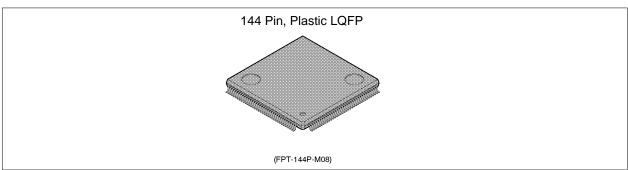
ASSP Communication Control

CMOS Wide SCSI-II Protocol Controller With PCI Interface

MB86605

■ DESCRIPTION

The MB86605 is an intelligent SCSI Protocol Controller (SPC) which complies with ANSI (SCSI-2) standard and integrates a PCI local bus interface function. The specification of SCSI controller block is based on the MB86603 which is a wide SCSI-2 protocol controller with addition of some enhancements such as integration of PCI interface, enlarged "user program memory" (2 KBytes) and improvement of internal operation speed and performance. The MB86605 is capable of transferring up to 20 Mbyte/sec at the wide high speed synchronous mode. As for the SCSI bus pins, a totem pole type single-ended driver/receiver is incorporated in the device so that it can drive the SCSI bus directly. Furthermore, the MB86605 is capable of connecting the external differential type driver/receiver.


The SCSI bus sequence is controlled by commands issued from a host system. So, it supports sequential commands that perform the phase-to-phase sequences to reduce the system overhead of sequence operations.

As another key feature to reduce the system overhead, the device has a 2 Kbytes user program memory to store user program codes. Due to this, all the SCSI bus sequences including the data transfer can be performed automatically.

As the system interface block, it incorporates a 32-bit PCI local bus interface which makes MB86605 an ideal "on-board PCI-SCSI controller" as well as a "host adapter" for PCs, servers and work stations. It also supports 16-bit separate MPU and DMA buses. For the on-chip PCI bus interface, the MB86605 also incorporates a 32-bit DMA controller that is capable of supporting the scatter-gather function so that the data transfers can be controlled by both user program and the host system.

The device is fabricated by the advanced CMOS process and is housed in an 144-pin plastic Low profile shrink Quad Flat Package (Suffix: –PMT).

■ PACKAGE

■ FEATURES

SCSI Protocol Controller Block:

- · Operable as initiator and target
- · WIDE and FAST data transfer
 - Synchronous transfer (max. 20 Mbytes/s: Up to 32 offset values can be set.)
 - Asynchronous transfer (max. 10 Mbytes/s)
- 64-byte FIFO register for data phase
- Two types (send-only and receive-only) of 32-byte data buffers for message, command, and status phases (MCS Buffers)
- On-chip totem pole type SCSI single-ended driver/receiver
- Supports external SCSI differential driver/receiver
- On-chip memory to store transfer parameters for each ID (up to 15 connected devices)
- On-chip 16-bit transfer block counter and 24-bit transfer byte counter
 - Maximum Transfer Byte : 1 Tbyte at fixed length data transfer
 - : 6 Mbyte at variable length data transfer
- Supports various control commands:
 - Sequential Commands : can perform phase-to-phase sequential operations (functions only when
 - issuing from a system side.)
 - Discrete Commands : can perform any desired sequence to program in the user program memory
 - Data Transfer Commands : can program the transfer data length at the user program operation.
- On-chip direct control register for SCAM (SCSI Configured AutoMatically)
- Supports Multi Selection/Reselection Responses
 - Selection and Reselection responses can be done to plural IDs.
- · On-chip 2 Kbyte User Program Memory
 - Two Modes: 2 Kbyte × 1 bank and 1 Kbyte × 2 banks

(While 1 Kbyte \times 2 banks are selected, host system can access another bank even if the user program is executing.)

- Access to User program : Burst transfer via I/O access port
 - : Direct access to 2 Kbyte user program memory (only for PCI bus I/F mode)
- User Selectable Interrupt Report
 - Unnecessary interrupt reports can be disabled depending on user's applications to reduce a system ISR overhead.
- Two automatic receive modes
 - Initiator: can automatically receive information for new phase to which target switched
 - Target : can automatically receive attention condition generated by initiator
- · Automatic selection/reselection
 - For command issues : automatically performs to receive MSG/CMD to the selection/reselection

request from partner device

- For user program operation: pauses the program currently executed and automatically jumps to the

specified selection/reselection routine in response to the selection/reselection

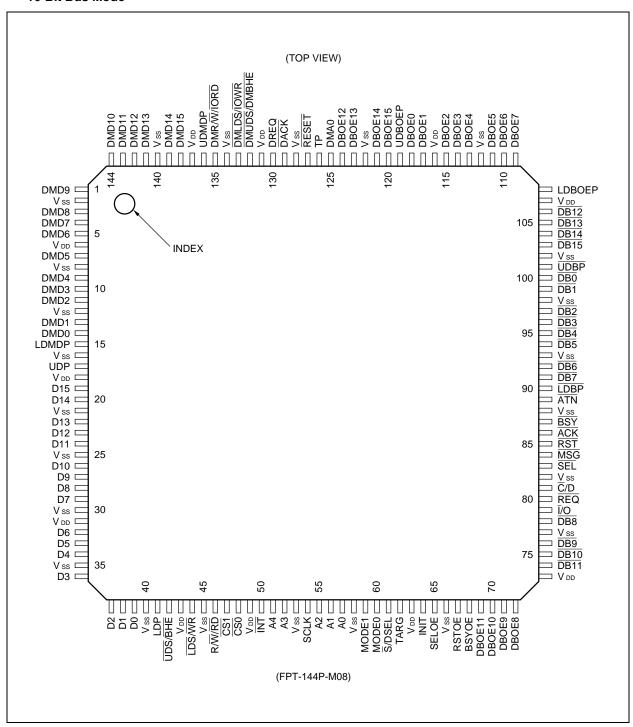
request from partner device.

- Operation Clock
 - System Clock: Max. 40 MHz
 - Internal Processor Operating Clock: Max. 20 MHz

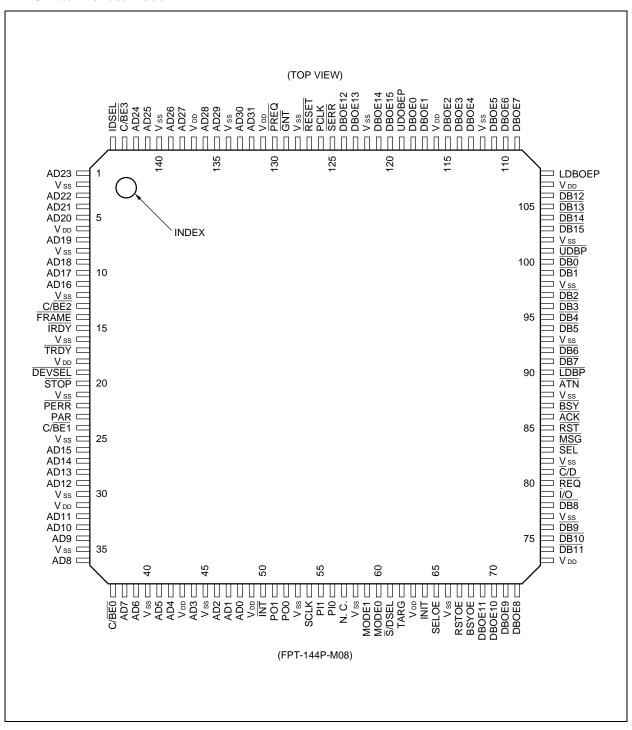
(Continued)

(Continued)

System Interface Block:


- Separate MPU and DMA buses called 16-bit Bus Mode
 - Directly connectable to 68-series or 80-series MPU
 - Two transfer modes (Program transfer and DMA transfer (slave mode))
- PCI Bus Interface Mode
 - Directly connectable to the 32-bit PCI local bus.
 - On-chip 32-bit DMAC for PCI bus master
 - Supports the PERR&SERR function
 - Supports the INTA# Interrupt Signals
 - Max. 64 bytes burst transfer
 - PCI system clock: Max. 33 MHz
- Data Bus Parity and Address Bus Parity (only for PCI bus interface mode) generation/check function

Others


- Compact 144-Pin Plastic Low Profile Shrink Quad Flat Package (LQFP, Package Suffix: -PMT)
- Pin compatible with MB86606
- Supply Voltage: 5 V ±5%

■ PIN ASSIGNMENT

• 16-Bit Bus Mode

PCI Bus Interface Mode

■ PIN LIST

Pin		16-bit bus mode			PCI bus I/F mode		Pin		16-bit bus mode				PCI bus I/F mode	
no.	Mod	e 0 (68 I/F)	Mod	e 1 (80 I/F)	Mod	e 3 (PCI I/F)	no.	Mod	e 0 (68 l/F)	Mod	e 1 (80 I/F)	Mod	Mode 3 (PCI I/F)	
	I/O	Pin name	I/O	Pin name	I/O	Pin name		I/O	Pin name	I/O	Pin name	I/O	Pin name	
1	I/O	DMD9			I/O	AD23	31	_	V _{DD}					
2	_	Vss					32	I/O	D6				AD11	
3	I/O	DMD8	DMD8			AD22	33	I/O	D5			I/O	AD10	
4	I/O	DMD7			I/O	AD21	34	I/O	D4			I/O	AD9	
5	I/O	DMD6			I/O	AD20	35	_	Vss					
6	_	V _{DD}					36	I/O	D3			I/O	AD8	
7	I/O	DMD5			I/O	AD19	37	I/O	D2			I/O	C/BE0	
8		Vss					38	I/O	D1			I/O	AD7	
9	I/O	DMD4			I/O	AD18	39	I/O	D0			I/O	AD6	
10	I/O	DMD3			I/O	AD17	40	_	Vss				1	
11	I/O	DMD2			I/O	AD16	41	I/O	LDP			I/O	AD5	
12	_	Vss					42	I	UDS	I	BHE	I/O	AD4	
13	I/O	DMD1			I/O	C/BE2	43	_	V _{DD}	•	!		1	
14	I/O	DMD0			I/O	FRAME	44	I	LDS	ı	WR	I/O	AD3	
15	I/O	LDMDP			I/O	IRDY	45	_	Vss		1		1	
16		Vss					46	I	R/W	I	RD	I/O	AD2	
17	I/O	UDP			I/O	TRDY	47	I	CS1			I/O	AD1	
18	_	V _{DD}					48	I	CS0			I/O	AD0	
19	I/O	D15			I/O	DEVSEL	49	_	V _{DD}					
20	I/O	D14			I/O	STOP	50	0/ OD	INT					
21		Vss				1	51	I	A4			0	PO1	
22	I/O	D13			I/O	PERR	52	I	A3			0	PO0	
23	I/O	D12			I/O	PAR	53	_	Vss				1	
24	I/O	D11			I/O	C/BE1	54	I	SCLK					
25	_	Vss				1	55	IU	A2			IU	PI1	
26	I/O	D10			I/O	AD15	56	IU	A1			IU	PI0	
27	I/O	D9		I/O	AD14	57	IU	A0			IU	N.C.		
28	I/O	D8			I/O	AD13	58	_	Vss			1	1	
29	I/O	D7			I/O	AD12	59	ı	MODE1					
30	_	Vss				1	60	ı	MODE2					

(Continued)

Pin		16-bit bu	us mo	ode	F I/	PCI bus F mode	Pin	16-bit bus mode				PCI bus I/F mode	
no.	Mod	e 0 (68 I/F)	Mod	Mode 1 (80 I/F) Mode 3 (P		I/F) Mode 3 (PCI I/F)		Mod	e 0 (68 I/F) Mode 1 (80 I/F)			Mod	e 3 (PCI I/F)
	I/O	Pin name	I/O	Pin name	I/O	Pin name		I/O	Pin name	I/O	Pin name	I/O	Pin name
61	I	S/DSEL					91	I/O	DB7				
62	0	TARG					92	I/O	DB6				
63	_	V _{DD}					93	_	Vss				
64	0	INIT					94	I/O	DB5				
65	0	SELOE					95	I/O	DB4				
66		Vss					96	I/O	DB3				
67	0	RSTOE					97	I/O	DB2				
68	0	BSYOE					98	_	Vss				
69	0	DBOE11					99	I/O	DB1				
70	0	DBOE10					100	I/O	DB0				
71	0	DBOE9					101	I/O	UDBP				
72	0	DBOE8					102	_	Vss				
73	_	V _{DD}					103	I/O	DB15				
74	I/O	DB11					104	I/O	DB14				
75	I/O	DB10					105	I/O	DB13				
76	I/O	DB9					106	I/O	DB12				
77	_	Vss					107	_	V _{DD}				
78	I/O	DB8					108	0	LDBOEP				
79	I/O	T/O					109	0	DBOE7				
80	I/O	REQ					110	0	DBOE6				
81	I/O	C/D					111	0	DBOE5				
82	_	Vss					112		Vss				
83	I/O	SEL					113	0	DBOE4				
84	I/O	MSG					114	0	DBOE3				
85	I/O	RST					115	0	DBOE2				
86	I/O	ACK					116	_	V _{DD}				
87	I/O	BSY					117	0	DBOE1				
88	_	Vss					118	0	DBOE0				
89	I/O	ATN					119	0	UDBOEP				
90	I/O	LDBP					120	0	DBOE15				

