- - - *
OR OR OR OR OR	A, #imm8 A, ear A, eam ear, A eam, A	2 2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 (b) 0 2× (b)	byte (A) \leftarrow (A) or imm8 byte (A) \leftarrow (A) or (ear) byte (A) \leftarrow (A) or (eam) byte (ear) \leftarrow (ear) or (A) byte (eam) \leftarrow (eam) or (A)	 					* * * *	* * * *	R R R R R		 *
XOR XOR XOR XOR XOR	A, #imm8 A, ear A, eam ear, A eam, A	2 2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 (b) 0 2× (b)	byte (A) \leftarrow (A) xor imm8 byte (A) \leftarrow (A) xor (ear) byte (A) \leftarrow (A) xor (eam) byte (ear) \leftarrow (ear) xor (A) byte (eam) \leftarrow (eam) xor (A)						* * * *	* * * *	R R R R R		_ _ _ *
NOT NOT NOT	A ear eam	1 2 2+	2 3 5+ (a)	0 2 0	0 0 2× (b)	byte (A) \leftarrow not (A) byte (ear) \leftarrow not (ear) byte (eam) \leftarrow not (eam)	_ _ _					* *	* * *	R R R		_ _ *
ANDW ANDW ANDW	A, #imm16 A, ear A, eam	1 3 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2 0	0 0 (c) 0 2× (c)	word (A) \leftarrow (AH) and (A) word (A) \leftarrow (A) and imm16 word (A) \leftarrow (A) and (ear) word (A) \leftarrow (A) and (eam) word (ear) \leftarrow (ear) and (A) word (eam) \leftarrow (eam) and (A)	- - - -					* * * *	* * * *	R R R R R R		_ _ _ *
ORW ORW ORW ORW ORW ORW	A A, #imm16 A, ear A, eam ear, A eam, A	1 3 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2 0	0 0 (c) 0 2× (c)	word (A) \leftarrow (AH) or (A) word (A) \leftarrow (A) or imm16 word (A) \leftarrow (A) or (ear) word (A) \leftarrow (A) or (eam) word (ear) \leftarrow (ear) or (A) word (eam) \leftarrow (eam) or (A)	- - - -					* * * * *	* * * * *	R R R R R R		 *
XORW XORW XORW	A, #imm16 A, ear A, eam	1 2 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2 0	0 0 (c) 0 2× (c)	word (A) \leftarrow (AH) xor (A) word (A) \leftarrow (A) xor imm16 word (A) \leftarrow (A) xor (ear) word (A) \leftarrow (A) xor (eam) word (ear) \leftarrow (ear) xor (A) word (eam) \leftarrow (eam) xor (A)	- - - -					* * * * *	* * * * *	R R R R R R		 *
NOTW NOTW NOTW	ear	1 2 2+	2 3 5+ (a)	0 2 0	0 0 2× (c)	word (A) \leftarrow not (A) word (ear) \leftarrow not (ear) word (eam) \leftarrow not (eam)	_ _ _				_ _ _	* * *	* * *	R R R		— — *

Mn	emonic	#	~	R G	В	Operation	L H	A H	I	S	т	N	Z	v	С	RM W
ANDL ANDL	A, ear A, eam	2 2+	6 7+ (a)	2 0	0 (d)	long (A) \leftarrow (A) and (ear) long (A) \leftarrow (A) and (eam)	-	-	-	_		*	*	R R	-	
ORL ORL	A, ear A, eam	2 2+	6 7+ (a)	2 0	0 (d)	long (A) \leftarrow (A) or (ear) long (A) \leftarrow (A) or (eam)	_ _	_	-	_	_	*	*	R R	-	_ _
XORL XORL	A, ea A, eam	2 2+	6 7+ (a)	2 0	0 (d)	long (A) \leftarrow (A) xor (ear) long (A) \leftarrow (A) xor (eam)	-			-	-	*	* *	R R		_ _

Table 14 Logical 2 Instructions (Long Word) [6 Instructions]

