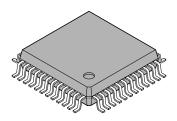
8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89120/120A Series

MB89121/P131/123A/P133A/125A/P135A/ MB89PV130A

■ DESCRIPTION


The MB89120 series is a line of single-chip microcontrollers containing a compact instruction set and a great variety of peripheral functions such as a timer, serial interface, and external interrupt. The MB89120A series is an extended variant of the MB89120, with a remote control transmission function and wake-up interrupt channels.

■ FEATURES

- F2MC-8L family CPU core
- Low-voltage operation
- Low current consumption (allowing for dual clock)
- Minimum execution time: 0.95 μs at 4.2 MHz
- 21-bit timebase counter
- I/O ports : Max. 36 ports
- External interrupts : 3 channels
- External interrupts (wake-up function): 8 channels (only in the MB89120A series)
- 8-bit serial I/O: 1 channel
- 8-/16-bit timer/counter: 1 channel
- Built-in remote-control transmitting frequency generator (only in the MB89120A series)
- Low-power consumption modes (stop mode, sleep mode, watch mode)
- Package : QFP-48
- CMOS technology

■ PACKAGE

48-pin plastic QFP

(FPT-48P-M13)

■ PRODUCT LINEUP

MB89121	MB89123A	MB89125A	MB89P133A	MB89P131	
Mass-produced products (Mask ROM products)			One-time	One-time products	
4 K × 8 bits (internal mask ROM)	8 K × 8 bits (internal mask ROM)	16 K × 8 bits (internal mask ROM)	8 K × 8 bits (Internal PROM to be programmed with a general- purpose EPROM programmer)	4 K × 8 bits (Internal PROM to be programmed with a general- purpose EPROM programmer)	
$128 \times 8 \text{ bits}$		256×8 bits		128 × 8 bits	
The number of instructions Instruction bit length Instruction length Data bit length Minimum execution time Minimum interrupt processing time		: 136 : 8 bits : 1 to 3 bytes : 1, 8, 16 bits : 0.95 µs at 4.2 MHz : 8.57 µs at 4.2 MHz			
Output ports (CMOS) : 8			, ,		
8-bit t	imer/counter × 2	channels or 16-b	it event counter × 1	channel	
	L	8 bits SB/MSB first sele	ectable		
	Rising edge/	falling edge/both	edges selectable	<u>.</u>	
_	8 chann	els (only for level	detection)	_	
_	(pulse wi	1 channel dth and frequenc by program)	ry selectable	_	
	Sleep m	node, stop mode,	watch mode		
		CMOS			
2.2 V to 4.0 V (with the dual clock option) 2.2 V to 6.0 V (with the single clock option)		. ,	2.7 V t	o 6.0 V	
		_			
	Mas (M 4 K × 8 bits (internal mask ROM) 128 × 8 bits The number of ir Instruction bit ler Instruction length Minimum execut Minimum interruph Output ports (N-Output ports (CMOS Total 8-bit t 3 Indep Also for wake-u — 2.2 V to 4.0	Mass-produced product (Mask ROM product (Mask ROM product (Mask ROM product (Mask ROM)) 4 K × 8 bits	Mass-produced products (Mask ROM products) 4 K × 8 bits (internal mask ROM) 128 × 8 bits The number of instructions Instruction bit length Instruction length Data bit length Minimum execution time Minimum interrupt processing time Output ports (N-ch open-drain) : 4 (All also served) Output ports (CMOS) : 8 I/O ports (CMOS) : 24 (8 ports also) Total : 36 8-bit timer/counter × 2 channels or 16-beographics 8 bits LSB/MSB first selection, Rising edge/falling edge/both Also for wake-up from stop/sleep mode (edge defended)	Mass-produced products (Mask ROM products) 4 K × 8 bits (internal mask ROM) ROM) 16 K × 8 bits (internal mask ROM) 17 ROM) 18 K × 8 bits (internal mask ROM) 18 K × 8 bits (internal mask ROM) 19 Programmed with a general-purpose EPROM programmer) 128 × 8 bits 18 B its 19 B its 10 B its 10 B its 10 B its 10 B its 11 B its 11 B its 12 B its 13 B its 14 (All also serves as peripherals.) 17 D opts (CMOS) 18 B its 18 B its 19 D opts (CMOS) 19 B its 10 B its 10 B its 11 B its 11 B its 12 B its 13 B its 14 (All also serves as peripherals.) 15 B its 16 B its 17 B its 18 B its 18 B its 18 B its 19 B its 19 B its 19 B its 10 B its 11 B its 11 B its 12 B its 13 B its 14 (All also serves as peripherals.) 15 B its 16 B its 17 B its 17 B its 18 B its 18 B its 18 B its 19 B its 19 B its 19 B its 10 B it	

^{*:} Varies with conditions such as operating frequencies. (See "■ ELECTRICAL CHARACTERISTICS".) (Continued)

Part number	MB89P135A	MB89PV130A			
Classification	One-time PROM products	Piggyback/evaluation product			
ROM size	16 K × 8 bits (internal PROM, to be programmed with general-purpose EPROM programmer)	32 K × 8 bits (external ROM)			
RAM size	512 × 8 bits	1 K × 8 bits			
CPU functions	The number of instructions Instruction bit length Instruction length Data bit length Minimum execution time Minimum interrupt processing time	: 136 : 8 bits : 1 to 3 bytes : 1, 8, 16 bits : 0.95 μs/4.2 MHz : 8.57 μs/4.2 MHz			
Ports	Output ports (N-ch open-drain ports) Output ports (CMOS) I/O ports (CMOS) Total	: 4 (All also serve as peripherals.): 8: 24 (8 ports also serve as peripherals.): 36			
Timer/counter	8-bit timer/counter × 2 channels or 16-bit event counter × 1 channel				
Serial I/O	8 bits LSB/MSB first selectable				
External interrupt 1	3 independent channels (edge selection, interrupt vector, source flag) Rising/falling/both edges selectable Used also for wake-up from stop/sleep mode. (Edge detection is also permitted in stop mode.)				
External interrupt 2 (wake-up function)	8 channels (only for level detection)				
Remote control transmitting frequency generator	1 channel (Pulse width and	cycle selectable by program)			
Standby mode	Sleep mode, stop mode, and clock mode				
Process	CMOS				
Operating voltage	2.7 V to 6.0 V	2.7 V to 6.0 V			
EPROM for use	_	MBM27C256A-20TVM			

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89121	MB89123A	MB89125A	MB89P133A	MB89P131
FPT-48P-M13	0	0	0	0	0
MQP-48C-P01	×	×	×	×	×

Package	MB89P135A	MB89PV130A
FPT-48P-M13	0	×
MQP-48C-P01	×	0

○ : Available, × : Not available

Note: Package details of OTPROM products and piggyback/evaluation products are common to those of MB89130/130A series. Refer to the MB89130/130A series data sheet for details.

■ DIFFERENCES AMONG PRODUCTS

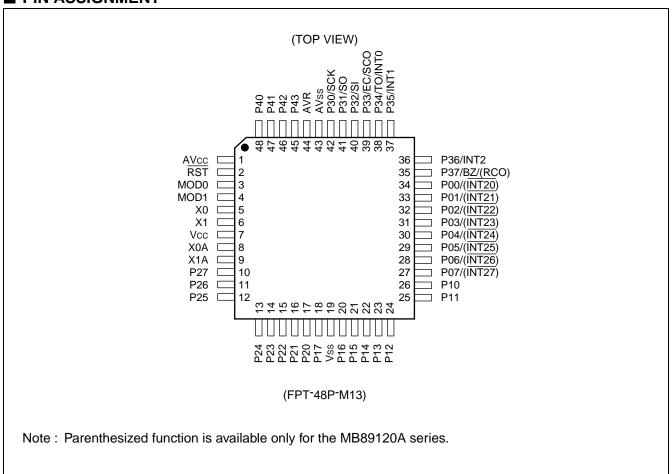
1. Memory Size

Before evaluating using the one-time ROM product, verify its difference from the product that will actually be used. Take particular care on the following points:

- The number of register banks available is different between the MB89121 and the MB89123A/125A/P135A/PV130A.
- The stack area, etc., is set at the upper limit of the RAM.

2. Current Consumption

- When operated at low speed, a product with an OTPROM (EPROM) will consume more current than a product with a mask ROM. However, the same is current consumption in the sleep/stop mode is the same. (For more information, see "■ ELECTRICAL CHARACTERISTICS".)
- In the case of the MB89PV130A, added is the current consumed by the EPROM which is connected to the top socket.