(Continued)

(Continued)

Continued													
Pin	16-bit bus mode					PCI bus I/F mode		16-bit bus mode				PCI bus I/F mode	
no.			e 1 (80 I/F)	Mode 3 (PCI I/F)		no.	Mode 0 (68 I/F)		Mode 1 (80 I/F)		Mode 3 (PCI I/F)		
	I/O	Pin name	I/O	Pin name	I/O	Pin name		I/O	Pin name	I/O	Pin name	I/O	Pin name
121	0	DBOE14					133	I	DMLDS	I	IOWR	I/O	AD30
122	_	Vss					134	_	Vss		•		·
123	0	DBOE13						I	DMR/W	I	IORD	I/O	AD29
124	0	DBOE12					136	I/O	UDMDP			I/O	AD28
125	I	DMA0	DMA0 OD SERR				137	_	V _{DD}				
126	I	TP			I	PCLK	138	I/O	DMD15			I/O	AD27
127	I	RESET			•	•	139	I/O	DMD14			I/O	AD26
128	_	Vss					140	_	Vss				
129	I	DACK			I	GNT	141	I/O	DMD13	DMD13			AD25
130	0	DREQ			0	PREQ	142	I/O	DMD12		I/O	AD24	
131	_	V _{DD}					143	I/O	DMD11		I/O	C/BE3	
132	Į	DMUDS	I	DMBHE	I/O	AD31	144	I/O	DMD10			I	IDSEL

I : Input pin O : Output pin

I/O: Input/Output pin
IU: Input pin with pull-up resistor
OD: Open-drain output pin

■ PIN DESCRIPTION

1. SCSI Interface

Pin no.	Pin name	I/O	Function
84, 81 89, 79	MSG, C/D ATN, I/O	I/O	These are the SCSI control signal input and output pins. They can be connected directly to a single-ended SCSI connector. Either open-drain or totem pole output can be selected.
80, 86	REQ, ACK	I/O	These are the SCSI control signal input and output pins. They can be connected directly to a single-ended SCSI connector. The output buffer is the totem pole type.
68 65 67	BSYOE SELOE RSTOE	0	These are used for output control of SCSI control signals. They should be used as control signals for the external differential driver/receiver circuit.
87 83 85	BSY SEL RST	I/O	These are the SCSI control signal input and output pins. They can be connected directly to a single-ended SCSI connector. The output buffer is the open-drain type.
120, 121, 123, 124, 69 to 72 119 109 to 111, 113 to 115, 117, 118 108	DBOE15 to DBOE8 UDBOEP DBOE7 to DBOE0 LDBOEP	0	These are used for output control of SCSI data bus signals. They should be used as control signals for the external differential driver/receiver circuit.
103 to 106, 74 to 76, 78 101 91, 92, 94 to 97, 99, 100 90	DB15 to DB8 UDBP DB7 to DB0 LDBP	I/O	These are used to input and output SCSI data bus signals. They can be connected directly to a single-ended SCSI connector. Either open-drain or totem pole output buffer can be selected.
64 62	INIT TARG	0	These are used to output signals indicating the chip operating status. They should be used as control signals for the external differential driver/receiver circuit.
61	S/DSEL	I	This is used to input signal for selecting the chip operation mode. Single-ended: Input 0 Differential-ended: Input 1 While 0 is input to this pin, all the SCSI control signals, data bus output control signals, INIT, and TARG signals are fixed with L level.
54	SCLK	I	This pin is used for a system clock input for SCSI protocol controller block. (Max. 40 MHz)

2. 16-Bit Bus Mode - MPU Interface

Pin no.	Pin name	I/O	Function
48	CS0	I	This is used to input signals for the MPU to select the SPC as the I/O device.
47	CS1	I	This is used to input select signals (external circuit select signals) for the MPU to input and output the DMA data bus data via the SPC.
19, 20, 22 to 24, 26 to 28 17	D15 to D8 UDP	I/O	Upper byte and parity of data bus When CS0 input valid: I/O ports for internal registers in SPC When CS1 input valid: I/O ports for DMA bus data
29, 32 to 34, 36 to 39 41	D7 to D0 LDP	I/O	Lower byte and parity of data bus When CS0 input valid: I/O ports for internal registers in SPC When CS1 input valid: I/O ports for DMA bus data

(Continued)

(Continued)

Pin no.	Pin name	I/O	Function
51, 52, 55 to 57	A4 to A0	IU	These are used to input addresses for selecting the Internal registers.
46	RD (R/W)	I	In 80-series mode: This is used to input the read strobe signal for reading data from the SPC to the MPU. In 68-series mode: This is used to input the R/W control signal for reading and writing data from the MPU to the SPC.
44	WR (LDS)	I	In 80-series mode: This is used to input the write strobe signal for writing data from the MPU to the SPC. In 68-series mode: This is used to input the LDS signal output by the MPU when the lower byte of the data bus is valid.
42	BHE (UDS)	I	In 80-series mode: This is used to input the BHE signal output by the MPU when the upper byte of the data bus is valid. In 68-series mode: This is used to input the UDS signal output by the MPU when the upper byte of the data bus is valid.

3. 16-Bit Bus Mode - DMA Interface

Pin no.	Pin name	I/O	Function			
130	DREQ	0	This is used to output DMA transfer request signals to the DMAC. DMA data transfer between the SPC and memory is requested.			
129	DACK	I	This is used to input DMA-enabling signals from the DMAC. When the DMA enabling signal is active, DMA reading and writin are executed.			
138, 139, 141 to 144, 1, 3 136	DMD15 to 8 UDMDP	I/O	Upper byte and parity of DMA data bus When CS1 input valid: The MPU data bus is directly connected. When 80-series mode: The 2nd data is input/output. When 68-series mode: The 1st data is input/output.			
4, 5, 7, 9 to 11, 13, 14 15	DMD7 to 0 LDMDP	I/O	Lower byte and parity of DMA data bus When CS1 input valid: The MPU data bus is directly connected. When 80-series mode: The 1st data is input/output. When 68-series mode: The 2nd data is input/output.			
135	IORD (DMR/W)	I	In 80-series mode: This is used to input the IORD or RD signal for outputting data from the SPC to the DMA bus. In 68-series mode: This is used to input the R/W control signal for outputting and inputting data from the DMAC to the SPC.			
133	TOWR (DMLDS)	I	In 80-series mode: This is used to input the IOWR or WR signal for inputting data from the DMA bus to the SPC. In 68-series mode: This is used to input the LDS signal output by the DMAC when the lower byte of the DMA data bus is valid.			

(Continued)

(Continued)

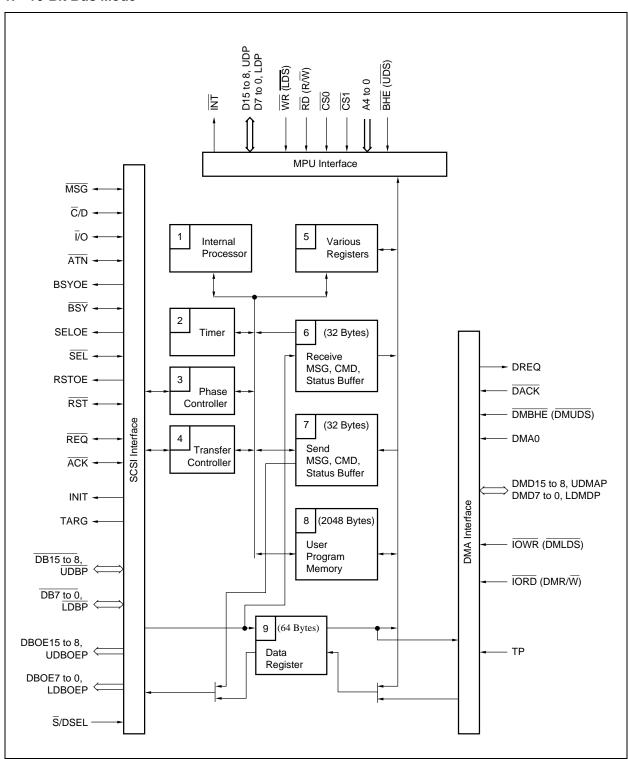
Pin no.	Pin name	I/O	Function
132	DMBHE (DMUDS)	I	In 80-series mode: This is used to input the BHE signal output by the DMAC when the upper byte of the DMA data bus is valid. In 68-series mode: This is used to input the UDS signal output by the DMAC when the upper byte of the DMA data bus is valid.
125	DMA0	I	This is used to input the address data A0 signal output by the DMAC in the 80-series mode. In 68-series mode: Connect to power supply pin (VDD).
126	TP (Transfer permission)	I	This is used to input DMA-transfer-enabling signals. When the TP signal is active, the SPC performs the DMA transfer. When this signal becomes inactive during DMA transfer, the transfer stops temporarily at the block boundary.

4. PCI Bus Interface Mode

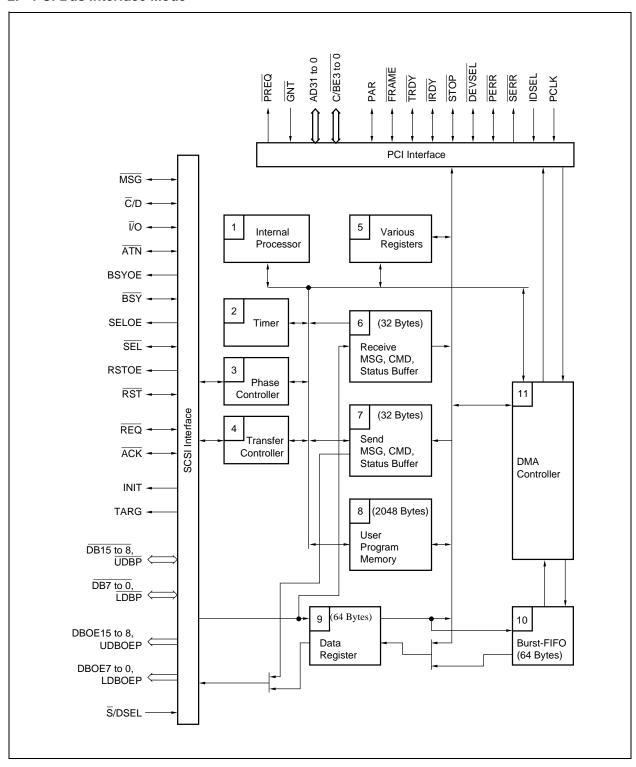
Pin no.	Pin name	I/O	Function
130	PREQ	0	This pin is used to request the bus arbiter for use of the bus.
129	GNT	I	This is the response signal input pin to the $\overline{\text{REQ}}$ signal from the bus arbiter.
132, 133, 135, 136, 138, 139, 141, 142, 1, 3 to 5, 7, 9 to 11, 26 to 29, 32 to 34, 36, 38, 39, 41, 42, 44, 46 to 48	AD31 to AD0	I/O	PCI 32-bit address and data multiplexed pins
143, 13, 24, 37	C/BE3 to C/BE0	I/O	Bus command and Byte Enable signals multiplexed pins.
23	PAR	I/O	This is an even parity signal pin for the AD31 to AD0 and C/BE3 to C/BE0 signals. This PAR signal becomes valid after one clock.
14	FRAME	I/O	This is a frame signal pin that indicates data are transferring on the bus.
17	TRDY	I/O	Data Ready signal of Target side.
15	IRDY	I/O	Data Ready signal of Initiator (Bus master) side.
20	STOP	I/O	This is a stop request signal to stop the data transfer from target to master.
19	DEVSEL	I/O	Device select pin. While the device is a target, this pin outputs the select signal that indicates the self device is selected. While the device is a master this pin functions as an input pin to indicate that a device on the bus is selected.
144	IDSEL		This is a chip select signal that indicates the configuration access.
126	PCLK	I	PCI bus clock input pin. The maximum clock frequency is 33 MHz.
22	PERR	I/O	Data parity error input and output pin.
125	SERR	OD	Address parity error output pin.