Table 15	Sign Inversion Instructions (Byte/Word) [6 Instructions]
----------	--

Mn	emonic	#	~	R G	В	Operation	L H	A H	I	s	Т	N	Z	V	С	RM W
NEG	А	1	2	0	0	byte (A) \leftarrow 0 – (A)	Х	-	_	-	_	*	*	*	*	-
NEG NEG	ear eam	2 2+	3 5+ (a)	2 0		byte (ear) \leftarrow 0 – (ear) byte (eam) \leftarrow 0 – (eam)	-	-	-	_ _	_ _	*	*	*	*	- *
NEGW	А	1	2	0	0	word (A) $\leftarrow 0 - (A)$	-	Ι	Ι	_	_	*	*	*	*	Ι
NEGW NEGW		2 2+	3 5+ (a)	2 0	0 2× (c)	word (ear) $\leftarrow 0 - (ear)$ word (eam) $\leftarrow 0 - (eam)$	-			- -	- -	*	*	*	*	— *

Table 16 Normalize Instruction (Long Word) [1 Instruction]

Mnemonic	#	~	RG	В	Operation	L H	A H	I	S	т	N	Z	V	С	RM W
NRML A, RO	2	*1	1	0	long (A) \leftarrow Shift until first digit is "1" byte (R0) \leftarrow Current shift count	-	_	_	_	_	_	*	_	_	_

*1: 4 when the contents of the accumulator are all zeroes, 6 + (R0) in all other cases (shift count).

Mnemonic	#	~	R G	В	Operation	L H	A H	I	S	т	N	z	v	С	RM W
RORCA	2	2	0	0	byte (A) \leftarrow Right rotation with carry	_	-	_	_	_	*	*	_	*	-
ROLC A	2	2	0	0	byte (A) \leftarrow Left rotation with carry	-	-	-	-	-	*	*	-	*	-
RORCear	2	3	2	0	byte (ear) \leftarrow Right rotation with carry	_	-	—	—	—	*	*	—	*	-
RORCeam	2+	5+	0 2			-	-	-	-	-	*	*	-	*	*
ROLC ear ROLC eam	2 2+	(a) 3	2	0 2× (b)	carry byte (ear) \leftarrow Left rotation with carry	_	_	_	_	_	*	*	_	*	*
ROLO cam	21	5+	0	2^ (D)	byte (ear) \leftarrow Left rotation with carry										
ASR A, RO	2	(a)	1	0		_	-	_	_	*	*	*	_	*	—
LSR A, R0	2		1	0	byte (A) \leftarrow Arithmetic right barrel shift (A,	-	-	-	-	*	*	*	—	*	-
LSL A, RO	2	*1 *1	1	0	R0) byte (A) \leftarrow Logical right barrel shift	_	-	-	-	-	*	*	-	*	-
		*1			(A, R0) byte (A) ← Logical left barrel shift (A, R0)										
ASRWA	1	2	0	0	word (A) \leftarrow Arithmetic right shift (A, 1	_	—	_	_	*	*	*	_	*	-
LSRWA/SHRW	1	2 2	0 0	0 0	bit) $(A) = \int a d a d a d a d a d a d a d a d a d a$	-	-	-	-	*	R *	*	-	*	_
A LSLW A/SHLW	1	2	0	0	word (A) \leftarrow Logical right shift (A, 1 bit)	-	-	_	_	_			_		_
A	2	*1	1	0	word (A) \leftarrow Logical left shift (A, 1 bit)	_	_	_	_	*	*	*	_	*	_
	2	*1	1	0		-	-	-	-	*	*	*	—	*	-
ASRWA, R0 LSRWA, R0	2	*1	1	0	word (A) \leftarrow Arithmetic right barrel shift (A, R0)	-	-	-	-	-	*	*	-	*	-
LSLW A, R0					word (A) \leftarrow Logical right barrel shift (A, R0)										
					word (A) \leftarrow Logical left barrel shift (A, R0)										
ASRL A, R0 LSRL A, R0	2 2	*2 *2	1 1	0	long (A) \leftarrow Arithmetic right shift (A, R0)	_	_	-	-	* *	*	*	_	*	_
LSLL A, RO	2	*2	1	0	long (A) \leftarrow Logical right barrel shift (A, R0)	_	-	_	_	_	*	*	_	*	-
					long (A) \leftarrow Logical left barrel shift (A, R0)										

Table 17	Shift Instructions	(Byte/Word/Long	Word) [18	Instructions]
----------	--------------------	-----------------	-----------	---------------

*1: 6 when R0 is 0, 5 + (R0) in all other cases.