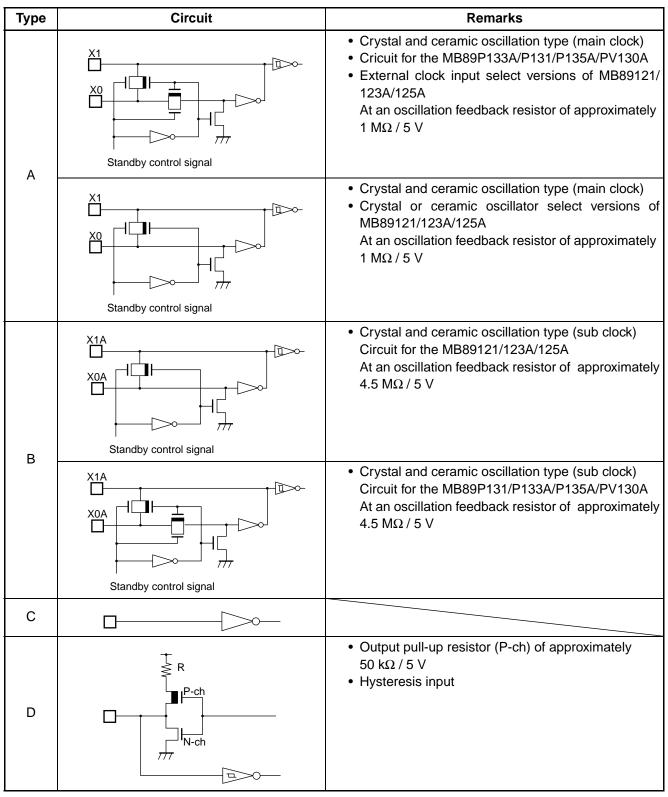

3. Mask Options

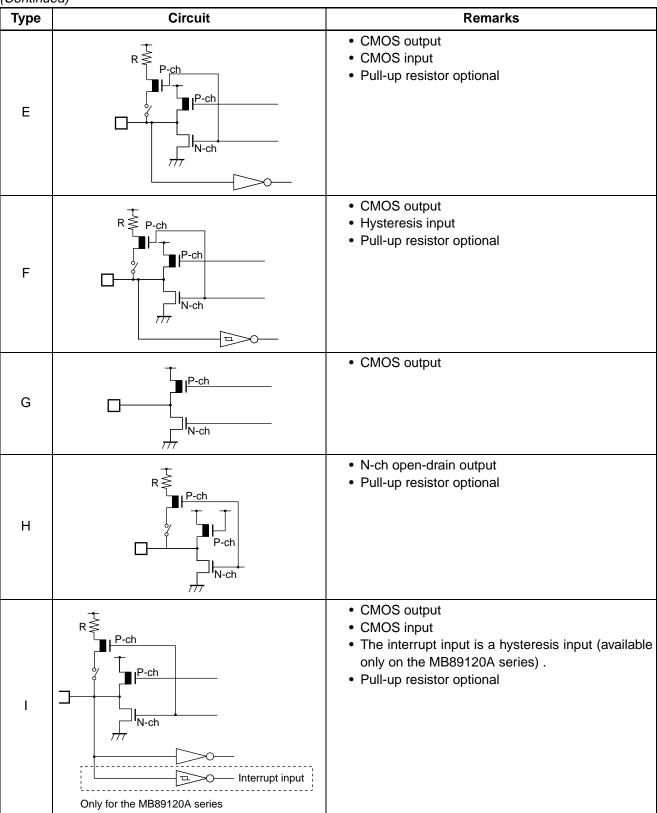
Functions that can be selected as options and how to designate these options vary with product. Before using options, check "■ MASK OPTIONS".

Take particular care on the following point:

- Pull-up resistor can't be set for P40 to P43 on the MB89P135A.
- Options are fixed on the MB89PV130A.

■ PIN ASSIGNMENT




■ PIN DESCRIPTION

Pin no.	Pin name	Circuit type	Function
5	X0	A	Main clock crystal oscillator pins (max. 4.2 MHz)
6	X1	A	ivialit clock crystal oscillator pins (max. 4.2 ivii iz)
8	X0A	В	Subclock crystal oscillator pins (for 32.768 kHz)
9	X1A	Ь	Subclock crystal oscillator pins (for 32.766 kHz)
3	MOD0	С	Operation mode select pins
4	MOD1	O	Connect these pins directly to Vss.
2	RST	D	Reset I/O pin This port is of N-ch open-drain output type with pull-up resistor and a hysteresis input type. The internal circuit is initialized by the input of "L". "L" is output from this pin by an internal reset source as optional setting.
27 to 34	P07/ (INT27) to P00/ (INT20)	I	General-purpose I/O ports On the MB89120A series, these pins also serve as external interrupt input. External interrupt input is hysteresis input.
18, 20 to 26	P17 to P10	E	General-purpose I/O ports
10 to 17	P27 to P20	G	General-purpose output-only ports
42	P30/SCK	F	General-purpose I/O port Also serves as clock I/O for the 8-bit serial I/O interface. This port is of hysteresis input type.
41	P31/SO	F	General-purpose I/O port Also serves as a serial I/O data output. This port is of hysteresis input type.
40	P32/SI	F	General-purpose I/O port Also serves as a serial I/O data input. This port is of hysteresis input type.
39	P33/EC/SCO	F	General-purpose I/O port Also serves as the external clock input for the 8-bit timer/ counter. This port is of hysteresis input type. System clock output is optional.
38	P34/TO/INT0	F	General-purpose I/O port Also serves as the overflow output and external interrupt input for the 8-bit timer/counter. This port is of hysteresis input type.
36, 37	P36/INT2, P35/INT1	F	General-purpose I/O ports Also serve as an external interrupt input. These ports are of hysteresis input type.
35	P37/BZ/ (RCO)	F	General-purpose I/O port Also serves as a buzzer output. This port is of hysteresis input type. On the MB89120A series, the pin also serves as a remote control output.

Pin no.	Pin name	Circuit type	Function
45 to 48	P43 to P40	Н	N-ch open-drain output ports
7	Vcc	_	Power supply pin
19	Vss	_	Power supply (GND) pin
1	AVcc	_	Power supply (GND) pin Use this pin at the same voltage as Vcc.
44	AVR	_	Reference voltage input pin
43	AVss	_	Power supply (GND) pin Use this pin at the same voltage as Vss.

■ I/O CIRCUIT TYPE

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than V_{CC} or lower than V_{SS} is applied to input and output pins other than medium- and high- voltage pins, or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in "■ ELECTRICAL CHARACTERISTICS" is applied between V_{CC} and V_{SS}.

When latchup occurs, power supply current increases rapidly, and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

Also, take care to prevent the analog power supply (AVcc and AVR) and analog input from exceeding the digital power supply (Vcc) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to pull-up or pull-down resistor.

3. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

4. Power Supply Voltage Fluctuations

Although operation is assured within the rated range of V_{CC} power supply voltage, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that V_{CC} ripple fluctuations (P-P value) will be less than 10% of the standard V_{CC} value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.

5. Precautions when Using an External Clock

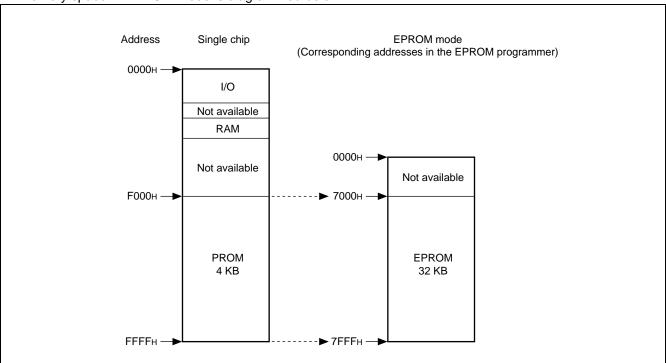
When an external clock is used, oscillation stabilization time is required even for power-on reset (optional) and release from stop mode.

6. Turning on the supply voltage (only for the MB89P135A)

When the power supply is turned on if MB89P135A is used, power on sharply up to 2.0 V within 13 clock cycles after starting of oscillation.

Further, various option may be set, if power supply up to keep this condition.

■ PROGRAMMING TO THE EPROM ON THE MB89P131


The MB89P131 is a one-time PROM version of the MB89121.

1. Features

- 4-Kbyte PROM on chip
- Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in EPROM mode is diagrammed below:

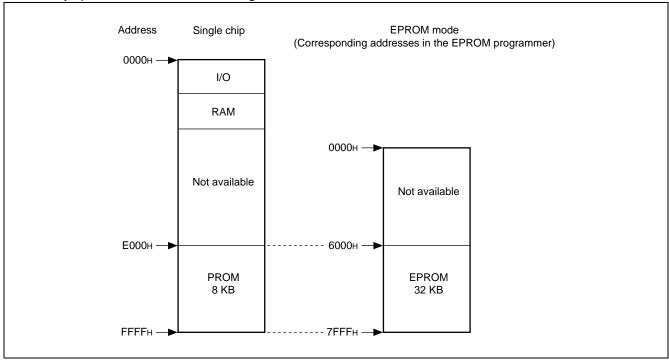
3. Programming to the EPROM

In EPROM mode the MB89P131 functions equivalent to the MBM27C256A. This allows the EPROM to be programmed with a general-purpose EPROM programmer by using the dedicated socket adapter. Note, however, that the electronic signature mode cannot be used.

• Programming procedure

- (1) Set the EPROM programmer to MBM27C256A.
- (2) Load program data into the EPROM programmer at 7000H to 7FFFH (note that addresses F000H to FFFFH while operating as a single chip correspond to 7000H to 7FFFH in EPROM mode).
- (3) Program with the EPROM programmer.

■ PROGRAMMING TO THE EPROM ON THE MB89P133A


The MB89P133A is a one-time PROM version of the MP89123A.

1. Features

- 8-Kbyte PROM on chip
- Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in EPROM mode is diagrammed below:

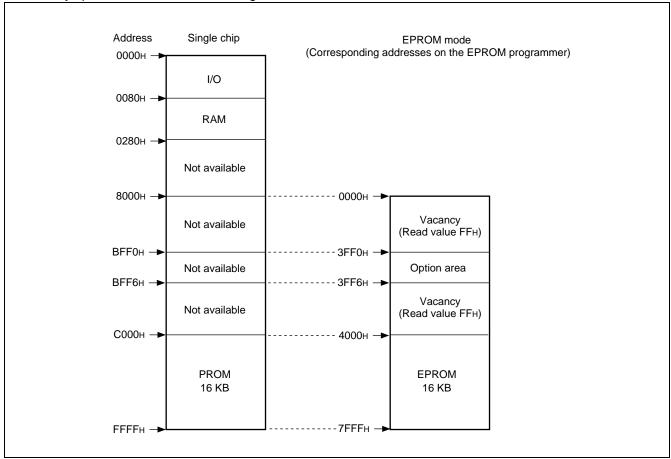
3. Programming to the EPROM

In EPROM mode the MB89P133A functions equivalent to the MBM27C256A, This allows the EPROM to be programmed with a general-purpose EPROM programmer by using the dedicated socket adapter. Note, however, that the MB89P133A cannot use the electronic signature mode.

• Programming procedure

- (1) Set the EPROM programmer to MBM27C256A.
- (2) Load program data into the EPROM programmer at 6000H to 7FFFH (note that addresses E000H to FFFFH while operating as a single chip correspond to 6000H to 7FFFH in EPROM mode).
- (3) Program with the EPROM programmer.

■ PROGRAMMING TO THE EPROM ON THE MB89P135A


The MB89P135A is an OTPROM version of the MB89123A/125A.

1. Features

- 16-Kbyte PROM on chip
- Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in EPROM mode is diagrammed below.

3. Programming to the EPROM

In EPROM mode, the MB89P135A functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter.