5. Other Signals

Pin no.	Pin name	I/O			Function				
127	RESET	0	This pin is us	ed to input s	ystem reset signals.				
59, 60	MODE1, MODE0	I	These pins ar listed in the ta		etting the device operation mode as				
			MODE1 MODE0 Operation Mode						
			0	0	16-bit bus mode (68 series mode)				
			0	1	16-bit bus mode (80 series mode)				
			1	0	Reserved				
			1	1	PCI bus interface mode				
50	INT	O/ OD	Interrupt output pin. Either totem pole or open-drain output buffer can be selected. This pin has an internal pull-up resistor.						
6, 18, 31, 43, 49, 63, 73, 107, 116, 131, 137	V _{DD}		Power supply pin						
2, 8, 12, 16, 21, 25, 30, 35, 40, 45, 53, 58, 66, 77, 82, 88, 93, 98, 102, 112, 122, 128, 134, 140	Vss	_	Ground pin						
51, 52	PO1, PO0		General purpose output ports that can control the external active SCSI bus terminator etc. Initial signal level on each pin is "L". Those pins are available only for PCI bus interface mode.						
55, 56	PI1, PI0	IU	General purpomode.	ose input po	rts. Available only for PCI bus interface				
57	N.C.	_			d pins. These pins exist on the only PCI rnally pulled-up, and do not connect to				


I : Input pin

O: Output pin I/O: Input and Output pin OD : Open-drain output pin


IU: Input pin with pull-up resistor

■ BLOCK DIAGRAM

1. 16-Bit Bus Mode

2. PCI Bus Interface Mode

BLOCK FUNCTIONS

1. Internal Processor

This processor provides the sequence control between each phase.

2. Timer

This timer manages the time specified by SCSI and the following time:

- · REQ/ACK assertion time for data at asynchronous transfer
- · Selection/reselection retry time
- Selection/reselection timeout time
- REQ/ACK timeout time during transfer

Asynchronous transfer (target) : Time required for initiator to assert ACK signal after asserting REQ

Asynchronous transfer (initiator) : Time required for target to negate REQ signal after asserting ACK signal

Synchronous transfer (target only): Time required for target to receive ACK signal for setting offset value to

0 from initiator after sending REQ signal

3. Phase Controller

This controller controls the arbitration, selection/reselection, data-in/out, command, status, and message-in/out phases executed on the SCSI bus.

Transfer Controller

This controller controls the information (data, command, status, message) transfer phases executed on the SCSI

There are two types of transfer for executing the information transfer phases.

- · Asynchronous transfer: Control by interlocking REQ and ACK signals
- Synchronous transfer: Control with maximum of 32-byte offset value in data-in/out phase

Depending on the data migration, there are the following two modes.

- Program transfer: Performed via MPU interface using data registers
- Performed via DMA interface using DREQ and DACK pins • DMA transfer:

At synchronous transfer, the transfer parameters (transfer mode, minimum cycle period of REQ or ACK signal sent from SPC in synchronous transfer, and maximum value between REQ and ACK signals in synchronous transfer) can be saved for each ID and are automatically set when the data phase is started. The transfer byte count is determined by block length × number of blocks.

5. Various Registers

· Command register

This register specifies each command with an 8-bit code.

When using the user program, specify "1" at the Bit 7. The lower 7 bits (Bit6 to Bit0) are invalid.

· Nexus status register

This register indicates the chip's operating condition, the nexused partner's ID, and data register status.

SCSI control signal status register

This register indicates the status of SCSI control signals.

Interrupt status register

This register indicates the interrupt status with an 8-bit code.

Command step register

This register indicates the execution status of each command with an 8-bit step code.

Error causes can be analyzed by referencing the interrupt status register and this register.

• Group 6/7 command length setting register

This register sets the group 6/7 command length not defined in the SCSI standard.

Setting this register determines the group 6/7 command length.

6. Receive MSG, CMD, Status Buffer (Receive MCS Buffer)

This is a 32-byte receive-only information buffer that holds the information for the message, command, and status received from the SCSI bus.

7. Send MSG, CMD, Status Buffer (Send MCS Buffer)

This is a 32-byte send-only information buffer that holds the information for the message, command, and status sent on the SCSI bus.

8. User Program Memory

This is a 2048-byte program memory that stores programmable commands. It can consist of 1024-byte \times 2 banks or 2048-byte \times 1 bank.

9. Data Register

This is a 64-byte FIFO data register that holds data in the data phase executed on the SCSI bus.

10. Burst FIFO

64-byte FIFO type data buffer to perform burst transfer during the PCI bus interface mode. The device has total 128-byte FIFO with Data Register and Burst FIFO in the PCI bus interface mode.

11. DMA Controller

This is a 32-bit DMA Controller that performs data transfer. This DMAC is a bus master during the PCI bus interface mode.

■ ABSOLUTE MAXIMUM RATINGS (See WARNING)

Parameter	Symbol	Rat	Unit		
Farameter	Syllibol	Min.	Max.	Oilit	
Power supply voltage*	V _{DD}	Vss - 0.5	6.0	V	
Input voltage*	Vı	Vss - 0.5	V _{DD} + 0.5	V	
Output voltage*	Vo	Vss - 0.5	V _{DD} + 0.5	V	
Operating ambient temperature	Тор	-25	+85	°C	
Storage temperature	Tstg	-40	+125	°C	

^{*:} The voltages are based on Vss (= 0 V)

WARNING: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

■ RECOMMENDED OPERATING CONDITIONS

Davamatar	C. mah al		- Unit			
Parameter	Symbol	Min.	Тур.	Max.	Offic	
Power supply voltage*	V _{DD}	4.75	5.0	5.25	V	
SCSI clock input frequency	fscsi	20.0	_	40.0	MHz	
PCI clock input frequency	f _{PCI}		_	33.0	MHz	
Storage temperature	Та	0	_	+70	°C	

^{*:} The voltages are based on Vss (= 0 V)

Note: The recommended operating conditions are the recommended values for assuring normal logic operation of the LSI. Requirements in electrical characteristics (DC and AC characteristics) are assured within the range of the recommended operating conditions.

■ ELECTRICAL CHARACTERISTICS

1. DC Characteristics

 $(V_{DD} = +5 V \pm 5\%, V_{SS} = 0 V, Ta = 0^{\circ}C \text{ to } +70^{\circ}C)$

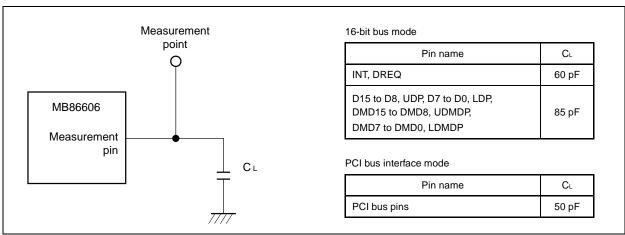
		Darameter			Symbol	Condition	Va	lue	Unit
		Parameter			Symbol	Condition	Min.	Max.	Unit
	CCCI 20	ina			Vih	_	2.0	_	V
	SCSI p	oiris			VIL	_	_	0.8	V
Input	SCLK	pins			VIH	_	2.4	_	V
voltage *1	SDSE	_ pins			VIL	_	_	0.8	V
	Othors	-i			VIH	_	2.0	_	V
	Other p	DITIS			VIL	_	_	0.8	V
SCSI-pin i	nput hys	teresis *1			V _{HW}	_	0.3	_	V
			REQ, A	ער	Vон	Iон = -7.0 mA	2.0	3.24	V
			KEQ, A	JK.	Vol	IoL = +48.0 mA	_	0.5	V
		In single-	RST, BS	SY, SEL	Vol	IoL = +48.0 mA	_	0.5	V
	SCSI	end mode		RST, BSY, SEL Non-3ST.	Vol	IoL = +48.0 mA	_	0.5	V
	pins		Others	3ST	Vон	Iон = −7.0 mA	2.0	3.24	V
Output				331	Vol	IoL = +48.0 mA	_	0.5	V
voltage *1		In differentia	al modo		Vон	Iон = −7.0 mA	2.0	3.24	V
		in dinerenda	ai iiiou e		Vol	IoL = +3.2 mA	_	0.4	V
	DCI hu	s interface pi	ne		Vон	Iон = −2.0 mA	4.2	_	V
	1 Ci bu	s interiace pi	113		Vol	IoL = +6.0 mA	_	0.55	V
	Other p	nine			Vон	Iон = −2.0 mA	4.2	_	V
	Outer	лн о			Vol	IoL = +3.2 mA		0.4	V
Input leaka	age curr	ent			lu	VIN = 0 to VDD	-10	+10	μΑ
Input/outp	ut leaka	ge current *2			ILOZ	$V_{IN} = 0$ to V_{DD}	-10	+10	μΑ
Supply cui	rrent				IDD	_	_	130	mA

³ST.: Three-state mode

^{*1:} SCSI pins are; UDBP, DB15 to DB8, LDBP, DB7 to DB0, BSY, SEL, RST, ATN, REQ, ACK, MSG, C/D and I/O. (Total 27 pins)

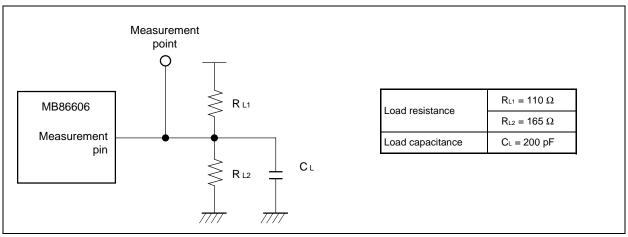
^{*2:} Leak current when the three-state output pin output and the bidirectional bus pin output are in a high impedance state.

2. Input/Output Pin Capacitance


$(V_{DD} = V_{IN} = 0 \text{ V. } f = 1 \text{ MHz. } Ta = +2$	25°C)	Ta = +	MHz.	= 1	V. 1	$I_{IN} = 0$	$(V_{DD} = V_{DD})$	(
--	-------	--------	------	-----	------	--------------	---------------------	---

Parameter	Din namo	Pin name Symbol		Value		
raiametei	Fili lialile	Symbol	Min.	Max.	Unit	
Input nin conscitones	SCLK, PCLK (TP)	C	_	12	pF	
Input pin capacitance	Other input pins	_	8	pF		
Output pin capacitance		Соит	_	10	pF	
	Non-SCSI pins	Cı/o	_	10	pF	
Input/output pin capacitance	SCSI pins	C 1/0	_	25	pF	

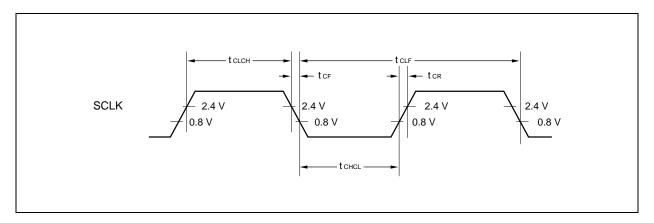
3. Load Conditions for Measurement of AC Characteristics


(1) Non-SCSI pins

$$(V_{DD} = +5 V \pm 5\%, V_{SS} = 0 V, Ta = 0^{\circ}C \text{ to } +70^{\circ}C)$$

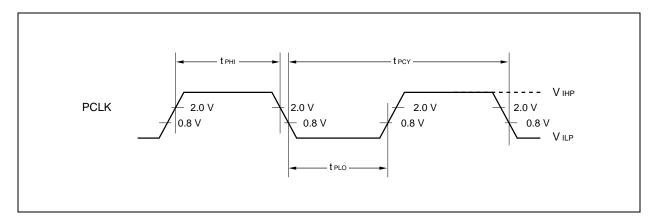
(2) SCSI pins

$$(V_{DD} = +5 V \pm 5\%, V_{SS} = 0 V, Ta = 0^{\circ}C \text{ to } +70^{\circ}C)$$

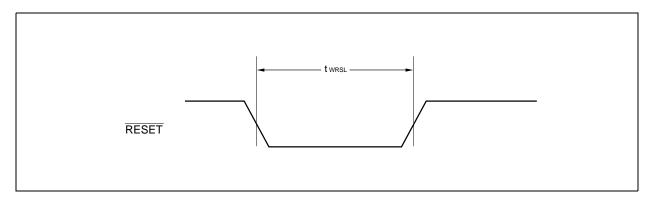

4. AC Characteristics

(1) System clock

• SCSI clock (SCLK pin)

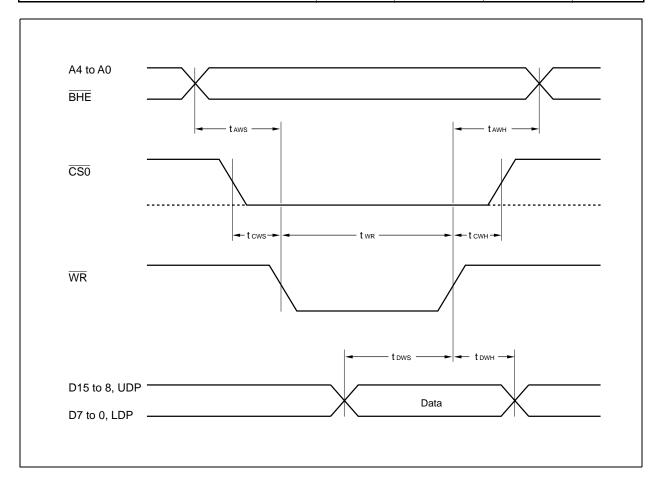

Parameter	Symbol		Unit		
Farameter	Symbol	Min.	Тур.	Max.	Oilit
Clock period	tclf	25.0	_	50.0	ns
Clock pulse width (Low)	t clch	10.0	_	_	ns
Clock pulse width (High)	t chcL	10.0	_	_	ns
Clock pulse rise time	t cr	_	_	5.0	ns
Clock pulse fall time	t CF	_	_	5.0	ns

Note: When the internal operating clock frequency is the same as the input clock frequency, (when using the device in divide-by-1 mode), the clock pulse width for L and H levels must have minimum 20.0 ns or longer. (i.e. When the clock conversion register value is 0Bh (address: 10h in the initial setting registers) and input clock frequency = 20 MHz.)