*2: 6 when R0 is 0, 6 + (R0) in all other cases.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mne	monic	#	~	RG	В	Operation	L H	A H	I	S	т	Ν	Z	v	С	RM W
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BZ/BEC) rel			0		Branch when (Z) = 1	_	_	_	-	-	-	_	_	_	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BNZ/BN	IE rel			0	0	Branch when $(Z) = 0$	—	_	_	—	-	—	_	_	_	-
BN rel 2 *1 0 0 Branch when (N) = 1 BY rel 2 *1 0 0 Branch when (V) = 1	BC/BLC) rel	2	*1	0	0	Branch when $(C) = 1$	—	_	—	—	—	—	_	_	_	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BNC/BH	IS rel	2	*1	0	0	Branch when $(C) = 0$	—	_	—	-	—	-	—	—	—	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BN	rel	2	*1	0	0	Branch when $(N) = 1$	—	_	—	-	—	-	—	—	—	-
BV rel 2 *1 0 0 Branch when (V) = 0 B BT rel 2 *1 0 0 Branch when (T) = 0 B BLT rel 2 *1 0 0 Branch when (T) = 0 B BLT rel 2 *1 0 0 Branch when (T) = 0 B BE rel 2 *1 0 0 Branch when (V) xor (N) = 1	BP	rel			0	0		—	_	—	-	—	-	—	—	—	-
BNV ref 2 *1 0 0 Branch when (T) = 0 B BT ref 2 *1 0 0 Branch when (T) = 0 B BT ref 2 *1 0 0 Branch when (T) = 0 B BGE ref 2 *1 0 0 Branch when (V) xor (N) = 0	BV	rel	2		0	0	Branch when $(V) = 1$	—	—	—	-	-	—	_	—	—	-
Bit rel 2 *1 0 0 Branch when (1) = 1 BER 1 rel 2 *1 0 0 Branch when (V) xor (N) = 0	BNV	rel			0		Branch when $(V) = 0$	—	_	—	-	—	-	—	—	—	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BT	rel		*1	0	0	Branch when $(T) = 1$	—	—	—	-	-	—	_	—	—	-
BCF rel 2 *1 0 0 Branch when (V) xor (N) = 1 B BCF rel 2 *1 0 0 Branch when (V) xor (N) = 0 B BCF rel 2 *1 0 0 (Z) = 1 B BLS rel 2 *1 0 0 Branch when ((V) xor (N)) or	BNT	rel	2	*1	0	0	Branch when $(T) = 0$	—	—	—	-	-	—	_	—	—	-
Begin rel 2 *1 0 0 Branch when (V) xor (N) = 0	BLT	rel			0	0	Branch when (V) xor $(N) = 1$	—	_	—	—	—	—	_	_	_	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BGE	rel	2	*1	0	0	Branch when (V) xor $(N) = 0$	—	_	—	—	—	—	_	_	_	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BLE	rel			0	0	Branch when ((V) xor (N)) or	—	_	—	-	—	-	—	—	—	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BGT	rel	2		0	0	(Z) = 1	—	_	—	—	—	—	_	_	_	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BLS	rel	2	*1	0	0	Branch when ((V) xor (N)) or	—	_	—	—	—	—	_	_	_	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BHI	rel	2	*1	0	0	(Z) = 0	—	_	—	—	—	—	_	_	_	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BRA	rel	2	*1	0	0	Branch when (C) or $(Z) = 1$	—	_	_	—	-	—	_	_	_	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							Branch when (C) or $(Z) = 0$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	JMP	@A	1		0	0	Branch unconditionally	—	_	—	-	—	-	—	—	—	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	JMP	addr16	3	3	0	0		—	_	—	—	—	—	_	_	_	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	JMP	@ear	2	3	1	0		—	_	—	-	—	-	—	—	—	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	JMP	@eam	2+	4+ (a)	0	(C)		—	_	—		—	-	—	—	—	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	JMPP	@ear *3	2	5	2		word (PC) \leftarrow (ear)	—	_	—	—	—	—	_	_	_	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	JMPP	@eam *3	2+	6+ (a)	0	(d)		—	_	_	—	-	—	_	_	_	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	JMPP	addr24	4	4	0	. ,	word (PC) \leftarrow (ear), (PCB) \leftarrow	—	_	_	—	-	—	_	_	_	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							(ear +2)										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CALL	@ear *4	2	6	1	(c)	word (PC) \leftarrow (eam), (PCB) \leftarrow	—	_	—	—	—	—	_	_	_	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CALL	@eam *4	2+	7+ (a)	0	2× (c)		—	_	—	—	—	—	_	_	_	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3	6	0	(c)	word (PC) \leftarrow ad24 0 to 15,	—	_	—	—	—	—	_	_	_	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	7	0	$2 \times (c)$	(PCB) ← ad24 16 to 23	—	_	—	—	—	—	_	_	_	-
$\begin{array}{c c} \text{CALLP } @ \text{eam }^{*6} & 2+ & 11+(a) & 0 & *^2 & \text{word } (\text{PC}) \leftarrow (\text{eam}) & - & - & - & - & - & - & - & - & - & $			2	10	2	$2 \times (c)$	word (PC) \leftarrow (ear)	—	_	—	—	—	—	_	_	_	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O, LEI	Cour				. ,											
CALLP addr24 *7 4 10 0 $2\times$ (c) Vector call instruction Word (PC) \leftarrow (ear) 0 to 15 $ -$	CALLP	@eam *6	2+	11+ (a)	0	*2		_	_	_	-	-	_	_	_	_	_
$(PCB) \leftarrow (ear) 16 \text{ to } 23$ word (PC) $\leftarrow (eam) 0 \text{ to } 15$ (PCB) $\leftarrow (eam) 16 \text{ to } 23$ word (PC) $\leftarrow (addr0 \text{ to } 15,$	O, LEI	Coun		. ,													
$(PCB) \leftarrow (ear) 16 \text{ to } 23$ word (PC) $\leftarrow (eam) 0 \text{ to } 15$ (PCB) $\leftarrow (eam) 16 \text{ to } 23$ word (PC) $\leftarrow addr0 \text{ to } 15$,	CALLP	addr24 *7	4	10	0	2× (c)		_	_	_	-	_	_	_	_	_	_
word (PC) \leftarrow (eam) 0 to 15 (PCB) \leftarrow (eam) 16 to 23 word (PC) \leftarrow addr0 to 15,						(*)	$(PCB) \leftarrow (ear) 16 \text{ to } 23$										
$(PCB) \leftarrow (eam) 16 \text{ to } 23$ word (PC) $\leftarrow addr0 \text{ to } 15,$																	
word (PC) \leftarrow addr0 to 15,																	
							$(PCB) \leftarrow addr16 to 23$										