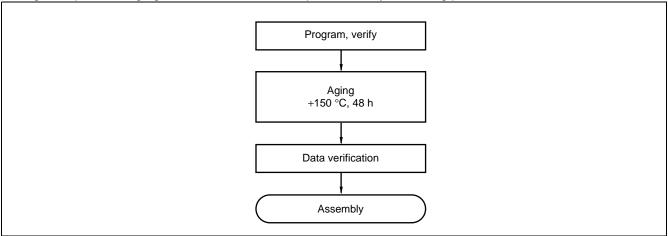
• Programming procedure

- (1) Set the EPROM programmer to the MBM27C256A.
- (2) Load program data into the EPROM programmer at 4000_H to 7FFF_H (note that addresses C000_H to FFFF_H while operating as a single chip correspond to 4000_H to 7FFF_H in EPROM mode) .
- (3) Load option data into the EPROM programmer at 3FF0_H to 3FF6_H.
- (4) Program with the EPROM programmer.

4. Setting OTPROM Options (MB89P135A Only)

The programming procedure is the same as that for the PROM. Options can be set by programming values at the addresses shown on the memory map. The relationship between bits and options is shown on the following bit map:

• OTPROM option bit map


Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Vacancy	Vacancy	Vacancy	Clock mode selection	Reset pin output	Power-on reset		lation tion time
3FF0н	Readable and writable	Readable and writable	Readable and writable	1 : Single clock 0 : Dual clock	1 : Yes 0 : No	1 : Yes 0 : No	00 : 2 ² /Fсн 01 : 2 ¹² /Fсн	10 : 2 ¹⁶ /Fсн 11 : 2 ¹⁸ /Fсн
3FF1н	P07 Pull-up 1:Yes 0:No	P06 Pull-up 1:Yes 0:No	P05 Pull-up 1 : Yes 0 : No	P04 Pull-up 1 : Yes 0 : No	P03 Pull-up 1 : Yes 0 : No	P02 Pull-up 1 : Yes 0 : No	P01 Pull-up 1 : Yes 0 : No	P00 Pull-up 1 : Yes 0 : No
3FF2н	P17 Pull-up 1:Yes 0:No	P16 Pull-up 1 : Yes 0 : No	P15 Pull-up 1 : Yes 0 : No	P14 Pull-up 1 : Yes 0 : No	P13 Pull-up 1 : Yes 0 : No	P12 Pull-up 1 : Yes 0 : No	P11 Pull-up 1 : Yes 0 : No	P10 Pull-up 1 : Yes 0 : No
3FF3 _н	P37 Pull-up 1 : Yes 0 : No	P36 Pull-up 1 : Yes 0 : No	P35 Pull-up 1 : Yes 0 : No	P34 Pull-up 1 : Yes 0 : No	P33 Pull-up 1 : Yes 0 : No	P32 Pull-up 1 : Yes 0 : No	P31 Pull-up 1 : Yes 0 : No	P30 Pull-up 1 : Yes 0 : No
3FF4н	Vacancy Readable and writable	Vacancy Readable and writable						
3FF5н	Vacancy Readable and writable	Vacancy Readable and writable						
3FF6н	Vacancy Readable and writable	Vacancy Readable and writable						

Note: Each bit is set to "1" as the initialized value, therefore the pull-up option is not selected.

■ HANDLING MB89P131/P133A/P135A

1. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure.

2. Programming Yield

Due to its nature, bit programming test can't be conducted as Fujitsu delivery test. For this reason, a programming yeild of 100% cannot be assured at all times.

3. EPROM Programmer Socket Adapter and Recommended Programmer Manufacturer

		•	
_ ,		Compatible socket adapter manufacturer and programmer n	Recommended programmer manufacturer and programmer name
Part no.	Package Sun Hayato Co., Ltd.		Minato Electronics Inc.
			1890A
MB89P131PF	QFP-48	ROM-48QF2-28DP-8L	Recommended
MB89P133APFM	QFP-48	!FP-46 ROW-46QF2-26DP-6L	_

Inquiry: Sun Hayato Co., Ltd.: TEL: (81) -3-3986-0403

FAX: (81) -3-5396-9106

Minato Electronics Inc. : TEL : USA (1) -916-348-6066

JAPAN (81) -45-591-5611

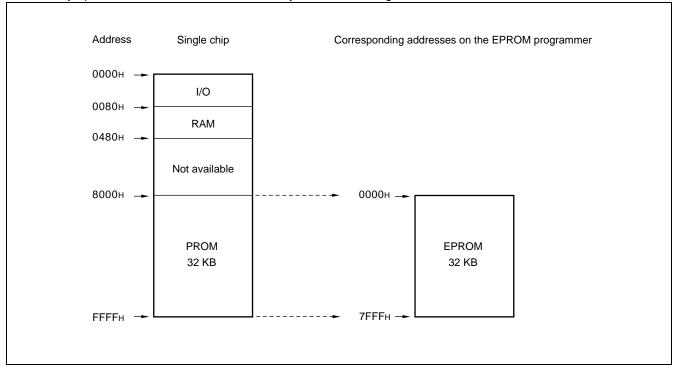
■ PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C256A-20TVM

2. Programming Socket Adapter

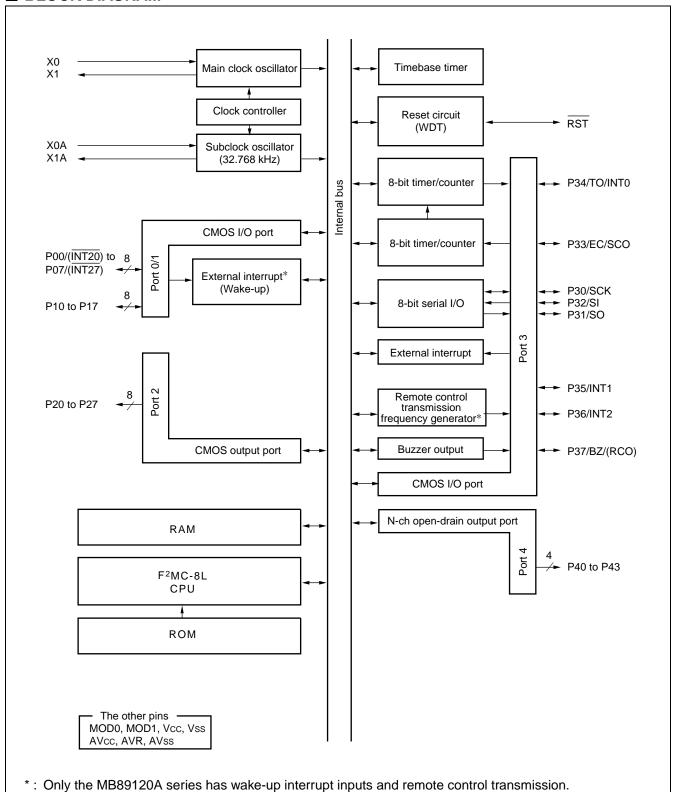
To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer : Sun Hayato Co., Ltd.) listed below :


Package	Adapter socket part number
LCC-32 (Square)	ROM-32LC-28DP-S

Inquiry: Sun Hayato Co., Ltd.: TEL (81) -3-3986-0403

FAX (81) -3-5396-9106

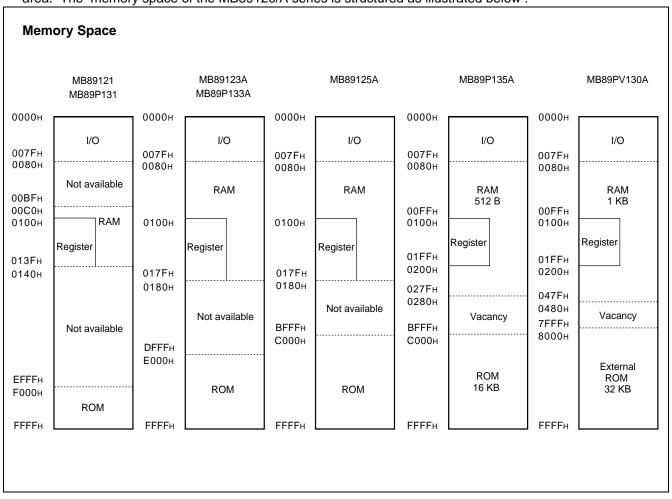
3. Memory Space


Memory space in each mode, such as 32-Kbyte PROM is diagrammed below.

4. Programming to the EPROM

- (1) Set the EPROM programmer for the MBM27C256A.
- (2) Load program data into the EPROM programmer at 0000H to 7FFFH.
- (3) Program with the EPROM programmer.

■ BLOCK DIAGRAM



Note: Parenthesized pins are available only with the MB89120A series.

■ CPU CORE

1. Memory Space

The microcontrollers of the MB89120/A series offer 64 Kbytes of memory for storing all of I/O, data, and program areas. The I/O area is allocated from the lowest address. The data area is allocated immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is allocated from exactly the opposite end of I/O area, that is, near the highest address. The tables of interrupt reset vectors and vector call instructions are allocated from the highest address with the program area. The memory space of the MB89120/A series is structured as illustrated below:

2. Registers

The F²MC-8L family has two types of registers; dedicated hardware registers and general-purpose memory registers. The following dedicated registers are provided:

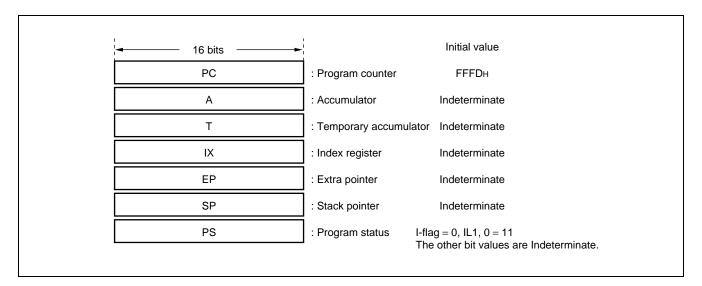
Program counter (PC): A 16-bit-long register for indicating the instruction storage positions

Accumulator (A): A 16-bit-long temporary register for arithmetic operations, etc. When the

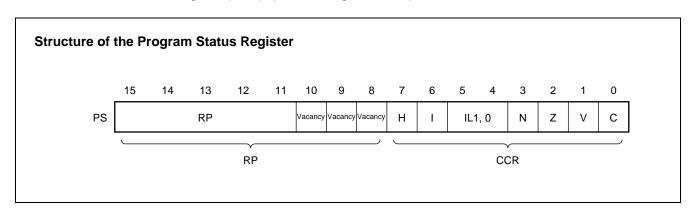
instruction is an 8-bit data processing instruction, the lower byte is used.