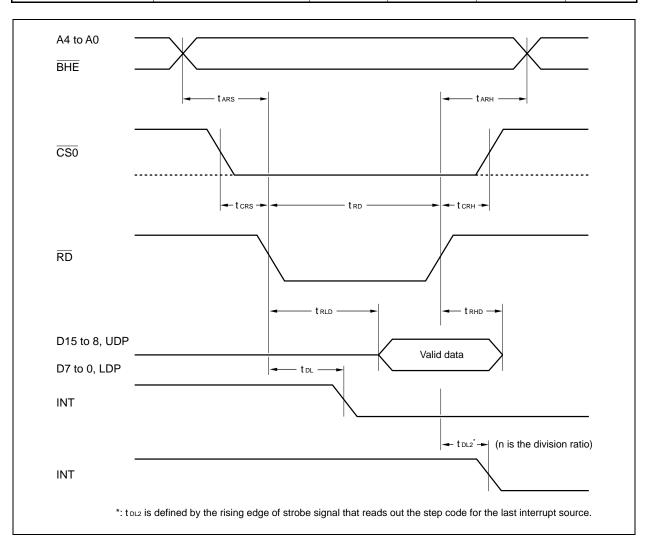

• PCI clock (PCLK pin)

Parameter	Symbol		Value	Unit	
Farameter	Symbol	Min.	Тур.	Max.	Oille
Clock frequency	t PCY	30.0	_	_	ns
Clock pulse width (Low)	t PLO	12.0	_	_	ns
Clock pulse width (High)	tрні	12.0	_	_	ns
Clock slew rate	t PSR	1.0	_	4.0	V/ns
Clock amplitude	VIHP - VILP	2.0	_	_	ns

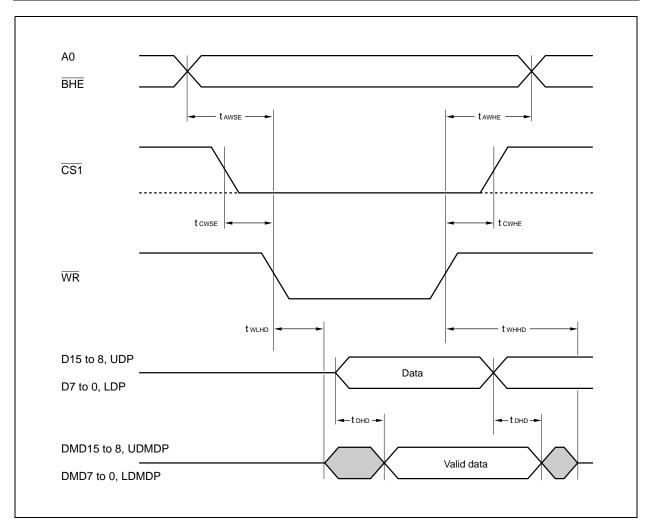
(2) System reset


Parameter	Symbol		Value		Unit
Parameter	Зуппоп	Min.	Тур.	Max.	Offic
Reset (RESET) pulse "L" level pulse width	twrsl	4 tclf	_	_	ns

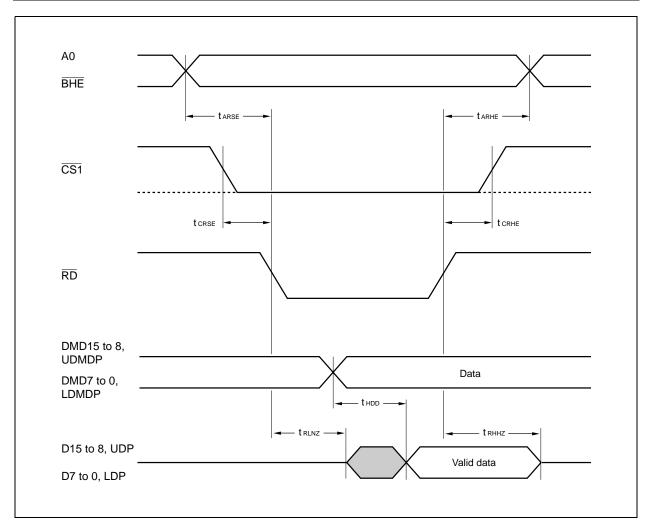
5. MPU Interface


(1) Register write timing for 80 series

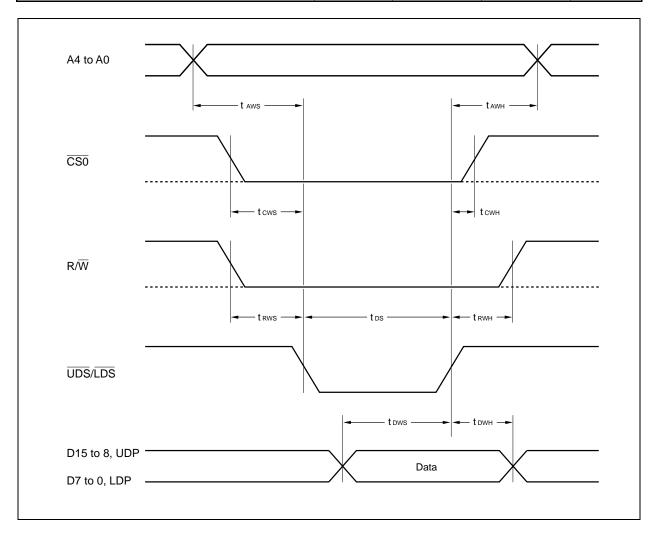
Parameter	Symbol	Value		Unit
Farameter	Symbol	Min.	Max.	Oille
Address (A4 to A0), BHE set up time	taws	40	_	ns
Address (A4 to A0), hold time	t awh	20	_	ns
CS0 set up time	tcws	20	_	ns
CS0 hold time	t cwн	10	_	ns
Data set up time	tows	40	_	ns
Data hold time	t DWH	20	_	ns
WR "L" level pulse width	twr	70	_	ns


(2) Register read timing for 80 series

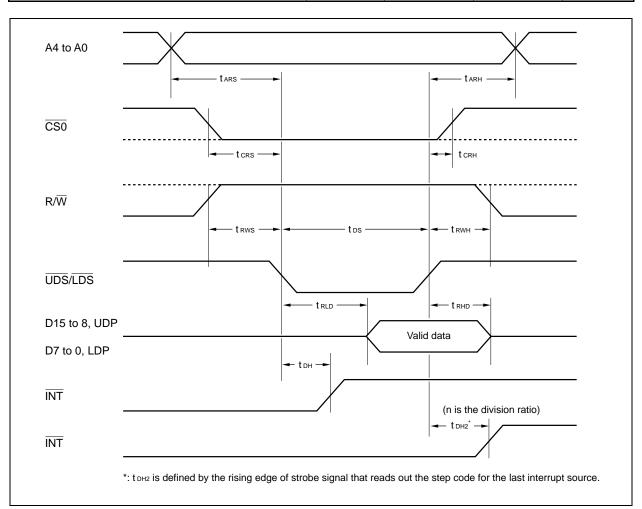
Dow		Coursels ad	Va	Unit	
Par	ameter	Symbol	Min.	Max.	Unit
Address (A4 to A0), BHE	set up time	tars	40	_	ns
Address (A4 to A0), hold	time	tarh	20	_	ns
CS0 set up time		tcrs	20	_	ns
CS0 hold time		t crh	10	_	ns
\overline{RD} set Low \rightarrow data outp	ut defined time	t RLD	_	70	ns
\overline{RD} set high $ o$ data outp	out disable time	t RHD	5	_	ns
RD pulse duration at Lov	V	t RD	70	_	ns
INIT signal along time	Interrupt non-hold mode	tol	_	50	
INT signal clear time	Interrupt hold mode	t _{DL2}	_	n * tclf + 50	ns


(3) Register write timing for 80 series (for external access)

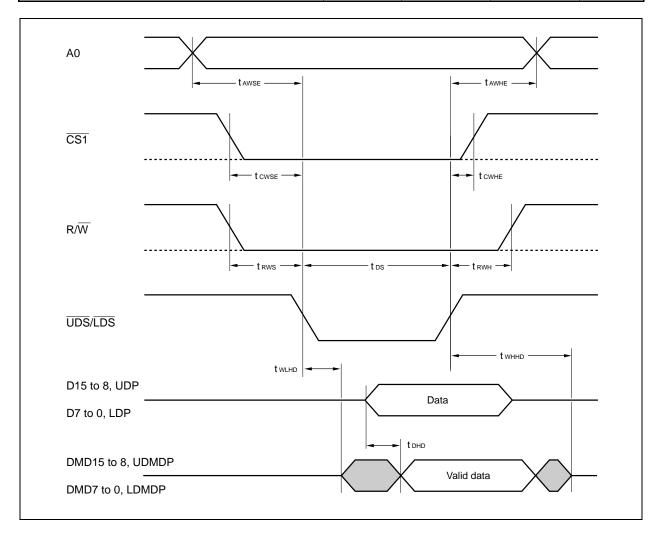
Parameter	Symbol	Value		Unit
Farameter	Symbol	Min.	Max.	Offic
Address (A0), BHE set up time	t awse	40	_	ns
Address (A0), BHE hold time	t awhe	20	_	ns
CS1 set up time	tcwse	20	_	ns
CST hold time	t cwhe	10	_	ns
$\overline{\text{WR}}$ set Low $ o$ DMA bus output delay time	t wlhd	_	70	ns
$\overline{\text{WR}}$ set High $ ightarrow$ DMA bus output undefined time	t whhd	5	_	ns
MPU data bus $ ightarrow$ DMA bus output delay time	t DHD	_	40	ns


(4) Register read timing for 80 series (for external access)

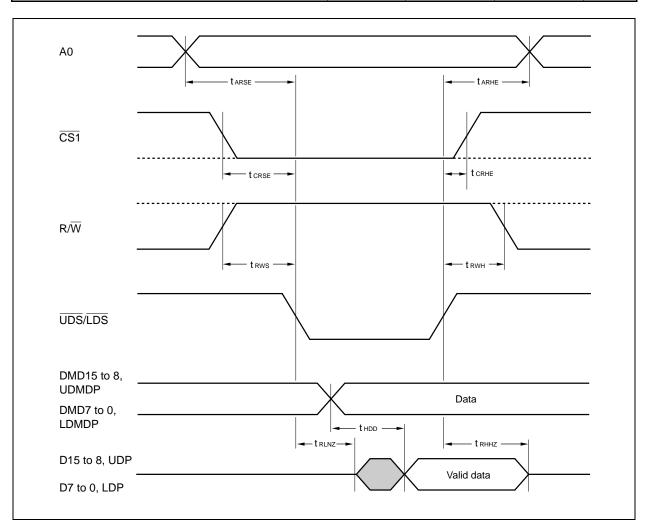
Parameter	Symbol	Va	lue	Unit
Farameter	Syllibol	Min.	Max.	Offic
Address (A0), BHE set up time	t arse	40	_	ns
Address (A0), BHE hold time	t arhe	20	_	ns
CS1 set up time	tcrse	20	_	ns
CST hold time	t CRHE	10		ns
$\overline{\text{RD}}$ set Low $ o$ MPU data bus output enable time	t rlnz	_	70	ns
$\overline{ t RD}$ set High $ o$ MPU data bus output disable time	t RHHZ	5	_	ns
DMA bus $ ightarrow$ MPU data bus output delay time	t HDD	_	40	ns


(5) Register write timing for 68 series

Parameter	Symbol	Val	lue	Unit
Farameter	Syllibol	Min.	Max.	Offic
Address (A4 to A0) set up time	t aws	40	_	ns
Address (A4 to A0) hold time	t awh	20	_	ns
CS0 set up time	tcws	20	_	ns
CS0 hold time	t cwH	10	_	ns
Data set up time	tows	40	_	ns
Data hold time	t DWH	20	_	ns
UDS/LDS "L" level pulse width	tos	70	_	ns
R/W set up time	trws	20	_	ns
R/W hold time	t RWH	20	_	ns