Table 18 Branch 1 Instructions [31 Instructions]
--

*1: 4 when branching, 3 when not branching.

*2: (b) + $3 \times$ (c)

*3: Read (word) branch address.

*4: W: Save (word) to stack; R: read (word) branch address.

*5: Save (word) to stack.

*6: W: Save (long word) to W stack; R: read (long word) R branch address.

*7: Save (long word) to stack.

Mnemonic	#	~	RG	В	Operation	L H	A H	I	s	т	N	z	v	С	RM W
CBNE A, #imm8, rel	3	*1	0	0	Branch when byte (A) ≠	_	_	_	_	_	*	*	*	*	—
CWBNEA, #imm16, rel	4	*1	0	0	imm8	-	_	-	_	-	*	*	*	*	-
					Branch when word (A) ≠						*	*	*	*	
CBNE ear, #imm8, rel	4	*2 *3	1	0	imm16	-	-	-	-	-	*	*	*	*	-
CBNE eam, #imm8, rel ^{*9}	4+ 5	^3 *4	0 1	(b) 0	Branch when byte (ear) ≠	-	-	_	-	_	*	*	*	*	_
CWBNEear, #imm16,	5+	*3	0	(c)	imm8	_		_	_	_	*	*	*	*	_
rel	01		Ŭ	(0)	Branch when byte (eam) ≠										
CWBNEeam, #imm16,	3	*5	2	0	imm8	_	_	_	_	_	*	*	*	_	_
rel*9					Branch when word (ear) ≠										
	3+	*6	2	2× (b)	imm16	-	—	-	—	-	*	*	*	-	*
DBNZ ear, rel					Branch when word (eam) ≠ imm16										
DBNZ eam, rel	3	*5	2	0		-	—	-	—	-	*	*	*	—	-
	_		-		Branch when byte (ear) =							*			*
	3+	*6	2	2× (c)	$(ear) - 1$, and $(ear) \neq 0$	-	—	-	-	-	*	*	*	-	*
DWBNZ ear, rel					Branch when byte (eam) = $(eam) - 1$, and $(eam) \neq 0$										
DWBNZ eam, rel	2	20	0	8× (c)	$(ean) = 1$, and $(ean) \neq 0$	_	_	R	s	_	_	_	_	_	_
	3	16	0		Branch when word (ear) =	_	_	R	S	_	_	_	_	_	_
	4	17	Ō	6× (c)	$(ear) - 1$, and $(ear) \neq 0$	_	_	R	Š		_	_	_	_	_
INT #vct8	1	20	0	8× (c)	Branch when word (eam) =	_	_	R	S	_	-	_	-	_	-
INT addr16	1	15	0	6× (c)	$(eam) - 1$, and $(eam) \neq 0$	-	—	*	*	*	*	*	*	*	-
INTP addr24	-	_	-												
INT9	2	6	0	(c)	Software interrupt	-	—	-	-	-	-	-	-	-	-
RETI					Software interrupt Software interrupt										
LINK #local8					Software interrupt										
LINK #IOCAIO	1	5	0	(c)	Return from interrupt	_	_	_	_	_	_	_	_	_	_
	•	Ŭ	Ŭ	(-)											
					At constant entry, save old										
UNLINK	1	4	0	(C)	frame pointer to stack, set	-	_	—	_	-	—	_	-	_	-
	1	6	0	(d)	new frame pointer, and	-	_	-	-	-	-	-	-	—	-
					allocate local pointer area										
RET *7					At constant entry, retrieve										
RETP *8					old frame pointer from stack.										
					Return from subroutine										
					Return from subroutine										

*1: 5 when branching, 4 when not branching

*2: 13 when branching, 12 when not branching

*3: 7 + (a) when branching, 6 + (a) when not branching

*4: 8 when branching, 7 when not branching

*5: 7 when branching, 6 when not branching

*6: 8 + (a) when branching, 7 + (a) when not branching

*7: Retrieve (word) from stack

*8: Retrieve (long word) from stack

*9: In the CBNE/CWBNE instruction, do not use the RWj+ addressing mode.