Temporary accumulator (T): A 16-bit-long register which is used for arithmetic operations with the accumu-

lator When the instruction is an 8-bit data processing instruction, the lower


byte is used.

Index register (IX): A 16-bit-long register for index modification


Extra pointer (EP): A 16-bit-long pointer for indicating a memory address

Stack pointer (SP): A 16-bit-long pointer for indicating a stack area

Program status (PS): A 16-bit-long register for storing a register pointer, a condition code

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR) (see the diagram below).

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data, and bits for control of CPU operations at the time of an interrupt.

H-flag: Set to "1" when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared "0" otherwise. This flag is for decimal adjustment instructions.

I-flag: Interrupt is enabled when this flag is set to "1". Interrupt is disabled when the flag is cleared to "0". Cleared to "0" at the reset.

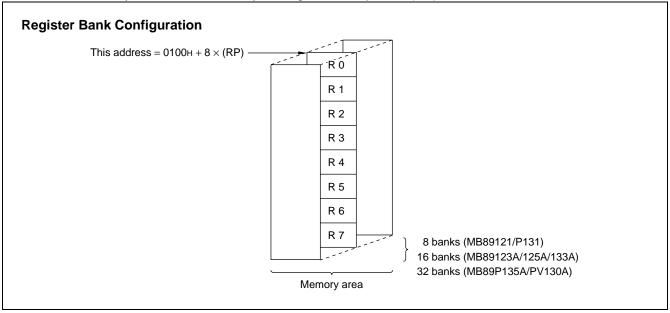
IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	IL0	Interrupt level	High-low
0	0	1	High
0	1	ı	†
1	0	2	
1	1	3	Low

N-flag: Set to "1" if the MSB becomes "1" as the result of an arithmetic operation. Cleared to "0" otherwise.

Z-flag: Set to "1" when an arithmetic operation results in 0. Cleared to "0" otherwise.

V-flag: Set to "1" if the complement on "2" overflows as a result of an arithmetic operation. Cleared to "0" if the overflow does not occur.


C-flag: Set to "1" when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to "0" otherwise. Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:

General-purpose registers: An 8-bit-long register for storing data

The general-purpose registers are of 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 8 banks can be used on the MB89121/P131, and a total of 16 banks can be used on the MB89123A/125A/P133A and a total of 32 banks can be used on the MB89P135A/PV130A.

The bank currently in use is indicated by the register bank pointer (RP) .

■ I/O MAP

Address	Read/write	Register name	Register description
00н	(R/W)	PDR0	Port 0 data register
01н	(W)	DDR0	Port 0 data direction register
02н	(R/W)	PDR1	Port 1 data register
03н	(W)	DDR1	Port 1 data direction register
04н	(R/W)	PDR2	Port 2 data register
05н			Vacancy
06н			Vacancy
07н	(R/W)	SYCC	System clock control register
08н	(R/W)	STBC	Standby control register
09н	(R/W)	WDTC	Watchdog control register
0Ан	(R/W)	TBTC	Time-base timer control register
0Вн	(R/W)	WPCR	Watch prescaler control register
0Сн	(R/W)	PDR3	Port 3 data register
0Dн	(W)	DDR3	Port 3 data direction register
0Ен	(R/W)	PDR4	Port 4 data register
0Fн	(R/W)	BZCR	Buzzer register
10н		_	Vacancy
11н			Vacancy
12н	(R/W)	SCGC	Peripheral control clock register
13н		_	Vacancy
14н	(R/W)	RCR1	Remote control transmission control register 1*
15н	(R/W)	RCR2	Remote control transmission control register 2*
16н			Vacancy
17н			Vacancy
18н	(R/W)	T2CR	Timer 2 control register
19н	(R/W)	T1CR	Timer 1 control register
1Ан	(R/W)	T2DR	Timer 2 data register
1Вн	(R/W)	T1DR	Timer 1 data register
1Сн	(R/W)	SMR1	Serial mode register
1Dн	(R/W)	SDR1	Serial data register
1Ен		•	Vacancy
1F _H			Vacancy

(Continued)

Address	Read/write	Register name	Register description
20н			Vacancy
21н			Vacancy
22н			Vacancy
23н	(R/W)	EIC1	External interrupt control register 1
24н	(R/W)	EIC2	External interrupt control register 2
25н			Vacancy
26н to 31н			Vacancy
32н	(R/W)	EIE2	External interrupt 2 enable register*
33н	(R/W)	EIF2	External interrupt 2 flag register*
34н to 7Вн			Vacancy
7Сн	(W)	ILR1	Interrupt level register 1
7Dн	(W)	ILR2	Interrupt level register 2
7Е н	(W)	ILR3	Interrupt level register 3
7 Fн		1	Vacancy

*: Only in the MB89120A series

Note: Do not use vacancies.

■ ELECTRICAL CARACTERISTICS

1. Absolute Maximum Ratings

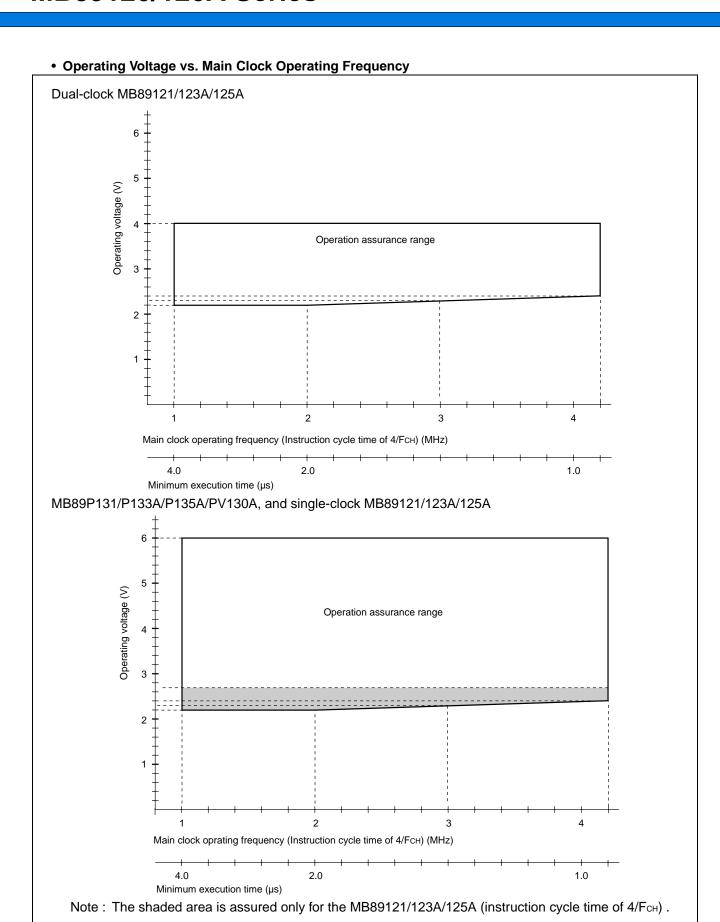
(AVss = Vss = 0.0 V)

Paramatan.	Comp. al	Va	lue	Unit	Domonico
Parameter	Symbol	Min.	Max.	Unit	Remarks
Power supply voltage	Vcc AVcc AVR	Vss - 0.3	Vss + 7.2	V	Use Vcc, AVcc , and AVR set to the same voltage.
Program voltage	V _{PP}	Vss - 0.6	Vss + 13.0	V	MOD1 pin on the MB89P131/P133A/P135A
Input voltage	Vı	Vss - 0.3	Vcc + 0.3	V	
Output voltage	Vo	Vss - 0.3	Vcc + 0.3	V	
"L" level maximum output current	lol	_	10	mA	
"L" level average output current	lolav	_	4	mA	Avarage value (operating current × operating rate)
"L" level total maximum output current	ΣΙοι	_	100	mA	
"L" level total average output current	ΣΙοιαν	_	20	mA	Avarage value (operating current × operating rate)
"H" level maximum output current	Іон	_	-10	mA	
"H" level average output current	lohav	_	-2	mA	Avarage value (operating current × operating rate)
"H" level total maximum output current	ΣІон	_	-30	mA	
"H" level total average output current	Σ lohav	_	-10	mA	Avarage value (operating current × operating rate)
Power consumption	P□	_	200	mW	
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	-55	+150	°C	

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(AVss = Vss = 0.0 V)


Parameter	Symbol	Value		Unit	Remarks
Parameter	Syllibol	Min.	Max.	Ollit	Remarks
		2.2*	6.0*	٧	Normal operation assurance range Applied to "MB89P131/P133A/P135A/PV130A, and single-clock MB89121/123A/125A*"
Power supply voltage	Vcc	2.7*	6.0*	V	Normal operation assurance range Applied to " Dual-clock MB89121/123A/125A*"
		1.5	6.0	V	Retains the RAM state in stop mode
Operating temperature	TA	-40	+85	°C	

^{* :} These values vary with the operating conditions. See " Operating Voltage vs. Main Clock Operating Frequency."