(6) Register read timing for 68 series

Danamatan.	Councile of	V	Unit	
Parameter	Symbol	Min.	Max.	Unit
Address (A4 to A0) set up time	tars	40	_	ns
Address (A4 to A0) hold time	tarh	20	_	ns
CS0 set up time	tcrs	20	_	ns
CS0 hold time	t crh	10	_	ns
Data output defined time	trld	_	70	ns
Data output disable time	t RHD	5	_	ns
UDS/LDS "L" level pulse width	t DS	70	_	ns
R/W set up time	trws	20	_	ns
R/W hold time	tкwн	20	_	ns
THE COLUMN CO.	tон	_	50	
INT signal clear time	t _{DH2}	_	n * tclf + 50	ns

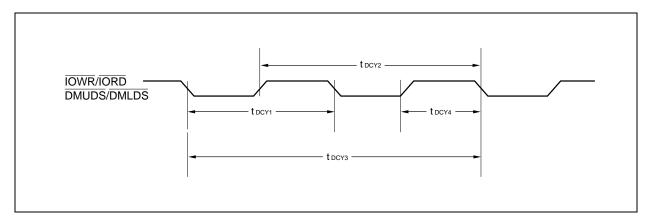

(7) Register write timing for 68 series (for external access)

Parameter	Symbol	Va	Unit	
		Min.	Max.	Unit
Address (A0) set up time	t AWSE	40	_	ns
Address (A0) hold time	t AWHE	20	_	ns
CS1 set up time	tcwse	20	_	ns
CST hold time	t cwhe	10	_	ns
$\overline{ extsf{UDS/LDS}}$ set Low $ ightarrow$ DMA bus output delay time	twlhd	_	70	ns
$\overline{\text{UDS/LDS}}$ set High $ ightarrow$ DMA bus output undefined time	t whhd	5	_	ns
MPU data bus $ ightarrow$ DMA bus output delay time	t DHD	_	40	ns
R/W set up time	trws	20	_	ns
R/W hold time	t RWH	20	_	ns

(8) Register read timing for 68 series (for external access)

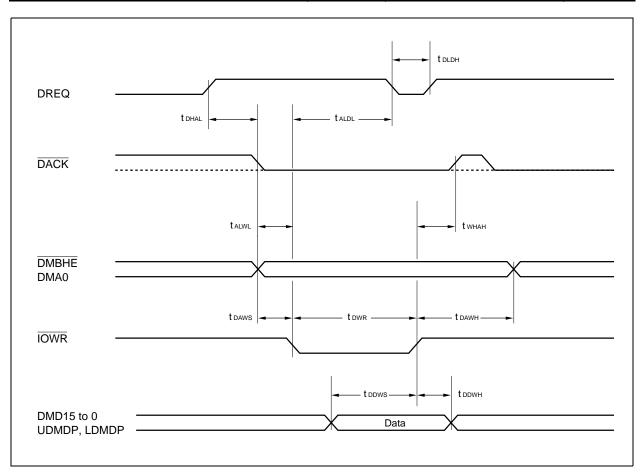
Parameter	Symbol	Value		Unit
		Min.	Max.	Unit
Address (A0) set up time	t arse	40	_	ns
Address (A0) hold time	t arhe	20	_	ns
CST set up time	tcrse	20	_	ns
CST hold time	t CRHE	10	_	ns
$\overline{ extsf{UDS/LDS}}$ set $\overline{ extsf{Low}} ightarrow extsf{MPU}$ data bus output enable time	t rlnz	_	70	ns
$\overline{ extsf{UDS/LDS}}$ set High $ ightarrow$ MPU data bus output disable time	t RHHZ	5	_	ns
DMA bus → MPU data bus output delay time	t HDD	_	40	ns
R/W set up time	trws	20	_	ns
R/W hold time	t rwh	20	_	ns

6. DMA Interface

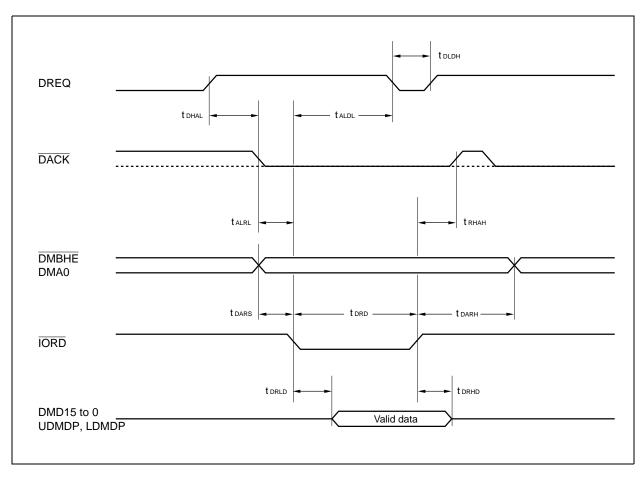

DMA access timing

The time regulations are not applicable in the following cases:

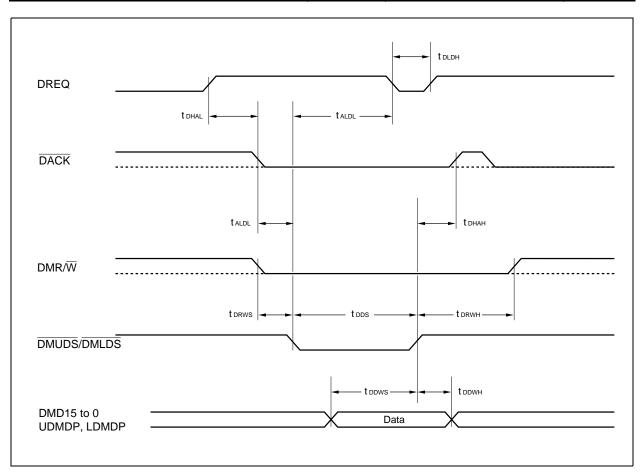
- During SCSI input and when data buffer EMPTY, or when one byte held
- During SCSI output and when data buffer FULL, or when 63 bytes held
- When parity error detected (target)
- When error stopping transfer occurs in SCSI interface


(1) Access cycle time (burst mode)

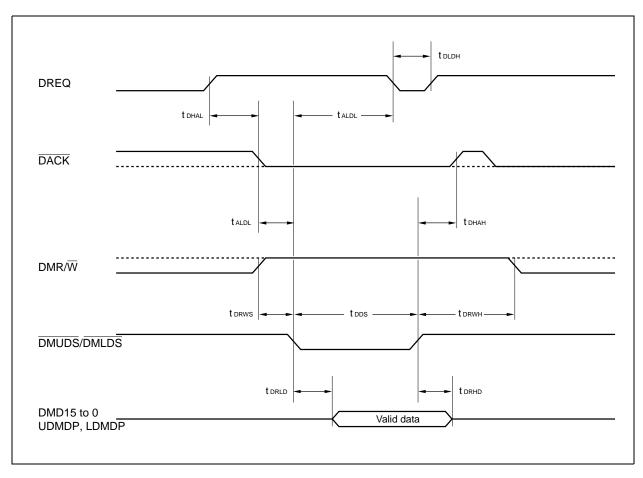
Parameter	Symbol	Value		Unit
		Min.	Max.	Offic
Access cycle time	tDCY1	2 tclf	_	ns
	tDCY2	3 tclf	_	ns
	t _{DCY3}	4 tclf	_	ns
	tDCY4	1 tclf	_	ns


(2) Write timing (burst mode for 80 series)

Parameter	Cymah al	Value		l lea it
	Symbol	Min.	Max.	– Unit
DREQ set High \rightarrow DACK set Low	t DHAL	0	_	ns
TOWR set Low → DREQ set Low	taldl	_	35	ns
$DREQ\ set\ Low o DREQ\ set\ High$	toldh	0	_	ns
DACK set Low → IOWR set Low	talwl	0	_	ns
DMBHE, DMA0 set up time	tdaws	20	_	ns
IOWR "L" level pulse width	t DWR	40	_	ns
TOWR set High → DACK set High	twhah	0	_	ns
DMBHE, DMA0 hold time	t DAWH	20	_	ns
Input data set up time	todws	30	_	ns
Input data hold time	t DDWH	10	_	ns


(3) Read timing (burst mode for 80 series)

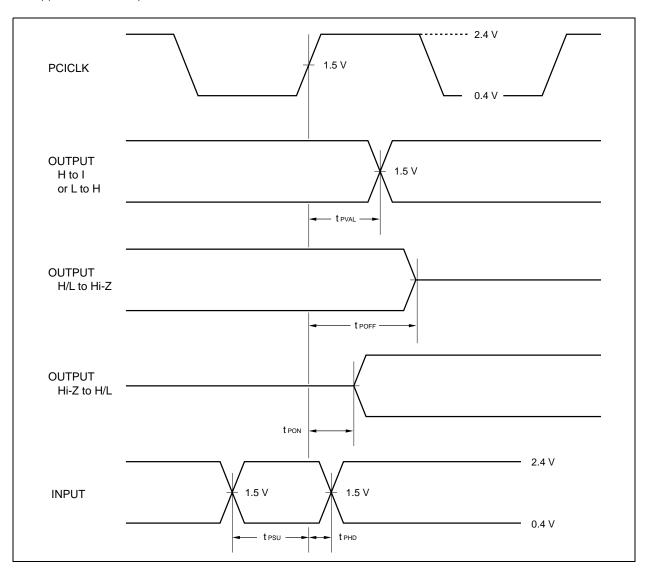
Parameter	Symbol	Value		l lm:4
		Min.	Max.	Unit
$DREQ\ set\ High \to \overline{DACK}\ set\ Low$	t dhal	0	_	ns
IORD set Low → DREQ set Low	t aldl	_	35	ns
$DREQ\ set\ Low \to DREQ\ set\ High$	t DLDH	0	_	ns
DACK set Low → IORD set Low	t alrl	0	_	ns
DMBHE, DMA0 set up time	t dars	20	_	ns
IORD "L" level pulse width	t DRD	40	_	ns
IORD set High → DACK set High	t rhah	0	_	ns
DMBHE, DMA0 hold time	t darh	20	_	ns
Data output defined time	t DRLD	_	40	ns
Data output hold time	t DRHD	5	_	ns


(4) Write timing (burst mode for 68 series)

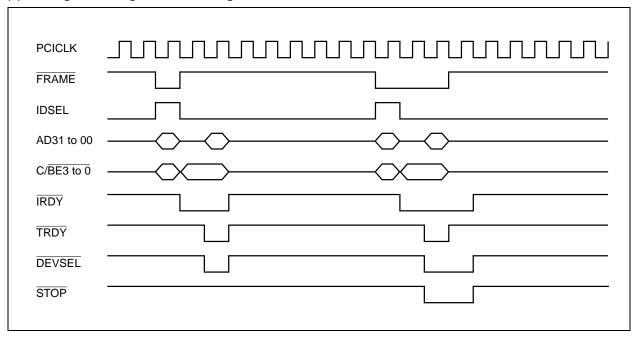
Parameter	Cymah al	Value		l lmi4
	Symbol	Min.	Max.	- Unit
$DREQ\ set\ High \to \overline{DACK}\ set\ Low$	t DHAL	0	_	ns
DMUDS/DMLDS set Low → DREQ set Low	taldl	_	35	ns
DREQ set Low → DREQ set High	toldh	0	_	ns
DACK set Low → DMUDS/DMLDS set Low	taldl	10	_	ns
R/W set up time	torws	20	_	ns
DMUDS/DMLDS "L" level pulse width	tods	40	_	ns
DMUDS/DMLDS set High → DACK set High	t dhah	0	_	ns
R/W hold time	t DRWH	20	_	ns
Input data set up time	todws	30	_	ns
Input data hold time	t DDWH	10	_	ns

(5) Read timing (burst mode for 68 series)

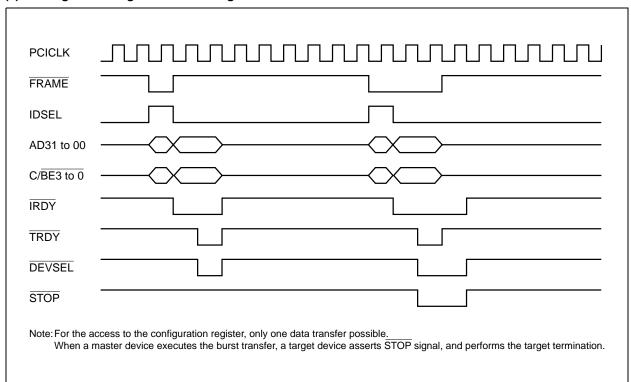
Parameter	Symbol	Value		l lm:4
		Min.	Max.	Unit
$DREQ\ set\ High \to \overline{DACK}\ set\ Low$	t DHAL	0	_	ns
$\overline{ exttt{DMUDS}/ exttt{DMLDS}}$ set Low $ o$ DREQ set Low	t aldl	_	35	ns
$DREQ\ set\ Low \to DREQ\ set\ High$	t DLDH	0	_	ns
DACK set Low → DMUDS/DMLDS set Low	t aldl	10	_	ns
R/W set up time	torws	20	_	ns
DMUDS/DMLDS "L" level pulse width	tods	40	_	ns
DMUDS/DMLDS set High → DACK set High	t dhah	0	_	ns
R/W hold time	t DRWH	20	_	ns
Output data valid time	t DRLD	_	40	ns
Output data hold time	t DRHD	5	_	ns