Mnemonic	#	~	RG	В	Operation	L H	A H	I	S	т	N	z	v	С	RM W
PUSHW A PUSHW AH PUSHW PS PUSHW rlst	1 1 1 2	4 4 4 *3	0 0 0 *5	(C) (C) (C) *4	word (SP) \leftarrow (SP) -2, ((SP)) \leftarrow (A) word (SP) \leftarrow (SP) -2, ((SP)) \leftarrow (AH) word (SP) \leftarrow (SP) -2, ((SP)) \leftarrow (PS) (SP) \leftarrow (SP) -2n, ((SP)) \leftarrow (rlst)		 	_ _ _	 	 	 	 	 	 	
POPW A POPW AH POPW PS POPW rlst	1 1 1 2	3 3 4 *2	0 0 0 *5	(C) (C) (C) *4	word (A) \leftarrow ((SP)), (SP) \leftarrow (SP) +2 word (AH) \leftarrow ((SP)), (SP) \leftarrow (SP) +2 word (PS) \leftarrow ((SP)), (SP) \leftarrow (SP) +2 (rlst) \leftarrow ((SP)), (SP) \leftarrow (SP) +2n		*					*	*	*	
JCTX @A	1	14	0	6× (c)	Context switch instruction	_	-	*	*	*	*	*	*	*	-
AND CCR, #imm8 OR CCR, #imm8	2 2	3 3	0 0	0 0	byte (CCR) \leftarrow (CCR) and imm8 byte (CCR) \leftarrow (CCR) or imm8		_ _	*	*	*	*	*	*	*	
MOV RP, #imm8 MOV ILM, #imm8	2 2	2 2	0 0	0 0	byte (RP) ←imm8 byte (ILM) ←imm8	_	_ _	_	-	_	-	_	_	_	_ _
MOVEA RWi, ear MOVEA RWi, eam MOVEA A, ear MOVEA A, eam	2 2+ 2 2+	3 2+ (a) 1 1+ (a)	1 1 0 0	0 0 0 0	word (RWi) ←ear word (RWi) ←eam word(A) ←ear word (A) ←eam	 	 * *	- - -	- - -	- - -	- - -	_ _ _	_ _ _	_ _ _	
ADDSP #imm8 ADDSP #imm16	2 3	3 3	0 0	0 0	word (SP) \leftarrow (SP) +ext (imm8) word (SP) \leftarrow (SP) +imm16		-	_	-	_	-				_ _
MOV A, brgl MOV brg2, A	2 2	*1 1	0 0	0 0	byte (A) \leftarrow (brgl) byte (brg2) \leftarrow (A)	Z _	*	_	-	_	* *	*	_	_	-
NOP ADB DTB PCB SPB NCC CMR	1 1 1 1 1	1 1 1 1 1 1	0 0 0 0 0 0	0 0 0 0 0 0	No operation Prefix code for accessing AD space Prefix code for accessing DT space Prefix code for accessing PC space Prefix code for accessing SP space Prefix code for no flag change Prefix code for common register bank		- - - -	- - - -	- - - -	- - - -	_ _ _ _	- - - -			

Table 20 Other Control Instructions (Byte/Word/Long Word) [36 Instructions]

*1: PCB, ADB, SSB, USB, and SPB : 1 state DTB, DPR : 2 states

*2: 7 + 3 × (pop count) + 2 × (last register number to be popped), 7 when rlst = 0 (no transfer register)