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

 $(AVcc = Vcc = +5.0 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

Donomotor	Courselle ed	D:-	Condition	1,111	Value		Unit	
Parameter	Symbol	Pin	Condition	Min.	Тур.	Max.	Unit	Remarks
	Vıн	P00 to P07, P10 to P17	_	0.7 Vcc	_	Vcc + 0.3	V	
"H" level input voltage	Vihs	RST, P30 to P37, INT20 to INT27	_	0.8 Vcc		Vcc + 0.3	V	INT20 to INT27 are available only in the MB89120A series.
	VıL	P00 to P07, P10 to P17	_	Vss - 0.3	_	0.3 Vcc	V	
"L" level input voltage	VILS	RST, P30 to P37, INT20 to INT27	_	V _{SS} - 0.3	_	0.2 Vcc	V	INT20 to INT27 are available only in the MB89120A series.
Open-drain output pin applied voltage	V _D	P40 to P43	_	Vss - 0.3	_	Vcc + 0.3	V	
"H" level output voltage	Vон	P00 to P07, P10 to P17, P20 to P27, P30 to P37	lон = −2.0 mA	2.4	_	_	V	
"L" level output voltage	Vol	P00 to P07, P10 to P17 P20 to P27, P30 to P37, P40 to P43	IoL = 1.8 mA			0.4	V	
	V _{OL2}	RST	IoL = 4.0 mA			0.6	V	
Input leakage current (Hi-z output leakage current)	lu	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P43, MOD0, MOD1	0.45 V < Vı < Vcc	_	_	±5	μΑ	Without pull-up resistor
Pull-up resistance	Rpull	P00 to P07, P10 to P17, P30 to P37, P40 to P43, RST	V _I = 0.0 V	25	50	100	kΩ	

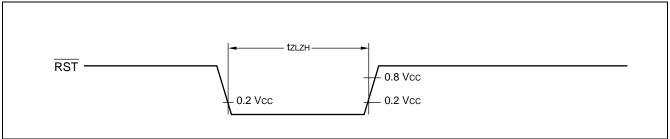
(Continued)

(AVcc = Vcc = +5.0 V, AVss = Vss = 0.0 V, T_A = -40 °C to +85 °C)

Dorometer	Cumbal	Pin	Condition	,	Value	,	Unit	Remarks
Parameter	Symbol	PIII	Condition	Min.	Тур.	Max.	Onit	Remarks
			Vcc = 5.0 V	_	4	7	mA	MB89121/ 123A/125A
Iccs Iccs IccL		$F_{CH} = 4.00 \ MHz$ $t_{inst}^{*2} = 1.0 \ \mu s$		6	10	mA	MB89P131/ P133A/ P135A	
	Iccs1		$V_{\text{CC}} = 5.0 \text{ V}$ $F_{\text{CH}} = 4.00 \text{ MHz}$ $Main sleep mode$ $t_{\text{inst}}^{*2} = 1.0 \mu\text{s}$		2	5	mA	
			Vcc = 3.0 V		50	100	μА	MB89121/ 123A/125A
	Vcc	FcL = 32.768 kHz Subclock mode		1	3	mA	MB89P131/ P133A/ P135A	
Power supply current*1	IccLs	(External clock operation)	Vcc = 3.0 V FcL = 32.768 kHz Subclock sleep mode		25	50	μА	
	Ісст		Vcc = 3.0 V FcL = 32.768 kHz • Watch mode • Main clock stop mode at dual clock system		_	15	μΑ	
	Іссн		T _A = +25 °C • Subclock stop mode • Main clock stop mode at single clock system	_	_	1	μΑ	
Input capacitance	Cin	Other than AVcc, AVss, Vcc, and Vss	f = 1 MHz	_	10	_	pF	

^{*1 :} The measurement conditions of power supply current is external clock. (Vcc = 5.0 V, Vcc = 3.0 V)

^{*2 :} For information on t_{inst}, see " (4) Instruction Cycle" in "4. AC Characteristics."


4. AC Characteristics

(1) Reset Timing

 $(Vcc = +5.0 \text{ V} \pm 10\%, \text{ AVss} = \text{Vss} = 0.0 \text{ V}, \text{ T}_A = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

Parameter	Symbol Condition		Valu	ıe	Unit	Remarks	
Parameter	Symbol	Condition	Min.	Max.	Oilit	Kemarks	
RST "L" pulse width	t zlzh	_	48 thcyl*	_	ns		

 * : the scillation cycle (1/FcH) input to the X0.

(2) Power-on Reset

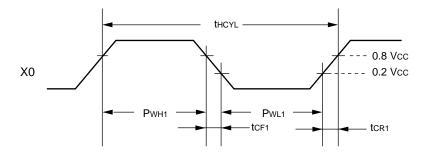

(AVss = Vss = 0.0 V, $T_A = -40$ °C to +85 °C)

Parameter	Symbol	Condition -	Valu	ne	Unit	Remarks	
	Symbol		Min.	Max.	Offic		
Power supply rising time	t R		_	50	ms	Power-on reset function only	
Power supply cut-off time	toff	_	1	_	ms	Due to repeated operations	

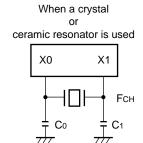
Note: Make sure that power supply rises within the oscillation stabilization time selected.

When the main clock is operating at $F_{CH} = 3$ MHz and the oscillation stabilization time select option has been set to $2^{12}/F_{CH}$, for example, the oscillation settling time is 1.4 ms and accordingly the maximum value of power supply rising time is about 1.4 ms.

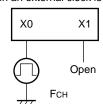
Keep in mind that rapid changes in power supply voltage may cause a power-on reset. If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.



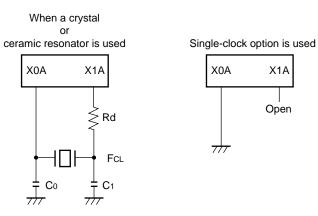
(3) Clock Timings


 $(V_{SS} = 0.0 \text{ V}, T_{A} = -40 \, ^{\circ}\text{C to} +85 \, ^{\circ}\text{C})$

Parameter	Symbol	Pin		Value		Unit	Remarks
Farameter	Symbol I iii		Min.	Тур.	Max.	Oilit	Nemarks
Clock frequency	Fcн	X0, X1	1	_	4.2	MHz	Main clock
Clock frequency	FcL	X0A, X1A		32.768	_	kHz	Subclock
Clock cycle time	t HCYL	X0, X1	238	_	1000	ns	Main clock
Clock cycle time	t LCYL	X0A, X1A	_	30.5	_	μs	Subclock
Input clock pulse width	P _{WH1} P _{WL1}	X0	72	_		ns	External clock
Input clock rising/falling time	tcr1 tcr1	X0	_		24	ns	External clock

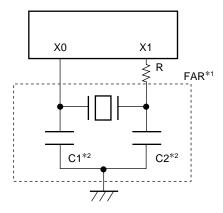

X0, X1 Timings and Conditions of Applied Voltage

Main Clock Conditions of Applied Voltage


When an external clock is used

X0A, X1A Timings and Conditions of Applied Voltage

Subclock Conditions of Applied Voltage

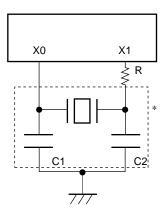

(4) Instruction Cycles

 $(Vss = 0.0 \text{ V}, T_A = -40 \, ^{\circ}\text{C to} +85 \, ^{\circ}\text{C})$

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	t inst	4/Fcн, 8/Fcн, 16/Fcн, 64/Fcн	μs	(4/FcH) t_{inst} = 1.0 μs when operating at FcH = 4 MHz
	Linst	2/FcL	μs	$t_{\text{inst}} = 61.036~\mu s$ when operating at FcL $= 32.768~\text{kHz}$

(5) Recommended Resonator Manufacturers

Sample Application of Piezoelectric Resonator (FAR Series) for Main Clock Oscillation Circuit (Only in the MB89120A Series)



*1 : FUJITSU MEDIA DEVICE LIMITED

FAR part number (built-in capacitor type)	Frequency (MHz)	Dumping resistor	Initial deviation of FAR frequency (T _A = +25 °C)	Temperature characteristics of FAR frequency (T _A =-20 °C to +60 °C)	Loading capacitors*2	
FAR-C4CC-02000-L00	2.00	1000				
1 AIX-0400-02000-200	2.00	510	±0.5%	±0.5%	Built-in	
FAR-C4□A-03580-□01	3.58		±0.5%			
FAR-C4CB-04000-M00	4.00					

Inquiry: FUJITSU MEDIA DEVICES LIMITED

Sample Application of Ceramic Resonator for Main Clock Oscillation Circuit

Mask ROM products

Resonator manufacturer*	Resonator	Frequency (MHz)	C1 (pF)	C2 (pF)	R (kΩ)
Kyocera Corporation	KBR-4.0MKS	4.00	33	33	Not required
Matsushita Electronic Components	EFOV4004B	4.00	Built-in	Built-in	1.5
	CSBF1000J	1.00	100	100	6.8
Murata Mfg. Co. Ltd.	CSTCS4.00MG800		Built-in	Built-in	Not required
Murata Mig. Co. Ltd.	CSA4.00MG040	4.00	100	100	Not required
	CST4.00MGW040		Built-in	Built-in	Not required

Inquiry: Kyocera Corporation

AVX Corporation

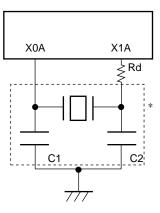
North American Sales Headquarters: TEL (803) 448-9411

AVX Limited

European Sales Headquarters: TEL (01252) 770000

• AVX/Kyocera H.K. Ltd.

Asian Sales Headquarters: TEL 363-3303 Matsushita Electronic Components Co., Ltd. • Ceramic Division: TEL 81-6-908-1101


Murata Mfg Co., Ltd.

• Murata Electronics North America, Inc. : TEL 1-404-436-1300

• Murata Europe Management GmbH : TEL 49-911-66870

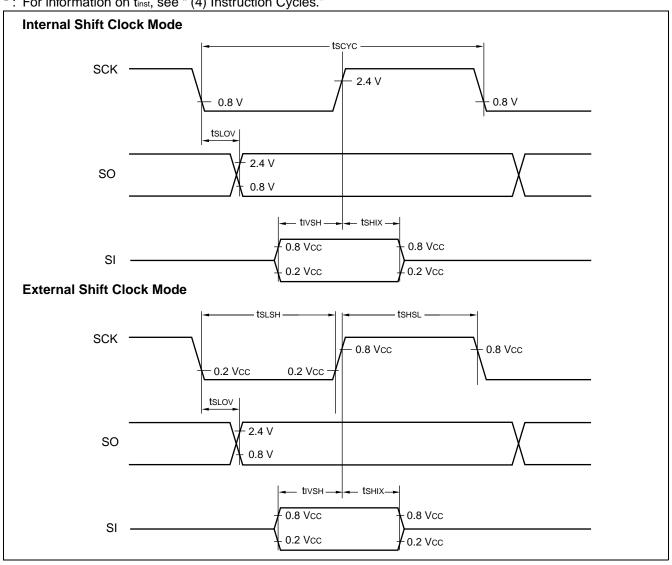
• Murata Electronics Singapore (Pte.) Ltd. : TEL 65-758-4233

Sample Application of Crystal Resonator for Subclock Oscillation Circuit

• Mask ROM product

Resonator manufacturer*	Resonator	Frequency (kHz)	C1 (pF)	C2 (pF)	Rd (k Ω)
SII	DS-VT-200	32.768	24	24	680