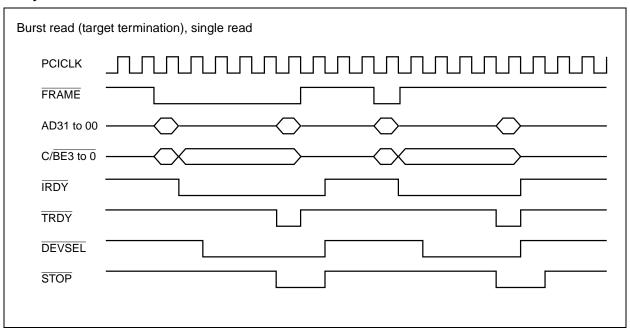
7. PCI Interface


(1) PCI interface signal timing

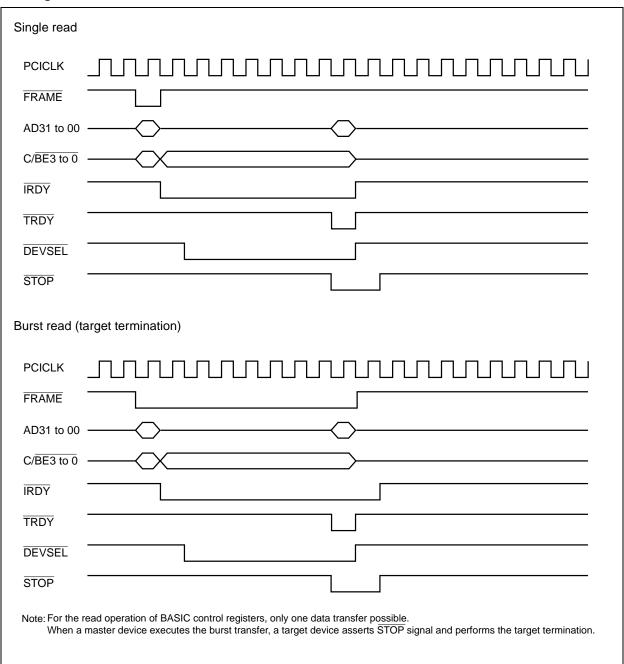
Parameter	Symbol	Va	l lm:4	
		Min.	Max.	Unit
Output signal valid time	t PVAL	2	11/12 *1	ns
Output disable time	t POFF	_	28	ns
Output enable time	t PON	2	_	ns
Input set up time	t PSU	7/10 *2	_	ns
Input hold time	t PHD	0	_	ns


*1: Applicable to PREQ pin*2: Applicable to GNT pin

(2) Configuration register read timing

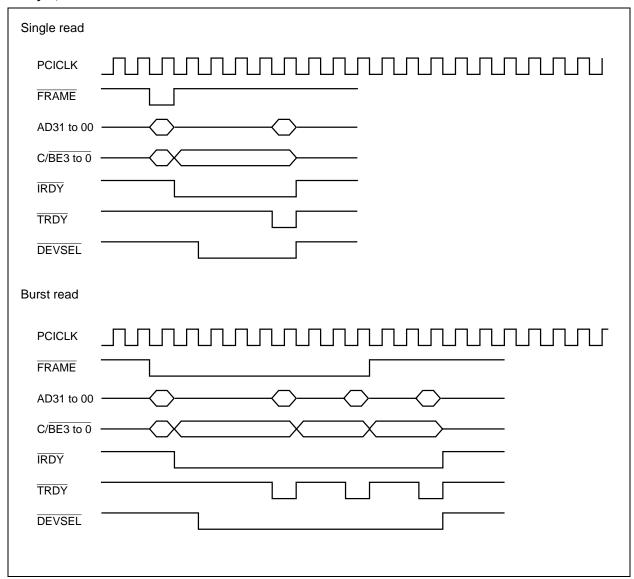


(3) Configuration register write timing

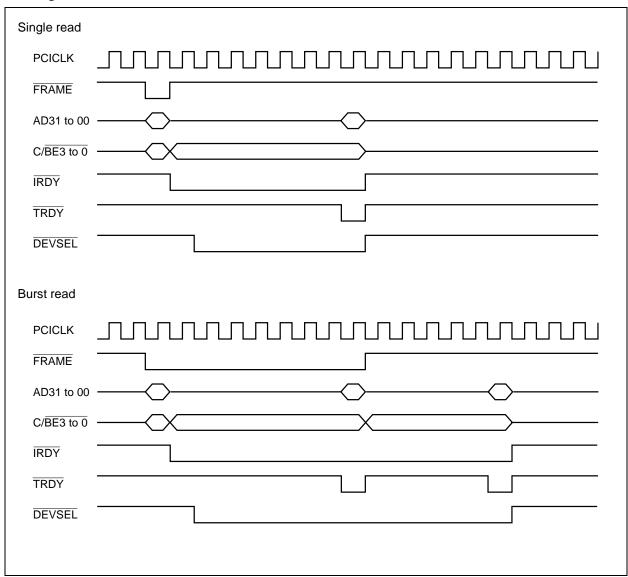


(4) BASIC control register read timing (target mode)

• Byte or word access

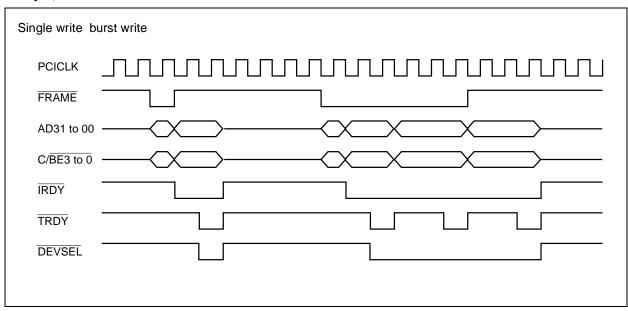


· Long-word access

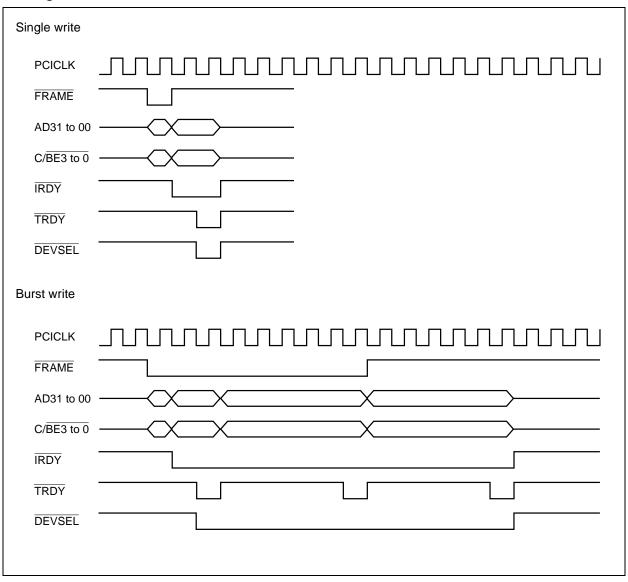


(5) Target mode-I/O, memory read timing (except BASIC control registers)

• Byte, word access

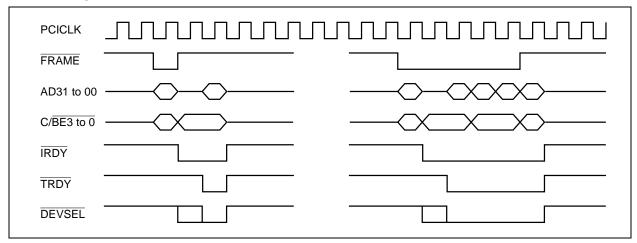


• Long-Word access

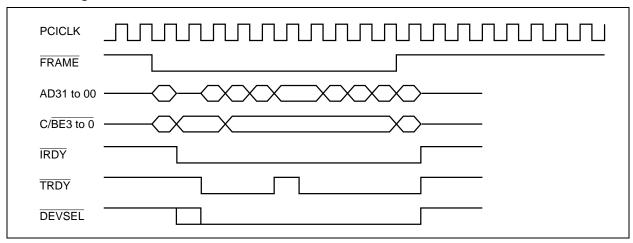


(6) Target Mode-I/O, memory write timing

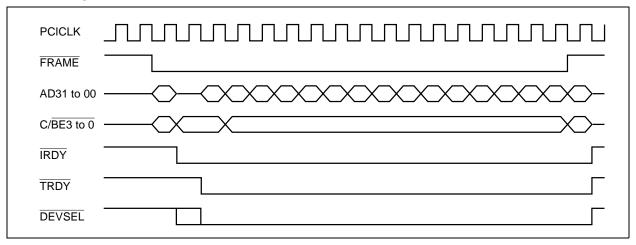
• Byte, word access



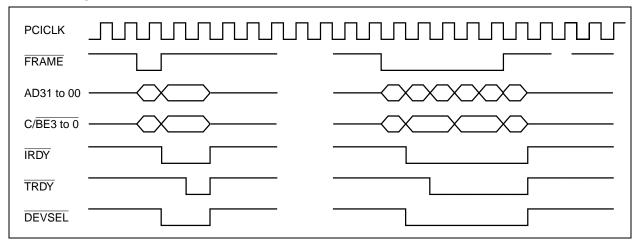
Long-word access



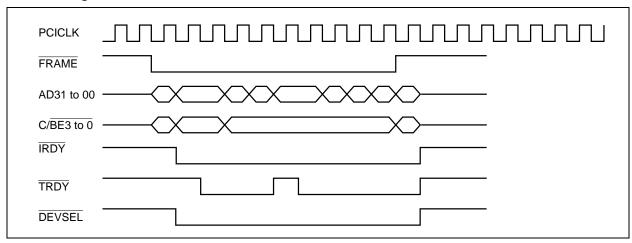
(7) Data read timing (master mode)


• Burst length = 1 or 4

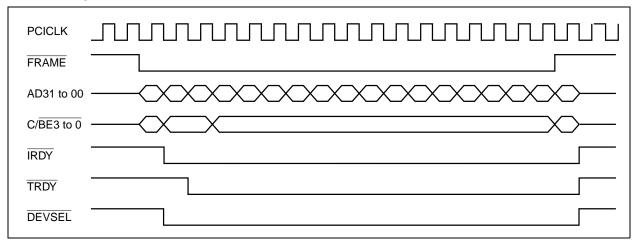
• Burst length = 8



• Burst length = 16



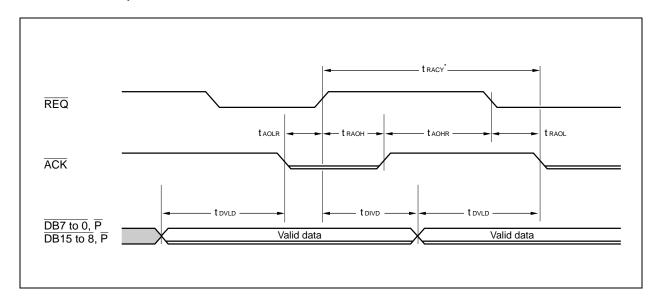
(8) Data write timing (master mode)


• Burst length = 1 or 4

• Burst length = 8

• Burst length = 16

8. SCSI Interface

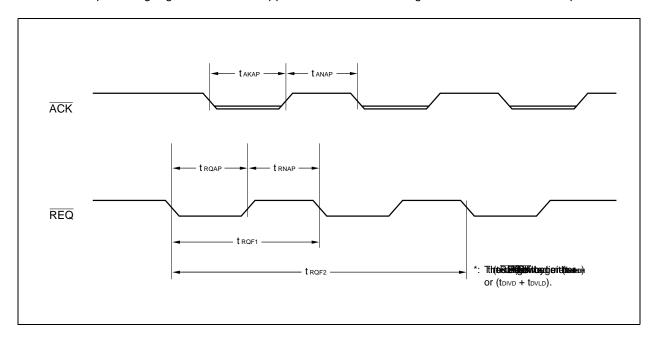

(1) Initiator asynchronous input timing (target \rightarrow initiator)

Parameter	Symbol	Val	Unit	
Farameter	Symbol	Min.	Max.	Onit
\overline{ACK} set Low $\to \overline{REQ}$ set High	t aolr	0	_	ns
REQ set High → ACK set High	t raoh	_	60	ns
\overline{ACK} set High \to \overline{REQ} set Low	t aohr	10		ns
Data bus valid \rightarrow REQ set Low	t DTSU	10	_	ns
$\overline{REQ}\ set\ Low o data\ bus\ hold\ time$	t DHLD	20	_	ns
$\overline{REQ}\ set\ Low o \overline{ACK}\ set\ Low$	t raol	_	40	ns
REQ set High → ACK set Low*	t racy	_	3 tclf + 40	ns

^{*:} t_{RACY} (REQ set High \rightarrow ACK set Low) is defined as either longer time of (t_{RAOH} + t_{RAOL}) or t_{RACY} itself.