*3: 29 + (push count) – $3 \times$ (last register number to be pushed), 8 when rlst = 0 (no transfer register)

*4: Pop count \times (c), or push count \times (c)

*5: Pop count or push count.

Mnemonic	#	~	RG	В	Operation	L H	A H	I	S	т	Ν	z	v	С	RM W
MOVB A, dir:bp	3	5	0	(b)	byte (A) ← (dir:bp) b	Ζ	*	-	-	-	*	*	-	Ι	-
MOVB A,	4	5	0	(b)	byte (A) \leftarrow (addr16:bp) b	Z Z	*	_	—	_	*	*	—	_	-
addr16:bp	3	4	0	(b)	byte $(A) \leftarrow (io:bp) b$	Ζ	*	_	—	_	*	*	_	_	-
MOVB A, io:bp															
	3	7	0	2× (b)	bit (dir:bp) b \leftarrow (A)	—	-	—	—	_	*	*	—	—	*
MOVB dir:bp, A	4	7	0		bit (addr16:bp) $b \leftarrow (A)$	—	—	—	—	—	*	*	—	—	*
MOVB addr16:bp, A	3	6	0	2× (b)	bit (io:bp) b \leftarrow (A)	-	-	-	-	-	*	*	-	-	*
MOVB io:bp, A	3	7	0	2× (b)	bit (dir:bp) b \leftarrow 1	_	_	_	_	_	_	_	_	_	*
	4	7	0		bit (addr16:bp) b \leftarrow 1	_	—	_	—	_	—	—	_	_	*
SETB dir:bp	3	7	0		bit (io:bp) b \leftarrow 1	-	-	-	-	-	-	-	-	-	*
SETB addr16:bp SETB io:bp	3	7	0	2× (b)	bit (dir:bp) b ← 0	_	_	_	_	_	_	_	_	_	*
	4	7	0		bit (addr16:bp) b $\leftarrow 0$	_	_	_	_	_	_	_	_	_	*
CLRB dir:bp CLRB addr16:bp	3	7	0		bit (io:bp) b $\leftarrow 0$	-	-	-	-	-	-	-	-	-	*
CLRB io:bp	4	*1	0	(b)	Branch when (dir:bp) b = 0	_	_	_	_	_	_	*	_	_	_
oline long	5	*1	Õ	(b)	Branch when $(addr16:bp) b = 0$	_	_	_	_	_	_	*	_	_	_
BBC dir:bp, rel BBC addr16:bp,	4	*2	Ő	(b)	Branch when (io:bp) $b = 0$	-	-	_	-	-	-	*	-	-	-
rel	4	*1	0	(b)	Branch when (dir:bp) b = 1	_	_	_	_	_	_	*	_	_	_
BBC io:bp, rel	5	*1	Ő	(b)	Branch when (addr16:bp) $b = 1$	_	_	_	_	_	_	*	_	_	_
0.00,101	4	*2	Ő	(b)	Branch when (io:bp) $b = 1$	_	_	_	_	_	_	*	_	_	_
BBS dir:bp, rel BBS addr16:bp,	5	*3	0						_	_	_	*	_		*
rel	5	^3	0	2× (b)	Branch when (addr16:bp) $b = 1$, bit = 1	-	-	-	-	-	-		-	-	
BBS io:bp, rel	3	*4	0	*5		_	-	-	—	-	—	—	—	-	—
			_		Wait until (io:bp) b = 1										
SBBS addr16:bp,	3	*4	0	*5		-	-	-	-	-	-	-	-	-	-
rel					Wait until (io:bp) b = 0										
WBTS io:bp															
WBTC io:bp															