Inquiry: SII

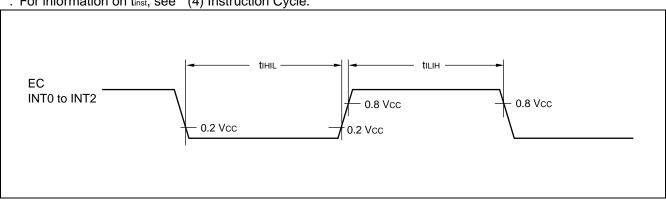

Seiko Instruments Inc. (Japan) : TEL 81-43-211-1219 Seiko Instruments U.S.A. Inc. : TEL 310-517-7770 Seiko Instruments GmbH : TEL 49-6102-297-122

(6) Serial I/O Timings

(Vcc = +5.0 V \pm 10%, AVss = Vss = 0.0 V, TA = -40 °C to +85 °C)

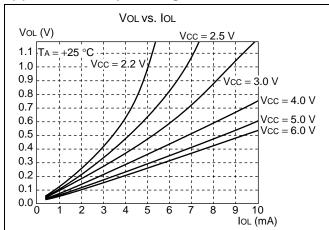
Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
raiailletei	Syllibol	Fill	Condition	Min.	Max.	Onic	Kemarks
Serial clock cycle time	t scyc	SCK		2 tinst*	_	μs	
$SCK \downarrow \to SO$ time	t slov	SCK, SO	Internal clock	-200	200	ns	
Valid SI → SCK ↑	t ıvsH	SI, SCK	operation	200	_	ns	
$SCK \uparrow \rightarrow Valid SI hold time$	t shix	SCK, SI		200	_	ns	
Serial clock "H" pulse width	t shsl	SCK		t inst*	_	μs	
Serial clock "L" pulse width	t slsh	SUK		t inst*	_	μs	
$SCK \downarrow \to SO$ time	t sLov	SCK, SO	External clock operation	0	200	ns	
Valid SI → SCK ↑	t ıvsH	SI, SCK		200	_	ns	
$SCK \uparrow \rightarrow Valid SI hold time$	t sHIX	SCK, SI		200	—	ns	

*: For information on tinst, see "(4) Instruction Cycles."

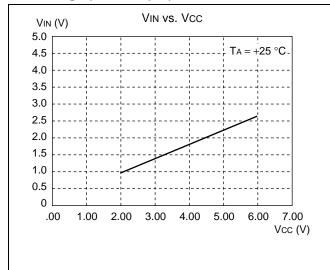


(7) Peripheral Input Timings

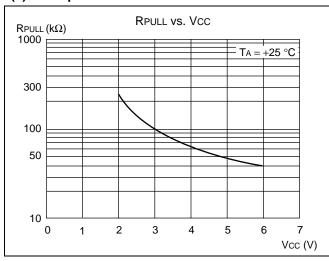
 $(Vcc = +5.0 \text{ V} \pm 10\%, \text{ AVss} = \text{Vss} = 0.0 \text{ V}, \text{ TA} = -40 \text{ }^{\circ}\text{C to } +85 \text{ }^{\circ}\text{C})$

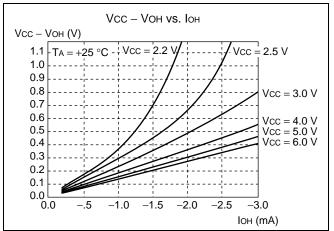

Parameter	Symbol Pin		Val	ue	Unit	Remarks
Farameter	Syllibol	Symbol		Max.	Onit	Nemarks
Peripheral input "H" pulse width	t ılıн	EC, INT0 to INT2	2 tinst*		μs	
Peripheral input "L" pulse width	t ıнıL	LO, INTO LO INTZ	2 tinst*	_	μs	

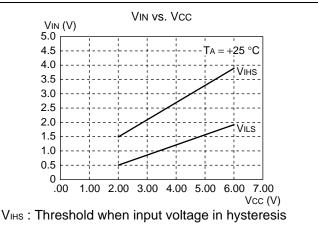
*: For information on tinst, see " (4) Instruction Cycle."



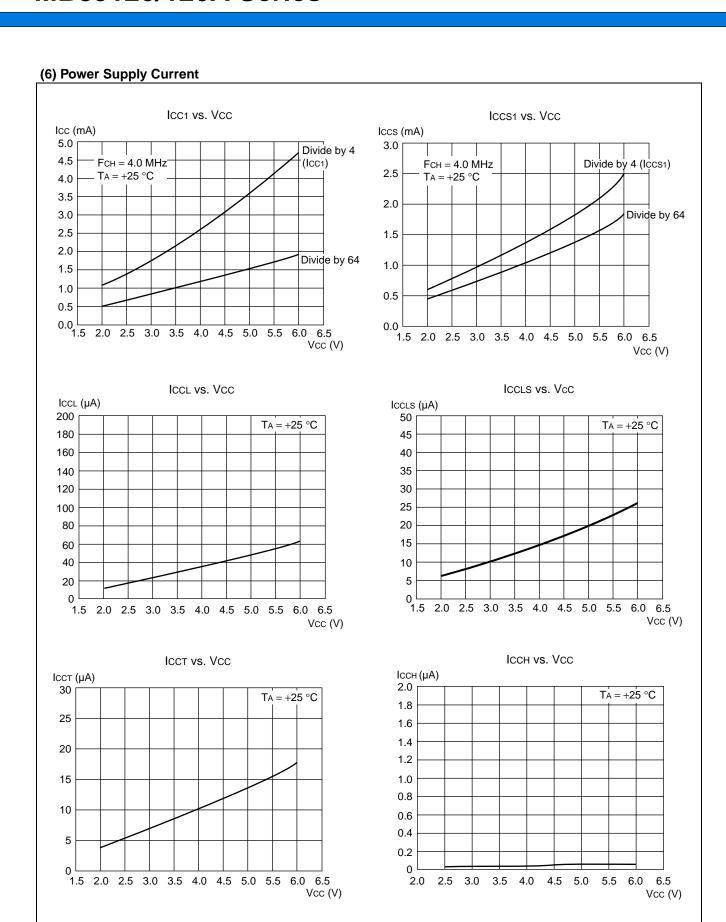
■ EXAMPLE CHARACTERISTICS


(1) "L" Level Output Voltage


(3) "H" Level Input Voltage/"L" Level Input **Voltage (CMOS Input)**


(5) Pull-up Resistance

(2) "H" Level Output Voltage



(4) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

characteristics is set to "H" level

VILS: Threshold when input voltage in hysteresis characteristics is set to "L" level

■ INSTRUCTIONS (136 INSTRUCTIONS)

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.

Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
#vct	Vector table number (3 bits)
#d8	Immediate data (8 bits)
#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
Α	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
Т	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri (8 bits, i = 0 to 7)
×	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(×)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
((×))	The address indicated by the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:

Mnemonic: Assembler notation of an instruction

~: The number of instructions #: The number of bytes Operation: Operation of an instruction

TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in

the column indicate the following:

• "-" indicates no change.

- dH is the 8 upper bits of operation description data.
- AL and AH must become the contents of AL and AH prior to the instruction executed.

• 00 becomes 00.

N, Z, V, C: An instruction of which the corresponding flag will change. If + is written in this column,

the relevant instruction will change its corresponding flag.

OP code: Code of an instruction. If an instruction is more than one code, it is written according to

the following rule:

Example: 48 to 4F \leftarrow This indicates 48, 49, ... 4F.

 Table 2
 Transfer Instructions (48 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
MOV dir,A	3	2	$(dir) \leftarrow (A)$	_	_	_		45
MOV @IX +off,A	4	2	$((IX) + off) \leftarrow (A)$	_	_	_		46
MOV ext,A	4	3	$(ext) \leftarrow (A)$	_	_	_		61
MOV @EP,A	3	1	$((EP)) \leftarrow (A)$	_	_	_		47
MOV Ri,A	3	1	$(Ri) \leftarrow (A)$	_	_	_		48 to 4F
MOV A,#d8	2	2	$(A) \leftarrow dB'$	AL	_	_	++	04
MOV A,dir	3	2	$(A) \leftarrow (dir)$	AL	_	_	++	05
MOV A,@IX +off	4	2	$(A) \leftarrow ((IX) + off)$	AL	_	_	++	06
MOV A,ext	4	3	$(A) \leftarrow (ext)$	AL	_	_	++	60
MOV A,@A	3	1	$(A) \leftarrow (A)$	AL	_	_	++	92
MOV A,@EP	3	1	$(A) \leftarrow ((EP))$	AL	_	_	++	07
MOV A,Ri	3	1	$(A) \leftarrow (Ri)$	AL	_	_	++	08 to 0F
MOV dir,#d8	4	3	(dír) ← d8	_	_	_		85
MOV @IX +off,#d8	5	3	$((IX) + off) \leftarrow d8$	_	_	_		86
MOV @EP,#d8	4	2	((EP)) ← d8	_	_	_		87
MOV Ri,#d8	4	2	$(Ri) \leftarrow d8$	_	_	_		88 to 8F
MOVW dir,A	4	2	$(dir) \leftarrow (AH), (dir + 1) \leftarrow (AL)$	_	_	_		D5
MOVW @IX +off,A	5	2	$((IX) + off) \leftarrow (AH),$	_	_	_		D6
		_	$((IX) + off + 1) \leftarrow (AL)$					20
MOVW ext,A	5	3	$(ext) \leftarrow (AH), (ext + 1) \leftarrow (AL)$	_	_	_		D4
MOVW @EP,A	4	1	$((EP)) \leftarrow (AH), (EP) + 1) \leftarrow (AL)$	_	_	_		D7
MOVW EPA	2	1	$(EP) \leftarrow (A)$	_	_	_		E3
MOVW A,#d16	3	3	$(A) \leftarrow d16$	AL	АН	dH		E4
MOVW A,dir	4	2	$(AH) \leftarrow (dir), (AL) \leftarrow (dir + 1)$	AL	AH	dH		C5
MOVW A,@IX +off	5	2	$(AH) \leftarrow (IX) + off),$	AL	AH	dH		C6
WOVW A, SIX FOII	3	_	$(AL) \leftarrow ((IX) + OII),$ $(AL) \leftarrow ((IX) + off + 1)$	_	AH	uii		Co
MOVW A,ext	5	3	$(AL) \leftarrow ((1X) + 011 + 1)$ $(AH) \leftarrow (ext), (AL) \leftarrow (ext + 1)$	AL	АН	dH	++	C4
MOVW A,@A	4	1	$(AH) \leftarrow (AL), (AL) \leftarrow (AL) \leftarrow (AL)$	AL	AH	dH		93
MOVW A,@EP	4	1	$(AH) \leftarrow (A), (AE) \leftarrow (A) + 1$ $(AH) \leftarrow ((EP)), (AL) \leftarrow ((EP) + 1)$	AL	AH	dH	++	C7
MOVW A, GEP	2	1	$(AII) \leftarrow ((EF)), (AL) \leftarrow ((EF) + I)$ $(A) \leftarrow (EP)$	AL	AII	dH	++	F3
MOVW EP,#d16	3	3	(A) ← (EF) (EP) ← d16		_	u -		E7
MOVW IX,A	2	1		_	_	_		E2
MOVW A,IX	2	1	$ \begin{array}{l} (IX) \leftarrow (A) \\ (A) \leftarrow (IX) \end{array} $	_	_	dH		F2
	2	1		_				E1
MOVW SP,A MOVW A,SP	2		$(SP) \leftarrow (A)$	_	_	- -		F1
MOV @A,T	3	1	$(A) \leftarrow (SP)$	_	_	dH		
MOV @A,T		1	$((A)) \leftarrow (T)$	_	_	_		82
•	4	1	$((A)) \leftarrow (TH), ((A) + 1) \leftarrow (TL)$	_	_	_		83
MOVW IX,#d16	3	3	$(IX) \leftarrow d16$	_	_	-11.1		E6
MOVW A,PS	2	1	$(A) \leftarrow (PS)$	_	_	dH		70 74
MOVW PS,A	2	1	(PS) ← (A)	_	_	_	++++	71 55
MOVW SP,#d16	3	3	(SP) ← d16	_	_			E5
SWAP	2	1	$(AH) \leftrightarrow (AL)$	_	_	AL		10
SETB dir: b	4	2	(dir): b ← 1	_	_	_		A8 to AF
CLRB dir: b	4	2	(dir): $b \leftarrow 0$	_	_	_		A0 to A7
XCH A,T	2	1	$(AL) \leftrightarrow (TL)$	AL				42
XCHW A,T	3	1	$(A) \leftrightarrow (T)$	AL	AH	dH		43
XCHW A,EP	3	1	$(A) \leftrightarrow (EP)$	_	_	dH		F7
XCHW A,IX	3	1	$(A) \leftrightarrow (IX)$	_	_	dH		F6
XCHW A,SP	3	1	$(A) \leftrightarrow (SP)$	_	_	dH		F5
MOVW A,PC	2	1	(A) ← (PC)	_	-	dH		F0