Note: Time requirements in this section do not apply in the following cases;

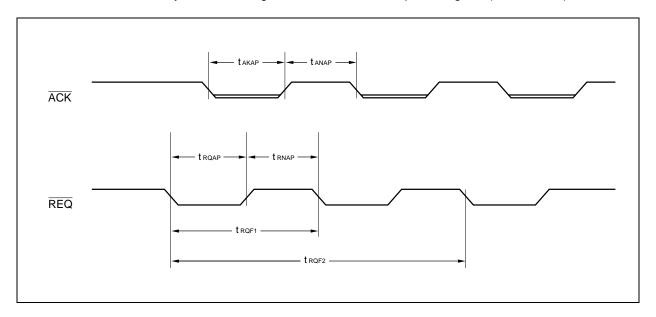
- When data register FULL in data phase
- When last byte transferred



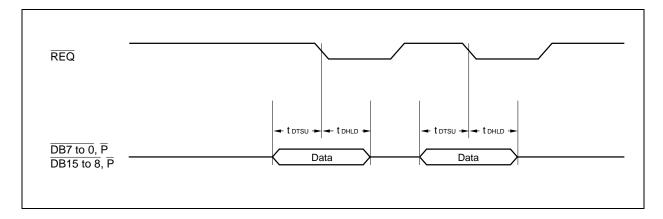
(2) Initiator asynchronous output timing (initiator \rightarrow target)

Parameter	Symbol	Val	Unit	
Farameter	Symbol	Min.	Max.	Onit
\overline{ACK} set Low $\to \overline{REQ}$ set High	t aolr	0	_	ns
REQ set High → ACK set High	t raoh	_	60	ns
\overline{ACK} set High $\to \overline{REQ}$ set Low	t AOHR	10	_	ns
Data bus output defined → ACK set Low*	t dvld	S • tclf - 10	_	ns
$\overline{REQ}\ set\ High \to data\ bus\ hold\ time$	tdivd	2 tclf	_	ns
$\overline{REQ}\ set\ Low o \overline{ACK}\ set\ Low$	t raol	_	40	ns

^{*:} The value of S varies with the setting condition of the asynchronous set up time register (address 17h).

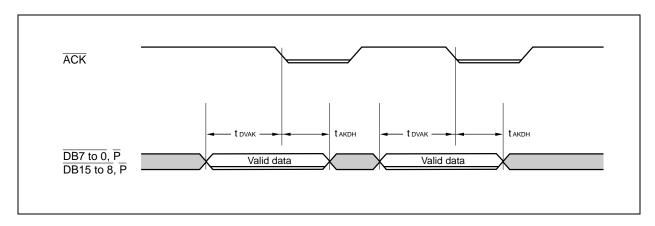

Note: This output timing regulations are not applicable when the data register is EMPTY in the data phase.

(3) Initiator synchronous transfer REQ/ACK timing


Parameter	Symbol	Va	Unit	
Farameter	Symbol	Min.	Max.	Offic
ACK Assertion Period*	t akap	A • tclf − 12	_	ns
ACK Negation Period*	tanap N • tclf + 2		_	ns
REQ Assertion Period	t rqap	20	_	ns
REQ Negation Period	t rnap	20	_	ns
REQ input cycle time (1)	t RQF1	1 tclf	_	ns
REQ input cycle time (2)	t RQF2	3 tclf	_	ns

^{*:} The values of A and N vary with the setting condition of the transfer period register (address 0Dh).

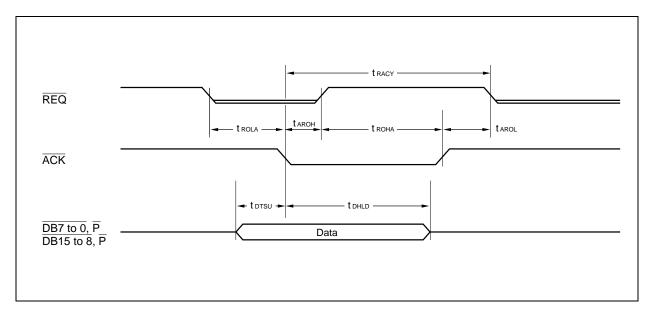
(4) Initiator synchronous transfer input timing (target \rightarrow initiator)


Parameter	Symbol	Va	Unit		
Farameter	Syllibol	Min.	Max.	Onit	
Data bus defined \rightarrow REQ set Low	t DTSU	10	_	ns	
$\overline{REQ}\ set\ Low o data\ bus\ hold\ time$	t DHLD	20	_	ns	

(5) Initiator synchronous transfer output timing (initiator \rightarrow target)

Parameter	Symbol	Va	Unit		
Falametei	Syllibol	Min.	Max.	Onit	
Data bus defined → ACK set Low*	t dvak	N • tclf − 2	_	ns	
ACK set Low → data bus hold time*	t akdh	A • tclf - 12	_	ns	

^{*:} The vales of A and N vary with the setting condition of the transfer period register (address 0Dh).

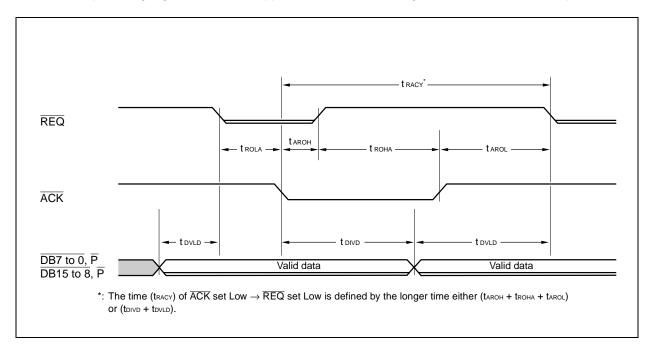


(6) Target asynchronous input timing (initiator \rightarrow target)

Parameter	Symbol	Va	Unit	
Farameter	Symbol	Min.	Max.	Offic
$\overline{REQ}\ set\ Low \to \overline{ACK}\ set\ Low$	t rola	0	_	ns
$\overline{\text{ACK}}$ set Low $\to \overline{\text{REQ}}$ set High	t aroh	_	60	ns
REQ set High → ACK set High	t roha	0	_	ns
Data bus defined \rightarrow $\overline{\text{ACK}}$ set Low	t otsu	10		ns
\overline{ACK} set Low $ o$ data bus hold time	t DHLD	20	_	ns
\overline{ACK} set High $\to \overline{REQ}$ set Low	t arol	_	40	ns
\overline{ACK} set $Low o \overline{REQ}$ set Low^*	t racy	_	3 tclf + 40	ns

^{*:} tracy (\overline{ACK} set Low $\rightarrow \overline{REQ}$ set Low) is defined as either longer time of (taroh + troha + tarol) or tracy itself.

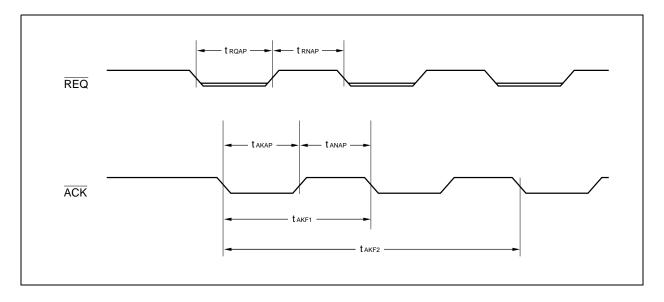
Note: The input timing regulations are not applicable when the data register is FULL in the data phase.



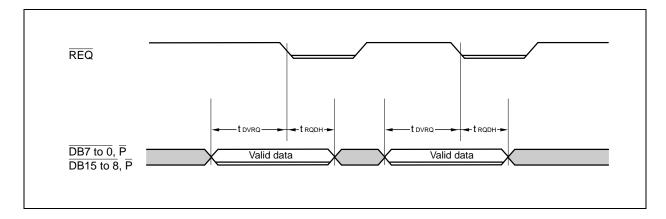
(7) Target asynchronous output timing (target \rightarrow initiator)

Parameter	Symbol	Val	Unit	
Farameter	Symbol	Min.	Max.	Onit
$\overline{REQ}\ set\ Low o \overline{ACK}\ set\ Low$	t rola	0	_	ns
\overline{ACK} set Low $\to \overline{REQ}$ set High	t aroh	_	60	ns
REQ set High → ACK set High	t roha	0	_	ns
Data bus defined → REQ set Low*	t DVLD	S • tclf - 10	_	ns
\overline{ACK} set Low $ o$ data bus hold time	t DIVD	2 tclf	_	ns
\overline{ACK} set High \to \overline{REQ} set Low	t arol	_	40	ns

^{*:} The value of S varies with the setting condition of the asynchronous set up time register (address 17h).

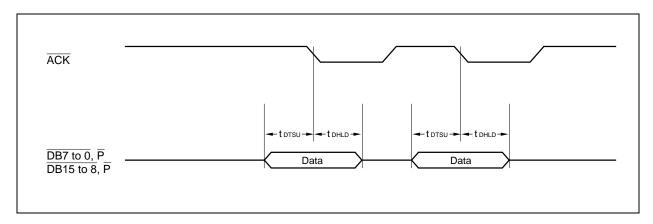

Note: The output timing regulations are not applicable when the data register is EMPTY in the data phase.

(8) Target synchronous transfer REQ/ACK timing


Parameter	Symbol	Val	Unit	
Falametei	Symbol	Min. Max.		Onit
REQ Assertion Period*	t rqap	A • tclf - 12	_	ns
REQ Negation Period*	t rnap	N • tclf + 2	_	ns
ACK Assertion Period	t akap	20	_	ns
ACK Negation Period	tanap	20	_	ns
ACK input cycle time (1)	t AKF1	1 tclf	_	ns
ACK input cycle time (2)	tAKF2	3 tclf	_	ns

^{*:} The values of A and N vary with the setting condition of the transfer period register (address 0Dh).

(9) Target synchronous transfer input timing (initiator \rightarrow target)


Parameter	Symbol	Va	Unit		
Farameter	Syllibol	Min.	Max.	Offic	
Data bus defined \rightarrow ACK set Low	t otsu	10	_	ns	
\overline{ACK} set Low $ o$ data bus hold time	t DHLD	20	_	ns	

(10) Target synchronous transfer output timing (target \rightarrow initiator)

Parameter	Symbol	Va	Unit		
Farameter	Symbol	Min.	Max.	Oill	
Data bus defined \rightarrow $\overline{\text{REQ}}$ set Low^*	t dvrq	N • tclf + 2	_	ns	
REQ set Low → data bus hold time*	t RQDH	A • tclf - 12	_	ns	

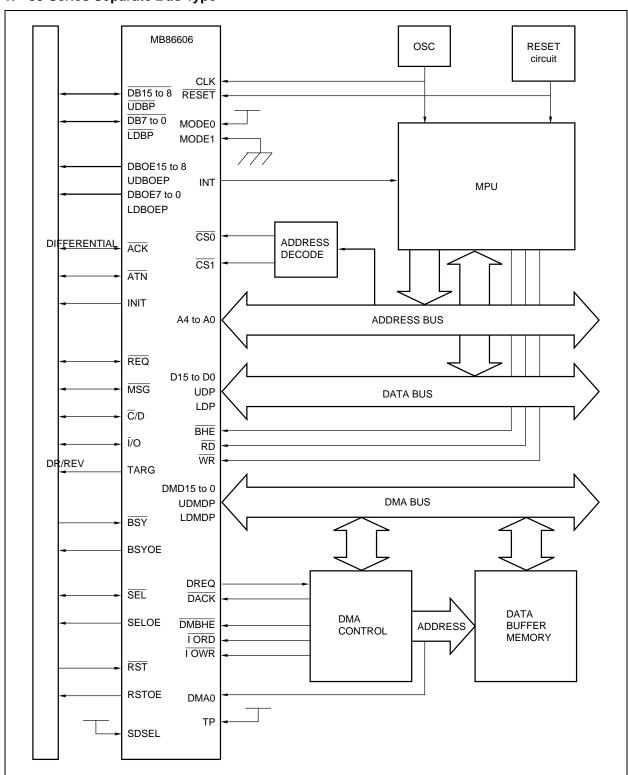
^{*:} The values of A and N vary with the setting condition of the transfer period register (address 0Dh).