Table 21	Bit Manipulation	Instructions [2	1 Instructions]
	Bit manipalation		

*1: 8 when branching, 7 when not branching

*2: 7 when branching, 6 when not branching

*3: 10 when condition is satisfied, 9 when not satisfied

*4: Undefined count

*5: Until condition is satisfied

Mnemonic	#	۲	R G	В	Operation	L H	A H	I	S	Т	N	Ζ	v	С	RM W
SWAP	1	3	0	0	byte (A) 0 to 7 \leftrightarrow (A) 8 to 15	-	-	-	-	_	Ι	-	_	Ι	-
SWAPW/XCHW AL, AH	1	2	0	0	word (AH) \leftrightarrow (AL)	_	*	_	_	_	_	_	_	_	-
EXT	1	1	0	0	byte sign extension	Х	_	_	_	_	*	*	—	_	-
EXTW	1	2	0	0	word sign extension	_	Х	—	_	—	*	*	—	—	-
ZEXT	1	1	0	0	byte zero extension	Ζ	_	_	_	_	R	*	—	_	-
ZEXTW	1	1	0	0	word zero extension	-	Ζ	—	—	—	R	*	—	—	-

Table 23	String Instructions [10 Instructions]
----------	---------------------------------------

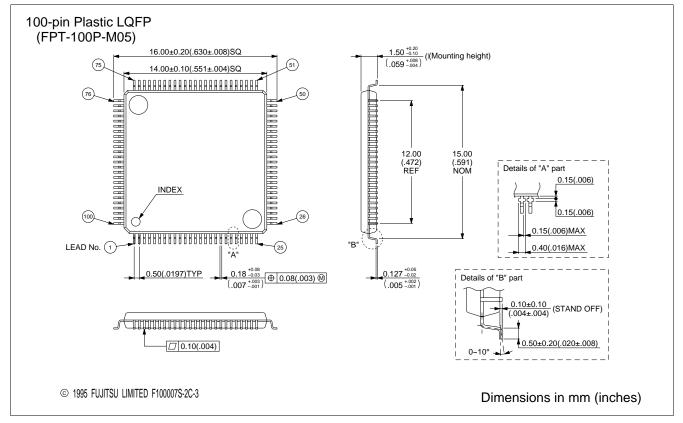
Mnemonic	#	~	R G	В	Operation	L H	A H	I	S	Т	N	z	V	С	RM W
MOVS/MOVSI	2	*2	*5	*3	Byte transfer $@AH+ \leftarrow @AL+$, counter	-	_	Ι	-	Ι	-	_	Ι	Ι	-
MOVSD	2	*2	*5	*3	= RW0	_	_	-	_	-	-	-	-	_	-
0050/00501	~	*1	*5	*4	Byte transfer $@AH \leftarrow @AL -$, counter						*	*	*	*	
SCEQ/SCEQI	2 2	*1	*5	*4	= RW0	-	-	-	_	-	*	*	*	*	—
SCEQD	2			4	Puto rotrio, rol $(@AU_1)$ Ale couptor –	-	_	_	_	-					_
FISL/FILSI	2	6m +6	*5	*3	Byte retrieval (@AH+) – AL, counter = RW0	_	_	_	_	_	*	*	_	_	_
	2	0111 1 0	-		Byte retrieval ($@AH-$) – AL, counter =										
					RW0										
					Byte filling @AH+ \leftarrow AL, counter =										
					RW0										
MOVSW/	2	*2	*8	*6	Word transfer $@AH+ \leftarrow @AL+$, counter	-	_	_	Ι	_	_	_	_	_	_
MOVSWI	2	*2	*8	*6	= RW0	_	_	_	_	—	—	_	_	_	—
MOVSWD					Word transfer $@AH \rightarrow \leftarrow @AL \rightarrow$, counter										
	2	*1	*8	*7	= RW0	—	—	—	—	-	*	*	*	*	—
SCWEQ/	2	*1	*8	*7		—	—	—	-	-	*	*	*	*	-
SCWEQI	~	6	*8	*6	Word retrieval ($@AH+$) – AL, counter =						*	*			