Note: During byte transfer to A, $T \leftarrow A$ is restricted to low bytes.

Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of F²MC-8 family)

 Table 3
 Arithmetic Operation Instructions (62 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
ADDC A,Ri	3	1	$(A) \leftarrow (A) + (Ri) + C$		_	_	++++	28 to 2F
ADDC A,#d8	2	2	$(A) \leftarrow (A) + d8 + C$	_	_	_	++++	24
ADDC A,dir	3	2	$(A) \leftarrow (A) + (dir) + C$	_	_	_	++++	25
ADDC A,@IX +off	4	2	$(A) \leftarrow (A) + ((IX) + off) + C$	_	_	_	++++	26
ADDC A,@EP	3	1	$(A) \leftarrow (A) + ((EP)) + C$	_	_	_	++++	27
ADDCW A	3	1	$(A) \leftarrow (A) + (T) + C$	_	_	dΗ	++++	23
ADDC A	2	1	$(AL) \leftarrow (AL) + (TL) + C$	_	_	_	++++	22
SUBC A,Ri	3	1	$(A) \leftarrow (A) - (Ri) - C$	_	_	_	++++	38 to 3F
SUBC A,#d8	2	2	$(A) \leftarrow (A) - d8 - C$	_	_	_	++++	34
SUBC A,dir	3	2	$(A) \leftarrow (A) - (dir) - C$	_	_	_	++++	35
SUBC A,@IX +off	4	2	$(A) \leftarrow (A) - ((IX) + off) - C$	_	_	_	++++	36
SUBC A,@EP	3	1	$(A) \leftarrow (A) - ((EP)) - C$	_	_	_	++++	37
SUBCW A	3	1	$(A) \leftarrow (T) - (A) - C$	_	_	dΗ	++++	33
SUBC A	2	1	$(AL) \leftarrow (TL) - (AL) - C$	_	_	_	++++	32
INC Ri	4	1	(Ri) ← (Ri) + 1	_	_	_	+++-	C8 to CF
INCW EP	3	1	(EP) ← (EP) + 1	_	_	_		C3
INCW IX	3	1	$(IX) \leftarrow (IX) + 1$	_	_	_		C2
INCW A	3	1	$(A) \leftarrow (A) + 1$	_	_	dΗ	++	C0
DEC Ri	4	1	$(Ri) \leftarrow (Ri) - 1$	_	_	_	+++-	D8 to DF
DECW EP	3	1	(EP) ← (EP) – 1	_	_	_		D3
DECW IX	3	1	$(iX) \leftarrow (iX) - 1$	_	_	_		D2
DECW A	3	1	$(A) \leftarrow (A) - 1$	_	_	dH	++	D0
MULU A	19	1	$(A) \leftarrow (AL) \times (TL)$	_	_	dΗ		01
DIVU A	21	1	$(A) \leftarrow (T) / (AL), MOD \rightarrow (T)$	dL	00	00		11
ANDW A	3	1	$(A) \leftarrow (A) \wedge (T)$	_	_	dH	++R-	63
ORW A	3	1	$(A) \leftarrow (A) \lor (T)$	_	_	dH	+ + R -	73
XORW A	3	1	$(A) \leftarrow (A) \forall (T)$	_	_	dH	++R-	53
CMP A	2	1	`´ (TĹ) – (ÁL)	_	_	_	++++	12
CMPW A	3	1	(T) – (A)	_	_	_	++++	13
RORC A	2	1	\rightarrow C \rightarrow A \rightarrow	-	_	_	++-+	03
ROLC A	2	1		-	_	_	++-+	02
CMP A,#d8	2	2	(A) - d8	_	_	_	++++	14
CMP A,dir	3	2	(A) – (dir)	_	_	_	++++	15
CMP A,@EP	3	1	(A) – ((EP))	_	_	_	++++	17
CMP A,@IX +off	4	2	(A) - ((IX) + off)	_	_	_	++++	16
CMP A,Ri	3	1	(A) – (Ri)	_	_	_	++++	18 to 1F
DAA	2	1	Decimal adjust for addition	_	_	_	++++	84
DAS	2	1	Decimal adjust for subtraction	_	_	_	++++	94
XOR A	2	1	$(A) \leftarrow (AL) \ \forall \ (TL)$	_	_	_	++R-	52
XOR A,#d8	2	2	(A) ← (AL) ∀ d8	_	_	_	++R-	54
XOR A,dir	3	2	$(A) \leftarrow (AL) \ \forall \ (dir)$	_	_	-	+ + R –	55
XOR A,@EP	3	1	$(A) \leftarrow (AL) \ \forall \ (\ (EP) \)$	_	_	-	+ + R –	57
XOR A,@IX +off	4	2	$(A) \leftarrow (AL) \ \forall \ (\ (IX) + off)$	_	_	_	++R-	56
XOR A,Ri	3	1	$(A) \leftarrow (AL) \ \forall \ (Ri)$	_	_	-	+ + R –	58 to 5F
AND A	2	1	$(A) \leftarrow (AL) \land (TL)$	_	_	_	+ + R -	62
AND A,#d8	2	2	$(A) \leftarrow (AL) \land d8$	_	_	_	+ + R -	64
AND A,dir	3	2	$(A) \leftarrow (AL) \land (dir)$	_	_	_	+ + R –	65

(Continued)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(A) \leftarrow (AL) \land ((EP))$	_	_	-	+ + R -	67
AND A,@IX +off	4	2	$(A) \leftarrow (AL) \land ((IX) + off)$	_	_	_	+ + R -	66
AND A,Ri	3	1	$(A) \leftarrow (AL) \land (Ri)$	_	_	_	+ + R -	68 to 6F
OR A	2	1	$(A) \leftarrow (AL) \lor (TL)$	_	_	_	+ + R -	72
OR A,#d8	2	2	$(A) \leftarrow (AL) \lor d8$	_	_	_	+ + R -	74
OR A,dir	3	2	$(A) \leftarrow (AL) \lor (dir)$	_	_	_	+ + R -	75
OR A,@EP	3	1	$(A) \leftarrow (AL) \lor ((EP))$	_	_	_	+ + R –	77
OR A,@IX +off	4	2	$(A) \leftarrow (AL) \lor ((IX) + off)$	_	_	_	+ + R -	76
OR A,Ri	3	1	$(A) \leftarrow (AL) \lor (Ri)$	_	_	_	+ + R -	78 to 7F
CMP dir,#d8	5	3	(dir) – d8	_	_	_	++++	95
CMP @EP,#d8	4	2	((EP)) – d8	_	_	_	++++	97
CMP @IX +off,#d8	5	3	((IX) + off) - d8	_	_	_	++++	96
CMP Ri,#d8	4	2	(Ri) – d8	_	_	_	++++	98 to 9F
INCW SP	3	1	(SP) ← (SP) + 1	_	_	_		C1
DECW SP	3	1	(SP) ← (SP) – 1	Ī	-	ı		D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
BZ/BEQ rel	3	2	If Z = 1 then PC ← PC + rel	_	_	_		FD
BNZ/BNE rel	3	2	If $Z = 0$ then $PC \leftarrow PC + rel$	_	_	_		FC
BC/BLO rel	3	2	If C = 1 then PC ← PC + rel	_	_	_		F9
BNC/BHS rel	3	2	If C = 0 then PC ← PC + rel	_	_	_		F8
BN rel	3	2	If N = 1 then PC ← PC + rel	_	_	_		FB
BP rel	3	2	If N = 0 then PC ← PC + rel	_	_	_		FA
BLT rel	3	2	If $V \forall N = 1$ then $PC \leftarrow PC + rel$	_	_	_		FF
BGE rel	3	2	If $V \forall N = 0$ then $PC \leftarrow PC + rel$	_	_	_		FE
BBC dir: b,rel	5	3	If (dir: b) = 0 then $PC \leftarrow PC + rel$	_	_	_	-+	B0 to B7
BBS dir: b,rel	5	3	If $(dir: b) = 1$ then PC \leftarrow PC + rel	_	_	_	-+	B8 to BF
JMP @A	2	1	$(PC) \leftarrow (A)$	_	_	_		E0
JMP ext	3	3	(PC) ← ext	_	_	_		21
CALLV #vct	6	1	Vector call	_	_	_		E8 to EF
CALL ext	6	3	Subroutine call	_	_	_		31
XCHW A,PC	3	1	$(PC) \leftarrow (A),(A) \leftarrow (PC) + 1$	_	_	dΗ		F4
RET	4	1	Return from subrountine	_	_	_		20
RETI	6	1	Return form interrupt	_	_	_	Restore	30