(11) A, N, and S values in SCSI interface timing specifications

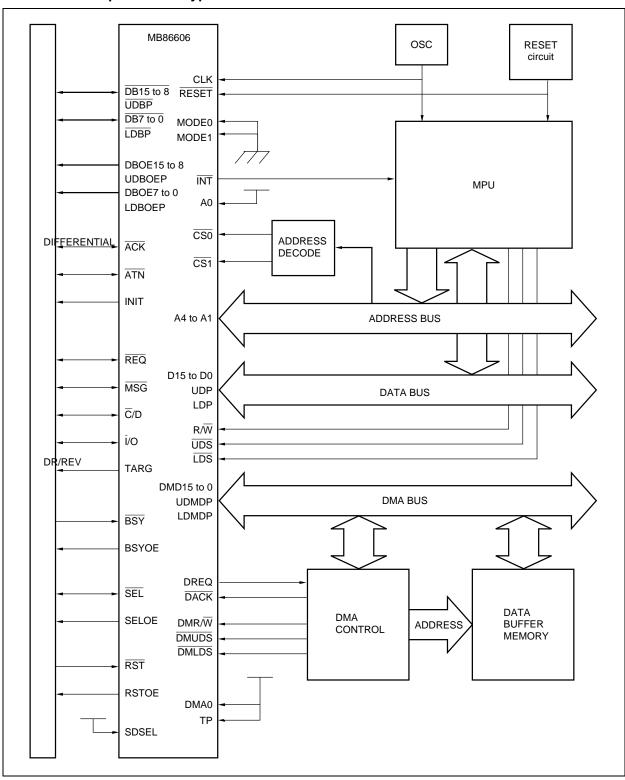
• Set value for transfer period register and A, N values

Tra	nsfer	period	l regis	ter	Α	N	Transfer period register		Α	N			
4	3	2	1	0	A	IN	4	3	2	1	0	A	IN
0	0	0	0	1	(Inhibited)	(Inhibited)	1	0	0	0	1	9	8
0	0	0	1	0	1	1	1	0	0	1	0	9	9
0	0	0	1	1	2	1	1	0	0	1	1	10	9
0	0	1	0	0	2	2	1	0	1	0	0	10	10
0	0	1	0	1	3	2	1	0	1	0	1	11	10
0	0	1	1	0	3	3	1	0	1	1	0	11	11
0	0	1	1	1	4	3	1	0	1	1	1	12	11
0	1	0	0	0	4	4	1	1	0	0	0	12	12
0	1	0	0	1	5	4	1	1	0	0	1	13	12
0	1	0	1	0	5	5	1	1	0	1	0	13	13
0	1	0	1	1	6	5	1	1	0	1	1	14	13
0	1	1	0	0	6	6	1	1	1	0	0	14	14
0	1	1	0	1	7	6	1	1	1	0	1	15	14
0	1	1	1	0	7	7	1	1	1	1	0	15	15
0	1	1	1	1	8	7	1	1	1	1	1	16	15
1	0	0	0	0	8	8	0	0	0	0	0	16	16

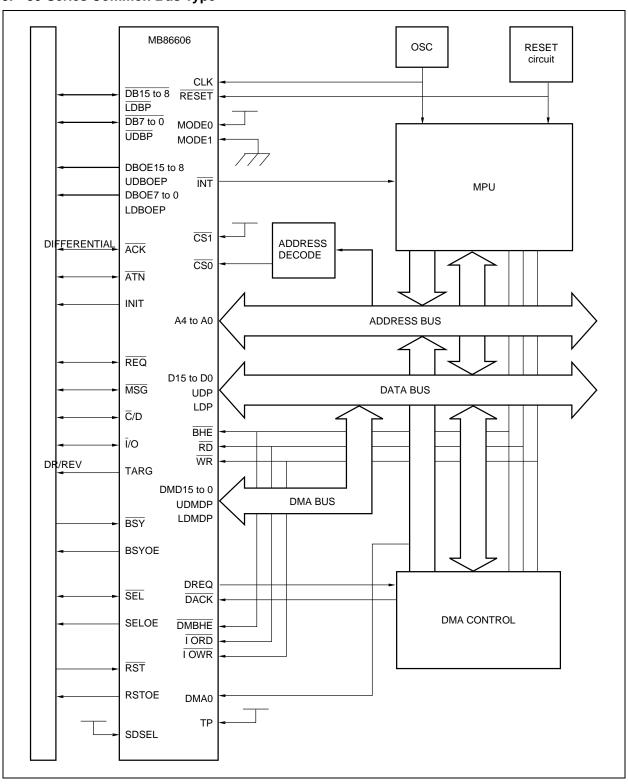
Note: The A and N values in the register setting represent the assertion and negation periods (in clock-cycle units). The numerical value is applicable to the A and N values in AC characteristics.

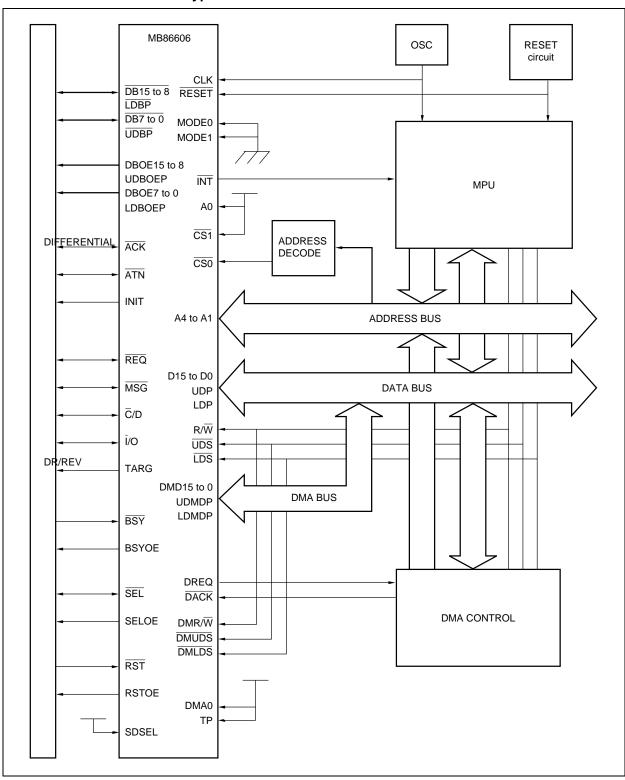

• Set value for asynchronous set up time register and S value

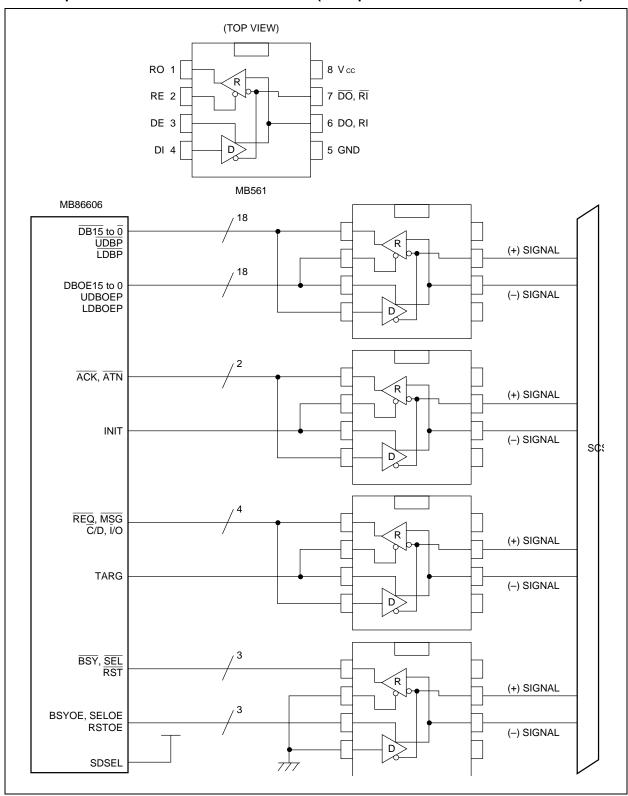
	Asynchronous se	S		
3	2	1	0	3
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15
0	0	0	0	16

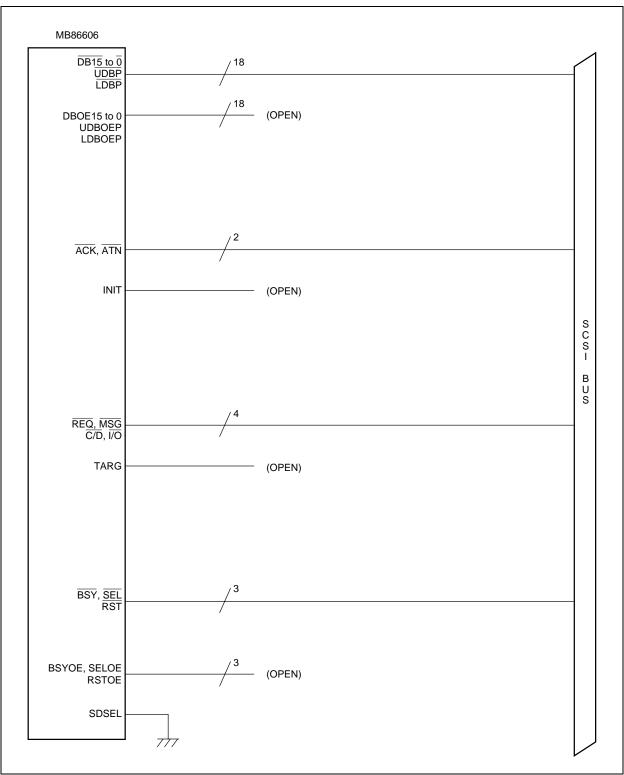

Note: The S (set up time) value of the set up time setting register in asynchronous data transfer represents the time required to assert the REQ or ACK signal after setting data at the data bus (in clock-cycle units). The numerical value is applicable to the S value in AC characteristics.

■ SYSTEM CONFIGURATION

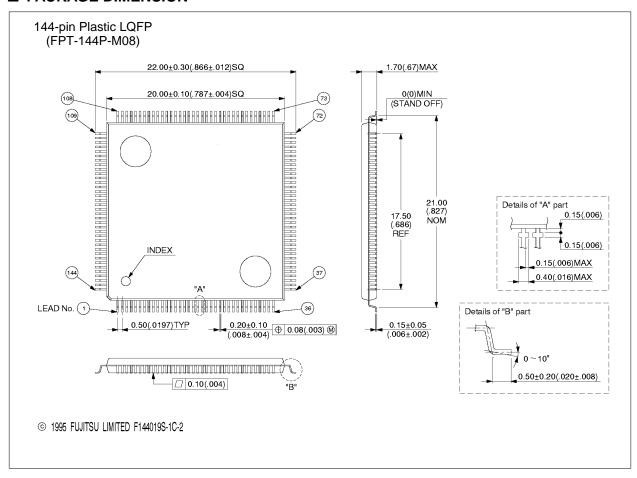

1. 80-Series Separate Bus Type


2. 68-Series Separate Bus Type


3. 80-Series Common Bus Type


4. 68-Series Common Bus Type

5. Example of Connection in Differential Mode (Example of Driver/Receiver Connection)


6. Example of Connection in Single-end Mode

■ ORDERING INFORMATION

Part number	Package	Remarks
MB86605PMT	144-pin Plastic LQFP (FPT-144P-M08)	

■ PACKAGE DIMENSION

M	R	R	6	6	N	5
IVI	L	u	u	u	u	J

MEMO

Worldwide Headquarters

Mon-Fri: 7am-5pm (PST)

Japan	Fujitsu Limited	Asia	Fujitsu Microelectronics Asia PTE Limited		
Tel: +81 44 754 3753 Fax: +81 44 754 3332	4-1-1 Kamiodanaka Nakahara-ku, Kawasaki-shi. Kanagawa 211-88 Japan	Tel: +65 281 0770 Fax +65 281 0220 :	#05-08, 151 Lorong Chuan New Tech Park Singapore 556741		
http://www.fujitsu.co.jp/		http://www.fsl.com.sg/			
USA		Europe			
Tel: +1 408 922 9000 Fax: +1 408 922 9179	Fujitsu Microelectronics Inc 3545 North First Street San José CA 95134-1804 USA	Tel: +49 6103 6900 Fax +49 6103 6901 :	Fujitsu Mikroelektronik GmbH Am Siebenstein 6-10 D-63303 Dreieich- Buchschlag Germany		
Tel: +1 800 866 8608	Customer Response Center	http://www.fujitsu.ede.com/			

http://www.fujitsumicro.com/

Fax: +1 408 922 9179

All Right Reserved.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu Microelectronics, Inc. assumes no responsibility for inaccuracies.

The information conveyed in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu Limited, its subsidiaries, or Fujitsu Microelectronics, Inc.

Fujitsu Microelectronics, Inc. reserves the right to change products or specifications without notice.

No part of the publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu Microelectronics, Inc.

SCSI-DS-20063-5/97