SCWEQD	2	6m +6	^0	~0	RW0 Word retrieval (@AH–) – AL, counter =	-	-	_	-	-			-	-	_
FILSW/FILSWI					RW0										
					Word filling @AH+ \leftarrow AL, counter =										
					RW0										

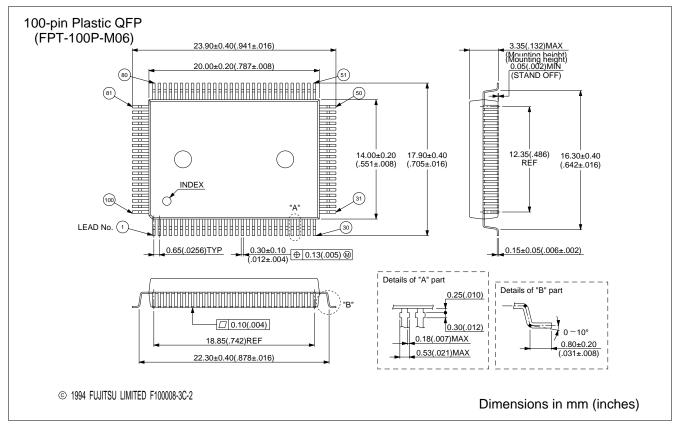
m: RW0 value (counter value)

n: Loop count

*1: 5 when RW0 is 0, 4 + 7 \times (RW0) for count out, and 7 \times n + 5 when match occurs

*2: 5 when RW0 is 0, 4 + 8 \times (RW0) in any other case


- *3: (b) \times (RW0) + (b) \times (RW0) when accessing different areas for the source and destination, calculate (b) separately for each.
- *4: (b) × n
- *5: 2 × (RW0)
- *6: (c) × (RW0) + (c) × (RW0) when accessing different areas for the source and destination, calculate (c) separately for each.
- *7: (c) × n


*8: 2 × (RW0)

■ ORDERING INFORMATION

Model	Package	Remarks
MB90632APFV MB90634APFV MB90P634APFV	100-pin Plastic LQFP (FPT-100P-M05)	
MB90632APF MB90634APF MB90P634APF	100-pin Plastic QFP (FPT-100P-M06)	MB90P634A supports ES alone.

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8588, Japan Tel: +81-44-754-3763 Fax: +81-44-754-3329

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A. Tel: +1-408-922-9000 Fax: +1-408-922-9179

Customer Response Center *Mon. - Fri.: 7 am - 5 pm (PST)* Tel: +1-800-866-8608 Fax: +1-408-922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10, D-63303 Dreieich-Buchschlag, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122

http://www.fujitsu-fme.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. #05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220

http://www.fmap.com.sg/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

F0004 © FUJITSU LIMITED Printed in Japan All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.). CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.