Table 5 Other Instructions (9 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
PUSHW A	4	1		_	_	_		40
POPW A	4	1		_	_	dH		50
PUSHW IX	4	1		_	_	_		41
POPW IX	4	1		_	_	_		51
NOP	1	1		_	_	_		00
CLRC	1	1		_	_	_	R	81
SETC	1	1		_	_	_	S	91
CLRI	1	1		_	_	_		80
SETI	1	1		_	_	_		90

■ INSTRUCTION MAP

INSI	RUC	HON	WAP													
ш	MOVW A,PC	MOVW A,SP	MOVW A,IX	MOVW A,EP	XCHW A,PC	XCHW A,SP	XCHW A,IX	XCHW A,EP	BNC rel	BC rel	BP rel	BN rel	BNZ rel	BZ rel	BGE rel	BLT rel
ш	@ A	MOWW N	MOVW N	MOWW N	MOVW X A,#d16	MOVW X SP,#d16	MOVW X	MOVW X EP#d16	CALLV B	CALLV B	CALLV B	CALLV B	CALLV B	CALLV B	CALLV B	CALLV B
	A JMP				Σ	2	Σ	٧								
۵	DECW	DECW SP	DECW	DECW	MOVW ext,A	MOVW dir,A	MOVW @IX+d,A	MOVW @EP,A	DEC R0	DEC R1	DEC R2	DEC R3	DEC R4	DEC R5	DEC R6	DEC R7
U	INCW A	INCW SP	NCW X	INCW	MOVW A,ext	MOVW A,dir	MOVW A,@IX +d	MOVW A,@EP	INC R0	INC R1	INC R2	INC R3	INC R4	INC R5	INC R6	INC R7
m	BBC I	BBC I dir: 1,rel	BBC I	BBC I	BBC I	BBC I	BBC I	BBC I	BBS dir: 0,rel	BBS linel	BBS li	BBS lin: 3,rel	BBS lin: 4,rel	BBS lin: 5,rel	BBS lin: 6,rel	BBS dir: 7,rel
⋖	CLRB dir: 0	CLRB dir: 1	CLRB dir: 2	CLRB dir: 3	CLRB dir: 4	CLRB dir: 5	CLRB dir: 6	CLRB dir: 7	SETB dir: 0	SETB dir: 1	SETB dir: 2	SETB dir: 3	SETB dir: 4	SETB dir: 5	SETB dir: 6	SETB dir: 7
6	SETI	SETC	MOV A,@A	MOVW A,@A	DAS	CMP dir,#d8	CMP @IX +d,#d8	CMP @EP,#d8	CMP R0,#d8	CMP R1,#d8	CMP R2,#d8	CMP R3,#d8	CMP R4,#d8	CMP R5,#d8	CMP R6,#d8	CMP R7,#d8
∞	CLRI	CLRC	MOV @A,T	MOVW @A,T	DAA	MOV dir,#d8	MOV @IX+d,#d8	MOV @EP,#d8	MOV R0,#d8	MOV R1,#d8	MOV R2,#d8	MOV R3,#d8	MOV R4,#d8	MOV R5,#d8	MOV R6,#d8	MOV R7,#d8
7	MOVW A,PS	MOVW PS,A	OR A	ORW A	OR A,#d8	OR A,dir	OR A,@IX +d	OR A,@EP	OR A,R0	OR A,R1	OR A,R2	OR A,R3	OR A,R4	OR A,R5	OR A,R6	OR A,R7
9	MOV A,ext	MOV ext,A	AND	ANDW A	AND A,#d8	AND A,dir	AND A,@IX +d	AND A,@EP	AND A,R0	AND A,R1	AND A,R2	AND A,R3	AND A,R4	AND A,R5	AND A,R6	AND A,R7
22	POPW A	POPW IX	XOR A	XORW A	XOR A,#d8	XOR A,dir	XOR A,@IX +d	XOR A,@EP	XOR A,R0	XOR A,R1	XOR A,R2	XOR A,R3	XOR A,R4	XOR A,R5	XOR A,R6	XOR A,R7
4	PUSHW A	PUSHW IX	XCH A, T	XCHW A, T		MOV dir,A	MOV @IX +d,A	MOV @EP,A	MOV R0,A	MOV R1,A	MOV R2,A	MOV R3,A	MOV R4,A	MOV R5,A	MOV R6,A	MOV R7,A
က	RETI	CALL addr16	SUBC A	SUBCW	SUBC A,#d8	SUBC A,dir	SUBC A,@IX +d	SUBC A,@EP	SUBC A,R0	SUBC A,R1	SUBC A,R2	SUBC A,R3	SUBC A,R4	SUBC A,R5	SUBC A,R6	SUBC A,R7
2	RET	JMP addr16	ADDC A	ADDCW A	ADDC A,#d8	ADDC A,dir	ADDC A,@IX +d	ADDC A,@EP	ADDC A,R0	ADDC A,R1	ADDC A,R2	ADDC A,R3	ADDC A,R4	ADDC A,R5	ADDC A,R6	ADDC A,R7
-	SWAP	DIVU	CMP	CMPW	CMP A,#d8	CMP A,dir	CMP A,@IX +d	CMP A,@EP	CMP A,R0	CMP A,R1	CMP A,R2	CMP A,R3	CMP A,R4	CMP A,R5	CMP A,R6	CMP A,R7
0	MOP	MULU A	ROLC A	RORC A	MOV A,#d8	MOV A,dir	MOV A,@IX+d	MOV A,@EP	MOV A,R0	MOV A,R1	MOV A,R2	MOV A,R3	MOV A,R4	MOV A,R5	MOV A,R6	MOV A,R7
H /	0	1	2	3	4	5	9	7	8	6	∢	В	ပ	٥	ш	F
_	-		-				-			-	-	-	-	-	-	

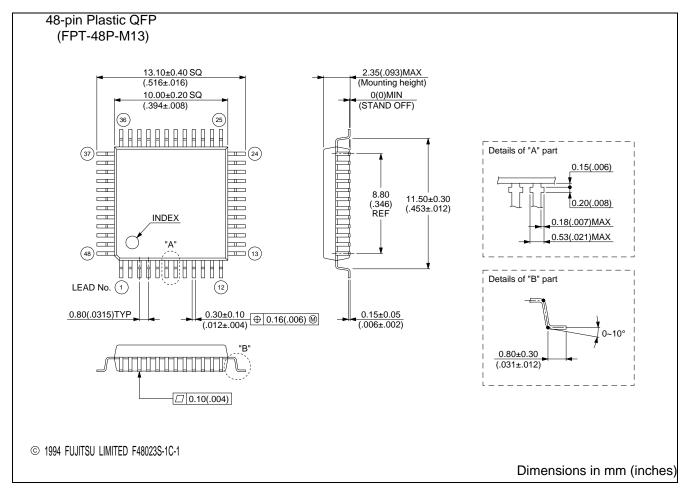
■ MASK OPTIONS

No.	Part number	MB89121 MB89123A MB89125A	MB89P131 MB89P133A	MB89P135A	MB89PV130A	
	Specifying procedure	Specify who		Set with EPROM programmer	Specification impossible	
1	Pull-up resistors	Selectable by pin	Selectable by pin (P40 to P43 mus a pull-up resistor.	t be set to without	All pins fixed to no pull-up resis- tor optional	
2	Power-on reset Power-on reset provided No power-on reset	Selectable	Selectable	Selectable	With power-on reset	
3	Selection of oscillation stabilization wait time The oscillation stabilization wait time initial value is selectable from 4 types given below. Coscillation stabilization 2²/FcH Coscillation stabilization 2¹²/FcH	Selectable	Selectable	lectable Selectable		
4	Reset pin output Reset output provided No reset output	Selectable	Selectable	Selectable	With reset out- put	
5	Clock mode selection Single-clock mode Dual-clock mode	Selectable	Selectable	Selectable	Dual-clock mode	
6	Main clock oscillation circuit type • External clock input • Oscillation resonator	Selectable		Not required*1		
7	Peripheral control clock output function*2 • Not used • Used	Selectable		Not required*3		

^{*1 :} Both external clock and oscillation resonator is usable on the one-time product.

^{*2 : &}quot;Used" must be selected when P33 (39 pin) is used as SCO for the peripheral control clock output.

^{*3 :} The peripheral control clock function can be used only by software.


■ MB89P131/P133A STANDARD OPTIONS

No.	Product option	Product option MB89P131-101			
1	Pull-up resistor	Not provided for any port	Not provided for any port		
2	Power-on reset	Provided	Provided		
3	Selection of oscillation stabilization time	2 : Oscillation stabilization 2 ¹⁶ /F _{CH}	2 : Oscillation stabilization 2 ¹⁶ /Fc		
4	Reset pin output	Provided	Provided		
5	Clock mode selection	Dual-clock mode	Dual-clock mode		

■ ORDERING INFORMATION

Part number	Package	Remarks
MB89121PFM MB89123APFM MB89125APFM	48-pin Plastic QFP	
MB89P131PFM-101 MB89P133APFM-201 MB89P135APFM	(FPT-48P-M13)	
MB89PV130ACF-ES	48-pin Ceramic MQFP (MQP-48C-P01)	

■ PACKAGE DIMENSION

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices Shinjuku Dai-Ichi Seimei Bldg. 7-1.

Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0721, Japan

Tel: +81-3-5322-3347 Fax: +81-3-5322-3386 http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A.

Tel: +1-408-922-9000 Fax: +1-408-922-9179

Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST)

Tel: +1-800-866-8608 Fax: +1-408-922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH

Am Siebenstein 6-10,

D-63303 Dreieich-Buchschlag,

Germany

Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://www.fujitsu-fme.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. #05-08, 151 Lorong Chuan,

New Tech Park, Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220

http://www.fmap.com.sg/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu, Seoul 135-280

Korea

Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

F0008

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.